Properties

Label 8281.2.a.cj.1.7
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8281,2,Mod(1,8281)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8281.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8281, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4,6,0,0,0,0,12,6,0,-18,0,0,0,-2,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 11x^{6} + 36x^{4} - 31x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(2.12549\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.12549 q^{2} +0.178854 q^{3} +2.51771 q^{4} +3.60603 q^{5} +0.380153 q^{6} +1.10038 q^{8} -2.96801 q^{9} +7.66457 q^{10} -3.99236 q^{11} +0.450303 q^{12} +0.644954 q^{15} -2.69656 q^{16} -4.78916 q^{17} -6.30848 q^{18} -3.15060 q^{19} +9.07892 q^{20} -8.48572 q^{22} -2.17885 q^{23} +0.196808 q^{24} +8.00343 q^{25} -1.06740 q^{27} -6.57198 q^{29} +1.37084 q^{30} +1.48672 q^{31} -7.93228 q^{32} -0.714051 q^{33} -10.1793 q^{34} -7.47259 q^{36} -4.96503 q^{37} -6.69656 q^{38} +3.96801 q^{40} -2.11931 q^{41} +1.43145 q^{43} -10.0516 q^{44} -10.7027 q^{45} -4.63113 q^{46} +1.01893 q^{47} -0.482292 q^{48} +17.0112 q^{50} -0.856562 q^{51} +6.03542 q^{53} -2.26876 q^{54} -14.3966 q^{55} -0.563498 q^{57} -13.9687 q^{58} -4.90322 q^{59} +1.62380 q^{60} +2.03542 q^{61} +3.16000 q^{62} -11.4669 q^{64} -1.51771 q^{66} -3.91090 q^{67} -12.0577 q^{68} -0.389698 q^{69} +8.80684 q^{71} -3.26595 q^{72} +3.08878 q^{73} -10.5531 q^{74} +1.43145 q^{75} -7.93228 q^{76} +1.96801 q^{79} -9.72388 q^{80} +8.71312 q^{81} -4.50457 q^{82} +7.66020 q^{83} -17.2698 q^{85} +3.04253 q^{86} -1.17543 q^{87} -4.39312 q^{88} -12.7992 q^{89} -22.7485 q^{90} -5.48572 q^{92} +0.265906 q^{93} +2.16572 q^{94} -11.3611 q^{95} -1.41872 q^{96} +1.35900 q^{97} +11.8494 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 6 q^{4} + 12 q^{9} + 6 q^{10} - 18 q^{12} - 2 q^{16} - 8 q^{17} - 18 q^{22} - 12 q^{23} - 16 q^{27} - 8 q^{29} + 38 q^{30} + 28 q^{36} - 34 q^{38} - 4 q^{40} - 8 q^{43} - 18 q^{48} + 16 q^{51}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.12549 1.50295 0.751474 0.659762i \(-0.229343\pi\)
0.751474 + 0.659762i \(0.229343\pi\)
\(3\) 0.178854 0.103262 0.0516308 0.998666i \(-0.483558\pi\)
0.0516308 + 0.998666i \(0.483558\pi\)
\(4\) 2.51771 1.25885
\(5\) 3.60603 1.61266 0.806332 0.591463i \(-0.201449\pi\)
0.806332 + 0.591463i \(0.201449\pi\)
\(6\) 0.380153 0.155197
\(7\) 0 0
\(8\) 1.10038 0.389044
\(9\) −2.96801 −0.989337
\(10\) 7.66457 2.42375
\(11\) −3.99236 −1.20374 −0.601871 0.798594i \(-0.705578\pi\)
−0.601871 + 0.798594i \(0.705578\pi\)
\(12\) 0.450303 0.129991
\(13\) 0 0
\(14\) 0 0
\(15\) 0.644954 0.166526
\(16\) −2.69656 −0.674141
\(17\) −4.78916 −1.16154 −0.580771 0.814067i \(-0.697249\pi\)
−0.580771 + 0.814067i \(0.697249\pi\)
\(18\) −6.30848 −1.48692
\(19\) −3.15060 −0.722796 −0.361398 0.932412i \(-0.617701\pi\)
−0.361398 + 0.932412i \(0.617701\pi\)
\(20\) 9.07892 2.03011
\(21\) 0 0
\(22\) −8.48572 −1.80916
\(23\) −2.17885 −0.454323 −0.227161 0.973857i \(-0.572944\pi\)
−0.227161 + 0.973857i \(0.572944\pi\)
\(24\) 0.196808 0.0401733
\(25\) 8.00343 1.60069
\(26\) 0 0
\(27\) −1.06740 −0.205422
\(28\) 0 0
\(29\) −6.57198 −1.22039 −0.610193 0.792253i \(-0.708908\pi\)
−0.610193 + 0.792253i \(0.708908\pi\)
\(30\) 1.37084 0.250280
\(31\) 1.48672 0.267022 0.133511 0.991047i \(-0.457375\pi\)
0.133511 + 0.991047i \(0.457375\pi\)
\(32\) −7.93228 −1.40224
\(33\) −0.714051 −0.124300
\(34\) −10.1793 −1.74574
\(35\) 0 0
\(36\) −7.47259 −1.24543
\(37\) −4.96503 −0.816246 −0.408123 0.912927i \(-0.633817\pi\)
−0.408123 + 0.912927i \(0.633817\pi\)
\(38\) −6.69656 −1.08633
\(39\) 0 0
\(40\) 3.96801 0.627398
\(41\) −2.11931 −0.330981 −0.165490 0.986211i \(-0.552921\pi\)
−0.165490 + 0.986211i \(0.552921\pi\)
\(42\) 0 0
\(43\) 1.43145 0.218294 0.109147 0.994026i \(-0.465188\pi\)
0.109147 + 0.994026i \(0.465188\pi\)
\(44\) −10.0516 −1.51533
\(45\) −10.7027 −1.59547
\(46\) −4.63113 −0.682823
\(47\) 1.01893 0.148626 0.0743129 0.997235i \(-0.476324\pi\)
0.0743129 + 0.997235i \(0.476324\pi\)
\(48\) −0.482292 −0.0696129
\(49\) 0 0
\(50\) 17.0112 2.40575
\(51\) −0.856562 −0.119943
\(52\) 0 0
\(53\) 6.03542 0.829028 0.414514 0.910043i \(-0.363952\pi\)
0.414514 + 0.910043i \(0.363952\pi\)
\(54\) −2.26876 −0.308739
\(55\) −14.3966 −1.94123
\(56\) 0 0
\(57\) −0.563498 −0.0746371
\(58\) −13.9687 −1.83418
\(59\) −4.90322 −0.638345 −0.319172 0.947697i \(-0.603405\pi\)
−0.319172 + 0.947697i \(0.603405\pi\)
\(60\) 1.62380 0.209632
\(61\) 2.03542 0.260608 0.130304 0.991474i \(-0.458405\pi\)
0.130304 + 0.991474i \(0.458405\pi\)
\(62\) 3.16000 0.401320
\(63\) 0 0
\(64\) −11.4669 −1.43336
\(65\) 0 0
\(66\) −1.51771 −0.186817
\(67\) −3.91090 −0.477793 −0.238896 0.971045i \(-0.576786\pi\)
−0.238896 + 0.971045i \(0.576786\pi\)
\(68\) −12.0577 −1.46221
\(69\) −0.389698 −0.0469141
\(70\) 0 0
\(71\) 8.80684 1.04518 0.522590 0.852584i \(-0.324966\pi\)
