Properties

Label 637.2.r.g.324.14
Level $637$
Weight $2$
Character 637.324
Analytic conductor $5.086$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(116,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.116"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,20,0,0,0,0,-16,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 324.14
Character \(\chi\) \(=\) 637.324
Dual form 637.2.r.g.116.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.43372 + 0.827759i) q^{2} +(0.247488 + 0.428663i) q^{3} +(0.370370 + 0.641500i) q^{4} +(-2.48886 - 1.43695i) q^{5} +0.819443i q^{6} -2.08473i q^{8} +(1.37750 - 2.38590i) q^{9} +(-2.37889 - 4.12036i) q^{10} +(2.23554 - 1.29069i) q^{11} +(-0.183325 + 0.317527i) q^{12} +(3.54562 + 0.654682i) q^{13} -1.42251i q^{15} +(2.46639 - 4.27192i) q^{16} +(-1.13792 - 1.97093i) q^{17} +(3.94990 - 2.28047i) q^{18} +(-3.80679 - 2.19785i) q^{19} -2.12881i q^{20} +4.27352 q^{22} +(-3.58463 + 6.20876i) q^{23} +(0.893645 - 0.515946i) q^{24} +(1.62963 + 2.82260i) q^{25} +(4.54150 + 3.87355i) q^{26} +2.84859 q^{27} +6.19574 q^{29} +(1.17750 - 2.03948i) q^{30} +(5.93577 - 3.42702i) q^{31} +(3.46138 - 1.99843i) q^{32} +(1.10654 + 0.638861i) q^{33} -3.76769i q^{34} +2.04074 q^{36} +(-5.10298 - 2.94621i) q^{37} +(-3.63859 - 6.30221i) q^{38} +(0.596861 + 1.68190i) q^{39} +(-2.99564 + 5.18860i) q^{40} +3.98014i q^{41} +1.31425 q^{43} +(1.65595 + 0.956065i) q^{44} +(-6.85682 + 3.95878i) q^{45} +(-10.2787 + 5.93442i) q^{46} +(-1.17094 - 0.676040i) q^{47} +2.44161 q^{48} +5.39576i q^{50} +(0.563244 - 0.975567i) q^{51} +(0.893211 + 2.51699i) q^{52} +(4.14389 + 7.17742i) q^{53} +(4.08408 + 2.35795i) q^{54} -7.41860 q^{55} -2.17577i q^{57} +(8.88296 + 5.12858i) q^{58} +(-8.32324 + 4.80543i) q^{59} +(0.912540 - 0.526855i) q^{60} +(4.77650 - 8.27315i) q^{61} +11.3470 q^{62} -3.24870 q^{64} +(-7.88381 - 6.72427i) q^{65} +(1.05765 + 1.83190i) q^{66} +(-13.7781 + 7.95477i) q^{67} +(0.842903 - 1.45995i) q^{68} -3.54862 q^{69} -4.79396i q^{71} +(-4.97395 - 2.87171i) q^{72} +(4.94074 - 2.85253i) q^{73} +(-4.87750 - 8.44808i) q^{74} +(-0.806629 + 1.39712i) q^{75} -3.25607i q^{76} +(-0.536475 + 2.90543i) q^{78} +(1.00713 - 1.74440i) q^{79} +(-12.2770 + 7.08815i) q^{80} +(-3.42750 - 5.93661i) q^{81} +(-3.29460 + 5.70641i) q^{82} -3.11798i q^{83} +6.54052i q^{85} +(1.88427 + 1.08789i) q^{86} +(1.53337 + 2.65588i) q^{87} +(-2.69074 - 4.66049i) q^{88} +(11.3089 + 6.52918i) q^{89} -13.1077 q^{90} -5.31056 q^{92} +(2.93807 + 1.69629i) q^{93} +(-1.11920 - 1.93850i) q^{94} +(6.31639 + 10.9403i) q^{95} +(1.71330 + 0.989176i) q^{96} +14.0382i q^{97} -7.11169i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 20 q^{4} - 16 q^{9} - 28 q^{16} - 16 q^{22} + 36 q^{23} + 44 q^{25} + 72 q^{29} + 104 q^{36} - 32 q^{39} - 72 q^{43} + 72 q^{51} - 12 q^{53} - 328 q^{64} + 24 q^{65} - 96 q^{74} + 48 q^{78} - 36 q^{79}+ \cdots + 84 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.43372 + 0.827759i 1.01379 + 0.585314i 0.912300 0.409522i \(-0.134305\pi\)
0.101493 + 0.994836i \(0.467638\pi\)
\(3\) 0.247488 + 0.428663i 0.142888 + 0.247488i 0.928583 0.371125i \(-0.121028\pi\)
−0.785695 + 0.618614i \(0.787695\pi\)
\(4\) 0.370370 + 0.641500i 0.185185 + 0.320750i
\(5\) −2.48886 1.43695i −1.11305 0.642622i −0.173435 0.984845i \(-0.555487\pi\)
−0.939619 + 0.342223i \(0.888820\pi\)
\(6\) 0.819443i 0.334536i
\(7\) 0 0
\(8\) 2.08473i 0.737063i
\(9\) 1.37750 2.38590i 0.459166 0.795299i
\(10\) −2.37889 4.12036i −0.752271 1.30297i
\(11\) 2.23554 1.29069i 0.674040 0.389157i −0.123565 0.992336i \(-0.539433\pi\)
0.797606 + 0.603179i \(0.206100\pi\)
\(12\) −0.183325 + 0.317527i −0.0529212 + 0.0916623i
\(13\) 3.54562 + 0.654682i 0.983377 + 0.181576i
\(14\) 0 0
\(15\) 1.42251i 0.367291i
\(16\) 2.46639 4.27192i 0.616598 1.06798i
\(17\) −1.13792 1.97093i −0.275986 0.478022i 0.694397 0.719592i \(-0.255671\pi\)
−0.970383 + 0.241570i \(0.922338\pi\)
\(18\) 3.94990 2.28047i 0.931000 0.537513i
\(19\) −3.80679 2.19785i −0.873338 0.504222i −0.00488206 0.999988i \(-0.501554\pi\)
−0.868456 + 0.495766i \(0.834887\pi\)
\(20\) 2.12881i 0.476016i
\(21\) 0 0
\(22\) 4.27352 0.911117
\(23\) −3.58463 + 6.20876i −0.747447 + 1.29462i 0.201595 + 0.979469i \(0.435387\pi\)
−0.949043 + 0.315148i \(0.897946\pi\)
\(24\) 0.893645 0.515946i 0.182414 0.105317i
\(25\) 1.62963 + 2.82260i 0.325926 + 0.564520i
\(26\) 4.54150 + 3.87355i 0.890662 + 0.759665i
\(27\) 2.84859 0.548212
\(28\) 0 0
\(29\) 6.19574 1.15052 0.575260 0.817971i \(-0.304901\pi\)
0.575260 + 0.817971i \(0.304901\pi\)
\(30\) 1.17750 2.03948i 0.214980 0.372357i
\(31\) 5.93577 3.42702i 1.06610 0.615511i 0.138983 0.990295i \(-0.455617\pi\)
0.927112 + 0.374784i \(0.122283\pi\)
\(32\) 3.46138 1.99843i 0.611891 0.353276i
\(33\) 1.10654 + 0.638861i 0.192624 + 0.111211i
\(34\) 3.76769i 0.646154i
\(35\) 0 0
\(36\) 2.04074 0.340123
\(37\) −5.10298 2.94621i −0.838925 0.484353i 0.0179738 0.999838i \(-0.494278\pi\)
−0.856899 + 0.515485i \(0.827612\pi\)
\(38\) −3.63859 6.30221i −0.590256 1.02235i
\(39\) 0.596861 + 1.68190i 0.0955743 + 0.269319i
\(40\) −2.99564 + 5.18860i −0.473653 + 0.820390i
\(41\) 3.98014i 0.621594i 0.950476 + 0.310797i \(0.100596\pi\)
−0.950476 + 0.310797i \(0.899404\pi\)
\(42\) 0 0
\(43\) 1.31425 0.200422 0.100211 0.994966i \(-0.468048\pi\)
0.100211 + 0.994966i \(0.468048\pi\)
\(44\) 1.65595 + 0.956065i 0.249644 + 0.144132i
\(45\) −6.85682 + 3.95878i −1.02215 + 0.590141i
\(46\) −10.2787 + 5.93442i −1.51551 + 0.874983i
\(47\) −1.17094 0.676040i −0.170799 0.0986106i 0.412164 0.911110i \(-0.364773\pi\)
−0.582962 + 0.812499i \(0.698106\pi\)
\(48\) 2.44161 0.352417
\(49\) 0 0
\(50\) 5.39576i 0.763076i
\(51\) 0.563244 0.975567i 0.0788699 0.136607i
\(52\) 0.893211 + 2.51699i 0.123866 + 0.349043i
\(53\) 4.14389 + 7.17742i 0.569207 + 0.985895i 0.996645 + 0.0818503i \(0.0260830\pi\)
−0.427438 + 0.904045i \(0.640584\pi\)
\(54\) 4.08408 + 2.35795i 0.555773 + 0.320876i
\(55\) −7.41860 −1.00032
\(56\) 0 0
\(57\) 2.17577i 0.288188i
\(58\) 8.88296 + 5.12858i 1.16639 + 0.673416i
\(59\) −8.32324 + 4.80543i −1.08359 + 0.625613i −0.931864 0.362809i \(-0.881818\pi\)
−0.151730 + 0.988422i \(0.548485\pi\)
\(60\) 0.912540 0.526855i 0.117808 0.0680167i
\(61\) 4.77650 8.27315i 0.611569 1.05927i −0.379407 0.925230i \(-0.623872\pi\)
0.990976 0.134038i \(-0.0427946\pi\)
\(62\) 11.3470 1.44107
\(63\) 0 0
\(64\) −3.24870 −0.406087
\(65\) −7.88381 6.72427i −0.977867 0.834044i
\(66\) 1.05765 + 1.83190i 0.130187 + 0.225491i
\(67\) −13.7781 + 7.95477i −1.68326 + 0.971830i −0.723787 + 0.690024i \(0.757600\pi\)
−0.959471 + 0.281806i \(0.909067\pi\)
\(68\) 0.842903 1.45995i 0.102217 0.177045i
\(69\) −3.54862 −0.427204
