Properties

Label 825.3.h.b.274.13
Level $825$
Weight $3$
Character 825.274
Analytic conductor $22.480$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [825,3,Mod(274,825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("825.274"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(825, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 825.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4796218097\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.13
Character \(\chi\) \(=\) 825.274
Dual form 825.3.h.b.274.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.664903 q^{2} -1.73205i q^{3} -3.55790 q^{4} +1.15165i q^{6} -8.36247 q^{7} +5.02527 q^{8} -3.00000 q^{9} +(7.04830 - 8.44521i) q^{11} +6.16247i q^{12} +16.0778 q^{13} +5.56023 q^{14} +10.8903 q^{16} +22.0359 q^{17} +1.99471 q^{18} +6.10810i q^{19} +14.4842i q^{21} +(-4.68643 + 5.61524i) q^{22} -6.43313i q^{23} -8.70402i q^{24} -10.6902 q^{26} +5.19615i q^{27} +29.7529 q^{28} -20.7699i q^{29} -52.4060 q^{31} -27.3421 q^{32} +(-14.6275 - 12.2080i) q^{33} -14.6517 q^{34} +10.6737 q^{36} +23.9112i q^{37} -4.06129i q^{38} -27.8476i q^{39} -66.7913i q^{41} -9.63059i q^{42} -56.5789 q^{43} +(-25.0772 + 30.0472i) q^{44} +4.27741i q^{46} -35.9964i q^{47} -18.8626i q^{48} +20.9309 q^{49} -38.1672i q^{51} -57.2034 q^{52} +83.7803i q^{53} -3.45494i q^{54} -42.0237 q^{56} +10.5795 q^{57} +13.8099i q^{58} +13.5741 q^{59} -120.042i q^{61} +34.8449 q^{62} +25.0874 q^{63} -25.3814 q^{64} +(9.72588 + 8.11714i) q^{66} +69.5457i q^{67} -78.4015 q^{68} -11.1425 q^{69} -69.1708 q^{71} -15.0758 q^{72} +78.0255 q^{73} -15.8986i q^{74} -21.7320i q^{76} +(-58.9412 + 70.6228i) q^{77} +18.5159i q^{78} +7.65867i q^{79} +9.00000 q^{81} +44.4097i q^{82} -5.69286 q^{83} -51.5335i q^{84} +37.6195 q^{86} -35.9745 q^{87} +(35.4196 - 42.4394i) q^{88} -73.0710 q^{89} -134.450 q^{91} +22.8885i q^{92} +90.7699i q^{93} +23.9341i q^{94} +47.3579i q^{96} -37.9109i q^{97} -13.9170 q^{98} +(-21.1449 + 25.3356i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} - 96 q^{9} - 56 q^{11} - 32 q^{16} - 176 q^{26} - 192 q^{31} + 400 q^{34} - 48 q^{36} - 600 q^{44} + 992 q^{49} - 64 q^{56} + 272 q^{59} - 912 q^{64} - 360 q^{66} - 336 q^{69} + 432 q^{71}+ \cdots + 168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.664903 −0.332451 −0.166226 0.986088i \(-0.553158\pi\)
−0.166226 + 0.986088i \(0.553158\pi\)
\(3\) 1.73205i 0.577350i
\(4\) −3.55790 −0.889476
\(5\) 0 0
\(6\) 1.15165i 0.191941i
\(7\) −8.36247 −1.19464 −0.597319 0.802004i \(-0.703767\pi\)
−0.597319 + 0.802004i \(0.703767\pi\)
\(8\) 5.02527 0.628159
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 7.04830 8.44521i 0.640754 0.767746i
\(12\) 6.16247i 0.513539i
\(13\) 16.0778 1.23676 0.618378 0.785881i \(-0.287790\pi\)
0.618378 + 0.785881i \(0.287790\pi\)
\(14\) 5.56023 0.397159
\(15\) 0 0
\(16\) 10.8903 0.680644
\(17\) 22.0359 1.29623 0.648114 0.761544i \(-0.275558\pi\)
0.648114 + 0.761544i \(0.275558\pi\)
\(18\) 1.99471 0.110817
\(19\) 6.10810i 0.321479i 0.986997 + 0.160739i \(0.0513879\pi\)
−0.986997 + 0.160739i \(0.948612\pi\)
\(20\) 0 0
\(21\) 14.4842i 0.689725i
\(22\) −4.68643 + 5.61524i −0.213020 + 0.255238i
\(23\) 6.43313i 0.279701i −0.990173 0.139851i \(-0.955338\pi\)
0.990173 0.139851i \(-0.0446622\pi\)
\(24\) 8.70402i 0.362668i
\(25\) 0 0
\(26\) −10.6902 −0.411161
\(27\) 5.19615i 0.192450i
\(28\) 29.7529 1.06260
\(29\) 20.7699i 0.716202i −0.933683 0.358101i \(-0.883424\pi\)
0.933683 0.358101i \(-0.116576\pi\)
\(30\) 0 0
\(31\) −52.4060 −1.69052 −0.845258 0.534358i \(-0.820554\pi\)
−0.845258 + 0.534358i \(0.820554\pi\)
\(32\) −27.3421 −0.854440
\(33\) −14.6275 12.2080i −0.443258 0.369940i
\(34\) −14.6517 −0.430932
\(35\) 0 0
\(36\) 10.6737 0.296492
\(37\) 23.9112i 0.646249i 0.946356 + 0.323124i \(0.104733\pi\)
−0.946356 + 0.323124i \(0.895267\pi\)
\(38\) 4.06129i 0.106876i
\(39\) 27.8476i 0.714041i
\(40\) 0 0
\(41\) 66.7913i 1.62906i −0.580124 0.814528i \(-0.696996\pi\)
0.580124 0.814528i \(-0.303004\pi\)
\(42\) 9.63059i 0.229300i
\(43\) −56.5789 −1.31579 −0.657894 0.753110i \(-0.728553\pi\)
−0.657894 + 0.753110i \(0.728553\pi\)
\(44\) −25.0772 + 30.0472i −0.569936 + 0.682892i
\(45\) 0 0
\(46\) 4.27741i 0.0929871i
\(47\) 35.9964i 0.765881i −0.923773 0.382940i \(-0.874911\pi\)
0.923773 0.382940i \(-0.125089\pi\)
\(48\) 18.8626i 0.392970i
\(49\) 20.9309 0.427160
\(50\) 0 0
\(51\) 38.1672i 0.748377i
\(52\) −57.2034 −1.10006
\(53\) 83.7803i 1.58076i 0.612616 + 0.790381i \(0.290117\pi\)
−0.612616 + 0.790381i \(0.709883\pi\)
\(54\) 3.45494i 0.0639803i
\(55\) 0 0
\(56\) −42.0237 −0.750422
\(57\) 10.5795 0.185606
\(58\) 13.8099i 0.238102i
\(59\) 13.5741 0.230070 0.115035 0.993361i \(-0.463302\pi\)
0.115035 + 0.993361i \(0.463302\pi\)
\(60\) 0 0
\(61\) 120.042i 1.96790i −0.178455 0.983948i \(-0.557110\pi\)
0.178455 0.983948i \(-0.442890\pi\)
\(62\) 34.8449 0.562015
\(63\) 25.0874 0.398213
\(64\) −25.3814 −0.396584
\(65\) 0 0
\(66\) 9.72588 + 8.11714i 0.147362 + 0.122987i
\(67\) 69.5457i 1.03799i 0.854776 + 0.518997i \(0.173695\pi\)
−0.854776 + 0.518997i \(0.826305\pi\)