0.522590 + 0.852584i \(0.324966\pi\)
\(72\) −3.26595 −0.384896
\(73\) 3.08878 0.361515 0.180757 0.983528i \(-0.442145\pi\)
0.180757 + 0.983528i \(0.442145\pi\)
\(74\) −10.5531 −1.22678
\(75\) 1.43145 0.165289
\(76\) −7.93228 −0.909895
\(77\) 0 0
\(78\) 0 0
\(79\) 1.96801 0.221419 0.110709 0.993853i \(-0.464688\pi\)
0.110709 + 0.993853i \(0.464688\pi\)
\(80\) −9.72388 −1.08716
\(81\) 8.71312 0.968125
\(82\) −4.50457 −0.497447
\(83\) 7.66020 0.840816 0.420408 0.907335i \(-0.361887\pi\)
0.420408 + 0.907335i \(0.361887\pi\)
\(84\) 0 0
\(85\) −17.2698 −1.87318
\(86\) 3.04253 0.328084
\(87\) −1.17543 −0.126019
\(88\) −4.39312 −0.468309
\(89\) −12.7992 −1.35671 −0.678356 0.734733i \(-0.737307\pi\)
−0.678356 + 0.734733i \(0.737307\pi\)
\(90\) −22.7485 −2.39791
\(91\) 0 0
\(92\) −5.48572 −0.571926
\(93\) 0.265906 0.0275731
\(94\) 2.16572 0.223377
\(95\) −11.3611 −1.16563
\(96\) −1.41872 −0.144798
\(97\) 1.35900 0.137986 0.0689930 0.997617i \(-0.478021\pi\)
0.0689930 + 0.997617i \(0.478021\pi\)
\(98\) 0 0
\(99\) 11.8494 1.19091
\(100\) 20.1503 2.01503
\(101\) −4.28801 −0.426673 −0.213336 0.976979i \(-0.568433\pi\)
−0.213336 + 0.976979i \(0.568433\pi\)
\(102\) −1.82061 −0.180268
\(103\) −14.4349 −1.42231 −0.711155 0.703035i \(-0.751828\pi\)
−0.711155 + 0.703035i \(0.751828\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 12.8282 1.24599
\(107\) −9.71884 −0.939556 −0.469778 0.882785i \(-0.655666\pi\)
−0.469778 + 0.882785i \(0.655666\pi\)
\(108\) −2.68741 −0.258597
\(109\) 6.64855 0.636816 0.318408 0.947954i \(-0.396852\pi\)
0.318408 + 0.947954i \(0.396852\pi\)
\(110\) −30.5997 −2.91757
\(111\) −0.888018 −0.0842869
\(112\) 0 0
\(113\) 17.5434 1.65035 0.825173 0.564880i \(-0.191078\pi\)
0.825173 + 0.564880i \(0.191078\pi\)
\(114\) −1.19771 −0.112176
\(115\) −7.85701 −0.732670
\(116\) −16.5463 −1.53629
\(117\) 0 0
\(118\) −10.4217 −0.959399
\(119\) 0 0
\(120\) 0.709696 0.0647861
\(121\) 4.93893 0.448994
\(122\) 4.32626 0.391681
\(123\) −0.379048 −0.0341776
\(124\) 3.74312 0.336142
\(125\) 10.8304 0.968704
\(126\) 0 0
\(127\) 19.5143 1.73162 0.865809 0.500375i \(-0.166805\pi\)
0.865809 + 0.500375i \(0.166805\pi\)
\(128\) −8.50814 −0.752020
\(129\) 0.256021 0.0225414
\(130\) 0 0
\(131\) −19.0743 −1.66653 −0.833263 0.552877i \(-0.813530\pi\)
−0.833263 + 0.552877i \(0.813530\pi\)
\(132\) −1.79777 −0.156476
\(133\) 0 0
\(134\) −8.31259 −0.718098
\(135\) −3.84909 −0.331277
\(136\) −5.26991 −0.451891
\(137\) 6.42890 0.549258 0.274629 0.961550i \(-0.411445\pi\)
0.274629 + 0.961550i \(0.411445\pi\)
\(138\) −0.828298 −0.0705094
\(139\) 2.42854 0.205986 0.102993 0.994682i \(-0.467158\pi\)
0.102993 + 0.994682i \(0.467158\pi\)
\(140\) 0 0
\(141\) 0.182240 0.0153473
\(142\) 18.7188 1.57085
\(143\) 0 0
\(144\) 8.00343 0.666952
\(145\) −23.6987 −1.96807
\(146\) 6.56518 0.543338
\(147\) 0 0
\(148\) −12.5005 −1.02753
\(149\) 0.115353 0.00945007 0.00472503 0.999989i \(-0.498496\pi\)
0.00472503 + 0.999989i \(0.498496\pi\)
\(150\) 3.04253 0.248421
\(151\) −11.8031 −0.960523 −0.480262 0.877125i \(-0.659458\pi\)
−0.480262 + 0.877125i \(0.659458\pi\)
\(152\) −3.46686 −0.281200
\(153\) 14.2143 1.14916
\(154\) 0 0
\(155\) 5.36114 0.430617
\(156\) 0 0
\(157\) 13.1469 1.04923 0.524617 0.851338i \(-0.324209\pi\)
0.524617 + 0.851338i \(0.324209\pi\)
\(158\) 4.18299 0.332781
\(159\) 1.07946 0.0856068
\(160\) −28.6040 −2.26135
\(161\) 0 0
\(162\) 18.5197 1.45504
\(163\) −18.6485 −1.46066 −0.730331 0.683094i \(-0.760634\pi\)
−0.730331 + 0.683094i \(0.760634\pi\)
\(164\) −5.33581 −0.416656
\(165\) −2.57489 −0.200455
\(166\) 16.2817 1.26370
\(167\) 0.972672 0.0752676 0.0376338 0.999292i \(-0.488018\pi\)
0.0376338 + 0.999292i \(0.488018\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −36.7068 −2.81529
\(171\) 9.35101 0.715089
\(172\) 3.60397 0.274800
\(173\) −2.45710 −0.186810 −0.0934050 0.995628i \(-0.529775\pi\)
−0.0934050 + 0.995628i \(0.529775\pi\)
\(174\) −2.49836 −0.189400
\(175\) 0 0
\(176\) 10.7656 0.811491
\(177\) −0.876962 −0.0659165
\(178\) −27.2046 −2.03907
\(179\) 14.4726 1.08173 0.540866 0.841109i \(-0.318097\pi\)
0.540866 + 0.841109i \(0.318097\pi\)
\(180\) −26.9463 −2.00846
\(181\) −9.17885 −0.682259 −0.341129 0.940016i \(-0.610809\pi\)
−0.341129 + 0.940016i \(0.610809\pi\)
\(182\) 0 0
\(183\) 0.364043 0.0269108
\(184\) −2.39757 −0.176752
\(185\) −17.9040 −1.31633
\(186\) 0.565180 0.0414410
\(187\) 19.1200 1.39820
\(188\) 2.56536 0.187098
\(189\) 0 0
\(190\) −24.1480 −1.75188
\(191\) 17.5840 1.27234 0.636168 0.771551i \(-0.280518\pi\)
0.636168 + 0.771551i \(0.280518\pi\)
\(192\) −2.05090 −0.148011
\(193\) −19.7558 −1.42206 −0.711028 0.703164i \(-0.751770\pi\)
−0.711028 + 0.703164i \(0.751770\pi\)
\(194\) 2.88855 0.207386
\(195\) 0 0
\(196\) 0 0
\(197\) 7.66020 0.545767 0.272883 0.962047i \(-0.412023\pi\)
0.272883 + 0.962047i \(0.412023\pi\)
\(198\) 25.1857 1.78987
