Properties

Label 495.3.b.c.406.7
Level $495$
Weight $3$
Character 495.406
Analytic conductor $13.488$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(406,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.406"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 500x^{12} + 3364x^{10} + 11310x^{8} + 17932x^{6} + 12708x^{4} + 3244x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 406.7
Root \(-0.664903i\) of defining polynomial
Character \(\chi\) \(=\) 495.406
Dual form 495.3.b.c.406.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.664903i q^{2} +3.55790 q^{4} +2.23607 q^{5} +8.36247i q^{7} -5.02527i q^{8} -1.48677i q^{10} +(-7.04830 + 8.44521i) q^{11} +16.0778i q^{13} +5.56023 q^{14} +10.8903 q^{16} +22.0359i q^{17} -6.10810i q^{19} +7.95572 q^{20} +(5.61524 + 4.68643i) q^{22} -6.43313 q^{23} +5.00000 q^{25} +10.6902 q^{26} +29.7529i q^{28} -20.7699i q^{29} -52.4060 q^{31} -27.3421i q^{32} +14.6517 q^{34} +18.6990i q^{35} +23.9112 q^{37} -4.06129 q^{38} -11.2368i q^{40} +66.7913i q^{41} -56.5789i q^{43} +(-25.0772 + 30.0472i) q^{44} +4.27741i q^{46} +35.9964 q^{47} -20.9309 q^{49} -3.32451i q^{50} +57.2034i q^{52} +83.7803 q^{53} +(-15.7605 + 18.8841i) q^{55} +42.0237 q^{56} -13.8099 q^{58} +13.5741 q^{59} -120.042i q^{61} +34.8449i q^{62} +25.3814 q^{64} +35.9511i q^{65} +69.5457 q^{67} +78.4015i q^{68} +12.4330 q^{70} +69.1708 q^{71} +78.0255i q^{73} -15.8986i q^{74} -21.7320i q^{76} +(-70.6228 - 58.9412i) q^{77} -7.65867i q^{79} +24.3515 q^{80} +44.4097 q^{82} +5.69286i q^{83} +49.2737i q^{85} -37.6195 q^{86} +(42.4394 + 35.4196i) q^{88} -73.0710 q^{89} -134.450 q^{91} -22.8885 q^{92} -23.9341i q^{94} -13.6581i q^{95} -37.9109 q^{97} +13.9170i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{4} + 28 q^{11} - 16 q^{16} - 40 q^{20} - 20 q^{22} - 56 q^{23} + 80 q^{25} + 88 q^{26} - 96 q^{31} - 200 q^{34} + 184 q^{37} - 296 q^{38} - 300 q^{44} + 200 q^{47} - 496 q^{49} + 80 q^{53} + 20 q^{55}+ \cdots - 144 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.664903i 0.332451i −0.986088 0.166226i \(-0.946842\pi\)
0.986088 0.166226i \(-0.0531580\pi\)
\(3\) 0 0
\(4\) 3.55790 0.889476
\(5\) 2.23607 0.447214
\(6\) 0 0
\(7\) 8.36247i 1.19464i 0.802004 + 0.597319i \(0.203767\pi\)
−0.802004 + 0.597319i \(0.796233\pi\)
\(8\) 5.02527i 0.628159i
\(9\) 0 0
\(10\) 1.48677i 0.148677i
\(11\) −7.04830 + 8.44521i −0.640754 + 0.767746i
\(12\) 0 0
\(13\) 16.0778i 1.23676i 0.785881 + 0.618378i \(0.212210\pi\)
−0.785881 + 0.618378i \(0.787790\pi\)