\(68\) −78.4015 −1.15296
\(69\) −11.1425 −0.161486
\(70\) 0 0
\(71\) −69.1708 −0.974237 −0.487119 0.873336i \(-0.661952\pi\)
−0.487119 + 0.873336i \(0.661952\pi\)
\(72\) −15.0758 −0.209386
\(73\) 78.0255 1.06884 0.534421 0.845218i \(-0.320530\pi\)
0.534421 + 0.845218i \(0.320530\pi\)
\(74\) 15.8986i 0.214846i
\(75\) 0 0
\(76\) 21.7320i 0.285948i
\(77\) −58.9412 + 70.6228i −0.765470 + 0.917179i
\(78\) 18.5159i 0.237384i
\(79\) 7.65867i 0.0969451i 0.998825 + 0.0484726i \(0.0154353\pi\)
−0.998825 + 0.0484726i \(0.984565\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 44.4097i 0.541582i
\(83\) −5.69286 −0.0685887 −0.0342943 0.999412i \(-0.510918\pi\)
−0.0342943 + 0.999412i \(0.510918\pi\)
\(84\) 51.5335i 0.613494i
\(85\) 0 0
\(86\) 37.6195 0.437436
\(87\) −35.9745 −0.413500
\(88\) 35.4196 42.4394i 0.402495 0.482266i
\(89\) −73.0710 −0.821023 −0.410512 0.911855i \(-0.634650\pi\)
−0.410512 + 0.911855i \(0.634650\pi\)
\(90\) 0 0
\(91\) −134.450 −1.47748
\(92\) 22.8885i 0.248788i
\(93\) 90.7699i 0.976020i
\(94\) 23.9341i 0.254618i
\(95\) 0 0
\(96\) 47.3579i 0.493311i
\(97\) 37.9109i 0.390834i −0.980720 0.195417i \(-0.937394\pi\)
0.980720 0.195417i \(-0.0626060\pi\)
\(98\) −13.9170 −0.142010
\(99\) −21.1449 + 25.3356i −0.213585 + 0.255915i
\(100\) 0 0
\(101\) 21.2764i 0.210658i −0.994437 0.105329i \(-0.966411\pi\)
0.994437 0.105329i \(-0.0335895\pi\)
\(102\) 25.3775i 0.248799i
\(103\) 147.861i 1.43555i −0.696277 0.717773i \(-0.745162\pi\)
0.696277 0.717773i \(-0.254838\pi\)
\(104\) 80.7954 0.776879
\(105\) 0 0
\(106\) 55.7058i 0.525526i
\(107\) −115.599 −1.08037 −0.540183 0.841548i \(-0.681645\pi\)
−0.540183 + 0.841548i \(0.681645\pi\)
\(108\) 18.4874i 0.171180i
\(109\) 138.985i 1.27510i −0.770411 0.637548i \(-0.779949\pi\)
0.770411 0.637548i \(-0.220051\pi\)
\(110\) 0 0
\(111\) 41.4154 0.373112
\(112\) −91.0698 −0.813123
\(113\) 37.9798i 0.336104i 0.985778 + 0.168052i \(0.0537477\pi\)
−0.985778 + 0.168052i \(0.946252\pi\)
\(114\) −7.03436 −0.0617049
\(115\) 0 0
\(116\) 73.8972i 0.637045i
\(117\) −48.2335 −0.412252
\(118\) −9.02546 −0.0764869
\(119\) −184.274 −1.54852
\(120\) 0 0
\(121\) −21.6430 119.049i −0.178868 0.983873i
\(122\) 79.8160i 0.654230i
\(123\) −115.686 −0.940536
\(124\) 186.456 1.50367
\(125\) 0 0
\(126\) −16.6807 −0.132386
\(127\) 8.43502 0.0664175 0.0332087 0.999448i \(-0.489427\pi\)
0.0332087 + 0.999448i \(0.489427\pi\)
\(128\) 126.244 0.986285
\(129\) 97.9975i 0.759671i
\(130\) 0 0
\(131\) 186.122i 1.42078i 0.703811 + 0.710388i \(0.251480\pi\)
−0.703811 + 0.710388i \(0.748520\pi\)
\(132\) 52.0433 + 43.4349i 0.394268 + 0.329053i
\(133\) 51.0788i 0.384051i
\(134\) 46.2411i 0.345083i
\(135\) 0 0
\(136\) 110.736 0.814237
\(137\) 40.5816i 0.296216i 0.988971 + 0.148108i \(0.0473183\pi\)
−0.988971 + 0.148108i \(0.952682\pi\)
\(138\) 7.40868 0.0536861
\(139\) 88.1363i 0.634074i 0.948413 + 0.317037i \(0.102688\pi\)
−0.948413 + 0.317037i \(0.897312\pi\)
\(140\) 0 0
\(141\) −62.3476 −0.442182
\(142\) 45.9919 0.323886
\(143\) 113.321 135.781i 0.792457 0.949514i
\(144\) −32.6709 −0.226881
\(145\) 0 0
\(146\) −51.8793 −0.355338
\(147\) 36.2533i 0.246621i
\(148\) 85.0738i 0.574823i
\(149\) 90.6013i 0.608062i −0.952662 0.304031i \(-0.901667\pi\)
0.952662 0.304031i \(-0.0983327\pi\)
\(150\) 0 0
\(151\) 38.1059i 0.252357i −0.992008 0.126178i \(-0.959729\pi\)
0.992008 0.126178i \(-0.0402712\pi\)
\(152\) 30.6948i 0.201940i
\(153\) −66.1076 −0.432076
\(154\) 39.1901 46.9573i 0.254481 0.304917i
\(155\) 0 0
\(156\) 99.0791i 0.635123i
\(157\) 271.722i 1.73071i −0.501157 0.865356i \(-0.667092\pi\)
0.501157 0.865356i \(-0.332908\pi\)
\(158\) 5.09227i 0.0322295i
\(159\) 145.112 0.912653
\(160\) 0 0
\(161\) 53.7968i 0.334142i
\(162\) −5.98412 −0.0369390
\(163\) 128.405i 0.787759i −0.919162 0.393879i \(-0.871133\pi\)
0.919162 0.393879i \(-0.128867\pi\)
\(164\) 237.637i 1.44901i
\(165\) 0 0
\(166\) 3.78520 0.0228024
\(167\) −172.263 −1.03152 −0.515758 0.856734i \(-0.672490\pi\)
−0.515758 + 0.856734i \(0.672490\pi\)
\(168\) 72.7871i 0.433257i
\(169\) 89.4964 0.529565
\(170\) 0 0
\(171\) 18.3243i 0.107160i
\(172\) 201.302 1.17036
\(173\) −125.237 −0.723914 −0.361957 0.932195i \(-0.617891\pi\)
−0.361957 + 0.932195i \(0.617891\pi\)
\(174\) 23.9195 0.137469
\(175\) 0 0
\(176\) 76.7581 91.9709i 0.436126 0.522562i
\(177\) 23.5110i 0.132831i
\(178\) 48.5851 0.272950
\(179\) −75.0674 −0.419371 −0.209685 0.977769i \(-0.567244\pi\)
−0.209685 + 0.977769i \(0.567244\pi\)
\(180\) 0 0
\(181\) −285.524 −1.57748 −0.788740 0.614727i \(-0.789266\pi\)
−0.788740 + 0.614727i \(0.789266\pi\)
\(182\) 89.3963 0.491189
\(183\) −207.918 −1.13617
\(184\) 32.3282i 0.175697i
\(185\) 0 0
\(186\) 60.3531i 0.324479i
\(187\) 155.315 186.097i 0.830563 0.995173i
\(188\) 128.072i 0.681233i
\(189\) 43.4527i 0.229908i
\(190\) 0 0
\(191\) 256.484 1.34285 0.671423 0.741074i \(-0.265683\pi\)
0.671423 + 0.741074i \(0.265683\pi\)
\(192\) 43.9619i 0.228968i
\(193\) 157.978 0.818541 0.409271 0.912413i \(-0.365783\pi\)
0.409271 + 0.912413i \(0.365783\pi\)
\(194\) 25.2070i 0.129933i
\(195\) 0 0