\(70\) 0 0
\(71\) 4.79396i 0.568938i −0.958685 0.284469i \(-0.908183\pi\)
0.958685 0.284469i \(-0.0918173\pi\)
\(72\) −4.97395 2.87171i −0.586185 0.338434i
\(73\) 4.94074 2.85253i 0.578269 0.333864i −0.182176 0.983266i \(-0.558314\pi\)
0.760445 + 0.649402i \(0.224981\pi\)
\(74\) −4.87750 8.44808i −0.566998 0.982069i
\(75\) −0.806629 + 1.39712i −0.0931415 + 0.161326i
\(76\) 3.25607i 0.373497i
\(77\) 0 0
\(78\) −0.536475 + 2.90543i −0.0607438 + 0.328975i
\(79\) 1.00713 1.74440i 0.113311 0.196260i −0.803792 0.594910i \(-0.797188\pi\)
0.917103 + 0.398650i \(0.130521\pi\)
\(80\) −12.2770 + 7.08815i −1.37261 + 0.792479i
\(81\) −3.42750 5.93661i −0.380834 0.659623i
\(82\) −3.29460 + 5.70641i −0.363828 + 0.630168i
\(83\) 3.11798i 0.342243i −0.985250 0.171122i \(-0.945261\pi\)
0.985250 0.171122i \(-0.0547391\pi\)
\(84\) 0 0
\(85\) 6.54052i 0.709419i
\(86\) 1.88427 + 1.08789i 0.203187 + 0.117310i
\(87\) 1.53337 + 2.65588i 0.164395 + 0.284740i
\(88\) −2.69074 4.66049i −0.286833 0.496810i
\(89\) 11.3089 + 6.52918i 1.19874 + 0.692092i 0.960274 0.279060i \(-0.0900227\pi\)
0.238464 + 0.971151i \(0.423356\pi\)
\(90\) −13.1077 −1.38167
\(91\) 0 0
\(92\) −5.31056 −0.553664
\(93\) 2.93807 + 1.69629i 0.304663 + 0.175898i
\(94\) −1.11920 1.93850i −0.115436 0.199942i
\(95\) 6.31639 + 10.9403i 0.648048 + 1.12245i
\(96\) 1.71330 + 0.989176i 0.174863 + 0.100957i
\(97\) 14.0382i 1.42536i 0.701488 + 0.712682i \(0.252520\pi\)
−0.701488 + 0.712682i \(0.747480\pi\)
\(98\) 0 0
\(99\) 7.11169i 0.714752i
\(100\) −1.20713 + 2.09081i −0.120713 + 0.209081i
\(101\) 8.72413 + 15.1106i 0.868083 + 1.50356i 0.863953 + 0.503573i \(0.167981\pi\)
0.00413039 + 0.999991i \(0.498685\pi\)
\(102\) 1.61507 0.932461i 0.159916 0.0923274i
\(103\) 3.27849 5.67851i 0.323039 0.559520i −0.658074 0.752953i \(-0.728629\pi\)
0.981114 + 0.193433i \(0.0619621\pi\)
\(104\) 1.36483 7.39164i 0.133833 0.724810i
\(105\) 0 0
\(106\) 13.7206i 1.33266i
\(107\) −7.80102 + 13.5118i −0.754153 + 1.30623i 0.191642 + 0.981465i \(0.438619\pi\)
−0.945794 + 0.324766i \(0.894715\pi\)
\(108\) 1.05503 + 1.82737i 0.101521 + 0.175839i
\(109\) 8.67508 5.00856i 0.830922 0.479733i −0.0232461 0.999730i \(-0.507400\pi\)
0.854168 + 0.519997i \(0.174067\pi\)
\(110\) −10.6362 6.14082i −1.01412 0.585504i
\(111\) 2.91661i 0.276832i
\(112\) 0 0
\(113\) −3.95074 −0.371654 −0.185827 0.982582i \(-0.559496\pi\)
−0.185827 + 0.982582i \(0.559496\pi\)
\(114\) 1.80102 3.11945i 0.168681 0.292163i
\(115\) 17.8433 10.3018i 1.66390 0.960652i
\(116\) 2.29472 + 3.97457i 0.213059 + 0.369029i
\(117\) 6.44609 7.55765i 0.595941 0.698705i
\(118\) −15.9109 −1.46472
\(119\) 0 0
\(120\) −2.96555 −0.270716
\(121\) −2.16824 + 3.75551i −0.197113 + 0.341410i
\(122\) 13.6963 7.90759i 1.24001 0.715920i
\(123\) −1.70614 + 0.985039i −0.153837 + 0.0888180i
\(124\) 4.39686 + 2.53853i 0.394850 + 0.227967i
\(125\) 5.00270i 0.447455i
\(126\) 0 0
\(127\) −2.37353 −0.210616 −0.105308 0.994440i \(-0.533583\pi\)
−0.105308 + 0.994440i \(0.533583\pi\)
\(128\) −11.5805 6.68600i −1.02358 0.590964i
\(129\) 0.325263 + 0.563372i 0.0286378 + 0.0496021i
\(130\) −5.73711 16.1666i −0.503178 1.41791i
\(131\) 1.06773 1.84936i 0.0932878 0.161579i −0.815605 0.578609i \(-0.803596\pi\)
0.908893 + 0.417030i \(0.136929\pi\)
\(132\) 0.946460i 0.0823788i
\(133\) 0 0
\(134\) −26.3385 −2.27530
\(135\) −7.08976 4.09327i −0.610189 0.352293i
\(136\) −4.10886 + 2.37225i −0.352332 + 0.203419i
\(137\) 0.371707 0.214605i 0.0317570 0.0183349i −0.484037 0.875047i \(-0.660830\pi\)
0.515794 + 0.856712i \(0.327497\pi\)
\(138\) −5.08773 2.93740i −0.433096 0.250048i
\(139\) 19.4858 1.65276 0.826381 0.563112i \(-0.190396\pi\)
0.826381 + 0.563112i \(0.190396\pi\)
\(140\) 0 0
\(141\) 0.669248i 0.0563609i
\(142\) 3.96824 6.87319i 0.333007 0.576786i
\(143\) 8.77135 3.11272i 0.733497 0.260299i
\(144\) −6.79491 11.7691i −0.566242 0.980760i
\(145\) −15.4204 8.90295i −1.28059 0.739350i
\(146\) 9.44485 0.781661
\(147\) 0 0
\(148\) 4.36475i 0.358780i
\(149\) 19.8323 + 11.4502i 1.62473 + 0.938037i 0.985631 + 0.168911i \(0.0540251\pi\)
0.639097 + 0.769126i \(0.279308\pi\)
\(150\) −2.31296 + 1.33539i −0.188853 + 0.109034i
\(151\) 9.71744 5.61037i 0.790794 0.456565i −0.0494478 0.998777i \(-0.515746\pi\)
0.840242 + 0.542211i \(0.182413\pi\)
\(152\) −4.58192 + 7.93613i −0.371643 + 0.643705i
\(153\) −6.26993 −0.506894
\(154\) 0 0
\(155\) −19.6978 −1.58216
\(156\) −0.857878 + 1.00581i −0.0686852 + 0.0805293i
\(157\) −1.89400 3.28050i −0.151157 0.261812i 0.780496 0.625161i \(-0.214967\pi\)
−0.931653 + 0.363349i \(0.881633\pi\)
\(158\) 2.88788 1.66732i 0.229748 0.132645i
\(159\) −2.05113 + 3.55266i −0.162665 + 0.281744i
\(160\) −11.4865 −0.908091
\(161\) 0 0
\(162\) 11.3486i 0.891629i
\(163\) 16.9853 + 9.80649i 1.33039 + 0.768103i 0.985360 0.170487i \(-0.0545340\pi\)
0.345034 + 0.938590i \(0.387867\pi\)
\(164\) −2.55326 + 1.47413i −0.199376 + 0.115110i
\(165\) −1.83602 3.18008i −0.142934 0.247569i
\(166\) 2.58094 4.47032i 0.200320 0.346964i
\(167\) 10.2922i 0.796435i −0.917291 0.398217i \(-0.869629\pi\)
0.917291 0.398217i \(-0.130371\pi\)
\(168\) 0 0
\(169\) 12.1428 + 4.64250i 0.934060 + 0.357116i
\(170\) −5.41397 + 9.37728i −0.415233 + 0.719204i
\(171\) −10.4877 + 6.05508i −0.802015 + 0.463044i
\(172\) 0.486761 + 0.843094i 0.0371151 + 0.0642853i
\(173\) −3.00220 + 5.19995i −0.228253 + 0.395345i −0.957290 0.289128i \(-0.906635\pi\)
0.729038 + 0.684474i \(0.239968\pi\)
\(174\) 5.07706i 0.384891i
\(175\) 0 0
\(176\) 12.7334i 0.959815i
\(177\) −4.11981 2.37858i −0.309664 0.178785i
\(178\) 10.8092 + 18.7220i 0.810182 + 1.40328i
\(179\) −3.87565 6.71282i −0.289680 0.501740i 0.684054 0.729432i \(-0.260215\pi\)
−0.973733 + 0.227692i \(0.926882\pi\)
\(180\) −5.07912 2.93243i −0.378575 0.218570i
\(181\) −19.9999 −1.48658 −0.743289 0.668970i \(-0.766735\pi\)
−0.743289 + 0.668970i \(0.766735\pi\)
\(182\) 0 0
\(183\) 4.72852 0.349542
\(184\) 12.9436 + 7.47298i 0.954213 + 0.550915i
\(185\) 8.46708 + 14.6654i 0.622512 + 1.07822i
\(186\) 2.80825 + 4.86402i 0.205911 + 0.356648i
\(187\) −5.08773 2.93740i −0.372052 0.214804i
\(188\) 1.00154i 0.0730448i
\(189\) 0 0
\(190\) 20.9138i 1.51725i
\(191\) −10.2418 + 17.7392i −0.741068 + 1.28357i 0.210942 + 0.977499i \(0.432347\pi\)
−0.952010 + 0.306068i \(0.900986\pi\)
\(192\) −0.804015 1.39260i −0.0580248 0.100502i
\(193\) 10.7672 6.21647i 0.775043 0.447471i −0.0596279 0.998221i \(-0.518991\pi\)
0.834671 + 0.550750i \(0.185658\pi\)
\(194\) −11.6202 + 20.1269i −0.834285 + 1.44502i
\(195\) 0.931292 5.04368i 0.0666912 0.361185i
\(196\) 0 0
\(197\) 18.9805i 1.35231i −0.736761 0.676154i \(-0.763646\pi\)
0.736761 0.676154i \(-0.236354\pi\)
\(198\) 5.88677 10.1962i 0.418354 0.724611i