\(14\) 5.56023 0.397159
\(15\) 0 0
\(16\) 10.8903 0.680644
\(17\) 22.0359i 1.29623i 0.761544 + 0.648114i \(0.224442\pi\)
−0.761544 + 0.648114i \(0.775558\pi\)
\(18\) 0 0
\(19\) 6.10810i 0.321479i −0.986997 0.160739i \(-0.948612\pi\)
0.986997 0.160739i \(-0.0513879\pi\)
\(20\) 7.95572 0.397786
\(21\) 0 0
\(22\) 5.61524 + 4.68643i 0.255238 + 0.213020i
\(23\) −6.43313 −0.279701 −0.139851 0.990173i \(-0.544662\pi\)
−0.139851 + 0.990173i \(0.544662\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 10.6902 0.411161
\(27\) 0 0
\(28\) 29.7529i 1.06260i
\(29\) 20.7699i 0.716202i −0.933683 0.358101i \(-0.883424\pi\)
0.933683 0.358101i \(-0.116576\pi\)
\(30\) 0 0
\(31\) −52.4060 −1.69052 −0.845258 0.534358i \(-0.820554\pi\)
−0.845258 + 0.534358i \(0.820554\pi\)
\(32\) 27.3421i 0.854440i
\(33\) 0 0
\(34\) 14.6517 0.430932
\(35\) 18.6990i 0.534258i
\(36\) 0 0
\(37\) 23.9112 0.646249 0.323124 0.946356i \(-0.395267\pi\)
0.323124 + 0.946356i \(0.395267\pi\)
\(38\) −4.06129 −0.106876
\(39\) 0 0
\(40\) 11.2368i 0.280921i
\(41\) 66.7913i 1.62906i 0.580124 + 0.814528i \(0.303004\pi\)
−0.580124 + 0.814528i \(0.696996\pi\)
\(42\) 0 0
\(43\) 56.5789i 1.31579i −0.753110 0.657894i \(-0.771447\pi\)
0.753110 0.657894i \(-0.228553\pi\)
\(44\) −25.0772 + 30.0472i −0.569936 + 0.682892i
\(45\) 0 0
\(46\) 4.27741i 0.0929871i
\(47\) 35.9964 0.765881 0.382940 0.923773i \(-0.374911\pi\)
0.382940 + 0.923773i \(0.374911\pi\)
\(48\) 0 0
\(49\) −20.9309 −0.427160
\(50\) 3.32451i 0.0664903i
\(51\) 0 0
\(52\) 57.2034i 1.10006i
\(53\) 83.7803 1.58076 0.790381 0.612616i \(-0.209883\pi\)
0.790381 + 0.612616i \(0.209883\pi\)
\(54\) 0 0
\(55\) −15.7605 + 18.8841i −0.286554 + 0.343346i
\(56\) 42.0237 0.750422
\(57\) 0 0
\(58\) −13.8099 −0.238102
\(59\) 13.5741 0.230070 0.115035 0.993361i \(-0.463302\pi\)
0.115035 + 0.993361i \(0.463302\pi\)
\(60\) 0 0
\(61\) 120.042i 1.96790i −0.178455 0.983948i \(-0.557110\pi\)
0.178455 0.983948i \(-0.442890\pi\)
\(62\) 34.8449i 0.562015i
\(63\) 0 0
\(64\) 25.3814 0.396584
\(65\) 35.9511i 0.553094i
\(66\) 0 0
\(67\) 69.5457 1.03799 0.518997 0.854776i \(-0.326305\pi\)
0.518997 + 0.854776i \(0.326305\pi\)
\(68\) 78.4015i 1.15296i
\(69\) 0 0
\(70\) 12.4330 0.177615
\(71\) 69.1708 0.974237 0.487119 0.873336i \(-0.338048\pi\)
0.487119 + 0.873336i \(0.338048\pi\)
\(72\) 0 0
\(73\) 78.0255i 1.06884i 0.845218 + 0.534421i \(0.179470\pi\)
−0.845218 + 0.534421i \(0.820530\pi\)
\(74\) 15.8986i 0.214846i
\(75\) 0 0
\(76\) 21.7320i 0.285948i