\(196\) −74.4700 −0.379949
\(197\) 203.131 1.03112 0.515562 0.856852i \(-0.327583\pi\)
0.515562 + 0.856852i \(0.327583\pi\)
\(198\) 14.0593 16.8457i 0.0710065 0.0850794i
\(199\) −286.490 −1.43965 −0.719823 0.694158i \(-0.755777\pi\)
−0.719823 + 0.694158i \(0.755777\pi\)
\(200\) 0 0
\(201\) 120.457 0.599287
\(202\) 14.1467i 0.0700334i
\(203\) 173.687i 0.855603i
\(204\) 135.795i 0.665664i
\(205\) 0 0
\(206\) 98.3133i 0.477249i
\(207\) 19.2994i 0.0932338i
\(208\) 175.092 0.841790
\(209\) 51.5841 + 43.0517i 0.246814 + 0.205989i
\(210\) 0 0
\(211\) 138.840i 0.658012i 0.944328 + 0.329006i \(0.106714\pi\)
−0.944328 + 0.329006i \(0.893286\pi\)
\(212\) 298.082i 1.40605i
\(213\) 119.807i 0.562476i
\(214\) 76.8621 0.359169
\(215\) 0 0
\(216\) 26.1121i 0.120889i
\(217\) 438.244 2.01956
\(218\) 92.4117i 0.423907i
\(219\) 135.144i 0.617096i
\(220\) 0 0
\(221\) 354.289 1.60312
\(222\) −27.5372 −0.124042
\(223\) 250.067i 1.12138i 0.828027 + 0.560688i \(0.189463\pi\)
−0.828027 + 0.560688i \(0.810537\pi\)
\(224\) 228.647 1.02075
\(225\) 0 0
\(226\) 25.2528i 0.111738i
\(227\) −247.410 −1.08991 −0.544955 0.838465i \(-0.683453\pi\)
−0.544955 + 0.838465i \(0.683453\pi\)
\(228\) −37.6410 −0.165092
\(229\) −363.652 −1.58800 −0.794000 0.607918i \(-0.792005\pi\)
−0.794000 + 0.607918i \(0.792005\pi\)
\(230\) 0 0
\(231\) 122.322 + 102.089i 0.529533 + 0.441944i
\(232\) 104.374i 0.449889i
\(233\) −263.367 −1.13033 −0.565165 0.824978i \(-0.691188\pi\)
−0.565165 + 0.824978i \(0.691188\pi\)
\(234\) 32.0706 0.137054
\(235\) 0 0
\(236\) −48.2954 −0.204641
\(237\) 13.2652 0.0559713
\(238\) 122.524 0.514808
\(239\) 364.771i 1.52624i −0.646257 0.763120i \(-0.723667\pi\)
0.646257 0.763120i \(-0.276333\pi\)
\(240\) 0 0
\(241\) 149.640i 0.620912i −0.950588 0.310456i \(-0.899518\pi\)
0.950588 0.310456i \(-0.100482\pi\)
\(242\) 14.3905 + 79.1558i 0.0594649 + 0.327090i
\(243\) 15.5885i 0.0641500i
\(244\) 427.097i 1.75040i
\(245\) 0 0
\(246\) 76.9199 0.312682
\(247\) 98.2049i 0.397591i
\(248\) −263.354 −1.06191
\(249\) 9.86032i 0.0395997i
\(250\) 0 0
\(251\) −118.965 −0.473962 −0.236981 0.971514i \(-0.576158\pi\)
−0.236981 + 0.971514i \(0.576158\pi\)
\(252\) −89.2586 −0.354201
\(253\) −54.3291 45.3426i −0.214740 0.179220i
\(254\) −5.60847 −0.0220806
\(255\) 0 0
\(256\) 17.5853 0.0686927
\(257\) 182.143i 0.708729i −0.935107 0.354364i \(-0.884697\pi\)
0.935107 0.354364i \(-0.115303\pi\)
\(258\) 65.1588i 0.252554i
\(259\) 199.957i 0.772034i
\(260\) 0 0
\(261\) 62.3096i 0.238734i
\(262\) 123.753i 0.472339i
\(263\) 55.7205 0.211865 0.105933 0.994373i \(-0.466217\pi\)
0.105933 + 0.994373i \(0.466217\pi\)
\(264\) −73.5073 61.3485i −0.278437 0.232381i
\(265\) 0 0
\(266\) 33.9624i 0.127678i
\(267\) 126.563i 0.474018i
\(268\) 247.437i 0.923272i
\(269\) 46.7482 0.173785 0.0868925 0.996218i \(-0.472306\pi\)
0.0868925 + 0.996218i \(0.472306\pi\)
\(270\) 0 0
\(271\) 81.2380i 0.299771i 0.988703 + 0.149886i \(0.0478906\pi\)
−0.988703 + 0.149886i \(0.952109\pi\)
\(272\) 239.977 0.882269
\(273\) 232.875i 0.853021i
\(274\) 26.9828i 0.0984774i
\(275\) 0 0
\(276\) 39.6440 0.143638
\(277\) 309.041 1.11567 0.557835 0.829952i \(-0.311632\pi\)
0.557835 + 0.829952i \(0.311632\pi\)
\(278\) 58.6020i 0.210799i
\(279\) 157.218 0.563506
\(280\) 0 0
\(281\) 306.448i 1.09056i 0.838253 + 0.545282i \(0.183577\pi\)
−0.838253 + 0.545282i \(0.816423\pi\)
\(282\) 41.4551 0.147004
\(283\) 495.935 1.75242 0.876210 0.481929i \(-0.160064\pi\)
0.876210 + 0.481929i \(0.160064\pi\)
\(284\) 246.103 0.866561
\(285\) 0 0
\(286\) −75.3476 + 90.2808i −0.263453 + 0.315667i
\(287\) 558.540i 1.94613i
\(288\) 82.0262 0.284813
\(289\) 196.579 0.680205
\(290\) 0 0
\(291\) −65.6636 −0.225648
\(292\) −277.607 −0.950710
\(293\) −391.532 −1.33629 −0.668144 0.744032i \(-0.732911\pi\)
−0.668144 + 0.744032i \(0.732911\pi\)
\(294\) 24.1049i 0.0819895i
\(295\) 0 0
\(296\) 120.160i 0.405947i
\(297\) 43.8826 + 36.6240i 0.147753 + 0.123313i
\(298\) 60.2410i 0.202151i
\(299\) 103.431i 0.345922i
\(300\) 0 0
\(301\) 473.139 1.57189
\(302\) 25.3367i 0.0838964i
\(303\) −36.8518 −0.121623
\(304\) 66.5190i 0.218813i
\(305\) 0 0
\(306\) 43.9551 0.143644
\(307\) −92.7037 −0.301966 −0.150983 0.988536i \(-0.548244\pi\)
−0.150983 + 0.988536i \(0.548244\pi\)
\(308\) 209.707 251.269i 0.680867 0.815809i
\(309\) −256.103 −0.828813
\(310\) 0 0
\(311\) 442.851 1.42396 0.711980 0.702200i \(-0.247799\pi\)
0.711980 + 0.702200i \(0.247799\pi\)
\(312\) 139.942i 0.448531i
\(313\) 97.9824i 0.313043i −0.987675 0.156521i \(-0.949972\pi\)
0.987675 0.156521i \(-0.0500280\pi\)
\(314\) 180.669i 0.575378i
\(315\) 0 0
\(316\) 27.2488i 0.0862304i
\(317\) 433.796i 1.36844i −0.729275 0.684221i \(-0.760143\pi\)
0.729275 0.684221i \(-0.239857\pi\)
\(318\) −96.4852 −0.303413
\(319\) −175.406 146.392i −0.549862 0.458910i
\(320\) 0 0
\(321\) 200.223i 0.623749i
\(322\) 35.7697i 0.111086i
\(323\) 134.597i 0.416710i
\(324\) −32.0211 −0.0988307
\(325\) 0 0
\(326\) 85.3766i 0.261891i
\(327\) −240.730 −0.736176
\(328\) 335.644i 1.02331i
\(329\) 301.019i 0.914950i
\(330\) 0 0