\(199\) −6.40940 11.1014i −0.454350 0.786958i 0.544300 0.838891i \(-0.316795\pi\)
−0.998651 + 0.0519325i \(0.983462\pi\)
\(200\) 5.88436 3.39734i 0.416087 0.240228i
\(201\) −6.81982 3.93743i −0.481033 0.277725i
\(202\) 28.8859i 2.03241i
\(203\) 0 0
\(204\) 0.834435 0.0584221
\(205\) 5.71925 9.90603i 0.399450 0.691867i
\(206\) 9.40088 5.42760i 0.654990 0.378159i
\(207\) 9.87565 + 17.1051i 0.686405 + 1.18889i
\(208\) 11.5416 13.5319i 0.800268 0.938267i
\(209\) −11.3470 −0.784887
\(210\) 0 0
\(211\) −7.86926 −0.541743 −0.270871 0.962616i \(-0.587312\pi\)
−0.270871 + 0.962616i \(0.587312\pi\)
\(212\) −3.06954 + 5.31660i −0.210817 + 0.365146i
\(213\) 2.05499 1.18645i 0.140806 0.0812941i
\(214\) −22.3690 + 12.9147i −1.52911 + 0.882832i
\(215\) −3.27100 1.88851i −0.223080 0.128796i
\(216\) 5.93854i 0.404066i
\(217\) 0 0
\(218\) 16.5835 1.12318
\(219\) 2.44555 + 1.41194i 0.165255 + 0.0954100i
\(220\) −2.74763 4.75903i −0.185245 0.320854i
\(221\) −2.74429 7.73315i −0.184601 0.520188i
\(222\) 2.41425 4.18160i 0.162034 0.280651i
\(223\) 7.77059i 0.520357i 0.965560 + 0.260179i \(0.0837815\pi\)
−0.965560 + 0.260179i \(0.916219\pi\)
\(224\) 0 0
\(225\) 8.97925 0.598617
\(226\) −5.66426 3.27026i −0.376781 0.217534i
\(227\) −22.1210 + 12.7716i −1.46822 + 0.847678i −0.999366 0.0355975i \(-0.988667\pi\)
−0.468855 + 0.883275i \(0.655333\pi\)
\(228\) 1.39576 0.805841i 0.0924363 0.0533681i
\(229\) 11.1705 + 6.44929i 0.738167 + 0.426181i 0.821402 0.570349i \(-0.193192\pi\)
−0.0832356 + 0.996530i \(0.526525\pi\)
\(230\) 34.1098 2.24913
\(231\) 0 0
\(232\) 12.9164i 0.848005i
\(233\) 4.07139 7.05186i 0.266726 0.461983i −0.701289 0.712877i \(-0.747392\pi\)
0.968014 + 0.250895i \(0.0807249\pi\)
\(234\) 15.4978 5.49976i 1.01312 0.359531i
\(235\) 1.94287 + 3.36514i 0.126739 + 0.219518i
\(236\) −6.16536 3.55957i −0.401331 0.231708i
\(237\) 0.997011 0.0647628
\(238\) 0 0
\(239\) 23.8122i 1.54028i 0.637875 + 0.770140i \(0.279814\pi\)
−0.637875 + 0.770140i \(0.720186\pi\)
\(240\) −6.07685 3.50847i −0.392259 0.226471i
\(241\) 0.249889 0.144273i 0.0160967 0.00929346i −0.491930 0.870635i \(-0.663708\pi\)
0.508027 + 0.861341i \(0.330375\pi\)
\(242\) −6.21731 + 3.58957i −0.399664 + 0.230746i
\(243\) 5.96942 10.3393i 0.382939 0.663269i
\(244\) 7.07630 0.453013
\(245\) 0 0
\(246\) −3.26150 −0.207946
\(247\) −12.0585 10.2850i −0.767266 0.654418i
\(248\) −7.14440 12.3745i −0.453670 0.785779i
\(249\) 1.33656 0.771665i 0.0847012 0.0489023i
\(250\) −4.14103 + 7.17247i −0.261902 + 0.453627i
\(251\) −7.61843 −0.480871 −0.240435 0.970665i \(-0.577290\pi\)
−0.240435 + 0.970665i \(0.577290\pi\)
\(252\) 0 0
\(253\) 18.5066i 1.16350i
\(254\) −3.40297 1.96471i −0.213522 0.123277i
\(255\) −2.80368 + 1.61870i −0.175573 + 0.101367i
\(256\) −7.82009 13.5448i −0.488756 0.846550i
\(257\) 5.82801 10.0944i 0.363541 0.629672i −0.625000 0.780625i \(-0.714901\pi\)
0.988541 + 0.150953i \(0.0482343\pi\)
\(258\) 1.07696i 0.0670484i
\(259\) 0 0
\(260\) 1.39369 7.54793i 0.0864331 0.468103i
\(261\) 8.53463 14.7824i 0.528280 0.915008i
\(262\) 3.06165 1.76764i 0.189149 0.109205i
\(263\) 6.77638 + 11.7370i 0.417850 + 0.723737i 0.995723 0.0923895i \(-0.0294505\pi\)
−0.577873 + 0.816127i \(0.696117\pi\)
\(264\) 1.33185 2.30684i 0.0819698 0.141976i
\(265\) 23.8182i 1.46314i
\(266\) 0 0
\(267\) 6.46359i 0.395565i
\(268\) −10.2060 5.89241i −0.623428 0.359936i
\(269\) −8.91662 15.4440i −0.543656 0.941640i −0.998690 0.0511657i \(-0.983706\pi\)
0.455034 0.890474i \(-0.349627\pi\)
\(270\) −6.77649 11.7372i −0.412404 0.714304i
\(271\) 26.3049 + 15.1872i 1.59791 + 0.922555i 0.991889 + 0.127107i \(0.0405693\pi\)
0.606023 + 0.795447i \(0.292764\pi\)
\(272\) −11.2262 −0.680690
\(273\) 0 0
\(274\) 0.710564 0.0429268
\(275\) 7.28620 + 4.20669i 0.439375 + 0.253673i
\(276\) −1.31430 2.27644i −0.0791117 0.137025i
\(277\) 2.60712 + 4.51567i 0.156647 + 0.271320i 0.933657 0.358167i \(-0.116598\pi\)
−0.777011 + 0.629487i \(0.783265\pi\)
\(278\) 27.9372 + 16.1295i 1.67556 + 0.967385i
\(279\) 18.8829i 1.13049i
\(280\) 0 0
\(281\) 1.66255i 0.0991794i −0.998770 0.0495897i \(-0.984209\pi\)
0.998770 0.0495897i \(-0.0157914\pi\)
\(282\) 0.553976 0.959515i 0.0329888 0.0571383i
\(283\) 6.89783 + 11.9474i 0.410033 + 0.710198i 0.994893 0.100936i \(-0.0321838\pi\)
−0.584860 + 0.811134i \(0.698850\pi\)
\(284\) 3.07532 1.77554i 0.182487 0.105359i
\(285\) −3.12647 + 5.41520i −0.185196 + 0.320769i
\(286\) 15.1523 + 2.79780i 0.895972 + 0.165437i
\(287\) 0 0
\(288\) 11.0113i 0.648849i
\(289\) 5.91028 10.2369i 0.347663 0.602171i
\(290\) −14.7390 25.5287i −0.865503 1.49910i
\(291\) −6.01765 + 3.47429i −0.352761 + 0.203667i
\(292\) 3.65980 + 2.11299i 0.214174 + 0.123653i
\(293\) 12.8576i 0.751149i −0.926792 0.375574i \(-0.877445\pi\)
0.926792 0.375574i \(-0.122555\pi\)
\(294\) 0 0
\(295\) 27.6206 1.60813
\(296\) −6.14204 + 10.6383i −0.356999 + 0.618340i
\(297\) 6.36814 3.67665i 0.369517 0.213341i
\(298\) 18.9560 + 32.8328i 1.09809 + 1.90195i
\(299\) −16.7745 + 19.6671i −0.970094 + 1.13738i
\(300\) −1.19500 −0.0689936
\(301\) 0 0
\(302\) 18.5761 1.06894
\(303\) −4.31824 + 7.47941i −0.248077 + 0.429681i
\(304\) −18.7781 + 10.8415i −1.07700 + 0.621805i
\(305\) −23.7761 + 13.7272i −1.36142 + 0.786015i
\(306\) −8.98933 5.18999i −0.513886 0.296692i
\(307\) 20.9016i 1.19292i 0.802644 + 0.596458i \(0.203426\pi\)
−0.802644 + 0.596458i \(0.796574\pi\)
\(308\) 0 0
\(309\) 3.24555 0.184633
\(310\) −28.2411 16.3050i −1.60399 0.926062i
\(311\) −8.56961 14.8430i −0.485938 0.841669i 0.513931 0.857831i \(-0.328189\pi\)
−0.999869 + 0.0161620i \(0.994855\pi\)
\(312\) 3.50630 1.24429i 0.198505 0.0704442i
\(313\) −1.27633 + 2.21067i −0.0721424 + 0.124954i −0.899840 0.436220i \(-0.856317\pi\)
0.827698 + 0.561174i \(0.189650\pi\)
\(314\) 6.27109i 0.353898i
\(315\) 0 0
\(316\) 1.49204 0.0839339
\(317\) −23.6328 13.6444i −1.32735 0.766345i −0.342459 0.939533i \(-0.611260\pi\)
−0.984889 + 0.173188i \(0.944593\pi\)
\(318\) −5.88149 + 3.39568i −0.329818 + 0.190420i
\(319\) 13.8508 7.99678i 0.775497 0.447733i
\(320\) 8.08557 + 4.66821i 0.451997 + 0.260961i
\(321\) −7.72264 −0.431036
\(322\) 0 0
\(323\) 10.0039i 0.556633i
\(324\) 2.53889 4.39748i 0.141049 0.244305i
\(325\) 3.93014 + 11.0748i 0.218005 + 0.614317i
\(326\) 16.2348 + 28.1195i 0.899163 + 1.55740i
\(327\) 4.29397 + 2.47912i 0.237457 + 0.137096i
\(328\) 8.29751 0.458154
\(329\) 0 0
\(330\) 6.07912i 0.334645i
\(331\) 8.39444 + 4.84653i 0.461400 + 0.266390i 0.712633 0.701537i \(-0.247503\pi\)
−0.251233 + 0.967927i \(0.580836\pi\)
\(332\) 2.00018 1.15481i 0.109774 0.0633783i
\(333\) −14.0587 + 8.11679i −0.770412 + 0.444798i
\(334\) 8.51947 14.7561i 0.466164 0.807421i
