Properties

Label 91.2.r.a.25.2
Level $91$
Weight $2$
Character 91.25
Analytic conductor $0.727$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 11 x^{14} + 85 x^{12} - 334 x^{10} + 952 x^{8} - 1050 x^{6} + 853 x^{4} - 93 x^{2} + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 25.2
Root \(1.84073 + 1.06275i\) of defining polynomial
Character \(\chi\) \(=\) 91.25
Dual form 91.2.r.a.51.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.84073 + 1.06275i) q^{2} +(0.0894272 - 0.154892i) q^{3} +(1.25885 - 2.18040i) q^{4} +(3.12291 - 1.80301i) q^{5} +0.380153i q^{6} +(-1.20931 + 2.35320i) q^{7} +1.10038i q^{8} +(1.48401 + 2.57037i) q^{9} +O(q^{10})\) \(q+(-1.84073 + 1.06275i) q^{2} +(0.0894272 - 0.154892i) q^{3} +(1.25885 - 2.18040i) q^{4} +(3.12291 - 1.80301i) q^{5} +0.380153i q^{6} +(-1.20931 + 2.35320i) q^{7} +1.10038i q^{8} +(1.48401 + 2.57037i) q^{9} +(-3.83229 + 6.63772i) q^{10} +(3.45748 + 1.99618i) q^{11} +(-0.225152 - 0.389974i) q^{12} +(-2.51771 - 2.58092i) q^{13} +(-0.274848 - 5.61680i) q^{14} -0.644954i q^{15} +(1.34828 + 2.33529i) q^{16} +(2.39458 - 4.14753i) q^{17} +(-5.46330 - 3.15424i) q^{18} +(-2.72850 + 1.57530i) q^{19} -9.07892i q^{20} +(0.256349 + 0.397753i) q^{21} -8.48572 q^{22} +(-1.08943 - 1.88694i) q^{23} +(0.170441 + 0.0984042i) q^{24} +(4.00171 - 6.93117i) q^{25} +(7.37728 + 2.07509i) q^{26} +1.06740 q^{27} +(3.60858 + 5.59912i) q^{28} -6.57198 q^{29} +(0.685421 + 1.18718i) q^{30} +(-1.28753 - 0.743358i) q^{31} +(-6.86956 - 3.96614i) q^{32} +(0.618386 - 0.357025i) q^{33} +10.1793i q^{34} +(0.466298 + 9.52925i) q^{35} +7.47259 q^{36} +(-4.29984 + 2.48252i) q^{37} +(3.34828 - 5.79939i) q^{38} +(-0.624916 + 0.159170i) q^{39} +(1.98401 + 3.43640i) q^{40} -2.11931i q^{41} +(-0.894578 - 0.459722i) q^{42} -1.43145 q^{43} +(8.70494 - 5.02580i) q^{44} +(9.26883 + 5.35136i) q^{45} +(4.01068 + 2.31557i) q^{46} +(-0.882417 + 0.509464i) q^{47} +0.482292 q^{48} +(-4.07515 - 5.69150i) q^{49} +17.0112i q^{50} +(-0.428281 - 0.741804i) q^{51} +(-8.79686 + 2.24061i) q^{52} +(-3.01771 + 5.22682i) q^{53} +(-1.96480 + 1.13438i) q^{54} +14.3966 q^{55} +(-2.58943 - 1.33070i) q^{56} +0.563498i q^{57} +(12.0972 - 6.98434i) q^{58} +(-4.24631 - 2.45161i) q^{59} +(-1.40626 - 0.811902i) q^{60} +(1.01771 + 1.76272i) q^{61} +3.16000 q^{62} +(-7.84323 + 0.383795i) q^{63} +11.4669 q^{64} +(-12.5160 - 3.52052i) q^{65} +(-0.758854 + 1.31437i) q^{66} +(-3.38694 - 1.95545i) q^{67} +(-6.02885 - 10.4423i) q^{68} -0.389698 q^{69} +(-10.9855 - 17.0452i) q^{70} -8.80684i q^{71} +(-2.82840 + 1.63297i) q^{72} +(2.67497 + 1.54439i) q^{73} +(5.27656 - 9.13927i) q^{74} +(-0.715724 - 1.23967i) q^{75} +7.93228i q^{76} +(-8.87858 + 5.72217i) q^{77} +(0.981145 - 0.957115i) q^{78} +(-0.984006 - 1.70435i) q^{79} +(8.42112 + 4.86194i) q^{80} +(-4.35656 + 7.54579i) q^{81} +(2.25229 + 3.90108i) q^{82} +7.66020i q^{83} +(1.18997 - 0.0582290i) q^{84} -17.2698i q^{85} +(2.63491 - 1.52126i) q^{86} +(-0.587714 + 1.01795i) q^{87} +(-2.19656 + 3.80456i) q^{88} +(11.0844 - 6.39960i) q^{89} -22.7485 q^{90} +(9.11812 - 2.80355i) q^{91} -5.48572 q^{92} +(-0.230281 + 0.132953i) q^{93} +(1.08286 - 1.87557i) q^{94} +(-5.68057 + 9.83903i) q^{95} +(-1.22865 + 0.709362i) q^{96} +1.35900i q^{97} +(13.5499 + 6.14567i) q^{98} +11.8494i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{3} + 6q^{4} - 12q^{9} + O(q^{10}) \) \( 16q - 4q^{3} + 6q^{4} - 12q^{9} - 6q^{10} + 18q^{12} - 12q^{13} - 26q^{14} + 2q^{16} + 8q^{17} - 36q^{22} - 12q^{23} - 6q^{26} + 32q^{27} - 16q^{29} + 38q^{30} - 56q^{36} + 34q^{38} + 18q^{39} - 4q^{40} + 16q^{42} + 16q^{43} + 36q^{48} + 40q^{49} + 16q^{51} - 42q^{52} - 20q^{53} + 24q^{55} - 36q^{56} - 12q^{61} + 44q^{62} + 88q^{64} - 30q^{65} + 2q^{66} - 2q^{68} - 56q^{69} + 42q^{74} + 8q^{75} - 76q^{77} + 20q^{78} + 20q^{79} - 24q^{81} - 16q^{82} - 68q^{87} + 4q^{88} - 216q^{90} + 56q^{91} + 12q^{92} - 26q^{94} - 16q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84073 + 1.06275i −1.30159 + 0.751474i −0.980677 0.195634i \(-0.937324\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(3\) 0.0894272 0.154892i 0.0516308 0.0894272i −0.839055 0.544047i \(-0.816891\pi\)
0.890686 + 0.454620i \(0.150225\pi\)
\(4\) 1.25885 2.18040i 0.629427 1.09020i
\(5\) 3.12291 1.80301i 1.39661 0.806332i 0.402572 0.915388i \(-0.368116\pi\)
0.994036 + 0.109056i \(0.0347828\pi\)
\(6\) 0.380153i 0.155197i
\(7\) −1.20931 + 2.35320i −0.457076 + 0.889428i
\(8\) 1.10038i 0.389044i
\(9\) 1.48401 + 2.57037i 0.494669 + 0.856791i
\(10\) −3.83229 + 6.63772i −1.21188 + 2.09903i
\(11\) 3.45748 + 1.99618i 1.04247 + 0.601871i 0.920532 0.390667i \(-0.127756\pi\)
0.121939 + 0.992538i \(0.461089\pi\)
\(12\) −0.225152 0.389974i −0.0649957 0.112576i
\(13\) −2.51771 2.58092i −0.698287 0.715818i
\(14\) −0.274848 5.61680i −0.0734563 1.50115i
\(15\) 0.644954i 0.166526i
\(16\) 1.34828 + 2.33529i 0.337070 + 0.583823i
\(17\) 2.39458 4.14753i 0.580771 1.00592i −0.414618 0.909996i \(-0.636085\pi\)
0.995388 0.0959284i \(-0.0305820\pi\)
\(18\) −5.46330 3.15424i −1.28771 0.743461i
\(19\) −2.72850 + 1.57530i −0.625960 + 0.361398i −0.779186 0.626793i \(-0.784367\pi\)
0.153226 + 0.988191i \(0.451034\pi\)
\(20\) 9.07892i 2.03011i
\(21\) 0.256349 + 0.397753i 0.0559398 + 0.0867969i
\(22\) −8.48572 −1.80916
\(23\) −1.08943 1.88694i −0.227161 0.393455i 0.729804 0.683656i \(-0.239611\pi\)
−0.956966 + 0.290201i \(0.906278\pi\)
\(24\) 0.170441 + 0.0984042i 0.0347911 + 0.0200867i
\(25\) 4.00171 6.93117i 0.800343 1.38623i
\(26\) 7.37728 + 2.07509i 1.44680 + 0.406959i
\(27\) 1.06740 0.205422
\(28\) 3.60858 + 5.59912i 0.681958 + 1.05813i
\(29\) −6.57198 −1.22039 −0.610193 0.792253i \(-0.708908\pi\)
−0.610193 + 0.792253i \(0.708908\pi\)
\(30\) 0.685421 + 1.18718i 0.125140 + 0.216749i
\(31\) −1.28753 0.743358i −0.231248 0.133511i 0.379900 0.925028i \(-0.375958\pi\)