\(331\) −270.505 −0.817235 −0.408618 0.912706i \(-0.633989\pi\)
−0.408618 + 0.912706i \(0.633989\pi\)
\(332\) 20.2547 0.0610080
\(333\) 71.7336i 0.215416i
\(334\) 114.538 0.342929
\(335\) 0 0
\(336\) 157.738i 0.469457i
\(337\) −80.7287 −0.239551 −0.119775 0.992801i \(-0.538217\pi\)
−0.119775 + 0.992801i \(0.538217\pi\)
\(338\) −59.5064 −0.176054
\(339\) 65.7829 0.194050
\(340\) 0 0
\(341\) −369.373 + 442.580i −1.08321 + 1.29789i
\(342\) 12.1839i 0.0356254i
\(343\) 234.727 0.684336
\(344\) −284.324 −0.826524
\(345\) 0 0
\(346\) 83.2705 0.240666
\(347\) 105.638 0.304433 0.152217 0.988347i \(-0.451359\pi\)
0.152217 + 0.988347i \(0.451359\pi\)
\(348\) 127.994 0.367798
\(349\) 515.712i 1.47769i 0.673878 + 0.738843i \(0.264627\pi\)
−0.673878 + 0.738843i \(0.735373\pi\)
\(350\) 0 0
\(351\) 83.5428i 0.238014i
\(352\) −192.715 + 230.909i −0.547486 + 0.655993i
\(353\) 467.858i 1.32538i 0.748896 + 0.662688i \(0.230584\pi\)
−0.748896 + 0.662688i \(0.769416\pi\)
\(354\) 15.6325i 0.0441597i
\(355\) 0 0
\(356\) 259.980 0.730280
\(357\) 319.172i 0.894040i
\(358\) 49.9125 0.139420
\(359\) 274.186i 0.763751i 0.924214 + 0.381875i \(0.124722\pi\)
−0.924214 + 0.381875i \(0.875278\pi\)
\(360\) 0 0
\(361\) 323.691 0.896651
\(362\) 189.846 0.524435
\(363\) −206.198 + 37.4868i −0.568039 + 0.103269i
\(364\) 478.361 1.31418
\(365\) 0 0
\(366\) 138.245 0.377720
\(367\) 285.758i 0.778631i −0.921104 0.389316i \(-0.872712\pi\)
0.921104 0.389316i \(-0.127288\pi\)
\(368\) 70.0587i 0.190377i
\(369\) 200.374i 0.543019i
\(370\) 0 0
\(371\) 700.610i 1.88844i
\(372\) 322.951i 0.868147i
\(373\) −18.2467 −0.0489188 −0.0244594 0.999701i \(-0.507786\pi\)
−0.0244594 + 0.999701i \(0.507786\pi\)
\(374\) −103.270 + 123.737i −0.276122 + 0.330847i
\(375\) 0 0
\(376\) 180.892i 0.481095i
\(377\) 333.934i 0.885767i
\(378\) 28.8918i 0.0764333i
\(379\) 336.559 0.888018 0.444009 0.896022i \(-0.353556\pi\)
0.444009 + 0.896022i \(0.353556\pi\)
\(380\) 0 0
\(381\) 14.6099i 0.0383461i
\(382\) −170.537 −0.446431
\(383\) 212.241i 0.554154i 0.960848 + 0.277077i \(0.0893657\pi\)
−0.960848 + 0.277077i \(0.910634\pi\)
\(384\) 218.662i 0.569432i
\(385\) 0 0
\(386\) −105.040 −0.272125
\(387\) 169.737 0.438596
\(388\) 134.883i 0.347637i
\(389\) 530.891 1.36476 0.682379 0.730999i \(-0.260946\pi\)
0.682379 + 0.730999i \(0.260946\pi\)
\(390\) 0 0
\(391\) 141.760i 0.362556i
\(392\) 105.183 0.268324
\(393\) 322.372 0.820285
\(394\) −135.063 −0.342798
\(395\) 0 0
\(396\) 75.2315 90.1417i 0.189979 0.227631i
\(397\) 616.868i 1.55382i −0.629610 0.776911i \(-0.716785\pi\)
0.629610 0.776911i \(-0.283215\pi\)
\(398\) 190.488 0.478612
\(399\) −88.4710 −0.221732
\(400\) 0 0
\(401\) −300.579 −0.749574 −0.374787 0.927111i \(-0.622284\pi\)
−0.374787 + 0.927111i \(0.622284\pi\)
\(402\) −80.0919 −0.199234
\(403\) −842.575 −2.09076
\(404\) 75.6994i 0.187375i
\(405\) 0 0
\(406\) 115.485i 0.284446i
\(407\) 201.935 + 168.533i 0.496155 + 0.414087i
\(408\) 191.801i 0.470100i
\(409\) 696.288i 1.70242i −0.524828 0.851208i \(-0.675870\pi\)
0.524828 0.851208i \(-0.324130\pi\)
\(410\) 0 0
\(411\) 70.2894 0.171020
\(412\) 526.076i 1.27688i
\(413\) −113.513 −0.274850
\(414\) 12.8322i 0.0309957i
\(415\) 0 0
\(416\) −439.601 −1.05673
\(417\) 152.656 0.366083
\(418\) −34.2984 28.6252i −0.0820537 0.0684813i
\(419\) 326.612 0.779504 0.389752 0.920920i \(-0.372561\pi\)
0.389752 + 0.920920i \(0.372561\pi\)
\(420\) 0 0
\(421\) 23.5479 0.0559333 0.0279666 0.999609i \(-0.491097\pi\)
0.0279666 + 0.999609i \(0.491097\pi\)
\(422\) 92.3154i 0.218757i
\(423\) 107.989i 0.255294i
\(424\) 421.019i 0.992969i
\(425\) 0 0
\(426\) 79.6602i 0.186996i
\(427\) 1003.84i 2.35092i
\(428\) 411.290 0.960959
\(429\) −235.179 196.278i −0.548202 0.457525i
\(430\) 0 0
\(431\) 223.614i 0.518825i −0.965767 0.259413i \(-0.916471\pi\)
0.965767 0.259413i \(-0.0835290\pi\)
\(432\) 56.5877i 0.130990i
\(433\) 181.032i 0.418087i 0.977906 + 0.209044i \(0.0670350\pi\)
−0.977906 + 0.209044i \(0.932965\pi\)
\(434\) −291.389 −0.671404
\(435\) 0 0
\(436\) 494.497i 1.13417i
\(437\) 39.2942 0.0899181
\(438\) 89.8577i 0.205154i
\(439\) 66.4465i 0.151359i 0.997132 + 0.0756794i \(0.0241125\pi\)
−0.997132 + 0.0756794i \(0.975887\pi\)
\(440\) 0 0
\(441\) −62.7926 −0.142387
\(442\) −235.567 −0.532958
\(443\) 430.438i 0.971642i −0.874058 0.485821i \(-0.838521\pi\)
0.874058 0.485821i \(-0.161479\pi\)
\(444\) −147.352 −0.331874
\(445\) 0 0
\(446\) 166.270i 0.372803i
\(447\) −156.926 −0.351065
\(448\) 212.251 0.473775
\(449\) −261.662 −0.582766 −0.291383 0.956607i \(-0.594115\pi\)
−0.291383 + 0.956607i \(0.594115\pi\)
\(450\) 0 0
\(451\) −564.066 470.765i −1.25070 1.04382i
\(452\) 135.128i 0.298957i
\(453\) −66.0013 −0.145698
\(454\) 164.503 0.362342
\(455\) 0 0
\(456\) 53.1650 0.116590
\(457\) 187.453 0.410181 0.205090 0.978743i \(-0.434251\pi\)
0.205090 + 0.978743i \(0.434251\pi\)
\(458\) 241.793 0.527932
\(459\) 114.502i 0.249459i
\(460\) 0 0
\(461\) 683.006i 1.48157i −0.671740 0.740787i \(-0.734453\pi\)
0.671740 0.740787i \(-0.265547\pi\)
\(462\) −81.3324 67.8793i −0.176044 0.146925i
\(463\) 72.4460i 0.156471i −0.996935 0.0782354i \(-0.975071\pi\)