\(77\) −70.6228 58.9412i −0.917179 0.765470i
\(78\) 0 0
\(79\) 7.65867i 0.0969451i −0.998825 0.0484726i \(-0.984565\pi\)
0.998825 0.0484726i \(-0.0154353\pi\)
\(80\) 24.3515 0.304393
\(81\) 0 0
\(82\) 44.4097 0.541582
\(83\) 5.69286i 0.0685887i 0.999412 + 0.0342943i \(0.0109184\pi\)
−0.999412 + 0.0342943i \(0.989082\pi\)
\(84\) 0 0
\(85\) 49.2737i 0.579690i
\(86\) −37.6195 −0.437436
\(87\) 0 0
\(88\) 42.4394 + 35.4196i 0.482266 + 0.402495i
\(89\) −73.0710 −0.821023 −0.410512 0.911855i \(-0.634650\pi\)
−0.410512 + 0.911855i \(0.634650\pi\)
\(90\) 0 0
\(91\) −134.450 −1.47748
\(92\) −22.8885 −0.248788
\(93\) 0 0
\(94\) 23.9341i 0.254618i
\(95\) 13.6581i 0.143770i
\(96\) 0 0
\(97\) −37.9109 −0.390834 −0.195417 0.980720i \(-0.562606\pi\)
−0.195417 + 0.980720i \(0.562606\pi\)
\(98\) 13.9170i 0.142010i
\(99\) 0 0
\(100\) 17.7895 0.177895
\(101\) 21.2764i 0.210658i 0.994437 + 0.105329i \(0.0335895\pi\)
−0.994437 + 0.105329i \(0.966411\pi\)
\(102\) 0 0
\(103\) 147.861 1.43555 0.717773 0.696277i \(-0.245162\pi\)
0.717773 + 0.696277i \(0.245162\pi\)
\(104\) 80.7954 0.776879
\(105\) 0 0
\(106\) 55.7058i 0.525526i
\(107\) 115.599i 1.08037i −0.841548 0.540183i \(-0.818355\pi\)
0.841548 0.540183i \(-0.181645\pi\)
\(108\) 0 0
\(109\) 138.985i 1.27510i 0.770411 + 0.637548i \(0.220051\pi\)
−0.770411 + 0.637548i \(0.779949\pi\)
\(110\) 12.5561 + 10.4792i 0.114146 + 0.0952653i
\(111\) 0 0
\(112\) 91.0698i 0.813123i
\(113\) 37.9798 0.336104 0.168052 0.985778i \(-0.446252\pi\)
0.168052 + 0.985778i \(0.446252\pi\)
\(114\) 0 0
\(115\) −14.3849 −0.125086
\(116\) 73.8972i 0.637045i
\(117\) 0 0
\(118\) 9.02546i 0.0764869i
\(119\) −184.274 −1.54852
\(120\) 0 0
\(121\) −21.6430 119.049i −0.178868 0.983873i
\(122\) −79.8160 −0.654230
\(123\) 0 0
\(124\) −186.456 −1.50367
\(125\) 11.1803 0.0894427
\(126\) 0 0
\(127\) 8.43502i 0.0664175i −0.999448 0.0332087i \(-0.989427\pi\)
0.999448 0.0332087i \(-0.0105726\pi\)
\(128\) 126.244i 0.986285i
\(129\) 0 0
\(130\) 23.9040 0.183877
\(131\) 186.122i 1.42078i −0.703811 0.710388i \(-0.748520\pi\)
0.703811 0.710388i \(-0.251480\pi\)
\(132\) 0 0
\(133\) 51.0788 0.384051
\(134\) 46.2411i 0.345083i
\(135\) 0 0
\(136\) 110.736 0.814237
\(137\) −40.5816 −0.296216 −0.148108 0.988971i \(-0.547318\pi\)
−0.148108 + 0.988971i \(0.547318\pi\)
\(138\) 0 0
\(139\) 88.1363i 0.634074i −0.948413 0.317037i \(-0.897312\pi\)
0.948413 0.317037i \(-0.102688\pi\)
\(140\) 66.5294i 0.475210i
\(141\) 0 0
\(142\) 45.9919i 0.323886i
\(143\) −135.781 113.321i −0.949514 0.792457i