\(199\) 6.54342 0.463851 0.231925 0.972734i \(-0.425498\pi\)
0.231925 + 0.972734i \(0.425498\pi\)
\(200\) 8.80684 0.622737
\(201\) −0.699482 −0.0493377
\(202\) −9.11412 −0.641267
\(203\) 0 0
\(204\) −2.15657 −0.150990
\(205\) −7.64229 −0.533761
\(206\) −30.6812 −2.13766
\(207\) 6.46686 0.449478
\(208\) 0 0
\(209\) 12.5783 0.870060
\(210\) 0 0
\(211\) 20.0452 1.37997 0.689983 0.723825i \(-0.257618\pi\)
0.689983 + 0.723825i \(0.257618\pi\)
\(212\) 15.1954 1.04363
\(213\) 1.57514 0.107927
\(214\) −20.6573 −1.41210
\(215\) 5.16184 0.352035
\(216\) −1.17455 −0.0799183
\(217\) 0 0
\(218\) 14.1314 0.957102
\(219\) 0.552443 0.0373306
\(220\) −36.2463 −2.44373
\(221\) 0 0
\(222\) −1.88747 −0.126679
\(223\) −27.7139 −1.85586 −0.927931 0.372752i \(-0.878414\pi\)
−0.927931 + 0.372752i \(0.878414\pi\)
\(224\) 0 0
\(225\) −23.7543 −1.58362
\(226\) 37.2884 2.48038
\(227\) −11.3711 −0.754726 −0.377363 0.926065i \(-0.623169\pi\)
−0.377363 + 0.926065i \(0.623169\pi\)
\(228\) −1.41872 −0.0939573
\(229\) 8.71113 0.575647 0.287824 0.957683i \(-0.407068\pi\)
0.287824 + 0.957683i \(0.407068\pi\)
\(230\) −16.7000 −1.10116
\(231\) 0 0
\(232\) −7.23170 −0.474784
\(233\) −3.36456 −0.220420 −0.110210 0.993908i \(-0.535152\pi\)
−0.110210 + 0.993908i \(0.535152\pi\)
\(234\) 0 0
\(235\) 3.67428 0.239684
\(236\) −12.3449 −0.803583
\(237\) 0.351987 0.0228640
\(238\) 0 0
\(239\) −19.8798 −1.28592 −0.642958 0.765902i \(-0.722293\pi\)
−0.642958 + 0.765902i \(0.722293\pi\)
\(240\) −1.73916 −0.112262
\(241\) 18.8719 1.21565 0.607823 0.794073i \(-0.292043\pi\)
0.607823 + 0.794073i \(0.292043\pi\)
\(242\) 10.4976 0.674814
\(243\) 4.76059 0.305392
\(244\) 5.12458 0.328068
\(245\) 0 0
\(246\) −0.805663 −0.0513672
\(247\) 0 0
\(248\) 1.63596 0.103883
\(249\) 1.37006 0.0868240
\(250\) 23.0200 1.45591
\(251\) 9.79601 0.618319 0.309159 0.951010i \(-0.399952\pi\)
0.309159 + 0.951010i \(0.399952\pi\)
\(252\) 0 0
\(253\) 8.69877 0.546887
\(254\) 41.4775 2.60253
\(255\) −3.08878 −0.193427
\(256\) 4.84976 0.303110
\(257\) −20.9394 −1.30617 −0.653083 0.757286i \(-0.726525\pi\)
−0.653083 + 0.757286i \(0.726525\pi\)
\(258\) 0.544170 0.0338785
\(259\) 0 0
\(260\) 0 0
\(261\) 19.5057 1.20737
\(262\) −40.5421 −2.50470
\(263\) −7.38679 −0.455489 −0.227745 0.973721i \(-0.573135\pi\)
−0.227745 + 0.973721i \(0.573135\pi\)
\(264\) −0.785730 −0.0483583
\(265\) 21.7639 1.33694
\(266\) 0 0
\(267\) −2.28919 −0.140096
\(268\) −9.84651 −0.601471
\(269\) −22.7892 −1.38948 −0.694740 0.719261i \(-0.744480\pi\)
−0.694740 + 0.719261i \(0.744480\pi\)
\(270\) −8.18120 −0.497892
\(271\) 4.16633 0.253086 0.126543 0.991961i \(-0.459612\pi\)
0.126543 + 0.991961i \(0.459612\pi\)
\(272\) 12.9143 0.783042
\(273\) 0 0
\(274\) 13.6646 0.825507
\(275\) −31.9526 −1.92681
\(276\) −0.981145 −0.0590580
\(277\) 0.777101 0.0466915 0.0233457 0.999727i \(-0.492568\pi\)
0.0233457 + 0.999727i \(0.492568\pi\)
\(278\) 5.16184 0.309587
\(279\) −4.41259 −0.264175
\(280\) 0 0
\(281\) 11.8988 0.709824 0.354912 0.934900i \(-0.384511\pi\)
0.354912 + 0.934900i \(0.384511\pi\)
\(282\) 0.387349 0.0230663
\(283\) 15.9040 0.945397 0.472698 0.881224i \(-0.343280\pi\)
0.472698 + 0.881224i \(0.343280\pi\)
\(284\) 22.1730 1.31573
\(285\) −2.03199 −0.120365
\(286\) 0 0
\(287\) 0 0
\(288\) 23.5431 1.38729
\(289\) 5.93602 0.349178
\(290\) −50.3714 −2.95791
\(291\) 0.243064 0.0142487
\(292\) 7.77666 0.455094
\(293\) −6.73698 −0.393579 −0.196789 0.980446i \(-0.563051\pi\)
−0.196789 + 0.980446i \(0.563051\pi\)
\(294\) 0 0
\(295\) −17.6811 −1.02944
\(296\) −5.46344 −0.317556
\(297\) 4.26146 0.247275
\(298\) 0.245181 0.0142030
\(299\) 0 0
\(300\) 3.60397 0.208075
\(301\) 0 0
\(302\) −25.0874 −1.44362
\(303\) −0.766929 −0.0440589
\(304\) 8.49578 0.487266
\(305\) 7.33976 0.420274
\(306\) 30.2123 1.72712
\(307\) 14.7179 0.839996 0.419998 0.907525i \(-0.362031\pi\)
0.419998 + 0.907525i \(0.362031\pi\)
\(308\) 0 0
\(309\) −2.58174 −0.146870
\(310\) 11.3950 0.647195
\(311\) −28.6578 −1.62503 −0.812517 0.582938i \(-0.801903\pi\)
−0.812517 + 0.582938i \(0.801903\pi\)
\(312\) 0 0
\(313\) 32.8251 1.85538 0.927692 0.373347i \(-0.121790\pi\)
0.927692 + 0.373347i \(0.121790\pi\)
\(314\) 27.9435 1.57694
\(315\) 0 0
\(316\) 4.95488 0.278734
\(317\) 10.4121 0.584802 0.292401 0.956296i \(-0.405546\pi\)
0.292401 + 0.956296i \(0.405546\pi\)
\(318\) 2.29438 0.128663
\(319\) 26.2377 1.46903
\(320\) −41.3498 −2.31152
\(321\) −1.73826 −0.0970201
\(322\) 0 0
\(323\) 15.0887 0.839558
\(324\) 21.9371 1.21873
\(325\) 0 0
\(326\) −39.6371 −2.19530
\(327\) 1.18912 0.0657587
\(328\) −2.33205 −0.128766
\(329\) 0 0
\(330\) −5.47290 −0.301273
\(331\) −4.46015 −0.245152 −0.122576 0.992459i \(-0.539115\pi\)
−0.122576 + 0.992459i \(0.539115\pi\)
\(332\) 19.2861 1.05846
\(333\) 14.7363 0.807542
\(334\) 2.06740 0.113123
\(335\) −14.1028 −0.770519
\(336\) 0 0
\(337\) −10.7949 −0.588034 −0.294017 0.955800i \(-0.594992\pi\)
−0.294017 + 0.955800i \(0.594992\pi\)
