Properties

Label 8281.2.a.cj
Level $8281$
Weight $2$
Character orbit 8281.a
Self dual yes
Analytic conductor $66.124$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Defining polynomial: \(x^{8} - 11 x^{6} + 36 x^{4} - 31 x^{2} + 3\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + ( -1 - \beta_{4} ) q^{3} + ( 1 + \beta_{2} ) q^{4} -\beta_{5} q^{5} + ( -\beta_{1} - \beta_{3} - \beta_{5} ) q^{6} + \beta_{3} q^{8} + ( 2 + \beta_{4} + \beta_{6} ) q^{9} +O(q^{10})\) \( q + \beta_{1} q^{2} + ( -1 - \beta_{4} ) q^{3} + ( 1 + \beta_{2} ) q^{4} -\beta_{5} q^{5} + ( -\beta_{1} - \beta_{3} - \beta_{5} ) q^{6} + \beta_{3} q^{8} + ( 2 + \beta_{4} + \beta_{6} ) q^{9} + ( \beta_{2} - 2 \beta_{4} - \beta_{6} ) q^{10} + ( -\beta_{1} + \beta_{7} ) q^{11} + ( -3 - \beta_{2} - \beta_{4} - \beta_{6} ) q^{12} + ( 2 \beta_{1} + \beta_{5} ) q^{15} + ( -\beta_{2} + \beta_{4} ) q^{16} + ( -1 + \beta_{6} ) q^{17} + ( 3 \beta_{1} + 3 \beta_{5} + \beta_{7} ) q^{18} + ( -2 \beta_{1} + \beta_{3} ) q^{19} + ( -2 \beta_{5} - \beta_{7} ) q^{20} + ( -2 - \beta_{2} + \beta_{4} + \beta_{6} ) q^{22} + ( -1 + \beta_{4} ) q^{23} + ( -3 \beta_{1} + \beta_{3} - \beta_{5} - \beta_{7} ) q^{24} + ( 2 \beta_{2} - \beta_{4} - \beta_{6} ) q^{25} + ( -3 - 2 \beta_{2} - \beta_{4} - \beta_{6} ) q^{27} + ( -2 \beta_{2} + 3 \beta_{4} ) q^{29} + ( 6 + \beta_{2} + 2 \beta_{4} + \beta_{6} ) q^{30} + ( \beta_{1} + \beta_{3} + \beta_{5} - \beta_{7} ) q^{31} + ( -\beta_{1} - 2 \beta_{3} + \beta_{5} ) q^{32} + ( \beta_{1} - \beta_{3} + \beta_{5} - \beta_{7} ) q^{33} + ( -\beta_{3} + 2 \beta_{5} + \beta_{7} ) q^{34} + ( 6 + 5 \beta_{4} + 2 \beta_{6} ) q^{36} + ( -\beta_{1} - \beta_{3} + \beta_{5} - \beta_{7} ) q^{37} + ( -4 - \beta_{2} + \beta_{4} ) q^{38} + ( -1 - \beta_{4} - \beta_{6} ) q^{40} + ( \beta_{1} + \beta_{3} + 2 \beta_{5} - \beta_{7} ) q^{41} + ( 2 \beta_{4} - \beta_{6} ) q^{43} + ( -\beta_{3} + 3 \beta_{5} - \beta_{7} ) q^{44} + ( -4 \beta_{1} - 2 \beta_{3} ) q^{45} + ( -\beta_{1} + \beta_{3} + \beta_{5} ) q^{46} + ( -\beta_{1} - 2 \beta_{3} - 2 \beta_{5} + \beta_{7} ) q^{47} + ( -2 + \beta_{2} ) q^{48} + ( \beta_{1} + 2 \beta_{3} - 3 \beta_{5} - \beta_{7} ) q^{50} + ( 1 - 2 \beta_{2} - \beta_{4} ) q^{51} + ( 3 + 2 \beta_{2} ) q^{53} + ( -6 \beta_{1} - 2 \beta_{3} - 3 \beta_{5} - \beta_{7} ) q^{54} + ( -1 - 4 \beta_{2} + 3 \beta_{4} + \beta_{6} ) q^{55} + ( -\beta_{1} + 3 \beta_{3} + \beta_{5} - \beta_{7} ) q^{57} + ( -2 \beta_{1} + \beta_{3} + 3 \beta_{5} ) q^{58} + ( 3 \beta_{1} - 2 \beta_{3} + 2 \beta_{5} + \beta_{7} ) q^{59} + ( 4 \beta_{1} + 2 \beta_{3} + 2 \beta_{5} + \beta_{7} ) q^{60} + ( -1 + 2 \beta_{2} ) q^{61} + ( 4 + \beta_{2} + 2 \beta_{4} ) q^{62} + ( -7 - 2 \beta_{2} - 2 \beta_{4} + \beta_{6} ) q^{64} -\beta_{2} q^{66} + ( 3 \beta_{3} + 2 \beta_{5} ) q^{67} + ( 1 - 3 \beta_{2} + 4 \beta_{4} + \beta_{6} ) q^{68} + ( -3 + \beta_{4} - \beta_{6} ) q^{69} + ( 