\(144\) 0 0
\(145\) 46.4428i 0.320295i
\(146\) 51.8793 0.355338
\(147\) 0 0
\(148\) 85.0738 0.574823
\(149\) 90.6013i 0.608062i −0.952662 0.304031i \(-0.901667\pi\)
0.952662 0.304031i \(-0.0983327\pi\)
\(150\) 0 0
\(151\) 38.1059i 0.252357i −0.992008 0.126178i \(-0.959729\pi\)
0.992008 0.126178i \(-0.0402712\pi\)
\(152\) −30.6948 −0.201940
\(153\) 0 0
\(154\) −39.1901 + 46.9573i −0.254481 + 0.304917i
\(155\) −117.183 −0.756022
\(156\) 0 0
\(157\) −271.722 −1.73071 −0.865356 0.501157i \(-0.832908\pi\)
−0.865356 + 0.501157i \(0.832908\pi\)
\(158\) −5.09227 −0.0322295
\(159\) 0 0
\(160\) 61.1387i 0.382117i
\(161\) 53.7968i 0.334142i
\(162\) 0 0
\(163\) 128.405 0.787759 0.393879 0.919162i \(-0.371133\pi\)
0.393879 + 0.919162i \(0.371133\pi\)
\(164\) 237.637i 1.44901i
\(165\) 0 0
\(166\) 3.78520 0.0228024
\(167\) 172.263i 1.03152i −0.856734 0.515758i \(-0.827510\pi\)
0.856734 0.515758i \(-0.172490\pi\)
\(168\) 0 0
\(169\) −89.4964 −0.529565
\(170\) 32.7622 0.192719
\(171\) 0 0
\(172\) 201.302i 1.17036i
\(173\) 125.237i 0.723914i 0.932195 + 0.361957i \(0.117891\pi\)
−0.932195 + 0.361957i \(0.882109\pi\)
\(174\) 0 0
\(175\) 41.8123i 0.238928i
\(176\) −76.7581 + 91.9709i −0.436126 + 0.522562i
\(177\) 0 0
\(178\) 48.5851i 0.272950i
\(179\) −75.0674 −0.419371 −0.209685 0.977769i \(-0.567244\pi\)
−0.209685 + 0.977769i \(0.567244\pi\)
\(180\) 0 0
\(181\) −285.524 −1.57748 −0.788740 0.614727i \(-0.789266\pi\)
−0.788740 + 0.614727i \(0.789266\pi\)
\(182\) 89.3963i 0.491189i
\(183\) 0 0
\(184\) 32.3282i 0.175697i
\(185\) 53.4671 0.289011
\(186\) 0 0
\(187\) −186.097 155.315i −0.995173 0.830563i
\(188\) 128.072 0.681233
\(189\) 0 0
\(190\) −9.08132 −0.0477964
\(191\) −256.484 −1.34285 −0.671423 0.741074i \(-0.734317\pi\)
−0.671423 + 0.741074i \(0.734317\pi\)
\(192\) 0 0
\(193\) 157.978i 0.818541i 0.912413 + 0.409271i \(0.134217\pi\)
−0.912413 + 0.409271i \(0.865783\pi\)
\(194\) 25.2070i 0.129933i
\(195\) 0 0
\(196\) −74.4700 −0.379949
\(197\) 203.131i 1.03112i 0.856852 + 0.515562i \(0.172417\pi\)
−0.856852 + 0.515562i \(0.827583\pi\)
\(198\) 0 0
\(199\) 286.490 1.43965 0.719823 0.694158i \(-0.244223\pi\)
0.719823 + 0.694158i \(0.244223\pi\)
\(200\) 25.1264i 0.125632i
\(201\) 0 0
\(202\) 14.1467 0.0700334
\(203\) 173.687 0.855603
\(204\) 0 0
\(205\) 149.350i 0.728536i
\(206\) 98.3133i 0.477249i
\(207\) 0 0
\(208\) 175.092i 0.841790i
\(209\) 51.5841 + 43.0517i 0.246814 + 0.205989i
\(210\) 0 0
\(211\) 138.840i 0.658012i 0.944328 + 0.329006i \(0.106714\pi\)