\(338\) 0 0
\(339\) 3.13772 0.170417
\(340\) −43.4804 −2.35805
\(341\) −5.93550 −0.321425
\(342\) 19.8755 1.07474
\(343\) 0 0
\(344\) 1.57514 0.0849259
\(345\) −1.40526 −0.0756567
\(346\) −5.22255 −0.280766
\(347\) −4.07031 −0.218506 −0.109253 0.994014i \(-0.534846\pi\)
−0.109253 + 0.994014i \(0.534846\pi\)
\(348\) −2.95938 −0.158640
\(349\) 23.8727 1.27788 0.638938 0.769258i \(-0.279374\pi\)
0.638938 + 0.769258i \(0.279374\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 31.6685 1.68794
\(353\) 26.0839 1.38831 0.694154 0.719826i \(-0.255779\pi\)
0.694154 + 0.719826i \(0.255779\pi\)
\(354\) −1.86397 −0.0990691
\(355\) 31.7577 1.68552
\(356\) −32.2246 −1.70790
\(357\) 0 0
\(358\) 30.7613 1.62579
\(359\) 22.8944 1.20832 0.604160 0.796863i \(-0.293509\pi\)
0.604160 + 0.796863i \(0.293509\pi\)
\(360\) −11.7771 −0.620708
\(361\) −9.07374 −0.477565
\(362\) −19.5096 −1.02540
\(363\) 0.883349 0.0463638
\(364\) 0 0
\(365\) 11.1382 0.583002
\(366\) 0.773770 0.0404456
\(367\) 18.1601 0.947947 0.473974 0.880539i \(-0.342819\pi\)
0.473974 + 0.880539i \(0.342819\pi\)
\(368\) 5.87542 0.306277
\(369\) 6.29014 0.327452
\(370\) −38.0548 −1.97838
\(371\) 0 0
\(372\) 0.669473 0.0347105
\(373\) −15.8691 −0.821673 −0.410836 0.911709i \(-0.634763\pi\)
−0.410836 + 0.911709i \(0.634763\pi\)
\(374\) 40.6394 2.10142
\(375\) 1.93707 0.100030
\(376\) 1.12121 0.0578220
\(377\) 0 0
\(378\) 0 0
\(379\) −27.7634 −1.42611 −0.713055 0.701108i \(-0.752689\pi\)
−0.713055 + 0.701108i \(0.752689\pi\)
\(380\) −28.6040 −1.46736
\(381\) 3.49022 0.178810
\(382\) 37.3747 1.91226
\(383\) −26.2469 −1.34115 −0.670576 0.741841i \(-0.733953\pi\)
−0.670576 + 0.741841i \(0.733953\pi\)
\(384\) −1.52172 −0.0776548
\(385\) 0 0
\(386\) −41.9908 −2.13728
\(387\) −4.24855 −0.215966
\(388\) 3.42158 0.173704
\(389\) −25.2554 −1.28050 −0.640250 0.768167i \(-0.721169\pi\)
−0.640250 + 0.768167i \(0.721169\pi\)
\(390\) 0 0
\(391\) 10.4349 0.527714
\(392\) 0 0
\(393\) −3.41151 −0.172088
\(394\) 16.2817 0.820259
\(395\) 7.09670 0.357074
\(396\) 29.8332 1.49918
\(397\) −14.9765 −0.751651 −0.375826 0.926690i \(-0.622641\pi\)
−0.375826 + 0.926690i \(0.622641\pi\)
\(398\) 13.9080 0.697143
\(399\) 0 0
\(400\) −21.5817 −1.07909
\(401\) 5.34408 0.266871 0.133435 0.991058i \(-0.457399\pi\)
0.133435 + 0.991058i \(0.457399\pi\)
\(402\) −1.48674 −0.0741520
\(403\) 0 0
\(404\) −10.7960 −0.537119
\(405\) 31.4198 1.56126
\(406\) 0 0
\(407\) 19.8222 0.982549
\(408\) −0.942546 −0.0466630
\(409\) −3.36517 −0.166397 −0.0831985 0.996533i \(-0.526514\pi\)
−0.0831985 + 0.996533i \(0.526514\pi\)
\(410\) −16.2436 −0.802215
\(411\) 1.14984 0.0567173
\(412\) −36.3428 −1.79048
\(413\) 0 0
\(414\) 13.7453 0.675542
\(415\) 27.6229 1.35595
\(416\) 0 0
\(417\) 0.434355 0.0212705
\(418\) 26.7351 1.30766
\(419\) 28.8639 1.41010 0.705048 0.709160i \(-0.250926\pi\)
0.705048 + 0.709160i \(0.250926\pi\)
\(420\) 0 0
\(421\) 16.6125 0.809644 0.404822 0.914395i \(-0.367333\pi\)
0.404822 + 0.914395i \(0.367333\pi\)
\(422\) 42.6058 2.07402
\(423\) −3.02419 −0.147041
\(424\) 6.64127 0.322529
\(425\) −38.3297 −1.85926
\(426\) 3.34795 0.162209
\(427\) 0 0
\(428\) −24.4692 −1.18276
\(429\) 0 0
\(430\) 10.9714 0.529090
\(431\) −20.5554 −0.990120 −0.495060 0.868859i \(-0.664854\pi\)
−0.495060 + 0.868859i \(0.664854\pi\)
\(432\) 2.87832 0.138483
\(433\) −19.4092 −0.932748 −0.466374 0.884588i \(-0.654440\pi\)
−0.466374 + 0.884588i \(0.654440\pi\)
\(434\) 0 0
\(435\) −4.23862 −0.203226
\(436\) 16.7391 0.801658
\(437\) 6.86469 0.328383
\(438\) 1.17421 0.0561060
\(439\) −13.4251 −0.640746 −0.320373 0.947292i \(-0.603808\pi\)
−0.320373 + 0.947292i \(0.603808\pi\)
\(440\) −15.8417 −0.755225
\(441\) 0 0
\(442\) 0 0
\(443\) −33.5532 −1.59416 −0.797080 0.603874i \(-0.793623\pi\)
−0.797080 + 0.603874i \(0.793623\pi\)
\(444\) −2.23577 −0.106105
\(445\) −46.1542 −2.18792
\(446\) −58.9057 −2.78927
\(447\) 0.0206313 0.000975829 0
\(448\) 0 0
\(449\) −34.4284 −1.62478 −0.812388 0.583117i \(-0.801833\pi\)
−0.812388 + 0.583117i \(0.801833\pi\)
\(450\) −50.4894 −2.38010
\(451\) 8.46105 0.398415
\(452\) 44.1692 2.07754
\(453\) −2.11104 −0.0991852
\(454\) −24.1691 −1.13431
\(455\) 0 0
\(456\) −0.620064 −0.0290371
\(457\) 13.4793 0.630537 0.315269 0.949002i \(-0.397905\pi\)
0.315269 + 0.949002i \(0.397905\pi\)
\(458\) 18.5154 0.865168
\(459\) 5.11197 0.238606
\(460\) −19.7816 −0.922324
\(461\) −1.35900 −0.0632951 −0.0316476 0.999499i \(-0.510075\pi\)
−0.0316476 + 0.999499i \(0.510075\pi\)
\(462\) 0 0
\(463\) −2.49836 −0.116109 −0.0580543 0.998313i \(-0.518490\pi\)
−0.0580543 + 0.998313i \(0.518490\pi\)
\(464\) 17.7218 0.822712
\(465\) 0.958863 0.0444662
\(466\) −7.15135 −0.331280
\(467\) 26.2182 1.21323 0.606617 0.794994i \(-0.292526\pi\)
0.606617 + 0.794994i \(0.292526\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 7.80965 0.360232
\(471\) 2.35137 0.108346
\(472\) −5.39542 −0.248344