−0.611148 + 0.791517i \(0.709292\pi\)
\(32\) −6.86956 3.96614i −1.21438 0.701121i
\(33\) 0.618386 0.357025i 0.107647 0.0621502i
\(34\) 10.1793i 1.74574i
\(35\) 0.466298 + 9.52925i 0.0788187 + 1.61074i
\(36\) 7.47259 1.24543
\(37\) −4.29984 + 2.48252i −0.706890 + 0.408123i −0.809908 0.586556i \(-0.800483\pi\)
0.103019 + 0.994679i \(0.467150\pi\)
\(38\) 3.34828 5.79939i 0.543163 0.940786i
\(39\) −0.624916 + 0.159170i −0.100067 + 0.0254875i
\(40\) 1.98401 + 3.43640i 0.313699 + 0.543342i
\(41\) 2.11931i 0.330981i −0.986211 0.165490i \(-0.947079\pi\)
0.986211 0.165490i \(-0.0529207\pi\)
\(42\) −0.894578 0.459722i −0.138036 0.0709367i
\(43\) −1.43145 −0.218294 −0.109147 0.994026i \(-0.534812\pi\)
−0.109147 + 0.994026i \(0.534812\pi\)
\(44\) 8.70494 5.02580i 1.31232 0.757667i
\(45\) 9.26883 + 5.35136i 1.38172 + 0.797734i
\(46\) 4.01068 + 2.31557i 0.591342 + 0.341412i
\(47\) −0.882417 + 0.509464i −0.128714 + 0.0743129i −0.562974 0.826474i \(-0.690343\pi\)
0.434261 + 0.900787i \(0.357010\pi\)
\(48\) 0.482292 0.0696129
\(49\) −4.07515 5.69150i −0.582164 0.813072i
\(50\) 17.0112i 2.40575i
\(51\) −0.428281 0.741804i −0.0599713 0.103873i
\(52\) −8.79686 + 2.24061i −1.21991 + 0.310716i
\(53\) −3.01771 + 5.22682i −0.414514 + 0.717959i −0.995377 0.0960417i \(-0.969382\pi\)
0.580863 + 0.814001i \(0.302715\pi\)
\(54\) −1.96480 + 1.13438i −0.267376 + 0.154369i
\(55\) 14.3966 1.94123
\(56\) −2.58943 1.33070i −0.346027 0.177823i
\(57\) 0.563498i 0.0746371i
\(58\) 12.0972 6.98434i 1.58844 0.917089i
\(59\) −4.24631 2.45161i −0.552823 0.319172i 0.197437 0.980316i \(-0.436738\pi\)
−0.750260 + 0.661143i \(0.770072\pi\)
\(60\) −1.40626 0.811902i −0.181547 0.104816i
\(61\) 1.01771 + 1.76272i 0.130304 + 0.225693i 0.923794 0.382890i \(-0.125071\pi\)
−0.793490 + 0.608584i \(0.791738\pi\)
\(62\) 3.16000 0.401320
\(63\) −7.84323 + 0.383795i −0.988155 + 0.0483537i
\(64\) 11.4669 1.43336
\(65\) −12.5160 3.52052i −1.55242 0.436667i
\(66\) −0.758854 + 1.31437i −0.0934085 + 0.161788i
\(67\) −3.38694 1.95545i −0.413781 0.238896i 0.278632 0.960398i \(-0.410119\pi\)
−0.692413 + 0.721501i \(0.743452\pi\)
\(68\) −6.02885 10.4423i −0.731105 1.26631i
\(69\) −0.389698 −0.0469141
\(70\) −10.9855 17.0452i −1.31302 2.03729i
\(71\) 8.80684i 1.04518i −0.852584 0.522590i \(-0.824966\pi\)
0.852584 0.522590i \(-0.175034\pi\)
\(72\) −2.82840 + 1.63297i −0.333330 + 0.192448i
\(73\) 2.67497 + 1.54439i 0.313081 + 0.180757i 0.648304 0.761381i \(-0.275478\pi\)
−0.335223 + 0.942139i \(0.608812\pi\)
\(74\) 5.27656 9.13927i 0.613388 1.06242i
\(75\) −0.715724 1.23967i −0.0826447 0.143145i
\(76\) 7.93228i 0.909895i
\(77\) −8.87858 + 5.72217i −1.01181 + 0.652102i
\(78\) 0.981145 0.957115i 0.111093 0.108372i
\(79\) −0.984006 1.70435i −0.110709 0.191754i 0.805347 0.592803i \(-0.201979\pi\)
−0.916056 + 0.401049i \(0.868646\pi\)
\(80\) 8.42112 + 4.86194i 0.941510 + 0.543581i
\(81\) −4.35656 + 7.54579i −0.484062 + 0.838421i
\(82\) 2.25229 + 3.90108i 0.248724 + 0.430802i
\(83\) 7.66020i 0.840816i 0.907335 + 0.420408i \(0.138113\pi\)
−0.907335 + 0.420408i \(0.861887\pi\)
\(84\) 1.18997 0.0582290i 0.129836 0.00635330i
\(85\) 17.2698i 1.87318i
\(86\) 2.63491 1.52126i 0.284129 0.164042i
\(87\) −0.587714 + 1.01795i −0.0630095 + 0.109136i
\(88\) −2.19656 + 3.80456i −0.234154 + 0.405567i
\(89\) 11.0844 6.39960i 1.17495 0.678356i 0.220107 0.975476i \(-0.429359\pi\)
0.954840 + 0.297120i \(0.0960261\pi\)
\(90\) −22.7485 −2.39791
\(91\) 9.11812 2.80355i 0.955839 0.293892i
\(92\) −5.48572 −0.571926
\(93\) −0.230281 + 0.132953i −0.0238790 + 0.0137866i
\(94\) 1.08286 1.87557i 0.111689 0.193450i
\(95\) −5.68057 + 9.83903i −0.582814 + 1.00946i
\(96\) −1.22865 + 0.709362i −0.125399 + 0.0723989i
\(97\) 1.35900i 0.137986i 0.997617 + 0.0689930i \(0.0219786\pi\)
−0.997617 + 0.0689930i \(0.978021\pi\)
\(98\) 13.5499 + 6.14567i 1.36874 + 0.620806i
\(99\) 11.8494i 1.19091i
\(100\) −10.0751 17.4507i −1.00751 1.74507i
\(101\) 2.14400 3.71353i 0.213336 0.369510i −0.739420 0.673244i \(-0.764900\pi\)
0.952757 + 0.303735i \(0.0982336\pi\)
\(102\) 1.57670 + 0.910307i 0.156116 + 0.0901338i
\(103\) 7.21744 + 12.5010i 0.711155 + 1.23176i 0.964424 + 0.264361i \(0.0851610\pi\)
−0.253269 + 0.967396i \(0.581506\pi\)
\(104\) 2.84000 2.77044i 0.278485 0.271664i
\(105\) 1.51771 + 0.779948i 0.148113 + 0.0761151i
\(106\) 12.8282i 1.24599i
\(107\) 4.85942 + 8.41677i 0.469778 + 0.813680i 0.999403 0.0345525i \(-0.0110006\pi\)
−0.529625 + 0.848232i \(0.677667\pi\)
\(108\) 1.34371 2.32737i 0.129298 0.223951i
\(109\) 5.75782 + 3.32428i 0.551499 + 0.318408i 0.749726 0.661748i \(-0.230185\pi\)
−0.198227 + 0.980156i \(0.563518\pi\)
\(110\) −26.5001 + 15.2999i −2.52669 + 1.45878i
\(111\) 0.888018i 0.0842869i
\(112\) −7.12591 + 0.348694i −0.673335 + 0.0329485i
\(113\) 17.5434 1.65035 0.825173 0.564880i \(-0.191078\pi\)
0.825173 + 0.564880i \(0.191078\pi\)
\(114\) −0.598855 1.03725i −0.0560879 0.0971471i
\(115\) −6.80437 3.92850i −0.634511 0.366335i
\(116\) −8.27316 + 14.3295i −0.768144 + 1.33046i
\(117\) 2.89763 10.3015i 0.267886 0.952378i
\(118\) 10.4217 0.959399
\(119\) 6.86421 + 10.6506i 0.629241 + 0.976337i
\(120\) 0.709696 0.0647861
\(121\) 2.46946 + 4.27724i 0.224497 + 0.388840i
\(122\) −3.74665 2.16313i −0.339206 0.195840i
\(123\) −0.328265 0.189524i −0.0295987 0.0170888i
\(124\) −3.24163 + 1.87156i −0.291107 + 0.168071i
\(125\) 10.8304i 0.968704i
\(126\) 14.0294 9.04182i 1.24984 0.805510i
\(127\) −19.5143 −1.73162 −0.865809 0.500375i \(-0.833195\pi\)
−0.865809 + 0.500375i \(0.833195\pi\)
\(128\) −7.36826 + 4.25407i −0.651269 + 0.376010i
\(129\) −0.128010 + 0.221720i −0.0112707 + 0.0195214i
\(130\) 26.7800 6.82100i 2.34876 0.598242i
\(131\) −9.53713 16.5188i −0.833263 1.44325i −0.895437 0.445188i \(-0.853137\pi\)
0.0621741 0.998065i \(-0.480197\pi\)
\(132\) 1.79777i 0.156476i