−0.944328 + 0.329006i \(0.893286\pi\)
\(212\) 298.082 1.40605
\(213\) 0 0
\(214\) −76.8621 −0.359169
\(215\) 126.514i 0.588438i
\(216\) 0 0
\(217\) 438.244i 2.01956i
\(218\) 92.4117 0.423907
\(219\) 0 0
\(220\) −56.0743 + 67.1877i −0.254883 + 0.305398i
\(221\) −354.289 −1.60312
\(222\) 0 0
\(223\) −250.067 −1.12138 −0.560688 0.828027i \(-0.689463\pi\)
−0.560688 + 0.828027i \(0.689463\pi\)
\(224\) 228.647 1.02075
\(225\) 0 0
\(226\) 25.2528i 0.111738i
\(227\) 247.410i 1.08991i −0.838465 0.544955i \(-0.816547\pi\)
0.838465 0.544955i \(-0.183453\pi\)
\(228\) 0 0
\(229\) 363.652 1.58800 0.794000 0.607918i \(-0.207995\pi\)
0.794000 + 0.607918i \(0.207995\pi\)
\(230\) 9.56457i 0.0415851i
\(231\) 0 0
\(232\) −104.374 −0.449889
\(233\) 263.367i 1.13033i 0.824978 + 0.565165i \(0.191188\pi\)
−0.824978 + 0.565165i \(0.808812\pi\)
\(234\) 0 0
\(235\) 80.4904 0.342512
\(236\) 48.2954 0.204641
\(237\) 0 0
\(238\) 122.524i 0.514808i
\(239\) 364.771i 1.52624i −0.646257 0.763120i \(-0.723667\pi\)
0.646257 0.763120i \(-0.276333\pi\)
\(240\) 0 0
\(241\) 149.640i 0.620912i −0.950588 0.310456i \(-0.899518\pi\)
0.950588 0.310456i \(-0.100482\pi\)
\(242\) −79.1558 + 14.3905i −0.327090 + 0.0594649i
\(243\) 0 0
\(244\) 427.097i 1.75040i
\(245\) −46.8028 −0.191032
\(246\) 0 0
\(247\) 98.2049 0.397591
\(248\) 263.354i 1.06191i
\(249\) 0 0
\(250\) 7.43384i 0.0297353i
\(251\) 118.965 0.473962 0.236981 0.971514i \(-0.423842\pi\)
0.236981 + 0.971514i \(0.423842\pi\)
\(252\) 0 0
\(253\) 45.3426 54.3291i 0.179220 0.214740i
\(254\) −5.60847 −0.0220806
\(255\) 0 0
\(256\) 17.5853 0.0686927
\(257\) 182.143 0.708729 0.354364 0.935107i \(-0.384697\pi\)
0.354364 + 0.935107i \(0.384697\pi\)
\(258\) 0 0
\(259\) 199.957i 0.772034i
\(260\) 127.911i 0.491964i
\(261\) 0 0
\(262\) −123.753 −0.472339
\(263\) 55.7205i 0.211865i −0.994373 0.105933i \(-0.966217\pi\)
0.994373 0.105933i \(-0.0337828\pi\)
\(264\) 0 0
\(265\) 187.339 0.706938
\(266\) 33.9624i 0.127678i
\(267\) 0 0
\(268\) 247.437 0.923272
\(269\) 46.7482 0.173785 0.0868925 0.996218i \(-0.472306\pi\)
0.0868925 + 0.996218i \(0.472306\pi\)
\(270\) 0 0
\(271\) 81.2380i 0.299771i 0.988703 + 0.149886i \(0.0478906\pi\)
−0.988703 + 0.149886i \(0.952109\pi\)
\(272\) 239.977i 0.882269i
\(273\) 0 0
\(274\) 26.9828i 0.0984774i
\(275\) −35.2415 + 42.2260i −0.128151 + 0.153549i
\(276\) 0 0
\(277\) 309.041i 1.11567i −0.829952 0.557835i \(-0.811632\pi\)
0.829952 0.557835i \(-0.188368\pi\)
\(278\) −58.6020 −0.210799
\(279\) 0 0