\(473\) −5.71485 −0.262769
\(474\) 0.748146 0.0343635
\(475\) −25.2156 −1.15697
\(476\) 0 0
\(477\) −17.9132 −0.820188
\(478\) −42.2542 −1.93266
\(479\) 23.8461 1.08956 0.544778 0.838580i \(-0.316614\pi\)
0.544778 + 0.838580i \(0.316614\pi\)
\(480\) −5.11595 −0.233510
\(481\) 0 0
\(482\) 40.1120 1.82705
\(483\) 0 0
\(484\) 12.4348 0.565217
\(485\) 4.90061 0.222525
\(486\) 10.1186 0.458989
\(487\) −10.5947 −0.480090 −0.240045 0.970762i \(-0.577162\pi\)
−0.240045 + 0.970762i \(0.577162\pi\)
\(488\) 2.23974 0.101388
\(489\) −3.33536 −0.150830
\(490\) 0 0
\(491\) −19.7704 −0.892224 −0.446112 0.894977i \(-0.647192\pi\)
−0.446112 + 0.894977i \(0.647192\pi\)
\(492\) −0.954332 −0.0430246
\(493\) 31.4742 1.41753
\(494\) 0 0
\(495\) 42.7291 1.92053
\(496\) −4.00902 −0.180010
\(497\) 0 0
\(498\) 2.91205 0.130492
\(499\) 13.1906 0.590492 0.295246 0.955421i \(-0.404598\pi\)
0.295246 + 0.955421i \(0.404598\pi\)
\(500\) 27.2679 1.21946
\(501\) 0.173967 0.00777226
\(502\) 20.8213 0.929301
\(503\) −37.9046 −1.69008 −0.845040 0.534703i \(-0.820424\pi\)
−0.845040 + 0.534703i \(0.820424\pi\)
\(504\) 0 0
\(505\) −15.4627 −0.688080
\(506\) 18.4891 0.821943
\(507\) 0 0
\(508\) 49.1314 2.17985
\(509\) −27.6626 −1.22612 −0.613062 0.790035i \(-0.710062\pi\)
−0.613062 + 0.790035i \(0.710062\pi\)
\(510\) −6.56518 −0.290711
\(511\) 0 0
\(512\) 27.3244 1.20758
\(513\) 3.36296 0.148478
\(514\) −44.5066 −1.96310
\(515\) −52.0525 −2.29371
\(516\) 0.644585 0.0283763
\(517\) −4.06792 −0.178907
\(518\) 0 0
\(519\) −0.439464 −0.0192903
\(520\) 0 0
\(521\) −15.5668 −0.681993 −0.340996 0.940065i \(-0.610764\pi\)
−0.340996 + 0.940065i \(0.610764\pi\)
\(522\) 41.4592 1.81462
\(523\) −27.2338 −1.19085 −0.595425 0.803411i \(-0.703016\pi\)
−0.595425 + 0.803411i \(0.703016\pi\)
\(524\) −48.0234 −2.09791
\(525\) 0 0
\(526\) −15.7005 −0.684577
\(527\) −7.12011 −0.310157
\(528\) 1.92548 0.0837959
\(529\) −18.2526 −0.793591
\(530\) 46.2589 2.00936
\(531\) 14.5528 0.631538
\(532\) 0 0
\(533\) 0 0
\(534\) −4.86566 −0.210557
\(535\) −35.0464 −1.51519
\(536\) −4.30349 −0.185883
\(537\) 2.58849 0.111701
\(538\) −48.4381 −2.08832
\(539\) 0 0
\(540\) −9.69089 −0.417029
\(541\) 24.2055 1.04068 0.520338 0.853961i \(-0.325806\pi\)
0.520338 + 0.853961i \(0.325806\pi\)
\(542\) 8.85548 0.380376
\(543\) −1.64168 −0.0704512
\(544\) 37.9889 1.62876
\(545\) 23.9749 1.02697
\(546\) 0 0
\(547\) −22.2177 −0.949960 −0.474980 0.879997i \(-0.657545\pi\)
−0.474980 + 0.879997i \(0.657545\pi\)
\(548\) 16.1861 0.691436
\(549\) −6.04114 −0.257829
\(550\) −67.9148 −2.89590
\(551\) 20.7057 0.882091
\(552\) −0.428817 −0.0182517
\(553\) 0 0
\(554\) 1.65172 0.0701749
\(555\) −3.20221 −0.135926
\(556\) 6.11436 0.259306
\(557\) −22.3204 −0.945746 −0.472873 0.881131i \(-0.656783\pi\)
−0.472873 + 0.881131i \(0.656783\pi\)
\(558\) −9.37891 −0.397041
\(559\) 0 0
\(560\) 0 0
\(561\) 3.41970 0.144380
\(562\) 25.2908 1.06683
\(563\) −26.7039 −1.12543 −0.562717 0.826649i \(-0.690244\pi\)
−0.562717 + 0.826649i \(0.690244\pi\)
\(564\) 0.458826 0.0193201
\(565\) 63.2620 2.66145
\(566\) 33.8039 1.42088
\(567\) 0 0
\(568\) 9.69090 0.406621
\(569\) 6.61021 0.277114 0.138557 0.990354i \(-0.455754\pi\)
0.138557 + 0.990354i \(0.455754\pi\)
\(570\) −4.31897 −0.180902
\(571\) −42.1286 −1.76303 −0.881513 0.472159i \(-0.843475\pi\)
−0.881513 + 0.472159i \(0.843475\pi\)
\(572\) 0 0
\(573\) 3.14498 0.131383
\(574\) 0 0
\(575\) −17.4383 −0.727227
\(576\) 34.0338 1.41807
\(577\) −15.8839 −0.661255 −0.330628 0.943761i \(-0.607260\pi\)
−0.330628 + 0.943761i \(0.607260\pi\)
\(578\) 12.6170 0.524796
\(579\) −3.53342 −0.146844
\(580\) −59.6665 −2.47752
\(581\) 0 0
\(582\) 0.516630 0.0214150
\(583\) −24.0955 −0.997936
\(584\) 3.39885 0.140645
\(585\) 0 0
\(586\) −14.3194 −0.591528
\(587\) −18.5676 −0.766366 −0.383183 0.923672i \(-0.625172\pi\)
−0.383183 + 0.923672i \(0.625172\pi\)
\(588\) 0 0
\(589\) −4.68404 −0.193003
\(590\) −37.5811 −1.54719
\(591\) 1.37006 0.0563567
\(592\) 13.3885 0.550265
\(593\) 20.6099 0.846349 0.423175 0.906048i \(-0.360916\pi\)
0.423175 + 0.906048i \(0.360916\pi\)
\(594\) 9.05770 0.371642
\(595\) 0 0
\(596\) 0.290425 0.0118963
\(597\) 1.17032 0.0478980
\(598\) 0 0
\(599\) −13.6045 −0.555864 −0.277932 0.960601i \(-0.589649\pi\)
−0.277932 + 0.960601i \(0.589649\pi\)
\(600\) 1.57514 0.0643049
\(601\) 12.1503 0.495621 0.247810 0.968809i \(-0.420289\pi\)
0.247810 + 0.968809i \(0.420289\pi\)
\(602\) 0 0
\(603\) 11.6076 0.472698
\(604\) −29.7168 −1.20916
\(605\) 17.8099 0.724076
\(606\) −1.63010 −0.0662183
\(607\) −35.2332 −1.43007 −0.715035 0.699088i \(-0.753589\pi\)
−0.715035 + 0.699088i \(0.753589\pi\)
\(608\) 24.9914 1.01354
\(609\) 0 0
\(610\) 15.6006 0.631650
\(611\) 0 0
\(612\) 35.7874 1.44662
\(613\) 30.0621 1.21419 0.607097 0.794627i \(-0.292334\pi\)
0.607097 + 0.794627i \(0.292334\pi\)
\(614\) 31.2828 1.26247
\(615\) −1.36686 −0.0551170
\(616\) 0 0