4 \beta_{1} - 3 \beta_{3} - \beta_{5} ) q^{71} + ( 2 \beta_{1} + 3 \beta_{3} + 3 \beta_{5} ) q^{72} + ( -2 \beta_{1} - \beta_{5} - 2 \beta_{7} ) q^{73} + ( -6 - 3 \beta_{2} ) q^{74} + ( 2 \beta_{4} - \beta_{6} ) q^{75} + ( -\beta_{1} - 2 \beta_{3} + \beta_{5} ) q^{76} + ( -3 - \beta_{4} - \beta_{6} ) q^{79} + ( -2 \beta_{1} + \beta_{5} + \beta_{7} ) q^{80} + ( 5 + 4 \beta_{2} + 2 \beta_{4} ) q^{81} + ( 4 + 4 \beta_{4} + \beta_{6} ) q^{82} + ( 5 \beta_{1} - \beta_{3} + \beta_{7} ) q^{83} + ( -2 \beta_{1} - 2 \beta_{3} + 3 \beta_{5} ) q^{85} + ( -\beta_{1} + 3 \beta_{3} - \beta_{7} ) q^{86} + ( -8 + 2 \beta_{2} - \beta_{6} ) q^{87} + ( 1 - 2 \beta_{2} + 2 \beta_{4} ) q^{88} + ( -5 \beta_{1} + 3 \beta_{3} + \beta_{5} + \beta_{7} ) q^{89} + ( -16 - 6 \beta_{2} - 2 \beta_{4} ) q^{90} + ( 1 - \beta_{2} + \beta_{4} + \beta_{6} ) q^{92} + ( -6 \beta_{1} + 2 \beta_{3} - 3 \beta_{5} ) q^{93} + ( -6 - \beta_{2} - 5 \beta_{4} - \beta_{6} ) q^{94} + ( -1 - 2 \beta_{2} + 3 \beta_{4} + \beta_{6} ) q^{95} + ( 5 \beta_{1} - \beta_{3} + 2 \beta_{5} + 2 \beta_{7} ) q^{96} + ( \beta_{1} + \beta_{3} + \beta_{7} ) q^{97} + ( 3 \beta_{1} - \beta_{5} - \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 4q^{3} + 6q^{4} + 12q^{9} + O(q^{10}) \) \( 8q - 4q^{3} + 6q^{4} + 12q^{9} + 6q^{10} - 18q^{12} - 2q^{16} - 8q^{17} - 18q^{22} - 12q^{23} - 16q^{27} - 8q^{29} + 38q^{30} + 28q^{36} - 34q^{38} - 4q^{40} - 8q^{43} - 18q^{48} + 16q^{51} + 20q^{53} - 12q^{55} - 12q^{61} + 22q^{62} - 44q^{64} + 2q^{66} - 2q^{68} - 28q^{69} - 42q^{74} - 8q^{75} - 20q^{79} + 24q^{81} + 16q^{82} - 68q^{87} + 4q^{88} - 108q^{90} + 6q^{92} - 26q^{94} - 16q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 11 x^{6} + 36 x^{4} - 31 x^{2} + 3\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - 4 \nu \)
\(\beta_{4}\)\(=\)\( \nu^{4} - 5 \nu^{2} + 1 \)
\(\beta_{5}\)\(=\)\( \nu^{5} - 6 \nu^{3} + 5 \nu \)
\(\beta_{6}\)\(=\)\( \nu^{6} - 8 \nu^{4} + 16 \nu^{2} - 5 \)
\(\beta_{7}\)\(=\)\( \nu^{7} - 10 \nu^{5} + 29 \nu^{3} - 20 \nu \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 3\)
\(\nu^{3}\)\(=\)\(\beta_{3} + 4 \beta_{1}\)
\(\nu^{4}\)\(=\)\(\beta_{4} + 5 \beta_{2} + 14\)
\(\nu^{5}\)\(=\)\(\beta_{5} + 6 \beta_{3} + 19 \beta_{1}\)
\(\nu^{6}\)\(=\)\(\beta_{6} + 8 \beta_{4} + 24 \beta_{2} + 69\)
\(\nu^{7}\)\(=\)\(\beta_{7} + 10 \beta_{5} + 31 \beta_{3} + 94 \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.28481
−2.12549
−1.07305
−0.332375
0.332375
1.07305
2.12549
2.28481
−2.28481 −3.15042 3.22037 2.12499 7.19813 0 −2.78832 6.92516 −4.85521
1.2 −2.12549 0.178854 2.51771 −3.60603 −0.380153 0 −1.10038 −2.96801 7.66457
1.3 −1.07305 2.43140 −0.848553 −0.625432 −2.60903 0 3.05665 2.91173 0.671123
1.4 −0.332375 −1.45984 −1.88953 1.44562 0.485214 0 1.29278 −0.868875 −0.480489
1.5 0.332375 −1.45984 −1.88953 −1.44562 −0.485214 0 −1.29278 −0.868875 −0.480489