\(335\) 45.7223 2.49808
\(336\) 0 0
\(337\) 6.31370 0.343929 0.171965 0.985103i \(-0.444988\pi\)
0.171965 + 0.985103i \(0.444988\pi\)
\(338\) 13.5665 + 16.7073i 0.737920 + 0.908760i
\(339\) −0.977762 1.69353i −0.0531048 0.0919801i
\(340\) −4.19574 + 2.42241i −0.227546 + 0.131374i
\(341\) 8.84643 15.3225i 0.479061 0.829758i
\(342\) −20.0486 −1.08410
\(343\) 0 0
\(344\) 2.73986i 0.147724i
\(345\) 8.83203 + 5.09918i 0.475501 + 0.274530i
\(346\) −8.60862 + 4.97019i −0.462802 + 0.267199i
\(347\) −14.5600 25.2187i −0.781622 1.35381i −0.930997 0.365028i \(-0.881059\pi\)
0.149375 0.988781i \(-0.452274\pi\)
\(348\) −1.13583 + 1.96732i −0.0608870 + 0.105459i
\(349\) 20.3297i 1.08822i −0.839013 0.544112i \(-0.816867\pi\)
0.839013 0.544112i \(-0.183133\pi\)
\(350\) 0 0
\(351\) 10.1000 + 1.86492i 0.539099 + 0.0995421i
\(352\) 5.15870 8.93513i 0.274960 0.476244i
\(353\) −12.2958 + 7.09900i −0.654441 + 0.377841i −0.790155 0.612907i \(-0.790000\pi\)
0.135715 + 0.990748i \(0.456667\pi\)
\(354\) −3.93777 6.82043i −0.209290 0.362502i
\(355\) −6.88866 + 11.9315i −0.365612 + 0.633259i
\(356\) 9.67285i 0.512660i
\(357\) 0 0
\(358\) 12.8324i 0.678214i
\(359\) 6.49661 + 3.75082i 0.342878 + 0.197961i 0.661544 0.749906i \(-0.269902\pi\)
−0.318666 + 0.947867i \(0.603235\pi\)
\(360\) 8.25299 + 14.2946i 0.434971 + 0.753391i
\(361\) 0.161114 + 0.279058i 0.00847971 + 0.0146873i
\(362\) −28.6742 16.5551i −1.50708 0.870115i
\(363\) −2.14646 −0.112660
\(364\) 0 0
\(365\) −16.3958 −0.858193
\(366\) 6.77938 + 3.91407i 0.354364 + 0.204592i
\(367\) −14.2942 24.7582i −0.746149 1.29237i −0.949656 0.313294i \(-0.898567\pi\)
0.203507 0.979073i \(-0.434766\pi\)
\(368\) 17.6822 + 30.6265i 0.921749 + 1.59652i
\(369\) 9.49621 + 5.48264i 0.494353 + 0.285415i
\(370\) 28.0348i 1.45746i
\(371\) 0 0
\(372\) 2.51303i 0.130294i
\(373\) 3.95602 6.85203i 0.204835 0.354784i −0.745245 0.666791i \(-0.767668\pi\)
0.950080 + 0.312006i \(0.101001\pi\)
\(374\) −4.86292 8.42283i −0.251456 0.435534i
\(375\) −2.14447 + 1.23811i −0.110740 + 0.0639357i
\(376\) −1.40936 + 2.44108i −0.0726822 + 0.125889i
\(377\) 21.9677 + 4.05624i 1.13139 + 0.208907i
\(378\) 0 0
\(379\) 1.78091i 0.0914791i −0.998953 0.0457395i \(-0.985436\pi\)
0.998953 0.0457395i \(-0.0145644\pi\)
\(380\) −4.67880 + 8.10393i −0.240018 + 0.415723i
\(381\) −0.587421 1.01744i −0.0300945 0.0521251i
\(382\) −29.3676 + 16.9554i −1.50258 + 0.867515i
\(383\) 12.2973 + 7.09987i 0.628364 + 0.362786i 0.780118 0.625632i \(-0.215159\pi\)
−0.151754 + 0.988418i \(0.548492\pi\)
\(384\) 6.61883i 0.337766i
\(385\) 0 0
\(386\) 20.5829 1.04764
\(387\) 1.81038 3.13568i 0.0920270 0.159395i
\(388\) −9.00550 + 5.19933i −0.457185 + 0.263956i
\(389\) −3.38749 5.86731i −0.171753 0.297485i 0.767280 0.641312i \(-0.221610\pi\)
−0.939033 + 0.343828i \(0.888276\pi\)
\(390\) 5.51016 6.46034i 0.279018 0.327132i
\(391\) 16.3161 0.825140
\(392\) 0 0
\(393\) 1.05700 0.0533187
\(394\) 15.7113 27.2128i 0.791524 1.37096i
\(395\) −5.01321 + 2.89438i −0.252242 + 0.145632i
\(396\) 4.56215 2.63396i 0.229257 0.132361i
\(397\) −25.1167 14.5011i −1.26057 0.727792i −0.287387 0.957815i \(-0.592787\pi\)
−0.973185 + 0.230023i \(0.926120\pi\)
\(398\) 21.2218i 1.06375i
\(399\) 0 0
\(400\) 16.0772 0.803861
\(401\) 19.0183 + 10.9802i 0.949728 + 0.548326i 0.892997 0.450064i \(-0.148599\pi\)
0.0567318 + 0.998389i \(0.481932\pi\)
\(402\) −6.51848 11.2903i −0.325112 0.563111i
\(403\) 23.2896 8.26485i 1.16014 0.411701i
\(404\) −6.46231 + 11.1930i −0.321512 + 0.556875i
\(405\) 19.7006i 0.978928i
\(406\) 0 0
\(407\) −15.2105 −0.753959
\(408\) −2.03379 1.17421i −0.100688 0.0581321i
\(409\) 3.46661 2.00145i 0.171413 0.0989653i −0.411839 0.911257i \(-0.635113\pi\)
0.583252 + 0.812291i \(0.301780\pi\)
\(410\) 16.3996 9.46832i 0.809919 0.467607i
\(411\) 0.183986 + 0.106224i 0.00907537 + 0.00523967i
\(412\) 4.85702 0.239288
\(413\) 0 0
\(414\) 32.6986i 1.60705i
\(415\) −4.48037 + 7.76024i −0.219933 + 0.380935i
\(416\) 13.5811 4.81956i 0.665866 0.236298i
\(417\) 4.82250 + 8.35282i 0.236159 + 0.409039i
\(418\) −16.2684 9.39256i −0.795713 0.459405i
\(419\) −1.75047 −0.0855162 −0.0427581 0.999085i \(-0.513614\pi\)
−0.0427581 + 0.999085i \(0.513614\pi\)
\(420\) 0 0
\(421\) 16.2204i 0.790533i −0.918566 0.395267i \(-0.870652\pi\)
0.918566 0.395267i \(-0.129348\pi\)
\(422\) −11.2823 6.51385i −0.549215 0.317089i
\(423\) −3.22593 + 1.86249i −0.156850 + 0.0905573i
\(424\) 14.9630 8.63888i 0.726666 0.419541i
\(425\) 3.70878 6.42379i 0.179902 0.311600i
\(426\) 3.92837 0.190330
\(427\) 0 0
\(428\) −11.5570 −0.558631
\(429\) 3.50512 + 2.98959i 0.169229 + 0.144339i
\(430\) −3.12647 5.41520i −0.150772 0.261144i
\(431\) 10.1149 5.83984i 0.487217 0.281295i −0.236202 0.971704i \(-0.575903\pi\)
0.723419 + 0.690409i \(0.242569\pi\)
\(432\) 7.02574 12.1689i 0.338026 0.585479i
\(433\) −31.6289 −1.51999 −0.759994 0.649930i \(-0.774798\pi\)
−0.759994 + 0.649930i \(0.774798\pi\)
\(434\) 0 0
\(435\) 8.81351i 0.422575i
\(436\) 6.42598 + 3.71004i 0.307749 + 0.177679i
\(437\) 27.2919 15.7570i 1.30555 0.753759i
\(438\) 2.33749 + 4.04865i 0.111690 + 0.193452i
\(439\) −4.85769 + 8.41377i −0.231845 + 0.401567i −0.958351 0.285593i \(-0.907810\pi\)
0.726506 + 0.687160i \(0.241143\pi\)
\(440\) 15.4658i 0.737302i
\(441\) 0 0
\(442\) 2.46664 13.3588i 0.117326 0.635413i
\(443\) −10.5582 + 18.2873i −0.501633 + 0.868854i 0.498365 + 0.866967i \(0.333934\pi\)
−0.999998 + 0.00188659i \(0.999399\pi\)
\(444\) 1.87100 1.08022i 0.0887939 0.0512652i
\(445\) −18.7642 32.5005i −0.889507 1.54067i
\(446\) −6.43218 + 11.1409i −0.304573 + 0.527535i
\(447\) 11.3352i 0.536135i
\(448\) 0 0
\(449\) 13.4710i 0.635735i 0.948135 + 0.317867i \(0.102967\pi\)
−0.948135 + 0.317867i \(0.897033\pi\)
\(450\) 12.8737 + 7.43266i 0.606874 + 0.350379i
\(451\) 5.13713 + 8.89776i 0.241898 + 0.418979i
\(452\) −1.46323 2.53440i −0.0688248 0.119208i
\(453\) 4.80991 + 2.77700i 0.225989 + 0.130475i
\(454\) −42.2871 −1.98463
\(455\) 0 0
\(456\) −4.53589 −0.212413
\(457\) −8.10237 4.67791i −0.379013 0.218823i 0.298376 0.954449i \(-0.403555\pi\)
−0.677389 + 0.735625i \(0.736888\pi\)
\(458\) 10.6769 + 18.4929i 0.498899 + 0.864119i
\(459\) −3.24147 5.61439i −0.151299 0.262057i
\(460\) 13.2173 + 7.63099i 0.616258 + 0.355797i
\(461\) 8.14109i 0.379168i −0.981864 0.189584i \(-0.939286\pi\)
0.981864 0.189584i \(-0.0607140\pi\)
\(462\) 0 0
\(463\) 24.3018i 1.12940i −0.825296 0.564700i \(-0.808992\pi\)
0.825296 0.564700i \(-0.191008\pi\)
\(464\) 15.2811 26.4677i 0.709408 1.22873i
\(465\) −4.87497 8.44369i −0.226071 0.391567i
\(466\) 11.6745 6.74026i 0.540810 0.312237i
\(467\) −16.3968 + 28.4000i −0.758751 + 1.31420i 0.184736 + 0.982788i \(0.440857\pi\)