\(617\) −7.01712 −0.282499 −0.141249 0.989974i \(-0.545112\pi\)
−0.141249 + 0.989974i \(0.545112\pi\)
\(618\) −5.48746 −0.220738
\(619\) −43.8482 −1.76241 −0.881203 0.472737i \(-0.843266\pi\)
−0.881203 + 0.472737i \(0.843266\pi\)
\(620\) 13.4978 0.542084
\(621\) 2.32572 0.0933279
\(622\) −60.9118 −2.44234
\(623\) 0 0
\(624\) 0 0
\(625\) −0.962290 −0.0384916
\(626\) 69.7694 2.78855
\(627\) 2.24969 0.0898438
\(628\) 33.1000 1.32083
\(629\) 23.7783 0.948103
\(630\) 0 0
\(631\) 23.4936 0.935267 0.467634 0.883922i \(-0.345107\pi\)
0.467634 + 0.883922i \(0.345107\pi\)
\(632\) 2.16557 0.0861416
\(633\) 3.58517 0.142498
\(634\) 22.1308 0.878927
\(635\) 70.3692 2.79252
\(636\) 2.71777 0.107766
\(637\) 0 0
\(638\) 55.7680 2.20788
\(639\) −26.1388 −1.03403
\(640\) −30.6806 −1.21276
\(641\) 7.40466 0.292467 0.146233 0.989250i \(-0.453285\pi\)
0.146233 + 0.989250i \(0.453285\pi\)
\(642\) −3.69465 −0.145816
\(643\) 39.9607 1.57590 0.787948 0.615742i \(-0.211144\pi\)
0.787948 + 0.615742i \(0.211144\pi\)
\(644\) 0 0
\(645\) 0.923218 0.0363517
\(646\) 32.0709 1.26181
\(647\) −27.2468 −1.07118 −0.535591 0.844478i \(-0.679911\pi\)
−0.535591 + 0.844478i \(0.679911\pi\)
\(648\) 9.58777 0.376643
\(649\) 19.5754 0.768402
\(650\) 0 0
\(651\) 0 0
\(652\) −46.9514 −1.83876
\(653\) 19.1451 0.749205 0.374603 0.927185i \(-0.377779\pi\)
0.374603 + 0.927185i \(0.377779\pi\)
\(654\) 2.52747 0.0988319
\(655\) −68.7823 −2.68755
\(656\) 5.71485 0.223128
\(657\) −9.16755 −0.357660
\(658\) 0 0
\(659\) 41.5725 1.61943 0.809717 0.586820i \(-0.199620\pi\)
0.809717 + 0.586820i \(0.199620\pi\)
\(660\) −6.48281 −0.252343
\(661\) 34.2046 1.33041 0.665203 0.746662i \(-0.268345\pi\)
0.665203 + 0.746662i \(0.268345\pi\)
\(662\) −9.48000 −0.368451
\(663\) 0 0
\(664\) 8.42915 0.327115
\(665\) 0 0
\(666\) 31.3218 1.21369
\(667\) 14.3194 0.554449
\(668\) 2.44890 0.0947510
\(669\) −4.95676 −0.191639
\(670\) −29.9754 −1.15805
\(671\) −8.12611 −0.313705
\(672\) 0 0
\(673\) 21.4308 0.826098 0.413049 0.910709i \(-0.364464\pi\)
0.413049 + 0.910709i \(0.364464\pi\)
\(674\) −22.9444 −0.883786
\(675\) −8.54290 −0.328816
\(676\) 0 0
\(677\) −9.78166 −0.375940 −0.187970 0.982175i \(-0.560191\pi\)
−0.187970 + 0.982175i \(0.560191\pi\)
\(678\) 6.66919 0.256129
\(679\) 0 0
\(680\) −19.0034 −0.728748
\(681\) −2.03377 −0.0779342
\(682\) −12.6159 −0.483086
\(683\) −15.2764 −0.584533 −0.292267 0.956337i \(-0.594409\pi\)
−0.292267 + 0.956337i \(0.594409\pi\)
\(684\) 23.5431 0.900193
\(685\) 23.1828 0.885769
\(686\) 0 0
\(687\) 1.55802 0.0594423
\(688\) −3.85999 −0.147161
\(689\) 0 0
\(690\) −2.98687 −0.113708
\(691\) 42.4572 1.61515 0.807573 0.589767i \(-0.200780\pi\)
0.807573 + 0.589767i \(0.200780\pi\)
\(692\) −6.18627 −0.235167
\(693\) 0 0
\(694\) −8.65141 −0.328403
\(695\) 8.75738 0.332186
\(696\) −1.29342 −0.0490270
\(697\) 10.1497 0.384448
\(698\) 50.7412 1.92058
\(699\) −0.601767 −0.0227609
\(700\) 0 0
\(701\) −2.79985 −0.105749 −0.0528744 0.998601i \(-0.516838\pi\)
−0.0528744 + 0.998601i \(0.516838\pi\)
\(702\) 0 0
\(703\) 15.6428 0.589980
\(704\) 45.7798 1.72539
\(705\) 0.657161 0.0247501
\(706\) 55.4412 2.08656
\(707\) 0 0
\(708\) −2.20793 −0.0829793
\(709\) 14.5664 0.547052 0.273526 0.961865i \(-0.411810\pi\)
0.273526 + 0.961865i \(0.411810\pi\)
\(710\) 67.5006 2.53325
\(711\) −5.84108 −0.219058
\(712\) −14.0840 −0.527821
\(713\) −3.23934 −0.121314
\(714\) 0 0
\(715\) 0 0
\(716\) 36.4377 1.36174
\(717\) −3.55558 −0.132786
\(718\) 48.6618 1.81604
\(719\) −34.5057 −1.28685 −0.643423 0.765511i \(-0.722486\pi\)
−0.643423 + 0.765511i \(0.722486\pi\)
\(720\) 28.8606 1.07557
\(721\) 0 0
\(722\) −19.2861 −0.717756
\(723\) 3.37532 0.125530
\(724\) −23.1097 −0.858864
\(725\) −52.5984 −1.95345
\(726\) 1.87755 0.0696824
\(727\) −35.7571 −1.32616 −0.663078 0.748550i \(-0.730750\pi\)
−0.663078 + 0.748550i \(0.730750\pi\)
\(728\) 0 0
\(729\) −25.2879 −0.936590
\(730\) 23.6742 0.876222
\(731\) −6.85543 −0.253557
\(732\) 0.916554 0.0338768
\(733\) −41.0500 −1.51622 −0.758108 0.652129i \(-0.773876\pi\)
−0.758108 + 0.652129i \(0.773876\pi\)
\(734\) 38.5990 1.42472
\(735\) 0 0
\(736\) 17.2833 0.637071
\(737\) 15.6137 0.575139
\(738\) 13.3696 0.492143
\(739\) 0.726409 0.0267214 0.0133607 0.999911i \(-0.495747\pi\)
0.0133607 + 0.999911i \(0.495747\pi\)
\(740\) −45.0771 −1.65707
\(741\) 0 0
\(742\) 0 0
\(743\) −16.4547 −0.603664 −0.301832 0.953361i \(-0.597598\pi\)
−0.301832 + 0.953361i \(0.597598\pi\)
\(744\) 0.292598 0.0107272
\(745\) 0.415965 0.0152398
\(746\) −33.7297 −1.23493
\(747\) −22.7356 −0.831850
\(748\) 48.1387 1.76012
\(749\) 0 0
\(750\) 4.11723 0.150340
\(751\) 25.1707 0.918494 0.459247 0.888309i \(-0.348119\pi\)
0.459247 + 0.888309i \(0.348119\pi\)
\(752\) −2.74760 −0.100195
\(753\) 1.75206 0.0638486
\(754\) 0 0
\(755\) −42.5623 −1.54900
\(756\) 0 0
\(757\) 44.0743 1.60191 0.800953 0.598727i \(-0.204327\pi\)
0.800953 + 0.598727i \(0.204327\pi\)