\(133\) −0.407406 8.32573i −0.0353266 0.721933i
\(134\) 8.31259 0.718098
\(135\) 3.33341 1.92455i 0.286894 0.165638i
\(136\) 4.56387 + 2.63495i 0.391349 + 0.225945i
\(137\) −5.56759 3.21445i −0.475672 0.274629i 0.242939 0.970042i \(-0.421888\pi\)
−0.718611 + 0.695412i \(0.755222\pi\)
\(138\) 0.717328 0.414149i 0.0610630 0.0352547i
\(139\) −2.42854 −0.205986 −0.102993 0.994682i \(-0.532842\pi\)
−0.102993 + 0.994682i \(0.532842\pi\)
\(140\) 21.3646 + 10.9792i 1.80564 + 0.927913i
\(141\) 0.182240i 0.0153473i
\(142\) 9.35942 + 16.2110i 0.785425 + 1.36040i
\(143\) −3.55296 13.9493i −0.297113 1.16650i
\(144\) −4.00171 + 6.93117i −0.333476 + 0.577598i
\(145\) −20.5237 + 11.8494i −1.70440 + 0.984036i
\(146\) −6.56518 −0.543338
\(147\) −1.24600 + 0.122234i −0.102768 + 0.0100817i
\(148\) 12.5005i 1.02753i
\(149\) −0.0998984 + 0.0576764i −0.00818400 + 0.00472503i −0.504086 0.863653i \(-0.668171\pi\)
0.495902 + 0.868378i \(0.334837\pi\)
\(150\) 2.63491 + 1.52126i 0.215139 + 0.124211i
\(151\) 10.2218 + 5.90155i 0.831838 + 0.480262i 0.854481 0.519482i \(-0.173875\pi\)
−0.0226438 + 0.999744i \(0.507208\pi\)
\(152\) −1.73343 3.00239i −0.140600 0.243526i
\(153\) 14.2143 1.14916
\(154\) 10.2619 19.9686i 0.826924 1.60912i
\(155\) −5.36114 −0.430617
\(156\) −0.439626 + 1.56294i −0.0351982 + 0.125135i
\(157\) 6.57343 11.3855i 0.524617 0.908663i −0.474972 0.880001i \(-0.657542\pi\)
0.999589 0.0286625i \(-0.00912481\pi\)
\(158\) 3.62257 + 2.09149i 0.288197 + 0.166390i
\(159\) 0.539730 + 0.934840i 0.0428034 + 0.0741377i
\(160\) −28.6040 −2.26135
\(161\) 5.75782 0.281749i 0.453780 0.0222049i
\(162\) 18.5197i 1.45504i
\(163\) −16.1501 + 9.32424i −1.26497 + 0.730331i −0.974032 0.226411i \(-0.927301\pi\)
−0.290938 + 0.956742i \(0.593967\pi\)
\(164\) −4.62094 2.66790i −0.360835 0.208328i
\(165\) 1.28744 2.22992i 0.100227 0.173599i
\(166\) −8.14084 14.1003i −0.631852 1.09440i
\(167\) 0.972672i 0.0752676i −0.999292 0.0376338i \(-0.988018\pi\)
0.999292 0.0376338i \(-0.0119820\pi\)
\(168\) −0.437681 + 0.282082i −0.0337678 + 0.0217631i
\(169\) −0.322293 + 12.9960i −0.0247917 + 0.999693i
\(170\) 18.3534 + 31.7891i 1.40764 + 2.43811i
\(171\) −8.09821 4.67550i −0.619286 0.357545i
\(172\) −1.80198 + 3.12113i −0.137400 + 0.237984i
\(173\) 1.22855 + 2.12791i 0.0934050 + 0.161782i 0.908942 0.416923i \(-0.136892\pi\)
−0.815537 + 0.578705i \(0.803558\pi\)
\(174\) 2.49836i 0.189400i
\(175\) 11.4712 + 17.7988i 0.867138 + 1.34546i
\(176\) 10.7656i 0.811491i
\(177\) −0.759471 + 0.438481i −0.0570854 + 0.0329583i
\(178\) −13.6023 + 23.5598i −1.01953 + 1.76588i
\(179\) 7.23629 12.5336i 0.540866 0.936807i −0.457989 0.888958i \(-0.651430\pi\)
0.998855 0.0478492i \(-0.0152367\pi\)
\(180\) 23.3362 13.4732i 1.73938 1.00423i
\(181\) −9.17885 −0.682259 −0.341129 0.940016i \(-0.610809\pi\)
−0.341129 + 0.940016i \(0.610809\pi\)
\(182\) −13.8045 + 14.8508i −1.02326 + 1.10082i
\(183\) 0.364043 0.0269108
\(184\) 2.07636 1.19879i 0.153071 0.0883758i
\(185\) −8.95202 + 15.5053i −0.658165 + 1.13998i
\(186\) 0.282590 0.489460i 0.0207205 0.0358889i
\(187\) 16.5584 9.56002i 1.21087 0.699098i
\(188\) 2.56536i 0.187098i
\(189\) −1.29082 + 2.51182i −0.0938935 + 0.182708i
\(190\) 24.1480i 1.75188i
\(191\) −8.79202 15.2282i −0.636168 1.10188i −0.986266 0.165162i \(-0.947185\pi\)
0.350098 0.936713i \(-0.386148\pi\)
\(192\) 1.02545 1.77613i 0.0740054 0.128181i
\(193\) 17.1090 + 9.87791i 1.23154 + 0.711028i 0.967350 0.253444i \(-0.0815633\pi\)
0.264186 + 0.964472i \(0.414897\pi\)
\(194\) −1.44428 2.50156i −0.103693 0.179601i
\(195\) −1.66457 + 1.62380i −0.119203 + 0.116283i
\(196\) −17.5398 + 1.72068i −1.25284 + 0.122905i
\(197\) 7.66020i 0.545767i −0.962047 0.272883i \(-0.912023\pi\)
0.962047 0.272883i \(-0.0879773\pi\)
\(198\) −12.5929 21.8115i −0.894935 1.55007i
\(199\) −3.27171 + 5.66677i −0.231925 + 0.401706i −0.958375 0.285514i \(-0.907836\pi\)
0.726449 + 0.687220i \(0.241169\pi\)
\(200\) 7.62694 + 4.40342i 0.539306 + 0.311369i
\(201\) −0.605769 + 0.349741i −0.0427277 + 0.0246688i
\(202\) 9.11412i 0.641267i
\(203\) 7.94755 15.4652i 0.557809 1.08545i
\(204\) −2.15657 −0.150990
\(205\) −3.82115 6.61842i −0.266880 0.462250i
\(206\) −26.5707 15.3406i −1.85127 1.06883i
\(207\) 3.23343 5.60047i 0.224739 0.389259i
\(208\) 2.63262 9.35939i 0.182539 0.648957i
\(209\) −12.5783 −0.870060
\(210\) −3.62257 + 0.177265i −0.249981 + 0.0122324i
\(211\) 20.0452 1.37997 0.689983 0.723825i \(-0.257618\pi\)
0.689983 + 0.723825i \(0.257618\pi\)
\(212\) 7.59771 + 13.1596i 0.521813 + 0.903806i
\(213\) −1.36411 0.787571i −0.0934674 0.0539635i
\(214\) −17.8898 10.3287i −1.22292 0.706052i
\(215\) −4.47028 + 2.58092i −0.304871 + 0.176017i
\(216\) 1.17455i 0.0799183i
\(217\) 3.30630 2.13088i 0.224446 0.144654i
\(218\) −14.1314 −0.957102
\(219\) 0.478429 0.276221i 0.0323293 0.0186653i
\(220\) 18.1232 31.3902i 1.22186 2.11633i
\(221\) −16.7333 + 4.26206i −1.12560 + 0.286697i
\(222\) −0.943736 1.63460i −0.0633394 0.109707i
\(223\) 27.7139i 1.85586i −0.372752 0.927931i \(-0.621586\pi\)
0.372752 0.927931i \(-0.378414\pi\)
\(224\) 17.6406 11.3692i 1.17866 0.759636i
\(225\) 23.7543 1.58362
\(226\) −32.2927 + 18.6442i −2.14808 + 1.24019i
\(227\) 9.84766 + 5.68555i 0.653612 + 0.377363i 0.789839 0.613315i \(-0.210164\pi\)
−0.136227 + 0.990678i \(0.543498\pi\)
\(228\) 1.22865 + 0.709362i 0.0813694 + 0.0469786i
\(229\) −7.54406 + 4.35556i −0.498525 + 0.287824i −0.728104 0.685466i \(-0.759598\pi\)
0.229579 + 0.973290i \(0.426265\pi\)
\(230\) 16.7000 1.10116
\(231\) 0.0923344 + 1.88694i 0.00607516 + 0.124152i
\(232\) 7.23170i 0.474784i
\(233\) −1.68228 2.91380i −0.110210 0.190889i 0.805645 0.592399i \(-0.201819\pi\)
−0.915855 + 0.401510i \(0.868486\pi\)
\(234\) 5.61416 + 22.0418i 0.367009 + 1.44092i
\(235\) −1.83714 + 3.18202i −0.119842 + 0.207572i
\(236\) −10.6910 + 6.17244i −0.695923 + 0.401791i