−0.943488 + 0.331408i \(0.892476\pi\)
\(468\) 7.23567 + 1.33603i 0.334469 + 0.0617582i
\(469\) 0 0
\(470\) 6.43290i 0.296728i
\(471\) 0.937484 1.62377i 0.0431970 0.0748194i
\(472\) 10.0180 + 17.3517i 0.461116 + 0.798677i
\(473\) 2.93807 1.69629i 0.135093 0.0779957i
\(474\) 1.42944 + 0.825285i 0.0656561 + 0.0379066i
\(475\) 14.3267i 0.657356i
\(476\) 0 0
\(477\) 22.8328 1.04544
\(478\) −19.7107 + 34.1400i −0.901548 + 1.56153i
\(479\) 2.14868 1.24054i 0.0981759 0.0566819i −0.450108 0.892974i \(-0.648615\pi\)
0.548284 + 0.836292i \(0.315281\pi\)
\(480\) −2.84279 4.92385i −0.129755 0.224742i
\(481\) −16.1644 13.7869i −0.737032 0.628631i
\(482\) 0.477694 0.0217584
\(483\) 0 0
\(484\) −3.21221 −0.146009
\(485\) 20.1721 34.9392i 0.915970 1.58651i
\(486\) 17.1170 9.88248i 0.776441 0.448279i
\(487\) 19.8506 11.4608i 0.899519 0.519337i 0.0224747 0.999747i \(-0.492845\pi\)
0.877044 + 0.480410i \(0.159512\pi\)
\(488\) −17.2473 9.95771i −0.780747 0.450764i
\(489\) 9.70797i 0.439010i
\(490\) 0 0
\(491\) −22.8735 −1.03227 −0.516134 0.856508i \(-0.672629\pi\)
−0.516134 + 0.856508i \(0.672629\pi\)
\(492\) −1.26380 0.729658i −0.0569767 0.0328955i
\(493\) −7.05026 12.2114i −0.317528 0.549974i
\(494\) −8.77508 24.7273i −0.394809 1.11254i
\(495\) −10.2191 + 17.7000i −0.459315 + 0.795557i
\(496\) 33.8095i 1.51809i
\(497\) 0 0
\(498\) 2.55501 0.114493
\(499\) 7.34465 + 4.24044i 0.328792 + 0.189828i 0.655305 0.755365i \(-0.272540\pi\)
−0.326513 + 0.945193i \(0.605874\pi\)
\(500\) −3.20923 + 1.85285i −0.143521 + 0.0828620i
\(501\) 4.41188 2.54720i 0.197108 0.113801i
\(502\) −10.9227 6.30622i −0.487504 0.281460i
\(503\) 9.36890 0.417739 0.208869 0.977944i \(-0.433022\pi\)
0.208869 + 0.977944i \(0.433022\pi\)
\(504\) 0 0
\(505\) 50.1444i 2.23140i
\(506\) −15.3190 + 26.5333i −0.681012 + 1.17955i
\(507\) 1.01513 + 6.35412i 0.0450836 + 0.282196i
\(508\) −0.879083 1.52262i −0.0390030 0.0675552i
\(509\) 18.6544 + 10.7701i 0.826840 + 0.477376i 0.852770 0.522287i \(-0.174921\pi\)
−0.0259293 + 0.999664i \(0.508254\pi\)
\(510\) −5.35958 −0.237326
\(511\) 0 0
\(512\) 0.851388i 0.0376264i
\(513\) −10.8440 6.26078i −0.478774 0.276420i
\(514\) 16.7115 9.64837i 0.737111 0.425572i
\(515\) −16.3194 + 9.42203i −0.719120 + 0.415184i
\(516\) −0.240935 + 0.417312i −0.0106066 + 0.0183711i
\(517\) −3.49023 −0.153500
\(518\) 0 0
\(519\) −2.97203 −0.130458
\(520\) −14.0183 + 16.4356i −0.614742 + 0.720749i
\(521\) 7.87350 + 13.6373i 0.344944 + 0.597461i 0.985344 0.170581i \(-0.0545645\pi\)
−0.640399 + 0.768042i \(0.721231\pi\)
\(522\) 24.4725 14.1292i 1.07113 0.618420i
\(523\) 8.97018 15.5368i 0.392238 0.679377i −0.600506 0.799620i \(-0.705034\pi\)
0.992744 + 0.120243i \(0.0383675\pi\)
\(524\) 1.58182 0.0691020
\(525\) 0 0
\(526\) 22.4369i 0.978293i
\(527\) −13.5089 7.79934i −0.588455 0.339745i
\(528\) 5.45832 3.15136i 0.237543 0.137146i
\(529\) −14.1992 24.5937i −0.617355 1.06929i
\(530\) 19.7157 34.1486i 0.856396 1.48332i
\(531\) 26.4779i 1.14904i
\(532\) 0 0
\(533\) −2.60573 + 14.1121i −0.112867 + 0.611261i
\(534\) −5.35029 + 9.26698i −0.231530 + 0.401021i
\(535\) 38.8313 22.4193i 1.67883 0.969270i
\(536\) 16.5835 + 28.7235i 0.716299 + 1.24067i
\(537\) 1.91836 3.32269i 0.0827832 0.143385i
\(538\) 29.5232i 1.27284i
\(539\) 0 0
\(540\) 6.06410i 0.260957i
\(541\) −8.10237 4.67791i −0.348348 0.201119i 0.315609 0.948889i \(-0.397791\pi\)
−0.663958 + 0.747770i \(0.731124\pi\)
\(542\) 25.1426 + 43.5483i 1.07997 + 1.87056i
\(543\) −4.94974 8.57319i −0.212413 0.367911i
\(544\) −7.87755 4.54810i −0.337747 0.194998i
\(545\) −28.7881 −1.23315
\(546\) 0 0
\(547\) −33.1634 −1.41796 −0.708981 0.705227i \(-0.750845\pi\)
−0.708981 + 0.705227i \(0.750845\pi\)
\(548\) 0.275338 + 0.158966i 0.0117619 + 0.00679071i
\(549\) −13.1593 22.7925i −0.561624 0.972761i
\(550\) 6.96425 + 12.0624i 0.296957 + 0.514344i
\(551\) −23.5859 13.6173i −1.00479 0.580118i
\(552\) 7.39790i 0.314876i
\(553\) 0 0
\(554\) 8.63228i 0.366750i
\(555\) −4.19101 + 7.25904i −0.177898 + 0.308129i
\(556\) 7.21695 + 12.5001i 0.306067 + 0.530123i
\(557\) −9.65899 + 5.57662i −0.409265 + 0.236289i −0.690474 0.723357i \(-0.742598\pi\)
0.281209 + 0.959647i \(0.409265\pi\)
\(558\) 15.6305 27.0727i 0.661690 1.14608i
\(559\) 4.65984 + 0.860419i 0.197090 + 0.0363918i
\(560\) 0 0
\(561\) 2.90789i 0.122771i
\(562\) 1.37619 2.38363i 0.0580511 0.100547i
\(563\) 9.58889 + 16.6085i 0.404124 + 0.699963i 0.994219 0.107371i \(-0.0342432\pi\)
−0.590095 + 0.807334i \(0.700910\pi\)
\(564\) 0.429323 0.247869i 0.0180777 0.0104372i
\(565\) 9.83285 + 5.67700i 0.413671 + 0.238833i
\(566\) 22.8389i 0.959993i
\(567\) 0 0
\(568\) −9.99409 −0.419343
\(569\) 6.73361 11.6630i 0.282288 0.488937i −0.689660 0.724133i \(-0.742240\pi\)
0.971948 + 0.235197i \(0.0755734\pi\)
\(570\) −8.96497 + 5.17593i −0.375501 + 0.216796i
\(571\) 12.5804 + 21.7899i 0.526473 + 0.911877i 0.999524 + 0.0308427i \(0.00981909\pi\)
−0.473052 + 0.881035i \(0.656848\pi\)
\(572\) 5.24545 + 4.47396i 0.219323 + 0.187066i
\(573\) −10.1389 −0.423557
\(574\) 0 0
\(575\) −23.3665 −0.974450
\(576\) −4.47508 + 7.75106i −0.186462 + 0.322961i
\(577\) −18.7481 + 10.8242i −0.780492 + 0.450617i −0.836605 0.547807i \(-0.815463\pi\)
0.0561126 + 0.998424i \(0.482129\pi\)
\(578\) 16.9474 9.78457i 0.704918 0.406984i
\(579\) 5.32953 + 3.07701i 0.221488 + 0.127876i
\(580\) 13.1895i 0.547666i
\(581\) 0 0
\(582\) −11.5035 −0.476836
\(583\) 18.5276 + 10.6969i 0.767337 + 0.443022i
\(584\) −5.94676 10.3001i −0.246079 0.426221i
\(585\) −26.9034 + 9.54729i −1.11232 + 0.394732i
\(586\) 10.6430 18.4342i 0.439658 0.761510i
\(587\) 34.5576i 1.42634i 0.700989 + 0.713172i \(0.252742\pi\)
−0.700989 + 0.713172i \(0.747258\pi\)
\(588\) 0 0
\(589\) −30.1283 −1.24142
\(590\) 39.6002 + 22.8632i 1.63031 + 0.941262i
\(591\) 8.13624 4.69746i 0.334680 0.193228i
\(592\) −25.1719 + 14.5330i −1.03456 + 0.597303i
\(593\) −1.09846 0.634194i −0.0451082 0.0260432i 0.477276 0.878753i \(-0.341624\pi\)
−0.522385 + 0.852710i \(0.674957\pi\)
\(594\) 12.1735 0.499485
\(595\) 0 0
\(596\) 16.9632i 0.694842i
\(597\) 3.17251 5.49494i 0.129842 0.224893i
\(598\) −40.3295 + 14.3119i −1.64920 + 0.585257i
\(599\) −8.75714 15.1678i −0.357807 0.619740i 0.629787 0.776768i \(-0.283142\pi\)
−0.987594 + 0.157028i \(0.949809\pi\)
\(600\) 2.91262 + 1.68160i 0.118907 + 0.0686511i
\(601\) 9.02164 0.368000 0.184000 0.982926i \(-0.441095\pi\)
0.184000 + 0.982926i \(0.441095\pi\)
\(602\) 0 0
\(603\) 43.8307i 1.78493i
\(604\) 7.19810 + 4.15582i 0.292886 + 0.169098i
\(605\) 10.7929 6.23130i 0.438795 0.253338i
\(606\) −12.3823 + 7.14893i −0.502997 + 0.290405i
\(607\) −7.91450 + 13.7083i −0.321239 + 0.556403i −0.980744 0.195297i \(-0.937433\pi\)