\(758\) −59.0108 −2.14337
\(759\) 1.55581 0.0564724
\(760\) −12.5016 −0.453481
\(761\) −38.7022 −1.40295 −0.701477 0.712692i \(-0.747476\pi\)
−0.701477 + 0.712692i \(0.747476\pi\)
\(762\) 7.41844 0.268742
\(763\) 0 0
\(764\) 44.2715 1.60169
\(765\) 51.2570 1.85320
\(766\) −55.7874 −2.01568
\(767\) 0 0
\(768\) 0.867401 0.0312996
\(769\) −36.1506 −1.30362 −0.651811 0.758381i \(-0.725991\pi\)
−0.651811 + 0.758381i \(0.725991\pi\)
\(770\) 0 0
\(771\) −3.74511 −0.134877
\(772\) −49.7394 −1.79016
\(773\) 30.0731 1.08165 0.540827 0.841134i \(-0.318111\pi\)
0.540827 + 0.841134i \(0.318111\pi\)
\(774\) −9.03026 −0.324586
\(775\) 11.8988 0.427418
\(776\) 1.49543 0.0536827
\(777\) 0 0
\(778\) −53.6801 −1.92453
\(779\) 6.67709 0.239232
\(780\) 0 0
\(781\) −35.1601 −1.25813
\(782\) 22.1792 0.793127
\(783\) 7.01496 0.250694
\(784\) 0 0
\(785\) 47.4079 1.69206
\(786\) −7.25114 −0.258640
\(787\) −36.8472 −1.31346 −0.656730 0.754126i \(-0.728061\pi\)
−0.656730 + 0.754126i \(0.728061\pi\)
\(788\) 19.2861 0.687040
\(789\) −1.32116 −0.0470345
\(790\) 15.0840 0.536663
\(791\) 0 0
\(792\) 13.0388 0.463315
\(793\) 0 0
\(794\) −31.8325 −1.12969
\(795\) 3.89256 0.138055
\(796\) 16.4744 0.583920
\(797\) −27.5910 −0.977323 −0.488661 0.872474i \(-0.662515\pi\)
−0.488661 + 0.872474i \(0.662515\pi\)
\(798\) 0 0
\(799\) −4.87980 −0.172635
\(800\) −63.4854 −2.24455
\(801\) 37.9882 1.34225
\(802\) 11.3588 0.401093
\(803\) −12.3315 −0.435170
\(804\) −1.76109 −0.0621089
\(805\) 0 0
\(806\) 0 0
\(807\) −4.07594 −0.143480
\(808\) −4.71845 −0.165995
\(809\) 35.7102 1.25550 0.627752 0.778413i \(-0.283975\pi\)
0.627752 + 0.778413i \(0.283975\pi\)
\(810\) 66.7824 2.34649
\(811\) 2.22418 0.0781015 0.0390508 0.999237i \(-0.487567\pi\)
0.0390508 + 0.999237i \(0.487567\pi\)
\(812\) 0 0
\(813\) 0.745166 0.0261341
\(814\) 42.1319 1.47672
\(815\) −67.2469 −2.35556
\(816\) 2.30977 0.0808582
\(817\) −4.50992 −0.157782
\(818\) −7.15264 −0.250086
\(819\) 0 0
\(820\) −19.2411 −0.671927
\(821\) 53.3694 1.86260 0.931302 0.364248i \(-0.118674\pi\)
0.931302 + 0.364248i \(0.118674\pi\)
\(822\) 2.44397 0.0852432
\(823\) 51.2086 1.78502 0.892509 0.451029i \(-0.148943\pi\)
0.892509 + 0.451029i \(0.148943\pi\)
\(824\) −15.8839 −0.553342
\(825\) −5.71485 −0.198966
\(826\) 0 0
\(827\) −8.97196 −0.311986 −0.155993 0.987758i \(-0.549858\pi\)
−0.155993 + 0.987758i \(0.549858\pi\)
\(828\) 16.2817 0.565827
\(829\) −40.5716 −1.40911 −0.704554 0.709650i \(-0.748853\pi\)
−0.704554 + 0.709650i \(0.748853\pi\)
\(830\) 58.7122 2.03793
\(831\) 0.138988 0.00482144
\(832\) 0 0
\(833\) 0 0
\(834\) 0.923218 0.0319684
\(835\) 3.50748 0.121381
\(836\) 31.6685 1.09528
\(837\) −1.58693 −0.0548522
\(838\) 61.3500 2.11930
\(839\) −32.3005 −1.11514 −0.557568 0.830131i \(-0.688266\pi\)
−0.557568 + 0.830131i \(0.688266\pi\)
\(840\) 0 0
\(841\) 14.1909 0.489342
\(842\) 35.3097 1.21685
\(843\) 2.12816 0.0732976
\(844\) 50.4679 1.73718
\(845\) 0 0
\(846\) −6.42788 −0.220995
\(847\) 0 0
\(848\) −16.2749 −0.558882
\(849\) 2.84451 0.0976232
\(850\) −81.4693 −2.79437
\(851\) 10.8181 0.370839
\(852\) 3.96575 0.135864
\(853\) 35.5887 1.21853 0.609267 0.792965i \(-0.291464\pi\)
0.609267 + 0.792965i \(0.291464\pi\)
\(854\) 0 0
\(855\) 33.7200 1.15320
\(856\) −10.6945 −0.365529
\(857\) −46.0229 −1.57211 −0.786055 0.618156i \(-0.787880\pi\)
−0.786055 + 0.618156i \(0.787880\pi\)
\(858\) 0 0
\(859\) −25.2458 −0.861377 −0.430689 0.902501i \(-0.641729\pi\)
−0.430689 + 0.902501i \(0.641729\pi\)
\(860\) 12.9960 0.443160
\(861\) 0 0
\(862\) −43.6903 −1.48810
\(863\) −13.8337 −0.470904 −0.235452 0.971886i \(-0.575657\pi\)
−0.235452 + 0.971886i \(0.575657\pi\)
\(864\) 8.46696 0.288052
\(865\) −8.86038 −0.301262
\(866\) −41.2541 −1.40187
\(867\) 1.06168 0.0360567
\(868\) 0 0
\(869\) −7.85701 −0.266531
\(870\) −9.00915 −0.305439
\(871\) 0 0
\(872\) 7.31596 0.247750
\(873\) −4.03354 −0.136515
\(874\) 14.5908 0.493542
\(875\) 0 0
\(876\) 1.39089 0.0469938
\(877\) 3.65416 0.123392 0.0616961 0.998095i \(-0.480349\pi\)
0.0616961 + 0.998095i \(0.480349\pi\)
\(878\) −28.5349 −0.963008
\(879\) −1.20494 −0.0406416
\(880\) 38.8212 1.30866
\(881\) −36.6320 −1.23416 −0.617082 0.786899i \(-0.711685\pi\)
−0.617082 + 0.786899i \(0.711685\pi\)
\(882\) 0 0
\(883\) −7.11145 −0.239319 −0.119660 0.992815i \(-0.538180\pi\)
−0.119660 + 0.992815i \(0.538180\pi\)
\(884\) 0 0
\(885\) −3.16235 −0.106301
\(886\) −71.3169 −2.39594
\(887\) 6.73546 0.226155 0.113077 0.993586i \(-0.463929\pi\)
0.113077 + 0.993586i \(0.463929\pi\)
\(888\) −0.977160 −0.0327913
\(889\) 0 0
\(890\) −98.1004 −3.28833
\(891\) −34.7859 −1.16537
\(892\) −69.7756 −2.33626
\(893\) −3.21023 −0.107426
\(894\) 0.0438517 0.00146662
\(895\) 52.1885 1.74447
\(896\) 0 0
\(897\) 0 0
\(898\) −73.1772 −2.44195
\(899\) −9.77066 −0.325870
\(900\) −59.8063 −1.99354
\(901\) −28.9046 −0.962950
\(902\) 17.9839 0.598798
\(903\) 0 0
\(904\) 19.3045 0.642058