\(280\) 93.9678 0.335599
\(281\) 306.448i 1.09056i −0.838253 0.545282i \(-0.816423\pi\)
0.838253 0.545282i \(-0.183577\pi\)
\(282\) 0 0
\(283\) 495.935i 1.75242i 0.481929 + 0.876210i \(0.339936\pi\)
−0.481929 + 0.876210i \(0.660064\pi\)
\(284\) 246.103 0.866561
\(285\) 0 0
\(286\) −75.3476 + 90.2808i −0.263453 + 0.315667i
\(287\) −558.540 −1.94613
\(288\) 0 0
\(289\) −196.579 −0.680205
\(290\) −30.8800 −0.106483
\(291\) 0 0
\(292\) 277.607i 0.950710i
\(293\) 391.532i 1.33629i 0.744032 + 0.668144i \(0.232911\pi\)
−0.744032 + 0.668144i \(0.767089\pi\)
\(294\) 0 0
\(295\) 30.3526 0.102890
\(296\) 120.160i 0.405947i
\(297\) 0 0
\(298\) −60.2410 −0.202151
\(299\) 103.431i 0.345922i
\(300\) 0 0
\(301\) 473.139 1.57189
\(302\) −25.3367 −0.0838964
\(303\) 0 0
\(304\) 66.5190i 0.218813i
\(305\) 268.421i 0.880070i
\(306\) 0 0
\(307\) 92.7037i 0.301966i 0.988536 + 0.150983i \(0.0482439\pi\)
−0.988536 + 0.150983i \(0.951756\pi\)
\(308\) −251.269 209.707i −0.815809 0.680867i
\(309\) 0 0
\(310\) 77.9156i 0.251341i
\(311\) −442.851 −1.42396 −0.711980 0.702200i \(-0.752201\pi\)
−0.711980 + 0.702200i \(0.752201\pi\)
\(312\) 0 0
\(313\) 97.9824 0.313043 0.156521 0.987675i \(-0.449972\pi\)
0.156521 + 0.987675i \(0.449972\pi\)
\(314\) 180.669i 0.575378i
\(315\) 0 0
\(316\) 27.2488i 0.0862304i
\(317\) 433.796 1.36844 0.684221 0.729275i \(-0.260143\pi\)
0.684221 + 0.729275i \(0.260143\pi\)
\(318\) 0 0
\(319\) 175.406 + 146.392i 0.549862 + 0.458910i
\(320\) 56.7545 0.177358
\(321\) 0 0
\(322\) −35.7697 −0.111086
\(323\) 134.597 0.416710
\(324\) 0 0
\(325\) 80.3891i 0.247351i
\(326\) 85.3766i 0.261891i
\(327\) 0 0
\(328\) 335.644 1.02331
\(329\) 301.019i 0.914950i
\(330\) 0 0
\(331\) −270.505 −0.817235 −0.408618 0.912706i \(-0.633989\pi\)
−0.408618 + 0.912706i \(0.633989\pi\)
\(332\) 20.2547i 0.0610080i
\(333\) 0 0
\(334\) −114.538 −0.342929
\(335\) 155.509 0.464205
\(336\) 0 0
\(337\) 80.7287i 0.239551i 0.992801 + 0.119775i \(0.0382175\pi\)
−0.992801 + 0.119775i \(0.961783\pi\)
\(338\) 59.5064i 0.176054i
\(339\) 0 0
\(340\) 175.311i 0.515621i
\(341\) 369.373 442.580i 1.08321 1.29789i
\(342\) 0 0
\(343\) 234.727i 0.684336i
\(344\) −284.324 −0.826524
\(345\) 0 0
\(346\) 83.2705 0.240666
\(347\) 105.638i 0.304433i 0.988347 + 0.152217i \(0.0486411\pi\)
−0.988347 + 0.152217i \(0.951359\pi\)
\(348\) 0 0
\(349\) 515.712i 1.47769i −0.673878 0.738843i \(-0.735373\pi\)
0.673878 0.738843i \(-0.264627\pi\)
\(350\) 27.8011 0.0794318
\(351\) 0 0
\(352\) 230.909 + 192.715i 0.655993 + 0.547486i