1.6 1.07305 2.43140 −0.848553 0.625432 2.60903 0 −3.05665 2.91173 0.671123
1.7 2.12549 0.178854 2.51771 3.60603 0.380153 0 1.10038 −2.96801 7.66457
1.8 2.28481 −3.15042 3.22037 −2.12499 −7.19813 0 2.78832 6.92516 −4.85521
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \(-1\)
\(13\) \(-1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8281.2.a.cj 8
7.b odd 2 1 8281.2.a.ck 8
7.d odd 6 2 1183.2.e.i 16
13.b even 2 1 inner 8281.2.a.cj 8
13.d odd 4 2 637.2.c.e 8
91.b odd 2 1 8281.2.a.ck 8
91.i even 4 2 637.2.c.f 8
91.s odd 6 2 1183.2.e.i 16
91.z odd 12 4 637.2.r.f 16
91.bb even 12 4 91.2.r.a 16
273.cb odd 12 4 819.2.dl.e 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.r.a 16 91.bb even 12 4
637.2.c.e 8 13.d odd 4 2
637.2.c.f 8 91.i even 4 2
637.2.r.f 16 91.z odd 12 4
819.2.dl.e 16 273.cb odd 12 4
1183.2.e.i 16 7.d odd 6 2
1183.2.e.i 16 91.s odd 6 2
8281.2.a.cj 8 1.a even 1 1 trivial
8281.2.a.cj 8 13.b even 2 1 inner
8281.2.a.ck 8 7.b odd 2 1
8281.2.a.ck 8 91.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8281))\):

\( T_{2}^{8} - 11 T_{2}^{6} + 36 T_{2}^{4} - 31 T_{2}^{2} + 3 \)
\( T_{3}^{4} + 2 T_{3}^{3} - 7 T_{3}^{2} - 10 T_{3} + 2 \)
\( T_{5}^{8} - 20 T_{5}^{6} + 103 T_{5}^{4} - 160 T_{5}^{2} + 48 \)
\( T_{11}^{8} - 52 T_{11}^{6} + 596 T_{11}^{4} - 340 T_{11}^{2} + 27 \)
\( T_{17}^{4} + 4 T_{17}^{3} - 20 T_{17}^{2} - 52 T_{17} + 123 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 3 - 31 T^{2} + 36 T^{4} - 11 T^{6} + T^{8} \)
$3$ \( ( 2 - 10 T - 7 T^{2} + 2 T^{3} + T^{4} )^{2} \)
$5$ \( 48 - 160 T^{2} + 103 T^{4} - 20 T^{6} + T^{8} \)
$7$ \( T^{8} \)
$11$ \( 27 - 340 T^{2} + 596 T^{4} - 52 T^{6} + T^{8} \)
$13$ \( T^{8} \)
$17$ \( ( 123 - 52 T - 20 T^{2} + 4 T^{3} + T^{4} )^{2} \)
$19$ \( 3267 - 2332 T^{2} + 540 T^{4} - 44 T^{6} + T^{8} \)
$23$ \( ( -6 - 10 T + 5 T^{2} + 6 T^{3} + T^{4} )^{2} \)
$29$ \( ( 624 - 208 T - 63 T^{2} + 4 T^{3} + T^{4} )^{2} \)
$31$ \( 33708 - 19492 T^{2} + 2091 T^{4} - 80 T^{6} + T^{8} \)
$37$ \( 8748 - 49572 T^{2} + 4347 T^{4} - 120 T^{6} + T^{8} \)
$41$ \( 292032 - 88192 T^{2} + 5732 T^{4} - 132 T^{6} + T^{8} \)
$43$ \( ( -104 + 156 T - 66 T^{2} + 4 T^{3} + T^{4} )^{2} \)
$47$ \( 240267 - 243892 T^{2} + 12212 T^{4} - 196 T^{6} + T^{8} \)
$53$ \( ( 87 + 130 T - 10 T^{3} + T^{4} )^{2} \)
$59$ \( 111747 - 161740 T^{2} + 10476 T^{4} - 188 T^{6} + T^{8} \)
$61$ \( ( 223 - 94 T - 24 T^{2} + 6 T^{3} + T^{4} )^{2} \)
$67$ \( 257547 - 285148 T^{2} + 21652 T^{4} - 284 T^{6} + T^{8} \)
$71$ \( 397488 - 253084 T^{2} + 19829 T^{4} - 292 T^{6} + T^{8} \)
$73$ \( 2904768 - 472240 T^{2} + 19975 T^{4} - 260 T^{6} + T^{8} \)
$79$ \( ( -8 - 60 T + 9 T^{2} + 10 T^{3} + T^{4} )^{2} \)
$83$ \( 5483712 - 959920 T^{2} + 28692 T^{4} - 296 T^{6} + T^{8} \)
$89$ \( 7622508 - 2938804 T^{2} + 62899 T^{4} - 440 T^{6} + T^{8} \)
$97$ \( 192 - 4816 T^{2} + 2740 T^{4} - 104 T^{6} + T^{8} \)
show more
show less