\(905\) −33.0992 −1.10025
\(906\) −4.48699 −0.149070
\(907\) −4.93260 −0.163784 −0.0818921 0.996641i \(-0.526096\pi\)
−0.0818921 + 0.996641i \(0.526096\pi\)
\(908\) −28.6291 −0.950090
\(909\) 12.7269 0.422123
\(910\) 0 0
\(911\) −26.6258 −0.882152 −0.441076 0.897470i \(-0.645403\pi\)
−0.441076 + 0.897470i \(0.645403\pi\)
\(912\) 1.51951 0.0503159
\(913\) −30.5823 −1.01213
\(914\) 28.6502 0.947665
\(915\) 1.31275 0.0433981
\(916\) 21.9321 0.724656
\(917\) 0 0
\(918\) 10.8654 0.358613
\(919\) −32.3836 −1.06824 −0.534118 0.845410i \(-0.679356\pi\)
−0.534118 + 0.845410i \(0.679356\pi\)
\(920\) −8.64572 −0.285041
\(921\) 2.63237 0.0867394
\(922\) −2.88855 −0.0951293
\(923\) 0 0
\(924\) 0 0
\(925\) −39.7373 −1.30655
\(926\) −5.31024 −0.174505
\(927\) 42.8429 1.40714
\(928\) 52.1308 1.71128
\(929\) 28.0271 0.919539 0.459769 0.888038i \(-0.347932\pi\)
0.459769 + 0.888038i \(0.347932\pi\)
\(930\) 2.03805 0.0668304
\(931\) 0 0
\(932\) −8.47099 −0.277476
\(933\) −5.12557 −0.167804
\(934\) 55.7266 1.82343
\(935\) 68.9473 2.25482
\(936\) 0 0
\(937\) −14.1324 −0.461686 −0.230843 0.972991i \(-0.574148\pi\)
−0.230843 + 0.972991i \(0.574148\pi\)
\(938\) 0 0
\(939\) 5.87091 0.191590
\(940\) 9.25076 0.301727
\(941\) 8.97295 0.292510 0.146255 0.989247i \(-0.453278\pi\)
0.146255 + 0.989247i \(0.453278\pi\)
\(942\) 4.99782 0.162838
\(943\) 4.61767 0.150372
\(944\) 13.2218 0.430334
\(945\) 0 0
\(946\) −12.1469 −0.394929
\(947\) 46.2958 1.50441 0.752205 0.658929i \(-0.228990\pi\)
0.752205 + 0.658929i \(0.228990\pi\)
\(948\) 0.886202 0.0287825
\(949\) 0 0
\(950\) −53.5954 −1.73887
\(951\) 1.86225 0.0603876
\(952\) 0 0
\(953\) 19.1097 0.619023 0.309512 0.950896i \(-0.399834\pi\)
0.309512 + 0.950896i \(0.399834\pi\)
\(954\) −38.0743 −1.23270
\(955\) 63.4085 2.05185
\(956\) −50.0514 −1.61878
\(957\) 4.69273 0.151694
\(958\) 50.6846 1.63755
\(959\) 0 0
\(960\) −7.39560 −0.238692
\(961\) −28.7897 −0.928699
\(962\) 0 0
\(963\) 28.8456 0.929538
\(964\) 47.5139 1.53032
\(965\) −71.2400 −2.29330
\(966\) 0 0
\(967\) −22.5432 −0.724942 −0.362471 0.931995i \(-0.618067\pi\)
−0.362471 + 0.931995i \(0.618067\pi\)
\(968\) 5.43472 0.174678
\(969\) 2.69868 0.0866941
\(970\) 10.4162 0.334444
\(971\) −27.2857 −0.875640 −0.437820 0.899063i \(-0.644249\pi\)
−0.437820 + 0.899063i \(0.644249\pi\)
\(972\) 11.9858 0.384444
\(973\) 0 0
\(974\) −22.5188 −0.721550
\(975\) 0 0
\(976\) −5.48863 −0.175687
\(977\) 56.1841 1.79749 0.898744 0.438474i \(-0.144481\pi\)
0.898744 + 0.438474i \(0.144481\pi\)
\(978\) −7.08928 −0.226690
\(979\) 51.0990 1.63313
\(980\) 0 0
\(981\) −19.7330 −0.630026
\(982\) −42.0217 −1.34097
\(983\) 26.4890 0.844869 0.422435 0.906393i \(-0.361176\pi\)
0.422435 + 0.906393i \(0.361176\pi\)
\(984\) −0.417098 −0.0132966
\(985\) 27.6229 0.880138
\(986\) 66.8982 2.13047
\(987\) 0 0
\(988\) 0 0
\(989\) −3.11892 −0.0991758
\(990\) 90.8203 2.88646
\(991\) 5.11258 0.162407 0.0812033 0.996698i \(-0.474124\pi\)
0.0812033 + 0.996698i \(0.474124\pi\)
\(992\) −11.7930 −0.374430
\(993\) −0.797717 −0.0253148
\(994\) 0 0
\(995\) 23.5957 0.748035
\(996\) 3.44941 0.109299
\(997\) −2.03542 −0.0644623 −0.0322311 0.999480i \(-0.510261\pi\)
−0.0322311 + 0.999480i \(0.510261\pi\)
\(998\) 28.0365 0.887480
\(999\) 5.29970 0.167675
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.cj.1.7 8
7.3 odd 6 1183.2.e.i.170.2 16
7.5 odd 6 1183.2.e.i.508.2 16
7.6 odd 2 8281.2.a.ck.1.7 8
13.5 odd 4 637.2.c.e.246.2 8
13.8 odd 4 637.2.c.e.246.7 8
13.12 even 2 inner 8281.2.a.cj.1.2 8
91.5 even 12 91.2.r.a.25.2 16
91.12 odd 6 1183.2.e.i.508.7 16
91.18 odd 12 637.2.r.f.324.7 16
91.31 even 12 91.2.r.a.51.7 yes 16
91.34 even 4 637.2.c.f.246.7 8
91.38 odd 6 1183.2.e.i.170.7 16
91.44 odd 12 637.2.r.f.116.2 16
91.47 even 12 91.2.r.a.25.7 yes 16
91.60 odd 12 637.2.r.f.324.2 16
91.73 even 12 91.2.r.a.51.2 yes 16
91.83 even 4 637.2.c.f.246.2 8
91.86 odd 12 637.2.r.f.116.7 16
91.90 odd 2 8281.2.a.ck.1.2 8
273.5 odd 12 819.2.dl.e.298.7 16
273.47 odd 12 819.2.dl.e.298.2 16
273.122 odd 12 819.2.dl.e.415.2 16
273.164 odd 12 819.2.dl.e.415.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.r.a.25.2 16 91.5 even 12
91.2.r.a.25.7 yes 16 91.47 even 12
91.2.r.a.51.2 yes 16 91.73 even 12
91.2.r.a.51.7 yes 16 91.31 even 12
637.2.c.e.246.2 8 13.5 odd 4
637.2.c.e.246.7 8 13.8 odd 4
637.2.c.f.246.2 8 91.83 even 4
637.2.c.f.246.7 8 91.34 even 4
637.2.r.f.116.2 16 91.44 odd 12
637.2.r.f.116.7 16 91.86 odd 12
637.2.r.f.324.2 16 91.60 odd 12
637.2.r.f.324.7 16 91.18 odd 12
819.2.dl.e.298.2 16 273.47 odd 12
819.2.dl.e.298.7 16 273.5 odd 12
819.2.dl.e.415.2 16 273.122 odd 12
819.2.dl.e.415.7 16 273.164 odd 12
1183.2.e.i.170.2 16 7.3 odd 6
1183.2.e.i.170.7 16 91.38 odd 6
1183.2.e.i.508.2 16 7.5 odd 6
1183.2.e.i.508.7 16 91.12 odd 6
8281.2.a.cj.1.2 8 13.12 even 2 inner
8281.2.a.cj.1.7 8 1.1 even 1 trivial
8281.2.a.ck.1.2 8 91.90 odd 2
8281.2.a.ck.1.7 8 7.6 odd 2