0.659505 + 0.751701i \(0.270766\pi\)
\(608\) −17.5690 −0.712517
\(609\) 0 0
\(610\) −45.4511 −1.84026
\(611\) −3.70910 3.16357i −0.150054 0.127984i
\(612\) −2.32219 4.02216i −0.0938692 0.162586i
\(613\) −15.1853 + 8.76721i −0.613327 + 0.354104i −0.774266 0.632860i \(-0.781881\pi\)
0.160940 + 0.986964i \(0.448548\pi\)
\(614\) −17.3015 + 29.9670i −0.698230 + 1.20937i
\(615\) 5.66179 0.228306
\(616\) 0 0
\(617\) 7.01448i 0.282392i 0.989982 + 0.141196i \(0.0450948\pi\)
−0.989982 + 0.141196i \(0.954905\pi\)
\(618\) 4.65322 + 2.68654i 0.187180 + 0.108068i
\(619\) −33.6245 + 19.4131i −1.35148 + 0.780280i −0.988457 0.151499i \(-0.951590\pi\)
−0.363027 + 0.931779i \(0.618257\pi\)
\(620\) −7.29546 12.6361i −0.292993 0.507478i
\(621\) −10.2111 + 17.6862i −0.409759 + 0.709724i
\(622\) 28.3743i 1.13771i
\(623\) 0 0
\(624\) 8.65703 + 1.59848i 0.346558 + 0.0639904i
\(625\) 15.3368 26.5641i 0.613470 1.06256i
\(626\) −3.65980 + 2.11299i −0.146275 + 0.0844519i
\(627\) −2.80825 4.86402i −0.112151 0.194250i
\(628\) 1.40296 2.42999i 0.0559841 0.0969674i
\(629\) 13.4102i 0.534699i
\(630\) 0 0
\(631\) 12.7484i 0.507506i −0.967269 0.253753i \(-0.918335\pi\)
0.967269 0.253753i \(-0.0816650\pi\)
\(632\) −3.63660 2.09959i −0.144656 0.0835172i
\(633\) −1.94755 3.37326i −0.0774082 0.134075i
\(634\) −22.5885 39.1245i −0.897105 1.55383i
\(635\) 5.90739 + 3.41063i 0.234427 + 0.135347i
\(636\) −3.03871 −0.120493
\(637\) 0 0
\(638\) 26.4776 1.04826
\(639\) −11.4379 6.60367i −0.452476 0.261237i
\(640\) 19.2148 + 33.2811i 0.759533 + 1.31555i
\(641\) −4.85715 8.41282i −0.191846 0.332287i 0.754016 0.656856i \(-0.228114\pi\)
−0.945862 + 0.324569i \(0.894781\pi\)
\(642\) −11.0721 6.39249i −0.436982 0.252291i
\(643\) 0.458279i 0.0180728i 0.999959 + 0.00903639i \(0.00287641\pi\)
−0.999959 + 0.00903639i \(0.997124\pi\)
\(644\) 0 0
\(645\) 1.86954i 0.0736131i
\(646\) −8.28084 + 14.3428i −0.325805 + 0.564311i
\(647\) 3.08861 + 5.34963i 0.121426 + 0.210316i 0.920330 0.391142i \(-0.127920\pi\)
−0.798904 + 0.601458i \(0.794587\pi\)
\(648\) −12.3762 + 7.14541i −0.486184 + 0.280698i
\(649\) −12.4046 + 21.4854i −0.486924 + 0.843377i
\(650\) −3.53251 + 19.1313i −0.138556 + 0.750392i
\(651\) 0 0
\(652\) 14.5281i 0.568965i
\(653\) −14.2193 + 24.6285i −0.556443 + 0.963787i 0.441347 + 0.897337i \(0.354501\pi\)
−0.997790 + 0.0664508i \(0.978832\pi\)
\(654\) 4.10423 + 7.10874i 0.160488 + 0.277974i
\(655\) −5.31486 + 3.06854i −0.207669 + 0.119898i
\(656\) 17.0028 + 9.81659i 0.663849 + 0.383274i
\(657\) 15.7175i 0.613196i
\(658\) 0 0
\(659\) −25.9818 −1.01211 −0.506054 0.862502i \(-0.668897\pi\)
−0.506054 + 0.862502i \(0.668897\pi\)
\(660\) 1.36001 2.35561i 0.0529384 0.0916920i
\(661\) −32.2812 + 18.6376i −1.25560 + 0.724918i −0.972215 0.234090i \(-0.924789\pi\)
−0.283380 + 0.959008i \(0.591456\pi\)
\(662\) 8.02353 + 13.8972i 0.311843 + 0.540128i
\(663\) 2.63573 3.09024i 0.102363 0.120015i
\(664\) −6.50015 −0.252255
\(665\) 0 0
\(666\) −26.8750 −1.04139
\(667\) −22.2094 + 38.4679i −0.859953 + 1.48948i
\(668\) 6.60245 3.81192i 0.255456 0.147488i
\(669\) −3.33096 + 1.92313i −0.128782 + 0.0743526i
\(670\) 65.5530 + 37.8470i 2.53253 + 1.46216i
\(671\) 24.6599i 0.951986i
\(672\) 0 0
\(673\) 41.7078 1.60772 0.803859 0.594820i \(-0.202777\pi\)
0.803859 + 0.594820i \(0.202777\pi\)
\(674\) 9.05209 + 5.22623i 0.348673 + 0.201307i
\(675\) 4.64215 + 8.04044i 0.178676 + 0.309477i
\(676\) 1.51916 + 9.50903i 0.0584292 + 0.365732i
\(677\) 9.10347 15.7677i 0.349875 0.606001i −0.636352 0.771399i \(-0.719557\pi\)
0.986227 + 0.165398i \(0.0528908\pi\)
\(678\) 3.23741i 0.124332i
\(679\) 0 0
\(680\) 13.6352 0.522886
\(681\) −10.9494 6.32162i −0.419581 0.242245i
\(682\) 25.3666 14.6454i 0.971338 0.560802i
\(683\) −23.6736 + 13.6680i −0.905847 + 0.522991i −0.879093 0.476651i \(-0.841850\pi\)
−0.0267542 + 0.999642i \(0.508517\pi\)
\(684\) −7.76866 4.48524i −0.297042 0.171497i
\(685\) −1.23350 −0.0471297
\(686\) 0 0
\(687\) 6.38449i 0.243584i
\(688\) 3.24147 5.61439i 0.123580 0.214047i
\(689\) 9.99370 + 28.1613i 0.380730 + 1.07286i
\(690\) 8.44178 + 14.6216i 0.321373 + 0.556634i
\(691\) −7.27098 4.19790i −0.276601 0.159696i 0.355283 0.934759i \(-0.384385\pi\)
−0.631884 + 0.775063i \(0.717718\pi\)
\(692\) −4.44769 −0.169076
\(693\) 0 0
\(694\) 48.2087i 1.82998i
\(695\) −48.4974 28.0000i −1.83961 1.06210i
\(696\) 5.53679 3.19667i 0.209872 0.121169i
\(697\) 7.84460 4.52908i 0.297135 0.171551i
\(698\) 16.8281 29.1471i 0.636953 1.10323i
\(699\) 4.03049 0.152447
\(700\) 0 0
\(701\) 27.4998 1.03865 0.519327 0.854576i \(-0.326183\pi\)
0.519327 + 0.854576i \(0.326183\pi\)
\(702\) 12.9369 + 11.0341i 0.488271 + 0.416457i
\(703\) 12.9507 + 22.4312i 0.488443 + 0.846009i
\(704\) −7.26259 + 4.19306i −0.273719 + 0.158032i
\(705\) −0.961674 + 1.66567i −0.0362187 + 0.0627327i
\(706\) −23.5050 −0.884623
\(707\) 0 0
\(708\) 3.52381i 0.132433i
\(709\) −25.0991 14.4910i −0.942618 0.544221i −0.0518380 0.998656i \(-0.516508\pi\)
−0.890780 + 0.454435i \(0.849841\pi\)
\(710\) −19.7528 + 11.4043i −0.741310 + 0.427996i
\(711\) −2.77464 4.80581i −0.104057 0.180232i
\(712\) 13.6116 23.5759i 0.510115 0.883545i
\(713\) 49.1384i 1.84025i
\(714\) 0 0
\(715\) −26.3035 4.85683i −0.983696 0.181635i
\(716\) 2.87085 4.97246i 0.107289 0.185829i
\(717\) −10.2074 + 5.89323i −0.381202 + 0.220087i
\(718\) 6.20955 + 10.7552i 0.231738 + 0.401382i
\(719\) 8.77612 15.2007i 0.327294 0.566890i −0.654680 0.755906i \(-0.727197\pi\)
0.981974 + 0.189016i \(0.0605299\pi\)
\(720\) 39.0557i 1.45552i
\(721\) 0 0
\(722\) 0.533456i 0.0198532i
\(723\) 0.123689 + 0.0714119i 0.00460005 + 0.00265584i
\(724\) −7.40735 12.8299i −0.275292 0.476820i
\(725\) 10.0968 + 17.4881i 0.374984 + 0.649492i
\(726\) −3.07743 1.77675i −0.114214 0.0659415i
\(727\) 22.1403 0.821139 0.410569 0.911829i \(-0.365330\pi\)
0.410569 + 0.911829i \(0.365330\pi\)
\(728\) 0 0
\(729\) −14.6556 −0.542799
\(730\) −23.5069 13.5717i −0.870031 0.502313i
\(731\) −1.49552 2.59031i −0.0553137 0.0958061i
\(732\) 1.75130 + 3.03334i 0.0647300 + 0.112116i
\(733\) −44.4629 25.6707i −1.64228 0.948169i −0.980022 0.198889i \(-0.936267\pi\)
−0.662254 0.749279i \(-0.730400\pi\)
\(734\) 47.3285i 1.74693i
\(735\) 0 0
\(736\) 28.6545i 1.05622i
\(737\) −20.5343 + 35.5664i −0.756389 + 1.31010i
\(738\) 9.07661 + 15.7212i 0.334115 + 0.578704i
\(739\) −19.7270 + 11.3894i −0.725668 + 0.418965i −0.816835 0.576871i \(-0.804274\pi\)
0.0911674 + 0.995836i \(0.470940\pi\)
\(740\) −6.27191 + 10.8633i −0.230560 + 0.399341i
\(741\) 1.42444 7.71445i 0.0523281 0.283398i
\(742\) 0 0
\(743\) 27.6199i 1.01328i 0.862159 + 0.506638i \(0.169112\pi\)
−0.862159 + 0.506638i \(0.830888\pi\)