\(237\) −0.351987 −0.0228640
\(238\) −23.9540 12.3099i −1.55271 0.797934i
\(239\) 19.8798i 1.28592i 0.765902 + 0.642958i \(0.222293\pi\)
−0.765902 + 0.642958i \(0.777707\pi\)
\(240\) 1.50615 0.869579i 0.0972219 0.0561311i
\(241\) 16.3435 + 9.43595i 1.05278 + 0.607823i 0.923426 0.383776i \(-0.125376\pi\)
0.129354 + 0.991599i \(0.458710\pi\)
\(242\) −9.09123 5.24882i −0.584406 0.337407i
\(243\) 2.38030 + 4.12280i 0.152696 + 0.264477i
\(244\) 5.12458 0.328068
\(245\) −22.9882 10.4265i −1.46866 0.666125i
\(246\) 0.805663 0.0513672
\(247\) 10.9353 + 3.07589i 0.695795 + 0.195714i
\(248\) 0.817978 1.41678i 0.0519417 0.0899656i
\(249\) 1.18651 + 0.685030i 0.0751918 + 0.0434120i
\(250\) 11.5100 + 19.9359i 0.727956 + 1.26086i
\(251\) 9.79601 0.618319 0.309159 0.951010i \(-0.399952\pi\)
0.309159 + 0.951010i \(0.399952\pi\)
\(252\) −9.03666 + 17.5845i −0.569256 + 1.10772i
\(253\) 8.69877i 0.546887i
\(254\) 35.9206 20.7388i 2.25386 1.30127i
\(255\) −2.67497 1.54439i −0.167513 0.0967136i
\(256\) −2.42488 + 4.20002i −0.151555 + 0.262501i
\(257\) 10.4697 + 18.1341i 0.653083 + 1.13117i 0.982371 + 0.186944i \(0.0598583\pi\)
−0.329287 + 0.944230i \(0.606808\pi\)
\(258\) 0.544170i 0.0338785i
\(259\) −0.642031 13.1205i −0.0398939 0.815271i
\(260\) −23.4320 + 22.8581i −1.45319 + 1.41760i
\(261\) −9.75285 16.8924i −0.603686 1.04562i
\(262\) 35.1105 + 20.2711i 2.16914 + 1.25235i
\(263\) 3.69340 6.39715i 0.227745 0.394465i −0.729395 0.684093i \(-0.760198\pi\)
0.957139 + 0.289628i \(0.0935316\pi\)
\(264\) 0.392865 + 0.680462i 0.0241792 + 0.0418795i
\(265\) 21.7639i 1.33694i
\(266\) 9.59806 + 14.8924i 0.588495 + 0.913114i
\(267\) 2.28919i 0.140096i
\(268\) −8.52733 + 4.92326i −0.520890 + 0.300736i
\(269\) −11.3946 + 19.7360i −0.694740 + 1.20332i 0.275529 + 0.961293i \(0.411147\pi\)
−0.970268 + 0.242032i \(0.922186\pi\)
\(270\) −4.09060 + 7.08513i −0.248946 + 0.431187i
\(271\) −3.60814 + 2.08316i −0.219179 + 0.126543i −0.605570 0.795792i \(-0.707055\pi\)
0.386391 + 0.922335i \(0.373722\pi\)
\(272\) 12.9143 0.783042
\(273\) 0.381158 1.66304i 0.0230687 0.100652i
\(274\) 13.6646 0.825507
\(275\) 27.6717 15.9763i 1.66867 0.963406i
\(276\) −0.490572 + 0.849696i −0.0295290 + 0.0511457i
\(277\) 0.388551 0.672989i 0.0233457 0.0404360i −0.854116 0.520082i \(-0.825901\pi\)
0.877462 + 0.479646i \(0.159235\pi\)
\(278\) 4.47028 2.58092i 0.268110 0.154793i
\(279\) 4.41259i 0.264175i
\(280\) −10.4858 + 0.513106i −0.626648 + 0.0306639i
\(281\) 11.8988i 0.709824i 0.934900 + 0.354912i \(0.115489\pi\)
−0.934900 + 0.354912i \(0.884511\pi\)
\(282\) −0.193674 0.335454i −0.0115331 0.0199760i
\(283\) −7.95202 + 13.7733i −0.472698 + 0.818738i −0.999512 0.0312434i \(-0.990053\pi\)
0.526813 + 0.849981i \(0.323387\pi\)
\(284\) −19.2024 11.0865i −1.13945 0.657864i
\(285\) 1.01599 + 1.75975i 0.0601823 + 0.104239i
\(286\) 21.3646 + 21.9010i 1.26331 + 1.29503i
\(287\) 4.98717 + 2.56290i 0.294383 + 0.151283i
\(288\) 23.5431i 1.38729i
\(289\) −2.96801 5.14075i −0.174589 0.302397i
\(290\) 25.1857 43.6229i 1.47896 2.56163i
\(291\) 0.210500 + 0.121532i 0.0123397 + 0.00712433i
\(292\) 6.73478 3.88833i 0.394123 0.227547i
\(293\) 6.73698i 0.393579i 0.980446 + 0.196789i \(0.0630515\pi\)
−0.980446 + 0.196789i \(0.936949\pi\)
\(294\) 2.16364 1.54918i 0.126186 0.0903500i
\(295\) −17.6811 −1.02944
\(296\) −2.73172 4.73148i −0.158778 0.275011i
\(297\) 3.69054 + 2.13073i 0.214147 + 0.123638i
\(298\) 0.122591 0.212333i 0.00710148 0.0123001i
\(299\) −2.12719 + 7.56250i −0.123019 + 0.437350i
\(300\) −3.60397 −0.208075
\(301\) 1.73106 3.36849i 0.0997768 0.194157i
\(302\) −25.0874 −1.44362
\(303\) −0.383465 0.664180i −0.0220295 0.0381562i
\(304\) −7.35756 4.24789i −0.421985 0.243633i
\(305\) 6.35642 + 3.66988i 0.363968 + 0.210137i
\(306\) −26.1646 + 15.1061i −1.49573 + 0.863561i
\(307\) 14.7179i 0.839996i −0.907525 0.419998i \(-0.862031\pi\)
0.907525 0.419998i \(-0.137969\pi\)
\(308\) 1.29978 + 26.5622i 0.0740617 + 1.51352i
\(309\) 2.58174 0.146870
\(310\) 9.86840 5.69752i 0.560487 0.323597i
\(311\) 14.3289 24.8184i 0.812517 1.40732i −0.0985808 0.995129i \(-0.531430\pi\)
0.911097 0.412191i \(-0.135236\pi\)
\(312\) −0.175147 0.687648i −0.00991577 0.0389304i
\(313\) 16.4125 + 28.4274i 0.927692 + 1.60681i 0.787174 + 0.616732i \(0.211544\pi\)
0.140518 + 0.990078i \(0.455123\pi\)
\(314\) 27.9435i 1.57694i
\(315\) −23.8017 + 15.3400i −1.34108 + 0.864312i
\(316\) −4.95488 −0.278734
\(317\) −9.01715 + 5.20605i −0.506453 + 0.292401i −0.731375 0.681976i \(-0.761121\pi\)
0.224921 + 0.974377i \(0.427788\pi\)
\(318\) −1.98699 1.14719i −0.111425 0.0643313i
\(319\) −22.7225 13.1188i −1.27222 0.734515i
\(320\) 35.8100 20.6749i 2.00184 1.15576i
\(321\) 1.73826 0.0970201
\(322\) −10.2992 + 6.63772i −0.573949 + 0.369905i
\(323\) 15.0887i 0.839558i
\(324\) 10.9686 + 18.9981i 0.609364 + 1.05545i
\(325\) −27.9639 + 7.12256i −1.55116 + 0.395089i
\(326\) 19.8186 34.3268i 1.09765 1.90118i
\(327\) 1.02981 0.594562i 0.0569487 0.0328793i
\(328\) 2.33205 0.128766
\(329\) −0.131758 2.69261i −0.00726406 0.148448i
\(330\) 5.47290i 0.301273i
\(331\) 3.86260 2.23007i 0.212308 0.122576i −0.390076 0.920783i \(-0.627551\pi\)
0.602383 + 0.798207i \(0.294218\pi\)
\(332\) 16.7023 + 9.64307i 0.916657 + 0.529232i
\(333\) −12.7620 7.36813i −0.699352 0.403771i
\(334\) 1.03370 + 1.79043i 0.0565617 + 0.0979677i
\(335\) −14.1028 −0.770519
\(336\) −0.583240 + 1.13493i −0.0318183 + 0.0619156i
\(337\) 10.7949 0.588034 0.294017 0.955800i \(-0.405008\pi\)
0.294017 + 0.955800i \(0.405008\pi\)
\(338\) −13.2182 24.2646i −0.718975 1.31982i
\(339\) 1.56886 2.71734i 0.0852087 0.147586i
\(340\) −37.6551 21.7402i −2.04214 1.17903i
\(341\) −2.96775 5.14030i −0.160713 0.278363i
\(342\) 19.8755 1.07474
\(343\) 18.3214 2.70687i 0.989261 0.146157i
\(344\) 1.57514i 0.0849259i
\(345\) −1.21699 + 0.702630i −0.0655206 + 0.0378283i