0.996935 0.0782354i \(-0.0249286\pi\)
\(464\) 226.190i 0.487479i
\(465\) 0 0
\(466\) 175.113 0.375780
\(467\) 401.507i 0.859759i 0.902886 + 0.429879i \(0.141444\pi\)
−0.902886 + 0.429879i \(0.858556\pi\)
\(468\) 171.610 0.366688
\(469\) 581.573i 1.24003i
\(470\) 0 0
\(471\) −470.636 −0.999228
\(472\) 68.2135 0.144520
\(473\) −398.785 + 477.820i −0.843097 + 1.01019i
\(474\) −8.82007 −0.0186077
\(475\) 0 0
\(476\) 655.630 1.37737
\(477\) 251.341i 0.526920i
\(478\) 242.537i 0.507400i
\(479\) 620.609i 1.29563i −0.761796 0.647817i \(-0.775682\pi\)
0.761796 0.647817i \(-0.224318\pi\)
\(480\) 0 0
\(481\) 384.440i 0.799252i
\(482\) 99.4958i 0.206423i
\(483\) 93.1789 0.192917
\(484\) 77.0038 + 423.564i 0.159099 + 0.875132i
\(485\) 0 0
\(486\) 10.3648i 0.0213268i
\(487\) 539.097i 1.10697i −0.832857 0.553487i \(-0.813297\pi\)
0.832857 0.553487i \(-0.186703\pi\)
\(488\) 603.242i 1.23615i
\(489\) −222.403 −0.454813
\(490\) 0 0
\(491\) 480.768i 0.979161i 0.871958 + 0.489580i \(0.162850\pi\)
−0.871958 + 0.489580i \(0.837150\pi\)
\(492\) 411.600 0.836585
\(493\) 457.682i 0.928361i
\(494\) 65.2967i 0.132180i
\(495\) 0 0
\(496\) −570.717 −1.15064
\(497\) 578.439 1.16386
\(498\) 6.55615i 0.0131650i
\(499\) −566.286 −1.13484 −0.567421 0.823428i \(-0.692059\pi\)
−0.567421 + 0.823428i \(0.692059\pi\)
\(500\) 0 0
\(501\) 298.369i 0.595547i
\(502\) 79.0998 0.157569
\(503\) −622.513 −1.23760 −0.618800 0.785549i \(-0.712381\pi\)
−0.618800 + 0.785549i \(0.712381\pi\)
\(504\) 126.071 0.250141
\(505\) 0 0
\(506\) 36.1236 + 30.1484i 0.0713905 + 0.0595819i
\(507\) 155.012i 0.305744i
\(508\) −30.0110 −0.0590768
\(509\) −506.799 −0.995677 −0.497838 0.867270i \(-0.665873\pi\)
−0.497838 + 0.867270i \(0.665873\pi\)
\(510\) 0 0
\(511\) −652.485 −1.27688
\(512\) −516.670 −1.00912
\(513\) −31.7386 −0.0618686
\(514\) 121.108i 0.235618i
\(515\) 0 0
\(516\) 348.666i 0.675709i
\(517\) −303.997 253.713i −0.588002 0.490741i
\(518\) 132.952i 0.256664i
\(519\) 216.917i 0.417952i
\(520\) 0 0
\(521\) −486.736 −0.934233 −0.467117 0.884196i \(-0.654707\pi\)
−0.467117 + 0.884196i \(0.654707\pi\)
\(522\) 41.4298i 0.0793675i
\(523\) −390.347 −0.746362 −0.373181 0.927759i \(-0.621733\pi\)
−0.373181 + 0.927759i \(0.621733\pi\)
\(524\) 662.203i 1.26375i
\(525\) 0 0
\(526\) −37.0487 −0.0704348
\(527\) −1154.81 −2.19129
\(528\) −159.298 132.949i −0.301701 0.251797i
\(529\) 487.615 0.921767
\(530\) 0 0
\(531\) −40.7223 −0.0766898
\(532\) 181.733i 0.341604i
\(533\) 1073.86i 2.01474i
\(534\) 84.1519i 0.157588i
\(535\) 0 0
\(536\) 349.486i 0.652026i
\(537\) 130.021i 0.242124i
\(538\) −31.0830 −0.0577751
\(539\) 147.527 176.765i 0.273705 0.327951i
\(540\) 0 0
\(541\) 43.4279i 0.0802735i −0.999194 0.0401367i \(-0.987221\pi\)
0.999194 0.0401367i \(-0.0127794\pi\)
\(542\) 54.0154i 0.0996594i
\(543\) 494.542i 0.910759i
\(544\) −602.506 −1.10755
\(545\) 0 0
\(546\) 154.839i 0.283588i
\(547\) −298.284 −0.545309 −0.272655 0.962112i \(-0.587902\pi\)
−0.272655 + 0.962112i \(0.587902\pi\)
\(548\) 144.386i 0.263477i
\(549\) 360.125i 0.655965i
\(550\) 0 0
\(551\) 126.864 0.230244
\(552\) −55.9941 −0.101439
\(553\) 64.0453i 0.115814i
\(554\) −205.482 −0.370906
\(555\) 0 0
\(556\) 313.580i 0.563994i
\(557\) −401.329 −0.720520 −0.360260 0.932852i \(-0.617312\pi\)
−0.360260 + 0.932852i \(0.617312\pi\)
\(558\) −104.535 −0.187338
\(559\) −909.666 −1.62731
\(560\) 0 0
\(561\) −322.330 269.014i −0.574564 0.479526i
\(562\) 203.758i 0.362559i
\(563\) 190.526 0.338412 0.169206 0.985581i \(-0.445880\pi\)
0.169206 + 0.985581i \(0.445880\pi\)
\(564\) 221.827 0.393310
\(565\) 0 0
\(566\) −329.749 −0.582595
\(567\) −75.2622 −0.132738
\(568\) −347.602 −0.611976
\(569\) 718.614i 1.26294i −0.775400 0.631471i \(-0.782452\pi\)
0.775400 0.631471i \(-0.217548\pi\)
\(570\) 0 0
\(571\) 324.008i 0.567440i −0.958907 0.283720i \(-0.908431\pi\)
0.958907 0.283720i \(-0.0915686\pi\)
\(572\) −403.186 + 483.094i −0.704871 + 0.844570i
\(573\) 444.243i 0.775293i
\(574\) 371.375i 0.646994i
\(575\) 0 0
\(576\) 76.1442 0.132195
\(577\) 1131.01i 1.96016i 0.198606 + 0.980079i \(0.436358\pi\)
−0.198606 + 0.980079i \(0.563642\pi\)
\(578\) −130.706 −0.226135
\(579\) 273.627i 0.472585i
\(580\) 0 0
\(581\) 47.6064 0.0819387
\(582\) 43.6599 0.0750170
\(583\) 707.542 + 590.509i 1.21362 + 1.01288i
\(584\) 392.099 0.671403
\(585\) 0 0
\(586\) 260.331 0.444251
\(587\) 856.901i 1.45980i −0.683556 0.729898i \(-0.739567\pi\)
0.683556 0.729898i \(-0.260433\pi\)
\(588\) 128.986i 0.219364i
\(589\) 320.101i 0.543465i
\(590\) 0 0
\(591\) 351.834i 0.595320i
\(592\) 260.400i 0.439865i
\(593\) 712.663 1.20179 0.600896 0.799327i \(-0.294810\pi\)
0.600896 + 0.799327i \(0.294810\pi\)
\(594\) −29.1776 24.3514i −0.0491206 0.0409956i
\(595\) 0 0
\(596\) 322.351i 0.540857i
\(597\) 496.214i 0.831180i
\(598\) 68.7714i 0.115002i
\(599\) −822.850 −1.37371 −0.686853 0.726796i \(-0.741008\pi\)
−0.686853 + 0.726796i \(0.741008\pi\)
\(600\) 0 0
\(601\) 350.575i 0.583319i −0.956522 0.291659i \(-0.905793\pi\)
0.956522 0.291659i \(-0.0942074\pi\)
\(602\) −314.591 −0.522577