\(744\) 3.53631 6.12507i 0.129647 0.224556i
\(745\) −32.9067 56.9960i −1.20561 2.08817i
\(746\) 11.3437 6.54926i 0.415321 0.239785i
\(747\) −7.43919 4.29502i −0.272186 0.157147i
\(748\) 4.35170i 0.159114i
\(749\) 0 0
\(750\) −4.09943 −0.149690
\(751\) 20.5586 35.6085i 0.750194 1.29937i −0.197534 0.980296i \(-0.563293\pi\)
0.947728 0.319078i \(-0.103373\pi\)
\(752\) −5.77597 + 3.33476i −0.210628 + 0.121606i
\(753\) −1.88547 3.26573i −0.0687104 0.119010i
\(754\) 28.1380 + 23.9995i 1.02472 + 0.874010i
\(755\) −32.2472 −1.17360
\(756\) 0 0
\(757\) 14.0143 0.509357 0.254678 0.967026i \(-0.418030\pi\)
0.254678 + 0.967026i \(0.418030\pi\)
\(758\) 1.47416 2.55332i 0.0535440 0.0927409i
\(759\) −7.93308 + 4.58016i −0.287952 + 0.166249i
\(760\) 22.8076 13.1680i 0.827318 0.477652i
\(761\) 29.5876 + 17.0824i 1.07255 + 0.619236i 0.928877 0.370389i \(-0.120776\pi\)
0.143672 + 0.989625i \(0.454109\pi\)
\(762\) 1.94497i 0.0704588i
\(763\) 0 0
\(764\) −15.1730 −0.548938
\(765\) 15.6050 + 9.00956i 0.564200 + 0.325741i
\(766\) 11.7540 + 20.3584i 0.424688 + 0.735581i
\(767\) −32.6571 + 11.5891i −1.17918 + 0.418459i
\(768\) 3.87076 6.70436i 0.139674 0.241923i
\(769\) 52.9061i 1.90784i −0.300059 0.953921i \(-0.597006\pi\)
0.300059 0.953921i \(-0.402994\pi\)
\(770\) 0 0
\(771\) 5.76946 0.207782
\(772\) 7.97572 + 4.60478i 0.287052 + 0.165730i
\(773\) 39.7621 22.9567i 1.43014 0.825694i 0.433013 0.901388i \(-0.357451\pi\)
0.997131 + 0.0756940i \(0.0241172\pi\)
\(774\) 5.19117 2.99712i 0.186593 0.107729i
\(775\) 19.3462 + 11.1695i 0.694937 + 0.401222i
\(776\) 29.2658 1.05058
\(777\) 0 0
\(778\) 11.2161i 0.402117i
\(779\) 8.74777 15.1516i 0.313421 0.542862i
\(780\) 3.58044 1.27060i 0.128200 0.0454949i
\(781\) −6.18751 10.7171i −0.221406 0.383487i
\(782\) 23.3927 + 13.5058i 0.836522 + 0.482966i
\(783\) 17.6491 0.630728
\(784\) 0 0
\(785\) 10.8863i 0.388548i
\(786\) 1.51545 + 0.874943i 0.0540541 + 0.0312082i
\(787\) −13.1525 + 7.59358i −0.468835 + 0.270682i −0.715752 0.698355i \(-0.753916\pi\)
0.246917 + 0.969037i \(0.420583\pi\)
\(788\) 12.1760 7.02982i 0.433752 0.250427i
\(789\) −3.35415 + 5.80956i −0.119411 + 0.206826i
\(790\) −9.58340 −0.340962
\(791\) 0 0
\(792\) −14.8259 −0.526817
\(793\) 22.3519 26.2063i 0.793740 0.930614i
\(794\) −24.0069 41.5812i −0.851973 1.47566i
\(795\) 10.2100 5.89472i 0.362110 0.209064i
\(796\) 4.74770 8.22326i 0.168278 0.291466i
\(797\) −16.3006 −0.577398 −0.288699 0.957420i \(-0.593223\pi\)
−0.288699 + 0.957420i \(0.593223\pi\)
\(798\) 0 0
\(799\) 3.07712i 0.108861i
\(800\) 11.2815 + 6.51340i 0.398863 + 0.230283i
\(801\) 31.1559 17.9879i 1.10084 0.635570i
\(802\) 18.1779 + 31.4851i 0.641886 + 1.11178i
\(803\) 7.36347 12.7539i 0.259851 0.450076i
\(804\) 5.83322i 0.205722i
\(805\) 0 0
\(806\) 40.2320 + 7.42866i 1.41711 + 0.261663i
\(807\) 4.41352 7.64444i 0.155363 0.269097i
\(808\) 31.5016 18.1874i 1.10822 0.639832i
\(809\) −5.19286 8.99430i −0.182571 0.316223i 0.760184 0.649708i \(-0.225109\pi\)
−0.942755 + 0.333485i \(0.891775\pi\)
\(810\) −16.3073 + 28.2451i −0.572981 + 0.992431i
\(811\) 10.9705i 0.385227i −0.981275 0.192614i \(-0.938304\pi\)
0.981275 0.192614i \(-0.0616964\pi\)
\(812\) 0 0
\(813\) 15.0346i 0.527286i
\(814\) −21.8077 12.5907i −0.764359 0.441303i
\(815\) −28.1828 48.8140i −0.987200 1.70988i
\(816\) −2.77836 4.81226i −0.0972621 0.168463i
\(817\) −5.00310 2.88854i −0.175036 0.101057i
\(818\) 6.62687 0.231703
\(819\) 0 0
\(820\) 8.47296 0.295888
\(821\) −34.8423 20.1162i −1.21601 0.702061i −0.251945 0.967742i \(-0.581070\pi\)
−0.964061 + 0.265681i \(0.914403\pi\)
\(822\) 0.175856 + 0.304592i 0.00613370 + 0.0106239i
\(823\) −1.63250 2.82757i −0.0569053 0.0985628i 0.836169 0.548471i \(-0.184790\pi\)
−0.893075 + 0.449908i \(0.851457\pi\)
\(824\) −11.8381 6.83476i −0.412401 0.238100i
\(825\) 4.16443i 0.144987i
\(826\) 0 0
\(827\) 46.0118i 1.59999i −0.600009 0.799993i \(-0.704836\pi\)
0.600009 0.799993i \(-0.295164\pi\)
\(828\) −7.31529 + 12.6705i −0.254224 + 0.440329i
\(829\) 15.1933 + 26.3155i 0.527683 + 0.913974i 0.999479 + 0.0322667i \(0.0102726\pi\)
−0.471796 + 0.881708i \(0.656394\pi\)
\(830\) −12.8472 + 7.41734i −0.445933 + 0.257460i
\(831\) −1.29047 + 2.23515i −0.0447658 + 0.0775366i
\(832\) −11.5186 2.12686i −0.399337 0.0737358i
\(833\) 0 0
\(834\) 15.9675i 0.552909i
\(835\) −14.7893 + 25.6159i −0.511807 + 0.886475i
\(836\) −4.20258 7.27908i −0.145349 0.251752i
\(837\) 16.9086 9.76217i 0.584446 0.337430i
\(838\) −2.50969 1.44897i −0.0866958 0.0500538i
\(839\) 1.52007i 0.0524787i −0.999656 0.0262394i \(-0.991647\pi\)
0.999656 0.0262394i \(-0.00835321\pi\)
\(840\) 0 0
\(841\) 9.38720 0.323697
\(842\) 13.4266 23.2555i 0.462710 0.801438i
\(843\) 0.712673 0.411462i 0.0245457 0.0141715i
\(844\) −2.91454 5.04813i −0.100323 0.173764i
\(845\) −23.5507 29.0031i −0.810169 0.997736i
\(846\) −6.16677 −0.212018
\(847\) 0 0
\(848\) 40.8818 1.40389
\(849\) −3.41426 + 5.91368i −0.117177 + 0.202957i
\(850\) 10.6347 6.13995i 0.364767 0.210598i
\(851\) 36.5846 21.1221i 1.25410 0.724057i
\(852\) 1.52221 + 0.878850i 0.0521501 + 0.0301089i
\(853\) 43.7939i 1.49947i 0.661736 + 0.749737i \(0.269820\pi\)
−0.661736 + 0.749737i \(0.730180\pi\)
\(854\) 0 0
\(855\) 34.8033 1.19025
\(856\) 28.1683 + 16.2630i 0.962774 + 0.555858i
\(857\) 7.42605 + 12.8623i 0.253669 + 0.439368i 0.964533 0.263962i \(-0.0850292\pi\)
−0.710864 + 0.703329i \(0.751696\pi\)
\(858\) 2.55070 + 7.18763i 0.0870794 + 0.245381i
\(859\) −22.1784 + 38.4141i −0.756717 + 1.31067i 0.187799 + 0.982208i \(0.439865\pi\)
−0.944516 + 0.328465i \(0.893469\pi\)
\(860\) 2.79780i 0.0954040i
\(861\) 0 0
\(862\) 19.3359 0.658584
\(863\) 22.3825 + 12.9226i 0.761910 + 0.439889i 0.829981 0.557792i \(-0.188351\pi\)
−0.0680712 + 0.997680i \(0.521685\pi\)
\(864\) 9.86006 5.69271i 0.335446 0.193670i
\(865\) 14.9441 8.62799i 0.508115 0.293360i
\(866\) −45.3470 26.1811i −1.54095 0.889670i
\(867\) 5.85090 0.198707
\(868\) 0 0
\(869\) 5.19956i 0.176383i
\(870\) 7.29546 12.6361i 0.247339 0.428404i
\(871\) −54.0596 + 19.1843i −1.83174 + 0.650035i
\(872\) −10.4415 18.0852i −0.353593 0.612442i
\(873\) 33.4937 + 19.3376i 1.13359 + 0.654479i
\(874\) 52.1719 1.76474
\(875\) 0 0
\(876\) 2.09176i 0.0706740i
\(877\) −1.18892 0.686420i −0.0401468 0.0231788i 0.479792 0.877382i \(-0.340712\pi\)
−0.519939 + 0.854203i \(0.674045\pi\)
\(878\) −13.9291 + 8.04200i −0.470086 + 0.271404i
\(879\) 5.51157 3.18211i 0.185901 0.107330i
\(880\) −18.2972 + 31.6917i −0.616798 + 1.06833i
\(881\) −16.2514 −0.547524 −0.273762 0.961797i \(-0.588268\pi\)
−0.273762 + 0.961797i \(0.588268\pi\)
\(882\) 0 0
\(883\) 0.619110 0.0208347 0.0104174 0.999946i \(-0.496684\pi\)
0.0104174 + 0.999946i \(0.496684\pi\)