\(346\) −4.52286 2.61127i −0.243150 0.140383i
\(347\) 2.03516 3.52499i 0.109253 0.189232i −0.806215 0.591623i \(-0.798487\pi\)
0.915468 + 0.402391i \(0.131821\pi\)
\(348\) 1.47969 + 2.56290i 0.0793198 + 0.137386i
\(349\) 23.8727i 1.27788i −0.769258 0.638938i \(-0.779374\pi\)
0.769258 0.638938i \(-0.220626\pi\)
\(350\) −40.0309 20.5718i −2.13974 1.09961i
\(351\) −2.68741 2.75489i −0.143444 0.147045i
\(352\) −15.8343 27.4257i −0.843969 1.46180i
\(353\) −22.5894 13.0420i −1.20231 0.694154i −0.241242 0.970465i \(-0.577555\pi\)
−0.961068 + 0.276311i \(0.910888\pi\)
\(354\) 0.931987 1.61425i 0.0495346 0.0857964i
\(355\) −15.8788 27.5030i −0.842762 1.45971i
\(356\) 32.2246i 1.70790i
\(357\) 2.26354 0.110763i 0.119799 0.00586217i
\(358\) 30.7613i 1.62579i
\(359\) 19.8271 11.4472i 1.04644 0.604160i 0.124786 0.992184i \(-0.460176\pi\)
0.921649 + 0.388024i \(0.126842\pi\)
\(360\) −5.88855 + 10.1993i −0.310354 + 0.537549i
\(361\) −4.53687 + 7.85809i −0.238783 + 0.413584i
\(362\) 16.8958 9.75478i 0.888022 0.512700i
\(363\) 0.883349 0.0463638
\(364\) 5.36551 23.4104i 0.281229 1.22704i
\(365\) 11.1382 0.583002
\(366\) −0.670104 + 0.386885i −0.0350269 + 0.0202228i
\(367\) 9.08003 15.7271i 0.473974 0.820946i −0.525582 0.850743i \(-0.676153\pi\)
0.999556 + 0.0297964i \(0.00948589\pi\)
\(368\) 2.93771 5.08826i 0.153139 0.265244i
\(369\) 5.44742 3.14507i 0.283581 0.163726i
\(370\) 38.0548i 1.97838i
\(371\) −8.65045 13.4221i −0.449109 0.696842i
\(372\) 0.669473i 0.0347105i
\(373\) 7.93457 + 13.7431i 0.410836 + 0.711590i 0.994981 0.100060i \(-0.0319034\pi\)
−0.584145 + 0.811649i \(0.698570\pi\)
\(374\) −20.3197 + 35.1948i −1.05071 + 1.81988i
\(375\) −1.67755 0.968536i −0.0866285 0.0500150i
\(376\) −0.560605 0.970997i −0.0289110 0.0500754i
\(377\) 16.5463 + 16.9618i 0.852179 + 0.873575i
\(378\) −0.293375 5.99540i −0.0150896 0.308370i
\(379\) 27.7634i 1.42611i 0.701108 + 0.713055i \(0.252689\pi\)
−0.701108 + 0.713055i \(0.747311\pi\)
\(380\) 14.3020 + 24.7718i 0.733678 + 1.27077i
\(381\) −1.74511 + 3.02262i −0.0894048 + 0.154854i
\(382\) 32.3674 + 18.6873i 1.65606 + 0.956128i
\(383\) −22.7304 + 13.1234i −1.16147 + 0.670576i −0.951656 0.307165i \(-0.900620\pi\)
−0.209815 + 0.977741i \(0.567286\pi\)
\(384\) 1.52172i 0.0776548i
\(385\) −17.4099 + 33.8780i −0.887289 + 1.72658i
\(386\) −41.9908 −2.13728
\(387\) −2.12428 3.67936i −0.107983 0.187032i
\(388\) 2.96317 + 1.71079i 0.150432 + 0.0868521i
\(389\) −12.6277 + 21.8718i −0.640250 + 1.10895i 0.345127 + 0.938556i \(0.387836\pi\)
−0.985377 + 0.170389i \(0.945497\pi\)
\(390\) 1.33834 4.75800i 0.0677693 0.240931i
\(391\) −10.4349 −0.527714
\(392\) 6.26283 4.48422i 0.316321 0.226487i
\(393\) −3.41151 −0.172088
\(394\) 8.14084 + 14.1003i 0.410129 + 0.710365i
\(395\) −6.14592 3.54835i −0.309235 0.178537i
\(396\) 25.8363 + 14.9166i 1.29833 + 0.749588i
\(397\) 12.9701 7.48827i 0.650949 0.375826i −0.137871 0.990450i \(-0.544026\pi\)
0.788820 + 0.614625i \(0.210692\pi\)
\(398\) 13.9080i 0.697143i
\(399\) −1.32603 0.681443i −0.0663843 0.0341148i
\(400\) 21.5817 1.07909
\(401\) 4.62811 2.67204i 0.231117 0.133435i −0.379970 0.924999i \(-0.624066\pi\)
0.611087 + 0.791563i \(0.290733\pi\)
\(402\) 0.743371 1.28756i 0.0370760 0.0642175i
\(403\) 1.32309 + 5.19458i 0.0659076 + 0.258760i
\(404\) −5.39798 9.34957i −0.268559 0.465159i
\(405\) 31.4198i 1.56126i
\(406\) 1.80630 + 36.9135i 0.0896451 + 1.83199i
\(407\) −19.8222 −0.982549
\(408\) 0.816269 0.471273i 0.0404113 0.0233315i
\(409\) 2.91433 + 1.68259i 0.144104 + 0.0831985i 0.570319 0.821424i \(-0.306820\pi\)
−0.426214 + 0.904622i \(0.640153\pi\)
\(410\) 14.0674 + 8.12181i 0.694739 + 0.401107i
\(411\) −0.995789 + 0.574919i −0.0491186 + 0.0283587i
\(412\) 36.3428 1.79048
\(413\) 10.9042 7.02769i 0.536562 0.345810i
\(414\) 13.7453i 0.675542i
\(415\) 13.8114 + 23.9221i 0.677977 + 1.17429i
\(416\) 7.05925 + 27.7154i 0.346108 + 1.35886i
\(417\) −0.217178 + 0.376163i −0.0106352 + 0.0184208i
\(418\) 23.1533 13.3675i 1.13246 0.653828i
\(419\) −28.8639 −1.41010 −0.705048 0.709160i \(-0.749074\pi\)
−0.705048 + 0.709160i \(0.749074\pi\)
\(420\) 3.61117 2.32737i 0.176207 0.113564i
\(421\) 16.6125i 0.809644i −0.914395 0.404822i \(-0.867333\pi\)
0.914395 0.404822i \(-0.132667\pi\)
\(422\) −36.8977 + 21.3029i −1.79615 + 1.03701i
\(423\) −2.61902 1.51209i −0.127341 0.0735205i
\(424\) −5.75151 3.32064i −0.279318 0.161264i
\(425\) −19.1648 33.1945i −0.929631 1.61017i
\(426\) 3.34795 0.162209
\(427\) −5.37877 + 0.263201i −0.260297 + 0.0127372i
\(428\) 24.4692 1.18276
\(429\) −2.47837 0.697119i −0.119657 0.0336572i
\(430\) 5.48572 9.50154i 0.264545 0.458205i
\(431\) −17.8015 10.2777i −0.857469 0.495060i 0.00569505 0.999984i \(-0.498187\pi\)
−0.863164 + 0.504924i \(0.831521\pi\)
\(432\) 1.43916 + 2.49270i 0.0692417 + 0.119930i
\(433\) −19.4092 −0.932748 −0.466374 0.884588i \(-0.654440\pi\)
−0.466374 + 0.884588i \(0.654440\pi\)
\(434\) −3.82141 + 7.43613i −0.183434 + 0.356945i
\(435\) 4.23862i 0.203226i
\(436\) 14.4965 8.36956i 0.694257 0.400829i
\(437\) 5.94500 + 3.43235i 0.284388 + 0.164191i
\(438\) −0.587106 + 1.01690i −0.0280530 + 0.0485892i
\(439\) 6.71256 + 11.6265i 0.320373 + 0.554902i 0.980565 0.196195i \(-0.0628585\pi\)
−0.660192 + 0.751097i \(0.729525\pi\)
\(440\) 15.8417i 0.755225i
\(441\) 8.58174 18.9209i 0.408654 0.900994i
\(442\) 26.2720 25.6285i 1.24963 1.21902i
\(443\) 16.7766 + 29.0579i 0.797080 + 1.38058i 0.921510 + 0.388354i \(0.126956\pi\)
−0.124430 + 0.992228i \(0.539710\pi\)
\(444\) 1.93623 + 1.11788i 0.0918895 + 0.0530524i
\(445\) 23.0771 39.9707i 1.09396 1.89479i
\(446\) 29.4528 + 51.0138i 1.39463 + 2.41557i
\(447\) 0.0206313i 0.000975829i
\(448\) −13.8670 + 26.9839i −0.655153 + 1.27487i
\(449\) 34.4284i 1.62478i −0.583117 0.812388i \(-0.698167\pi\)
0.583117 0.812388i \(-0.301833\pi\)