\(603\) 208.637i 0.345998i
\(604\) 135.577i 0.224465i
\(605\) 0 0
\(606\) 24.5029 0.0404338
\(607\) −358.620 −0.590808 −0.295404 0.955372i \(-0.595454\pi\)
−0.295404 + 0.955372i \(0.595454\pi\)
\(608\) 167.008i 0.274684i
\(609\) 300.835 0.493982
\(610\) 0 0
\(611\) 578.744i 0.947208i
\(612\) 235.204 0.384321
\(613\) 28.2177 0.0460322 0.0230161 0.999735i \(-0.492673\pi\)
0.0230161 + 0.999735i \(0.492673\pi\)
\(614\) 61.6389 0.100389
\(615\) 0 0
\(616\) −296.195 + 354.898i −0.480836 + 0.576134i
\(617\) 550.410i 0.892074i 0.895014 + 0.446037i \(0.147165\pi\)
−0.895014 + 0.446037i \(0.852835\pi\)
\(618\) 170.284 0.275540
\(619\) 373.784 0.603852 0.301926 0.953331i \(-0.402371\pi\)
0.301926 + 0.953331i \(0.402371\pi\)
\(620\) 0 0
\(621\) 33.4275 0.0538285
\(622\) −294.453 −0.473397
\(623\) 611.054 0.980825
\(624\) 303.269i 0.486008i
\(625\) 0 0
\(626\) 65.1488i 0.104072i
\(627\) 74.5677 89.3464i 0.118928 0.142498i
\(628\) 966.761i 1.53943i
\(629\) 526.904i 0.837685i
\(630\) 0 0
\(631\) 1100.42 1.74393 0.871965 0.489568i \(-0.162846\pi\)
0.871965 + 0.489568i \(0.162846\pi\)
\(632\) 38.4869i 0.0608969i
\(633\) 240.479 0.379903
\(634\) 288.432i 0.454940i
\(635\) 0 0
\(636\) −516.294 −0.811783
\(637\) 336.523 0.528293
\(638\) 116.628 + 97.3366i 0.182802 + 0.152565i
\(639\) 207.512 0.324746
\(640\) 0 0
\(641\) 653.649 1.01973 0.509867 0.860253i \(-0.329695\pi\)
0.509867 + 0.860253i \(0.329695\pi\)
\(642\) 133.129i 0.207366i
\(643\) 502.794i 0.781950i 0.920401 + 0.390975i \(0.127862\pi\)
−0.920401 + 0.390975i \(0.872138\pi\)
\(644\) 191.404i 0.297211i
\(645\) 0 0
\(646\) 89.4940i 0.138536i
\(647\) 897.406i 1.38703i 0.720444 + 0.693513i \(0.243938\pi\)
−0.720444 + 0.693513i \(0.756062\pi\)
\(648\) 45.2274 0.0697954
\(649\) 95.6743 114.636i 0.147418 0.176635i
\(650\) 0 0
\(651\) 759.060i 1.16599i
\(652\) 456.852i 0.700693i
\(653\) 789.461i 1.20898i 0.796615 + 0.604488i \(0.206622\pi\)
−0.796615 + 0.604488i \(0.793378\pi\)
\(654\) 160.062 0.244743
\(655\) 0 0
\(656\) 727.378i 1.10881i
\(657\) −234.076 −0.356281
\(658\) 200.148i 0.304176i
\(659\) 127.662i 0.193721i 0.995298 + 0.0968607i \(0.0308801\pi\)
−0.995298 + 0.0968607i \(0.969120\pi\)
\(660\) 0 0
\(661\) 525.245 0.794621 0.397311 0.917684i \(-0.369944\pi\)
0.397311 + 0.917684i \(0.369944\pi\)
\(662\) 179.859 0.271691
\(663\) 613.646i 0.925560i
\(664\) −28.6082 −0.0430846
\(665\) 0 0
\(666\) 47.6959i 0.0716154i
\(667\) −133.615 −0.200323
\(668\) 612.896 0.917510
\(669\) 433.129 0.647427
\(670\) 0 0
\(671\) −1013.78 846.089i −1.51084 1.26094i
\(672\) 396.029i 0.589328i
\(673\) −952.301 −1.41501 −0.707505 0.706709i \(-0.750179\pi\)
−0.707505 + 0.706709i \(0.750179\pi\)
\(674\) 53.6767 0.0796390
\(675\) 0 0
\(676\) −318.420 −0.471035
\(677\) 258.470 0.381788 0.190894 0.981611i \(-0.438861\pi\)
0.190894 + 0.981611i \(0.438861\pi\)
\(678\) −43.7392 −0.0645121
\(679\) 317.028i 0.466905i
\(680\) 0 0
\(681\) 428.526i 0.629260i
\(682\) 245.597 294.272i 0.360113 0.431484i
\(683\) 391.010i 0.572489i −0.958157 0.286245i \(-0.907593\pi\)
0.958157 0.286245i \(-0.0924070\pi\)
\(684\) 65.1961i 0.0953159i
\(685\) 0 0
\(686\) −156.071 −0.227508
\(687\) 629.863i 0.916832i
\(688\) −616.161 −0.895583
\(689\) 1347.01i 1.95502i
\(690\) 0 0
\(691\) 199.456 0.288648 0.144324 0.989531i \(-0.453899\pi\)
0.144324 + 0.989531i \(0.453899\pi\)
\(692\) 445.582 0.643904
\(693\) 176.823 211.868i 0.255157 0.305726i
\(694\) −70.2392 −0.101209
\(695\) 0 0
\(696\) −180.781 −0.259743
\(697\) 1471.80i 2.11163i
\(698\) 342.898i 0.491258i
\(699\) 456.165i 0.652596i
\(700\) 0 0
\(701\) 181.684i 0.259179i −0.991568 0.129589i \(-0.958634\pi\)
0.991568 0.129589i \(-0.0413659\pi\)
\(702\) 55.5478i 0.0791280i
\(703\) −146.052 −0.207755
\(704\) −178.896 + 214.351i −0.254113 + 0.304476i
\(705\) 0 0
\(706\) 311.080i 0.440623i
\(707\) 177.923i 0.251660i
\(708\) 83.6500i 0.118150i
\(709\) −975.319 −1.37563 −0.687813 0.725888i \(-0.741429\pi\)
−0.687813 + 0.725888i \(0.741429\pi\)
\(710\) 0 0
\(711\) 22.9760i 0.0323150i
\(712\) −367.202 −0.515733
\(713\) 337.135i 0.472840i
\(714\) 212.218i 0.297225i
\(715\) 0 0
\(716\) 267.083 0.373020
\(717\) −631.802 −0.881175
\(718\) 182.307i 0.253910i
\(719\) 1352.64 1.88128 0.940641 0.339402i \(-0.110225\pi\)
0.940641 + 0.339402i \(0.110225\pi\)
\(720\) 0 0
\(721\) 1236.48i 1.71496i
\(722\) −215.223 −0.298093
\(723\) −259.184 −0.358484
\(724\) 1015.87 1.40313
\(725\) 0 0
\(726\) 137.102 24.9251i 0.188845 0.0343320i
\(727\) 268.503i 0.369330i −0.982801 0.184665i \(-0.940880\pi\)
0.982801 0.184665i \(-0.0591201\pi\)
\(728\) −675.649 −0.928089
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −1246.76 −1.70556
\(732\) 739.753 1.01059
\(733\) 1111.10 1.51583 0.757915 0.652353i \(-0.226218\pi\)
0.757915 + 0.652353i \(0.226218\pi\)
\(734\) 190.001i 0.258857i
\(735\) 0 0
\(736\) 175.895i 0.238988i
\(737\) 587.327 + 490.178i 0.796916 + 0.665100i
\(738\) 133.229i 0.180527i
\(739\) 962.884i 1.30296i 0.758668 + 0.651478i \(0.225851\pi\)
−0.758668 + 0.651478i \(0.774149\pi\)
\(740\) 0 0
\(741\) 170.096 0.229549
\(742\) 465.838i 0.627814i