\(884\) 3.94441 4.62459i 0.132665 0.155542i
\(885\) 6.83577 + 11.8399i 0.229782 + 0.397994i
\(886\) −30.2749 + 17.4792i −1.01710 + 0.587226i
\(887\) −15.9690 + 27.6591i −0.536185 + 0.928700i 0.462920 + 0.886400i \(0.346802\pi\)
−0.999105 + 0.0423000i \(0.986531\pi\)
\(888\) −6.08034 −0.204043
\(889\) 0 0
\(890\) 62.1288i 2.08256i
\(891\) −15.3246 8.84768i −0.513395 0.296409i
\(892\) −4.98483 + 2.87799i −0.166905 + 0.0963624i
\(893\) 2.97167 + 5.14709i 0.0994432 + 0.172241i
\(894\) −9.38279 + 16.2515i −0.313807 + 0.543531i
\(895\) 22.2764i 0.744618i
\(896\) 0 0
\(897\) −12.5820 2.32322i −0.420102 0.0775700i
\(898\) −11.1507 + 19.3136i −0.372105 + 0.644504i
\(899\) 36.7765 21.2329i 1.22656 0.708157i
\(900\) 3.32565 + 5.76019i 0.110855 + 0.192006i
\(901\) 9.43082 16.3347i 0.314186 0.544187i
\(902\) 17.0092i 0.566345i
\(903\) 0 0
\(904\) 8.23621i 0.273932i
\(905\) 49.7769 + 28.7387i 1.65464 + 0.955308i
\(906\) 4.59738 + 7.96289i 0.152738 + 0.264549i
\(907\) 10.3518 + 17.9299i 0.343728 + 0.595354i 0.985122 0.171858i \(-0.0549770\pi\)
−0.641394 + 0.767211i \(0.721644\pi\)
\(908\) −16.3859 9.46040i −0.543785 0.313954i
\(909\) 48.0699 1.59438
\(910\) 0 0
\(911\) 39.4143 1.30585 0.652926 0.757421i \(-0.273541\pi\)
0.652926 + 0.757421i \(0.273541\pi\)
\(912\) −9.29472 5.36631i −0.307779 0.177696i
\(913\) −4.02435 6.97037i −0.133186 0.230686i
\(914\) −7.74436 13.4136i −0.256161 0.443683i
\(915\) −11.7686 6.79463i −0.389059 0.224623i
\(916\) 9.55449i 0.315689i
\(917\) 0 0
\(918\) 10.7326i 0.354229i
\(919\) −7.10925 + 12.3136i −0.234512 + 0.406187i −0.959131 0.282963i \(-0.908683\pi\)
0.724618 + 0.689150i \(0.242016\pi\)
\(920\) −21.4765 37.1985i −0.708061 1.22640i
\(921\) −8.95972 + 5.17290i −0.295233 + 0.170453i
\(922\) 6.73886 11.6721i 0.221933 0.384399i
\(923\) 3.13852 16.9975i 0.103306 0.559480i
\(924\) 0 0
\(925\) 19.2049i 0.631454i
\(926\) 20.1160 34.8420i 0.661053 1.14498i
\(927\) −9.03223 15.6443i −0.296657 0.513826i
\(928\) 21.4458 12.3817i 0.703993 0.406451i
\(929\) −24.8963 14.3739i −0.816822 0.471593i 0.0324972 0.999472i \(-0.489654\pi\)
−0.849319 + 0.527879i \(0.822987\pi\)
\(930\) 16.1412i 0.529291i
\(931\) 0 0
\(932\) 6.03168 0.197574
\(933\) 4.24176 7.34694i 0.138869 0.240528i
\(934\) −47.0167 + 27.1451i −1.53843 + 0.888215i
\(935\) 8.44178 + 14.6216i 0.276076 + 0.478177i
\(936\) −15.7557 13.4383i −0.514990 0.439246i
\(937\) 19.8495 0.648456 0.324228 0.945979i \(-0.394895\pi\)
0.324228 + 0.945979i \(0.394895\pi\)
\(938\) 0 0
\(939\) −1.26351 −0.0412330
\(940\) −1.43916 + 2.49270i −0.0469402 + 0.0813028i
\(941\) −39.1720 + 22.6160i −1.27697 + 0.737260i −0.976291 0.216464i \(-0.930547\pi\)
−0.300682 + 0.953725i \(0.597214\pi\)
\(942\) 2.68818 1.55202i 0.0875857 0.0505676i
\(943\) −24.7118 14.2673i −0.804726 0.464609i
\(944\) 47.4083i 1.54301i
\(945\) 0 0
\(946\) 5.61649 0.182608
\(947\) 19.1474 + 11.0547i 0.622206 + 0.359231i 0.777727 0.628602i \(-0.216372\pi\)
−0.155521 + 0.987833i \(0.549706\pi\)
\(948\) 0.369263 + 0.639582i 0.0119931 + 0.0207727i
\(949\) 19.3855 6.87938i 0.629278 0.223314i
\(950\) 11.8591 20.5406i 0.384760 0.666424i
\(951\) 13.5073i 0.438004i
\(952\) 0 0
\(953\) −34.3502 −1.11271 −0.556356 0.830944i \(-0.687801\pi\)
−0.556356 + 0.830944i \(0.687801\pi\)
\(954\) 32.7359 + 18.9001i 1.05986 + 0.611912i
\(955\) 50.9807 29.4337i 1.64970 0.952453i
\(956\) −15.2755 + 8.81931i −0.494045 + 0.285237i
\(957\) 6.85584 + 3.95822i 0.221618 + 0.127951i
\(958\) 4.10749 0.132707
\(959\) 0 0
\(960\) 4.62131i 0.149152i
\(961\) 7.98890 13.8372i 0.257706 0.446361i
\(962\) −11.7629 33.1468i −0.379252 1.06870i
\(963\) 21.4918 + 37.2249i 0.692563 + 1.19955i
\(964\) 0.185102 + 0.106869i 0.00596175 + 0.00344202i
\(965\) −35.7309 −1.15022
\(966\) 0 0
\(967\) 23.8805i 0.767945i −0.923344 0.383973i \(-0.874556\pi\)
0.923344 0.383973i \(-0.125444\pi\)
\(968\) 7.82921 + 4.52020i 0.251640 + 0.145285i
\(969\) −4.28831 + 2.47585i −0.137760 + 0.0795359i
\(970\) 57.8424 33.3953i 1.85721 1.07226i
\(971\) 12.9689 22.4627i 0.416190 0.720863i −0.579362 0.815070i \(-0.696698\pi\)
0.995553 + 0.0942072i \(0.0300316\pi\)
\(972\) 8.84358 0.283658
\(973\) 0 0
\(974\) 37.9470 1.21590
\(975\) −3.77467 + 4.42557i −0.120886 + 0.141732i
\(976\) −23.5615 40.8097i −0.754184 1.30629i
\(977\) 39.2285 22.6486i 1.25503 0.724592i 0.282926 0.959142i \(-0.408695\pi\)
0.972104 + 0.234550i \(0.0753616\pi\)
\(978\) −8.03586 + 13.9185i −0.256958 + 0.445065i
\(979\) 33.7086 1.07733
\(980\) 0 0
\(981\) 27.5971i 0.881109i
\(982\) −32.7942 18.9338i −1.04651 0.604200i
\(983\) 1.75891 1.01551i 0.0561004 0.0323896i −0.471687 0.881766i \(-0.656355\pi\)
0.527788 + 0.849376i \(0.323022\pi\)
\(984\) 2.05354 + 3.55683i 0.0654644 + 0.113388i
\(985\) −27.2740 + 47.2400i −0.869022 + 1.50519i
\(986\) 23.3437i 0.743413i
\(987\) 0 0
\(988\) 2.13169 11.5448i 0.0678182 0.367289i
\(989\) −4.71112 + 8.15990i −0.149805 + 0.259470i
\(990\) −29.3027 + 16.9179i −0.931302 + 0.537687i
\(991\) 13.4832 + 23.3536i 0.428309 + 0.741853i 0.996723 0.0808899i \(-0.0257762\pi\)
−0.568414 + 0.822743i \(0.692443\pi\)
\(992\) 13.6973 23.7244i 0.434890 0.753251i
\(993\) 4.79785i 0.152255i
\(994\) 0 0
\(995\) 36.8399i 1.16790i
\(996\) 0.990045 + 0.571603i 0.0313708 + 0.0181119i
\(997\) 3.32787 + 5.76404i 0.105395 + 0.182549i 0.913899 0.405941i \(-0.133056\pi\)
−0.808505 + 0.588490i \(0.799723\pi\)
\(998\) 7.02012 + 12.1592i 0.222218 + 0.384893i
\(999\) −14.5363 8.39254i −0.459908 0.265528i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.r.g.324.14 32
7.2 even 3 637.2.c.g.246.3 16
7.3 odd 6 inner 637.2.r.g.116.3 32
7.4 even 3 inner 637.2.r.g.116.4 32
7.5 odd 6 637.2.c.g.246.4 yes 16
7.6 odd 2 inner 637.2.r.g.324.13 32
13.12 even 2 inner 637.2.r.g.324.4 32
91.5 even 12 8281.2.a.cs.1.4 16
91.12 odd 6 637.2.c.g.246.14 yes 16
91.25 even 6 inner 637.2.r.g.116.14 32
91.38 odd 6 inner 637.2.r.g.116.13 32
91.44 odd 12 8281.2.a.cs.1.3 16
91.47 even 12 8281.2.a.cs.1.14 16
91.51 even 6 637.2.c.g.246.13 yes 16
91.86 odd 12 8281.2.a.cs.1.13 16
91.90 odd 2 inner 637.2.r.g.324.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.c.g.246.3 16 7.2 even 3
637.2.c.g.246.4 yes 16 7.5 odd 6
637.2.c.g.246.13 yes 16 91.51 even 6
637.2.c.g.246.14 yes 16 91.12 odd 6
637.2.r.g.116.3 32 7.3 odd 6 inner
637.2.r.g.116.4 32 7.4 even 3 inner
637.2.r.g.116.13 32 91.38 odd 6 inner
637.2.r.g.116.14 32 91.25 even 6 inner
637.2.r.g.324.3 32 91.90 odd 2 inner
637.2.r.g.324.4 32 13.12 even 2 inner
637.2.r.g.324.13 32 7.6 odd 2 inner
637.2.r.g.324.14 32 1.1 even 1 trivial
8281.2.a.cs.1.3 16 91.44 odd 12
8281.2.a.cs.1.4 16 91.5 even 12
8281.2.a.cs.1.13 16 91.86 odd 12
8281.2.a.cs.1.14 16 91.47 even 12