\(450\) −43.7251 + 25.2447i −2.06122 + 1.19005i
\(451\) 4.23052 7.32748i 0.199208 0.345038i
\(452\) 22.0846 38.2517i 1.03877 1.79921i
\(453\) 1.82821 1.05552i 0.0858969 0.0495926i
\(454\) −24.1691 −1.13431
\(455\) 23.4202 25.1953i 1.09796 1.18118i
\(456\) −0.620064 −0.0290371
\(457\) −11.6735 + 6.73967i −0.546061 + 0.315269i −0.747532 0.664226i \(-0.768761\pi\)
0.201471 + 0.979495i \(0.435428\pi\)
\(458\) 9.25771 16.0348i 0.432584 0.749258i
\(459\) 2.55598 4.42710i 0.119303 0.206639i
\(460\) −17.1314 + 9.89082i −0.798756 + 0.461162i
\(461\) 1.35900i 0.0632951i −0.999499 0.0316476i \(-0.989925\pi\)
0.999499 0.0316476i \(-0.0100754\pi\)
\(462\) −2.17530 3.37522i −0.101204 0.157030i
\(463\) 2.49836i 0.116109i −0.998313 0.0580543i \(-0.981510\pi\)
0.998313 0.0580543i \(-0.0184897\pi\)
\(464\) −8.86088 15.3475i −0.411356 0.712489i
\(465\) −0.479431 + 0.830399i −0.0222331 + 0.0385088i
\(466\) 6.19325 + 3.57567i 0.286897 + 0.165640i
\(467\) −13.1091 22.7056i −0.606617 1.05069i −0.991794 0.127849i \(-0.959193\pi\)
0.385176 0.922843i \(-0.374141\pi\)
\(468\) −18.8138 19.2861i −0.869668 0.891502i
\(469\) 8.69744 5.60542i 0.401610 0.258834i
\(470\) 7.80965i 0.360232i
\(471\) −1.17569 2.03635i −0.0541728 0.0938301i
\(472\) 2.69771 4.67257i 0.124172 0.215072i
\(473\) −4.94921 2.85743i −0.227565 0.131385i
\(474\) 0.647913 0.374073i 0.0297596 0.0171817i
\(475\) 25.2156i 1.15697i
\(476\) 31.8635 1.55919i 1.46046 0.0714653i
\(477\) −17.9132 −0.820188
\(478\) −21.1271 36.5933i −0.966332 1.67374i
\(479\) 20.6513 + 11.9230i 0.943583 + 0.544778i 0.891082 0.453843i \(-0.149947\pi\)
0.0525011 + 0.998621i \(0.483281\pi\)
\(480\) −2.55798 + 4.43055i −0.116755 + 0.202226i
\(481\) 17.2329 + 4.84730i 0.785754 + 0.221018i
\(482\) −40.1120 −1.82705
\(483\) 0.471265 0.917038i 0.0214433 0.0417267i
\(484\) 12.4348 0.565217
\(485\) 2.45030 + 4.24405i 0.111263 + 0.192712i
\(486\) −8.76296 5.05930i −0.397496 0.229494i
\(487\) −9.17524 5.29733i −0.415770 0.240045i 0.277496 0.960727i \(-0.410496\pi\)
−0.693266 + 0.720682i \(0.743829\pi\)
\(488\) −1.93967 + 1.11987i −0.0878047 + 0.0506941i
\(489\) 3.33536i 0.150830i
\(490\) 53.3957 5.23820i 2.41217 0.236638i
\(491\) 19.7704 0.892224 0.446112 0.894977i \(-0.352808\pi\)
0.446112 + 0.894977i \(0.352808\pi\)
\(492\) −0.826476 + 0.477166i −0.0372604 + 0.0215123i
\(493\) −15.7371 + 27.2575i −0.708764 + 1.22762i
\(494\) −23.3978 + 5.95953i −1.05272 + 0.268132i
\(495\) 21.3646 + 37.0045i 0.960266 + 1.66323i
\(496\) 4.00902i 0.180010i
\(497\) 20.7243 + 10.6502i 0.929612 + 0.477726i
\(498\) −2.91205 −0.130492
\(499\) −11.4234 + 6.59530i −0.511381 + 0.295246i −0.733401 0.679796i \(-0.762068\pi\)
0.222020 + 0.975042i \(0.428735\pi\)
\(500\) −23.6147 13.6339i −1.05608 0.609728i
\(501\) −0.150660 0.0869833i −0.00673097 0.00388613i
\(502\) −18.0318 + 10.4107i −0.804798 + 0.464651i
\(503\) 37.9046 1.69008 0.845040 0.534703i \(-0.179576\pi\)
0.845040 + 0.534703i \(0.179576\pi\)
\(504\) −0.422322 8.63056i −0.0188117 0.384436i
\(505\) 15.4627i 0.688080i
\(506\) 9.24457 + 16.0121i 0.410971 + 0.711823i
\(507\) 1.98416 + 1.21212i 0.0881197 + 0.0538320i
\(508\) −24.5657 + 42.5490i −1.08993 + 1.88781i
\(509\) −23.9565 + 13.8313i −1.06185 + 0.613062i −0.925944 0.377660i \(-0.876729\pi\)
−0.135909 + 0.990721i \(0.543396\pi\)
\(510\) 6.56518 0.290711
\(511\) −6.86913 + 4.42710i −0.303872 + 0.195843i
\(512\) 27.3244i 1.20758i
\(513\) −2.91241 + 1.68148i −0.128586 + 0.0742392i
\(514\) −38.5438 22.2533i −1.70010 0.981551i
\(515\) 45.0788 + 26.0263i 1.98641 + 1.14685i
\(516\) 0.322293 + 0.558227i 0.0141881 + 0.0245746i
\(517\) −4.06792 −0.178907
\(518\) 15.1256 + 23.4690i 0.664580 + 1.03117i
\(519\) 0.439464 0.0192903
\(520\) 3.87392 13.7724i 0.169883 0.603960i
\(521\) −7.78339 + 13.4812i −0.340996 + 0.590623i −0.984618 0.174721i \(-0.944098\pi\)
0.643622 + 0.765344i \(0.277431\pi\)
\(522\) 35.9047 + 20.7296i 1.57151 + 0.907310i
\(523\) −13.6169 23.5852i −0.595425 1.03131i −0.993487 0.113948i \(-0.963650\pi\)
0.398061 0.917359i \(-0.369683\pi\)
\(524\) −48.0234 −2.09791
\(525\) 3.78273 0.185101i 0.165092 0.00807849i
\(526\) 15.7005i 0.684577i
\(527\) −6.16620 + 3.56006i −0.268604 + 0.155079i
\(528\) 1.66752 + 0.962741i 0.0725694 + 0.0418979i
\(529\) 9.12630 15.8072i 0.396796 0.687270i
\(530\) −23.1294 40.0614i −1.00468 1.74015i
\(531\) 14.5528i 0.631538i
\(532\) −18.6663 9.59258i −0.809286 0.415891i
\(533\) −5.46977 + 5.33581i −0.236922 + 0.231119i
\(534\) 2.43283 + 4.21378i 0.105279 + 0.182348i
\(535\) 30.3511 + 17.5232i 1.31219 + 0.757594i
\(536\) 2.15175 3.72693i 0.0929413 0.160979i
\(537\) −1.29424 2.24169i −0.0558507 0.0967362i
\(538\) 48.4381i 2.08832i
\(539\) −2.72850 27.8130i −0.117525 1.19799i
\(540\) 9.69089i 0.417029i
\(541\) 20.9626 12.1027i 0.901251 0.520338i 0.0236453 0.999720i \(-0.492473\pi\)
0.877606 + 0.479383i \(0.159139\pi\)
\(542\) 4.42774 7.66907i 0.190188 0.329415i
\(543\) −0.820839 + 1.42174i −0.0352256 + 0.0610125i
\(544\) −32.8994 + 18.9945i −1.41055 + 0.814381i
\(545\) 23.9749 1.02697
\(546\) 1.06578 + 3.46628i 0.0456112 + 0.148343i
\(547\) −22.2177 −0.949960 −0.474980 0.879997i \(-0.657545\pi\)
−0.474980 + 0.879997i \(0.657545\pi\)
\(548\) −14.0176 + 8.09305i −0.598801 + 0.345718i
\(549\) −3.02057 + 5.23178i −0.128915 + 0.223287i
\(550\) −33.9574 + 58.8160i −1.44795 + 2.50792i
\(551\) 17.9316 10.3528i 0.763913 0.441045i
\(552\) 0.428817i 0.0182517i
\(553\) 5.20065 0.254485i 0.221154 0.0108218i
\(554\) 1.65172i 0.0701749i
\(555\) 1.60111 + 2.77320i 0.0679632 + 0.117716i
\(556\) −3.05718 + 5.29519i −0.129653 + 0.224566i
\(557\) 19.3300 + 11.1602i 0.819040 + 0.472873i 0.850085 0.526645i \(-0.176550\pi\)
−0.0310455 + 0.999518i \(0.509884\pi\)
\(558\) 4.68946 + 8.12238i 0.198521 + 0.343848i
\(559\) 3.60397 + 3.69445i 0.152432 + 0.156259i
\(560\) −21.6249 + 13.9370i −0.913818 + 0.588948i