\(743\) 674.012 0.907149 0.453574 0.891218i \(-0.350149\pi\)
0.453574 + 0.891218i \(0.350149\pi\)
\(744\) 456.143i 0.613096i
\(745\) 0 0
\(746\) 12.1323 0.0162631
\(747\) 17.0786 0.0228629
\(748\) −552.597 + 662.117i −0.738766 + 0.885183i
\(749\) 966.693 1.29065
\(750\) 0 0
\(751\) 360.050 0.479428 0.239714 0.970844i \(-0.422946\pi\)
0.239714 + 0.970844i \(0.422946\pi\)
\(752\) 392.012i 0.521292i
\(753\) 206.053i 0.273642i
\(754\) 222.034i 0.294475i
\(755\) 0 0
\(756\) 154.600i 0.204498i
\(757\) 573.607i 0.757737i 0.925450 + 0.378869i \(0.123687\pi\)
−0.925450 + 0.378869i \(0.876313\pi\)
\(758\) −223.779 −0.295223
\(759\) −78.5357 + 94.1008i −0.103473 + 0.123980i
\(760\) 0 0
\(761\) 1229.64i 1.61582i 0.589305 + 0.807910i \(0.299401\pi\)
−0.589305 + 0.807910i \(0.700599\pi\)
\(762\) 9.71415i 0.0127482i
\(763\) 1162.26i 1.52328i
\(764\) −912.545 −1.19443
\(765\) 0 0
\(766\) 141.120i 0.184229i
\(767\) 218.242 0.284540
\(768\) 30.4587i 0.0396597i
\(769\) 1225.78i 1.59399i −0.603985 0.796996i \(-0.706421\pi\)
0.603985 0.796996i \(-0.293579\pi\)
\(770\) 0 0
\(771\) −315.481 −0.409185
\(772\) −562.072 −0.728073
\(773\) 86.0374i 0.111303i −0.998450 0.0556516i \(-0.982276\pi\)
0.998450 0.0556516i \(-0.0177236\pi\)
\(774\) −112.858 −0.145812
\(775\) 0 0
\(776\) 190.512i 0.245506i
\(777\) −346.335 −0.445734
\(778\) −352.991 −0.453715
\(779\) 407.968 0.523707
\(780\) 0 0
\(781\) −487.537 + 584.162i −0.624247 + 0.747967i
\(782\) 94.2563i 0.120532i
\(783\) 107.923 0.137833
\(784\) 227.943 0.290744
\(785\) 0 0
\(786\) −214.346 −0.272705
\(787\) 1109.97 1.41038 0.705188 0.709021i \(-0.250863\pi\)
0.705188 + 0.709021i \(0.250863\pi\)
\(788\) −722.722 −0.917160
\(789\) 96.5108i 0.122320i
\(790\) 0 0
\(791\) 317.604i 0.401523i
\(792\) −106.259 + 127.318i −0.134165 + 0.160755i
\(793\) 1930.01i 2.43381i
\(794\) 410.157i 0.516570i
\(795\) 0 0
\(796\) 1019.30 1.28053
\(797\) 532.778i 0.668480i −0.942488 0.334240i \(-0.891520\pi\)
0.942488 0.334240i \(-0.108480\pi\)
\(798\) 58.8246 0.0737150
\(799\) 793.212i 0.992756i
\(800\) 0 0
\(801\) 219.213 0.273674
\(802\) 199.856 0.249197
\(803\) 549.947 658.941i 0.684865 0.820599i
\(804\) −428.573 −0.533051
\(805\) 0 0
\(806\) 560.230 0.695075
\(807\) 80.9702i 0.100335i
\(808\) 106.920i 0.132326i
\(809\) 803.028i 0.992619i 0.868146 + 0.496309i \(0.165312\pi\)
−0.868146 + 0.496309i \(0.834688\pi\)
\(810\) 0 0
\(811\) 323.073i 0.398364i 0.979962 + 0.199182i \(0.0638285\pi\)
−0.979962 + 0.199182i \(0.936171\pi\)
\(812\) 617.963i 0.761038i
\(813\) 140.708 0.173073
\(814\) −134.267 112.058i −0.164947 0.137664i
\(815\) 0 0
\(816\) 415.653i 0.509378i
\(817\) 345.589i 0.422998i
\(818\) 462.964i 0.565971i
\(819\) 403.351 0.492492
\(820\) 0 0
\(821\) 345.071i 0.420306i −0.977668 0.210153i \(-0.932604\pi\)
0.977668 0.210153i \(-0.0673962\pi\)
\(822\) −46.7356 −0.0568560
\(823\) 61.4018i 0.0746073i 0.999304 + 0.0373036i \(0.0118769\pi\)
−0.999304 + 0.0373036i \(0.988123\pi\)
\(824\) 743.043i 0.901751i
\(825\) 0 0
\(826\) 75.4751 0.0913742
\(827\) −1331.04 −1.60948 −0.804741 0.593626i \(-0.797696\pi\)
−0.804741 + 0.593626i \(0.797696\pi\)
\(828\) 68.6654i 0.0829292i
\(829\) −177.243 −0.213803 −0.106902 0.994270i \(-0.534093\pi\)
−0.106902 + 0.994270i \(0.534093\pi\)
\(830\) 0 0
\(831\) 535.274i 0.644133i
\(832\) −408.078 −0.490478
\(833\) 461.229 0.553697
\(834\) −101.502 −0.121705
\(835\) 0 0
\(836\) −183.531 153.174i −0.219535 0.183222i
\(837\) 272.310i 0.325340i
\(838\) −217.165 −0.259147
\(839\) −477.684 −0.569349 −0.284675 0.958624i \(-0.591886\pi\)
−0.284675 + 0.958624i \(0.591886\pi\)
\(840\) 0 0
\(841\) 409.612 0.487054
\(842\) −15.6571 −0.0185951
\(843\) 530.784 0.629637
\(844\) 493.981i 0.585286i
\(845\) 0 0
\(846\) 71.8023i 0.0848727i
\(847\) 180.989 + 995.540i 0.213682 + 1.17537i
\(848\) 912.393i 1.07594i
\(849\) 858.985i 1.01176i
\(850\) 0 0
\(851\) 153.824 0.180757
\(852\) 426.263i 0.500309i
\(853\) −129.866 −0.152247 −0.0761234 0.997098i \(-0.524254\pi\)
−0.0761234 + 0.997098i \(0.524254\pi\)
\(854\) 667.459i 0.781568i
\(855\) 0 0
\(856\) −580.917 −0.678641
\(857\) 419.114 0.489048 0.244524 0.969643i \(-0.421368\pi\)
0.244524 + 0.969643i \(0.421368\pi\)
\(858\) 156.371 + 130.506i 0.182251 + 0.152105i
\(859\) −254.977 −0.296830 −0.148415 0.988925i \(-0.547417\pi\)
−0.148415 + 0.988925i \(0.547417\pi\)
\(860\) 0 0
\(861\) 967.420 1.12360
\(862\) 148.681i 0.172484i
\(863\) 59.8124i 0.0693075i 0.999399 + 0.0346538i \(0.0110328\pi\)
−0.999399 + 0.0346538i \(0.988967\pi\)
\(864\) 142.074i 0.164437i
\(865\) 0 0
\(866\) 120.368i 0.138994i
\(867\) 340.485i 0.392717i
\(868\) −1559.23 −1.79635
\(869\) 64.6790 + 53.9806i 0.0744293 + 0.0621180i
\(870\) 0 0
\(871\) 1118.14i 1.28375i
\(872\) 698.439i 0.800962i
\(873\) 113.733i 0.130278i
\(874\) −26.1268 −0.0298934
\(875\) 0 0
\(876\) 480.830i 0.548892i
\(877\) 563.009 0.641971 0.320986 0.947084i \(-0.395986\pi\)
0.320986 + 0.947084i \(0.395986\pi\)
\(878\) 44.1804i 0.0503194i
\(879\) 678.154i 0.771506i
\(880\) 0 0
\(881\) 1178.14 1.33728 0.668641 0.743586i \(-0.266876\pi\)
0.668641 + 0.743586i \(0.266876\pi\)