\(561\) 3.41970i 0.144380i
\(562\) −12.6454 21.9025i −0.533415 0.923901i
\(563\) 13.3519 23.1262i 0.562717 0.974655i −0.434541 0.900652i \(-0.643089\pi\)
0.997258 0.0740027i \(-0.0235773\pi\)
\(564\) 0.397355 + 0.229413i 0.0167317 + 0.00966004i
\(565\) 54.7865 31.6310i 2.30489 1.33073i
\(566\) 33.8039i 1.42088i
\(567\) −12.4884 19.3771i −0.524462 0.813760i
\(568\) 9.69090 0.406621
\(569\) 3.30510 + 5.72461i 0.138557 + 0.239988i 0.926951 0.375183i \(-0.122420\pi\)
−0.788393 + 0.615171i \(0.789087\pi\)
\(570\) −3.74034 2.15949i −0.156666 0.0904509i
\(571\) −21.0643 + 36.4844i −0.881513 + 1.52683i −0.0318546 + 0.999493i \(0.510141\pi\)
−0.849659 + 0.527333i \(0.823192\pi\)
\(572\) −34.8877 9.81325i −1.45873 0.410313i
\(573\) −3.14498 −0.131383
\(574\) −11.9037 + 0.582489i −0.496853 + 0.0243126i
\(575\) −17.4383 −0.727227
\(576\) 17.0169 + 29.4741i 0.709037 + 1.22809i
\(577\) 13.7559 + 7.94195i 0.572664 + 0.330628i 0.758213 0.652007i \(-0.226073\pi\)
−0.185549 + 0.982635i \(0.559406\pi\)
\(578\) 10.9266 + 6.30848i 0.454487 + 0.262398i
\(579\) 3.06003 1.76671i 0.127170 0.0734219i
\(580\) 59.6665i 2.47752i
\(581\) −18.0260 9.26354i −0.747845 0.384316i
\(582\) −0.516630 −0.0214150
\(583\) −20.8674 + 12.0478i −0.864238 + 0.498968i
\(584\) −1.69942 + 2.94349i −0.0703226 + 0.121802i
\(585\) −9.52478 37.3953i −0.393801 1.54610i
\(586\) −7.15969 12.4010i −0.295764 0.512279i
\(587\) 18.5676i 0.766366i −0.923672 0.383183i \(-0.874828\pi\)
0.923672 0.383183i \(-0.125172\pi\)
\(588\) −1.30201 + 2.87065i −0.0536940 + 0.118384i
\(589\) 4.68404 0.193003
\(590\) 32.5462 18.7905i 1.33990 0.773594i
\(591\) −1.18651 0.685030i −0.0488064 0.0281784i
\(592\) −11.5948 6.69426i −0.476543 0.275132i
\(593\) −17.8487 + 10.3050i −0.732960 + 0.423175i −0.819504 0.573073i \(-0.805751\pi\)
0.0865442 + 0.996248i \(0.472418\pi\)
\(594\) −9.05770 −0.371642
\(595\) 40.6394 + 20.8845i 1.66605 + 0.856183i
\(596\) 0.290425i 0.0118963i
\(597\) 0.585159 + 1.01353i 0.0239490 + 0.0414809i
\(598\) −4.12143 16.1812i −0.168538 0.661697i
\(599\) 6.80224 11.7818i 0.277932 0.481393i −0.692939 0.720997i \(-0.743684\pi\)
0.970871 + 0.239604i \(0.0770176\pi\)
\(600\) 1.36411 0.787571i 0.0556897 0.0321524i
\(601\) −12.1503 −0.495621 −0.247810 0.968809i \(-0.579711\pi\)
−0.247810 + 0.968809i \(0.579711\pi\)
\(602\) 0.393431 + 8.04015i 0.0160351 + 0.327692i
\(603\) 11.6076i 0.472698i
\(604\) 25.7355 14.8584i 1.04716 0.604579i
\(605\) 15.4238 + 8.90496i 0.627068 + 0.362038i
\(606\) 1.41171 + 0.815050i 0.0573467 + 0.0331092i
\(607\) −17.6166 30.5128i −0.715035 1.23848i −0.962946 0.269695i \(-0.913077\pi\)
0.247911 0.968783i \(-0.420256\pi\)
\(608\) 24.9914 1.01354
\(609\) −1.68472 2.61403i −0.0682682 0.105926i
\(610\) −15.6006 −0.631650
\(611\) 3.53655 + 0.994767i 0.143074 + 0.0402440i
\(612\) 17.8937 30.9928i 0.723310 1.25281i
\(613\) 26.0345 + 15.0310i 1.05152 + 0.607097i 0.923075 0.384619i \(-0.125667\pi\)
0.128448 + 0.991716i \(0.459000\pi\)
\(614\) 15.6414 + 27.0917i 0.631236 + 1.09333i
\(615\) −1.36686 −0.0551170
\(616\) −6.29658 9.76984i −0.253697 0.393638i
\(617\) 7.01712i 0.282499i 0.989974 + 0.141249i \(0.0451119\pi\)
−0.989974 + 0.141249i \(0.954888\pi\)
\(618\) −4.75228 + 2.74373i −0.191165 + 0.110369i
\(619\) −37.9736 21.9241i −1.52629 0.881203i −0.999513 0.0311993i \(-0.990067\pi\)
−0.526776 0.850004i \(-0.676599\pi\)
\(620\) −6.74889 + 11.6894i −0.271042 + 0.469458i
\(621\) −1.16286 2.01413i −0.0466640 0.0808244i
\(622\) 60.9118i 2.44234i
\(623\) 1.65507 + 33.8230i 0.0663091 + 1.35509i
\(624\) −1.21427 1.24476i −0.0486097 0.0498302i
\(625\) 0.481145 + 0.833367i 0.0192458 + 0.0333347i
\(626\) −60.4221 34.8847i −2.41495 1.39427i
\(627\) −1.12484 + 1.94829i −0.0449219 + 0.0778070i
\(628\) −16.5500 28.6654i −0.660416 1.14387i
\(629\) 23.7783i 0.948103i
\(630\) 27.5100 53.5320i 1.09602 2.13276i
\(631\) 23.4936i 0.935267i 0.883922 + 0.467634i \(0.154893\pi\)
−0.883922 + 0.467634i \(0.845107\pi\)
\(632\) 1.87544 1.08278i 0.0746008 0.0430708i
\(633\) 1.79258 3.10485i 0.0712488 0.123407i
\(634\) 11.0654 19.1659i 0.439464 0.761173i
\(635\) −60.9415 + 35.1846i −2.41839 + 1.39626i
\(636\) 2.71777 0.107766
\(637\) −4.42928 + 24.8472i −0.175494 + 0.984480i
\(638\) 55.7680 2.20788
\(639\) 22.6369 13.0694i 0.895500 0.517017i
\(640\) −15.3403 + 26.5702i −0.606378 + 1.05028i
\(641\) 3.70233 6.41262i 0.146233 0.253283i −0.783599 0.621267i \(-0.786618\pi\)
0.929832 + 0.367983i \(0.119952\pi\)
\(642\) −3.19966 + 1.84732i −0.126281 + 0.0729081i
\(643\) 39.9607i 1.57590i 0.615742 + 0.787948i \(0.288856\pi\)
−0.615742 + 0.787948i \(0.711144\pi\)
\(644\) 6.63393 12.9090i 0.261413 0.508687i
\(645\) 0.923218i 0.0363517i
\(646\) −16.0354 27.7742i −0.630906 1.09276i
\(647\) 13.6234 23.5964i 0.535591 0.927670i −0.463544 0.886074i \(-0.653422\pi\)
0.999134 0.0415963i \(-0.0132443\pi\)
\(648\) −8.30326 4.79389i −0.326183 0.188322i
\(649\) −9.78770 16.9528i −0.384201 0.665456i
\(650\) 43.9046 42.8292i 1.72208 1.67990i
\(651\) −0.0343844 0.702679i −0.00134763 0.0275402i
\(652\) 46.9514i 1.83876i
\(653\) −9.57255 16.5801i −0.374603 0.648831i 0.615665 0.788008i \(-0.288888\pi\)
−0.990267 + 0.139177i \(0.955554\pi\)
\(654\) −1.26373 + 2.18885i −0.0494159 + 0.0855909i
\(655\) −59.5672 34.3911i −2.32748 1.34377i
\(656\) 4.94921 2.85743i 0.193234 0.111564i
\(657\) 9.16755i 0.357660i
\(658\) 3.10409 + 4.81633i 0.121010 + 0.187760i
\(659\) 41.5725 1.61943 0.809717 0.586820i \(-0.199620\pi\)
0.809717 + 0.586820i \(0.199620\pi\)
\(660\) −3.24141 5.61428i −0.126172 0.218536i
\(661\) 29.6221 + 17.1023i 1.15217 + 0.665203i 0.949414 0.314027i \(-0.101678\pi\)
0.202752 + 0.979230i \(0.435012\pi\)
\(662\) −4.74000 + 8.20992i −0.184225 + 0.319088i
\(663\) −0.836251 + 2.97300i −0.0324773 + 0.115462i
\(664\) −8.42915 −0.327115
\(665\) −16.2837 25.2660i −0.631455 0.979772i
\(666\) 31.3218 1.21369
\(667\) 7.15969 + 12.4010i 0.277224 + 0.480167i
\(668\) −2.12081 1.22445i −0.0820567 0.0473755i
\(669\) −4.29268 2.47838i −0.165965 0.0958197i
\(670\) 25.9595 14.9877i 1.00290 0.579025i
\(671\) 8.12611i 0.313705i
\(672\) −0.183456 3.74910i −0.00707697 0.144625i
\(673\) −21.4308 −0.826098 −0.413049 0.910709i \(-0.635536\pi\)
−0.413049 + 0.910709i \(0.635536\pi\)
\(674\) −19.8704 + 11.4722i −0.765381 + 0.441893i
\(675\) 4.27145 7.39837i 0.164408 0.284763i
\(676\) 27.9308 + 17.0628i 1.07426 + 0.656261i
\(677\) −4.89083 8.47117i −0.187970 0.325573i 0.756603 0.653874i \(-0.226857\pi\)
−0.944573 + 0.328301i \(0.893524\pi\)
\(678\) 6.66919i 0.256129i
\(679\) −3.19802 1.64346i −0.122729 0.0630700i
\(680\) 19.0034 0.728748
\(681\) 1.76130 1.01688i 0.0674930 0.0389671i
\(682\) 10.9256 + 6.30793i 0.418365 + 0.241543i
\(683\) 13.2297 + 7.63818i 0.506221 + 0.292267i 0.731279 0.682079i \(-0.238924\pi\)
−0.225058 + 0.974345i \(0.572257\pi\)
\(684\) −20.3889 + 11.7716i −0.779590 + 0.450097i
\(685\) −23.1828 −0.885769
\(686\) −30.8480 + 24.4536i −1.17778 + 0.933642i
\(687\) 1.55802i 0.0594423i
\(688\) −1.92999 3.34285i −0.0735803 0.127445i
\(689\) 21.0877 5.37115i 0.803378 0.204625i
\(690\) 1.49343 2.58670i 0.0568540 0.0984741i
\(691\) 36.7690 21.2286i 1.39876 0.807573i 0.404496 0.914540i \(-0.367447\pi\)
0.994263 + 0.106967i \(0.0341138\pi\)
\(692\) 6.18627 0.235167
\(693\) −27.8840 14.3295i −1.05922 0.544334i
\(694\) 8.65141i 0.328403i
\(695\) −7.58412 + 4.37869i −0.287682 + 0.166093i
\(696\) −1.12013 0.646710i −0.0424586 0.0245135i
\(697\) −8.78991 5.07486i −0.332942 0.192224i
\(698\) 25.3706 + 43.9432i 0.960291 + 1.66327i
\(699\) −0.601767 −0.0227609
\(700\) 53.2489 2.60565i 2.01262 0.0984842i
\(701\) 2.79985 0.105749 0.0528744 0.998601i \(-0.483162\pi\)
0.0528744 + 0.998601i \(0.483162\pi\)
\(702\) 7.87454 + 2.21496i 0.297205 + 0.0835983i
\(703\) 7.82141 13.5471i 0.294990 0.510937i
\(704\) 39.6465 + 22.8899i 1.49423 + 0.862696i
\(705\) 0.328581 + 0.569118i 0.0123751 + 0.0214342i
\(706\) 55.4412 2.08656
\(707\) 6.14592 + 9.53608i 0.231141 + 0.358641i
\(708\) 2.20793i 0.0829793i
\(709\) 12.6149 7.28319i 0.473761 0.273526i −0.244052 0.969762i \(-0.578477\pi\)
0.717813 + 0.696236i \(0.245143\pi\)
\(710\) 58.4573 + 33.7503i 2.19386 + 1.26663i
\(711\) 2.92054 5.05852i 0.109529 0.189709i
\(712\) 7.04201 + 12.1971i 0.263910 + 0.457106i
\(713\) 3.23934i 0.121314i
\(714\) −4.04885 + 2.60945i −0.151524 + 0.0976562i
\(715\) −36.2463 37.1563i −1.35554 1.38957i
\(716\) −18.2189 31.5560i −0.680871 1.17930i
\(717\) 3.07923 + 1.77779i 0.114996 + 0.0663928i
\(718\) −24.3309 + 42.1423i −0.908021 + 1.57274i
\(719\) 17.2529 + 29.8828i 0.643423 + 1.11444i 0.984663 + 0.174465i \(0.0558196\pi\)
−0.341240 + 0.939976i \(0.610847\pi\)
\(720\) 28.8606i 1.07557i
\(721\) −38.1454 + 1.86658i −1.42061 + 0.0695152i
\(722\) 19.2861i 0.717756i
\(723\) 2.92311 1.68766i 0.108712 0.0627648i
\(724\) −11.5548 + 20.0136i −0.429432 + 0.743798i
\(725\) −26.2992 + 45.5515i −0.976727 + 1.69174i
\(726\) −1.62601 + 0.938775i −0.0603467 + 0.0348412i
\(727\) −35.7571 −1.32616 −0.663078 0.748550i \(-0.730750\pi\)
−0.663078 + 0.748550i \(0.730750\pi\)
\(728\) 3.08498 + 10.0334i 0.114337 + 0.371863i
\(729\) −25.2879 −0.936590
\(730\) −20.5025 + 11.8371i −0.758830 + 0.438111i
\(731\) −3.42771 + 5.93698i −0.126779 + 0.219587i
\(732\) 0.458277 0.793759i 0.0169384 0.0293382i
\(733\) −35.5504 + 20.5250i −1.31308 + 0.758108i −0.982605 0.185706i \(-0.940543\pi\)
−0.330477 + 0.943814i \(0.607210\pi\)
\(734\) 38.5990i 1.42472i
\(735\) −3.67075 + 2.62828i −0.135398 + 0.0969456i
\(736\) 17.2833i 0.637071i
\(737\) −7.80686 13.5219i −0.287570 0.498085i
\(738\) −6.68481 + 11.5784i −0.246071 + 0.426208i
\(739\) −0.629089 0.363205i −0.0231414 0.0133607i 0.488385 0.872628i \(-0.337586\pi\)
−0.511526 + 0.859268i \(0.670920\pi\)
\(740\) 22.5386 + 39.0379i 0.828534 + 1.43506i
\(741\) 1.45434 1.41872i 0.0534266 0.0521181i
\(742\) 30.1874 + 15.5133i 1.10822 + 0.569510i
\(743\) 16.4547i 0.603664i 0.953361 + 0.301832i \(0.0975981\pi\)
−0.953361 + 0.301832i \(0.902402\pi\)
\(744\) −0.146299 0.253397i −0.00536358 0.00929000i
\(745\) −0.207983 + 0.360236i −0.00761989 + 0.0131980i
\(746\) −29.2108 16.8648i −1.06948 0.617466i
\(747\) −19.6896 + 11.3678i −0.720404 + 0.415925i
\(748\) 48.1387i 1.76012i
\(749\) −25.6829 + 1.25675i −0.938433 + 0.0459206i
\(750\) 4.11723 0.150340
\(751\) 12.5854 + 21.7985i 0.459247 + 0.795439i 0.998921 0.0464350i \(-0.0147860\pi\)
−0.539675 + 0.841874i \(0.681453\pi\)
\(752\) −2.37949 1.37380i −0.0867712 0.0500974i
\(753\) 0.876030 1.51733i 0.0319243 0.0552945i
\(754\) −48.4833 13.6375i −1.76566 0.496647i
\(755\) 42.5623 1.54900
\(756\) 3.85182 + 5.97652i 0.140089 + 0.217364i
\(757\) 44.0743 1.60191 0.800953 0.598727i \(-0.204327\pi\)
0.800953 + 0.598727i \(0.204327\pi\)
\(758\) −29.5054 51.1049i −1.07168 1.85621i
\(759\) −1.34737 0.777906i −0.0489066 0.0282362i
\(760\) −10.8267 6.25080i −0.392726 0.226740i
\(761\) 33.5171 19.3511i 1.21499 0.701477i 0.251151 0.967948i \(-0.419191\pi\)
0.963843 + 0.266471i \(0.0858577\pi\)
\(762\) 7.41844i 0.268742i
\(763\) −14.7857 + 9.52925i −0.535278 + 0.344982i
\(764\) −44.2715 −1.60169
\(765\) 44.3899 25.6285i 1.60492 0.926601i
\(766\) 27.8937 48.3133i 1.00784 1.74563i
\(767\) 4.36357 + 17.1318i 0.157559 + 0.618594i
\(768\) 0.433701 + 0.751191i 0.0156498 + 0.0271063i
\(769\) 36.1506i 1.30362i −0.758381 0.651811i \(-0.774009\pi\)
0.758381 0.651811i \(-0.225991\pi\)
\(770\) −3.95687 80.8625i −0.142596 2.91408i
\(771\) 3.74511 0.134877
\(772\) 43.0756 24.8697i 1.55032 0.895080i
\(773\) −26.0441 15.0366i −0.936740 0.540827i −0.0478033 0.998857i \(-0.515222\pi\)
−0.888937 + 0.458030i \(0.848555\pi\)
\(774\) 7.82043 + 4.51513i 0.281100 + 0.162293i
\(775\) −10.3047 + 5.94941i