\(882\) 41.7509 0.0473367
\(883\) 704.399i 0.797733i 0.917009 + 0.398867i \(0.130596\pi\)
−0.917009 + 0.398867i \(0.869404\pi\)
\(884\) −1260.53 −1.42593
\(885\) 0 0
\(886\) 286.199i 0.323024i
\(887\) 1582.21 1.78378 0.891888 0.452257i \(-0.149381\pi\)
0.891888 + 0.452257i \(0.149381\pi\)
\(888\) 208.124 0.234374
\(889\) −70.5376 −0.0793448
\(890\) 0 0
\(891\) 63.4347 76.0069i 0.0711949 0.0853051i
\(892\) 889.714i 0.997438i
\(893\) 219.870 0.246214
\(894\) 104.341 0.116712
\(895\) 0 0
\(896\) −1055.71 −1.17825
\(897\) −179.147 −0.199718
\(898\) 173.980 0.193741
\(899\) 1088.47i 1.21075i
\(900\) 0 0
\(901\) 1846.17i 2.04903i
\(902\) 375.049 + 313.013i 0.415797 + 0.347021i
\(903\) 819.501i 0.907532i
\(904\) 190.859i 0.211127i
\(905\) 0 0
\(906\) 43.8845 0.0484376
\(907\) 436.018i 0.480725i −0.970683 0.240363i \(-0.922734\pi\)
0.970683 0.240363i \(-0.0772663\pi\)
\(908\) 880.260 0.969449
\(909\) 63.8292i 0.0702192i
\(910\) 0 0
\(911\) −82.7040 −0.0907838 −0.0453919 0.998969i \(-0.514454\pi\)
−0.0453919 + 0.998969i \(0.514454\pi\)
\(912\) 115.214 0.126332
\(913\) −40.1250 + 48.0774i −0.0439485 + 0.0526587i
\(914\) −124.638 −0.136365
\(915\) 0 0
\(916\) 1293.84 1.41249
\(917\) 1556.44i 1.69731i
\(918\) 76.1325i 0.0829330i
\(919\) 1713.21i 1.86421i −0.362193 0.932103i \(-0.617972\pi\)
0.362193 0.932103i \(-0.382028\pi\)
\(920\) 0 0
\(921\) 160.568i 0.174340i
\(922\) 454.132i 0.492551i
\(923\) −1112.12 −1.20489
\(924\) −435.211 363.223i −0.471007 0.393099i
\(925\) 0 0
\(926\) 48.1695i 0.0520189i
\(927\) 443.584i 0.478515i
\(928\) 567.891i 0.611952i
\(929\) −537.309 −0.578374 −0.289187 0.957273i \(-0.593385\pi\)
−0.289187 + 0.957273i \(0.593385\pi\)
\(930\) 0 0
\(931\) 127.848i 0.137323i
\(932\) 937.034 1.00540
\(933\) 767.041i 0.822124i
\(934\) 266.963i 0.285828i
\(935\) 0 0
\(936\) −242.386 −0.258960
\(937\) 321.591 0.343213 0.171607 0.985166i \(-0.445104\pi\)
0.171607 + 0.985166i \(0.445104\pi\)
\(938\) 386.690i 0.412249i
\(939\) −169.711 −0.180735
\(940\) 0 0
\(941\) 880.847i 0.936076i −0.883708 0.468038i \(-0.844961\pi\)
0.883708 0.468038i \(-0.155039\pi\)
\(942\) 312.927 0.332194
\(943\) −429.677 −0.455649
\(944\) 147.826 0.156595
\(945\) 0 0
\(946\) 265.153 317.704i 0.280289 0.335839i
\(947\) 227.350i 0.240074i −0.992769 0.120037i \(-0.961699\pi\)
0.992769 0.120037i \(-0.0383013\pi\)
\(948\) −47.1963 −0.0497851
\(949\) 1254.48 1.32190
\(950\) 0 0
\(951\) −751.356 −0.790070
\(952\) −926.028 −0.972718
\(953\) −46.3722 −0.0486592 −0.0243296 0.999704i \(-0.507745\pi\)
−0.0243296 + 0.999704i \(0.507745\pi\)
\(954\) 167.117i 0.175175i
\(955\) 0 0
\(956\) 1297.82i 1.35755i
\(957\) −253.559 + 303.812i −0.264952 + 0.317463i
\(958\) 412.644i 0.430735i
\(959\) 339.362i 0.353871i
\(960\) 0 0
\(961\) 1785.39 1.85785
\(962\) 255.615i 0.265712i
\(963\) 346.797 0.360122
\(964\) 532.404i 0.552286i
\(965\) 0 0
\(966\) −61.9549 −0.0641355
\(967\) −264.144 −0.273158 −0.136579 0.990629i \(-0.543611\pi\)
−0.136579 + 0.990629i \(0.543611\pi\)
\(968\) −108.762 598.252i −0.112357 0.618029i
\(969\) 233.129 0.240587
\(970\) 0 0
\(971\) 666.134 0.686029 0.343015 0.939330i \(-0.388552\pi\)
0.343015 + 0.939330i \(0.388552\pi\)
\(972\) 55.4622i 0.0570599i
\(973\) 737.037i 0.757489i
\(974\) 358.447i 0.368015i
\(975\) 0 0
\(976\) 1307.29i 1.33944i
\(977\) 1339.01i 1.37053i 0.728293 + 0.685266i \(0.240314\pi\)
−0.728293 + 0.685266i \(0.759686\pi\)
\(978\) 147.877 0.151203
\(979\) −515.026 + 617.100i −0.526074 + 0.630337i
\(980\) 0 0
\(981\) 416.956i 0.425032i
\(982\) 319.664i 0.325523i
\(983\) 1241.99i 1.26347i −0.775185 0.631735i \(-0.782343\pi\)
0.775185 0.631735i \(-0.217657\pi\)
\(984\) −581.353 −0.590806
\(985\) 0 0
\(986\) 304.314i 0.308635i
\(987\) 521.380 0.528247
\(988\) 349.404i 0.353647i
\(989\) 363.979i 0.368028i
\(990\) 0 0
\(991\) 886.745 0.894798 0.447399 0.894334i \(-0.352350\pi\)
0.447399 + 0.894334i \(0.352350\pi\)
\(992\) 1432.89 1.44444
\(993\) 468.528i 0.471831i
\(994\) −384.605 −0.386927
\(995\) 0 0
\(996\) 35.0821i 0.0352230i
\(997\) 20.1579 0.0202185 0.0101093 0.999949i \(-0.496782\pi\)
0.0101093 + 0.999949i \(0.496782\pi\)
\(998\) 376.525 0.377280
\(999\) −124.246 −0.124371
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.3.h.b.274.13 32
5.2 odd 4 825.3.b.d.76.7 16
5.3 odd 4 165.3.b.a.76.10 yes 16
5.4 even 2 inner 825.3.h.b.274.19 32
11.10 odd 2 inner 825.3.h.b.274.20 32
15.8 even 4 495.3.b.c.406.7 16
20.3 even 4 2640.3.c.c.241.2 16
55.32 even 4 825.3.b.d.76.10 16
55.43 even 4 165.3.b.a.76.7 16
55.54 odd 2 inner 825.3.h.b.274.14 32
165.98 odd 4 495.3.b.c.406.10 16
220.43 odd 4 2640.3.c.c.241.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.3.b.a.76.7 16 55.43 even 4
165.3.b.a.76.10 yes 16 5.3 odd 4
495.3.b.c.406.7 16 15.8 even 4
495.3.b.c.406.10 16 165.98 odd 4
825.3.b.d.76.7 16 5.2 odd 4
825.3.b.d.76.10 16 55.32 even 4
825.3.h.b.274.13 32 1.1 even 1 trivial
825.3.h.b.274.14 32 55.54 odd 2 inner
825.3.h.b.274.19 32 5.4 even 2 inner
825.3.h.b.274.20 32 11.10 odd 2 inner
2640.3.c.c.241.2 16 20.3 even 4
2640.3.c.c.241.3 16 220.43 odd 4