\(353\) 467.858 1.32538 0.662688 0.748896i \(-0.269416\pi\)
0.662688 + 0.748896i \(0.269416\pi\)
\(354\) 0 0
\(355\) 154.671 0.435692
\(356\) −259.980 −0.730280
\(357\) 0 0
\(358\) 49.9125i 0.139420i
\(359\) 274.186i 0.763751i 0.924214 + 0.381875i \(0.124722\pi\)
−0.924214 + 0.381875i \(0.875278\pi\)
\(360\) 0 0
\(361\) 323.691 0.896651
\(362\) 189.846i 0.524435i
\(363\) 0 0
\(364\) −478.361 −1.31418
\(365\) 174.470i 0.478001i
\(366\) 0 0
\(367\) −285.758 −0.778631 −0.389316 0.921104i \(-0.627288\pi\)
−0.389316 + 0.921104i \(0.627288\pi\)
\(368\) −70.0587 −0.190377
\(369\) 0 0
\(370\) 35.5504i 0.0960822i
\(371\) 700.610i 1.88844i
\(372\) 0 0
\(373\) 18.2467i 0.0489188i −0.999701 0.0244594i \(-0.992214\pi\)
0.999701 0.0244594i \(-0.00778644\pi\)
\(374\) −103.270 + 123.737i −0.276122 + 0.330847i
\(375\) 0 0
\(376\) 180.892i 0.481095i
\(377\) 333.934 0.885767
\(378\) 0 0
\(379\) −336.559 −0.888018 −0.444009 0.896022i \(-0.646444\pi\)
−0.444009 + 0.896022i \(0.646444\pi\)
\(380\) 48.5943i 0.127880i
\(381\) 0 0
\(382\) 170.537i 0.446431i
\(383\) 212.241 0.554154 0.277077 0.960848i \(-0.410634\pi\)
0.277077 + 0.960848i \(0.410634\pi\)
\(384\) 0 0
\(385\) −157.917 131.796i −0.410175 0.342328i
\(386\) 105.040 0.272125
\(387\) 0 0
\(388\) −134.883 −0.347637
\(389\) 530.891 1.36476 0.682379 0.730999i \(-0.260946\pi\)
0.682379 + 0.730999i \(0.260946\pi\)
\(390\) 0 0
\(391\) 141.760i 0.362556i
\(392\) 105.183i 0.268324i
\(393\) 0 0
\(394\) 135.063 0.342798
\(395\) 17.1253i 0.0433552i
\(396\) 0 0
\(397\) −616.868 −1.55382 −0.776911 0.629610i \(-0.783215\pi\)
−0.776911 + 0.629610i \(0.783215\pi\)
\(398\) 190.488i 0.478612i
\(399\) 0 0
\(400\) 54.4515 0.136129
\(401\) 300.579 0.749574 0.374787 0.927111i \(-0.377716\pi\)
0.374787 + 0.927111i \(0.377716\pi\)
\(402\) 0 0
\(403\) 842.575i 2.09076i
\(404\) 75.6994i 0.187375i
\(405\) 0 0
\(406\) 115.485i 0.284446i
\(407\) −168.533 + 201.935i −0.414087 + 0.496155i
\(408\) 0 0
\(409\) 696.288i 1.70242i 0.524828 + 0.851208i \(0.324130\pi\)
−0.524828 + 0.851208i \(0.675870\pi\)
\(410\) 99.3032 0.242203
\(411\) 0 0
\(412\) 526.076 1.27688
\(413\) 113.513i 0.274850i
\(414\) 0 0
\(415\) 12.7296i 0.0306738i
\(416\) 439.601 1.05673
\(417\) 0 0
\(418\) 28.6252 34.2984i 0.0684813 0.0820537i
\(419\) 326.612 0.779504 0.389752 0.920920i \(-0.372561\pi\)
0.389752 + 0.920920i \(0.372561\pi\)
\(420\) 0 0
\(421\) 23.5479 0.0559333 0.0279666 0.999609i \(-0.491097\pi\)
0.0279666 + 0.999609i \(0.491097\pi\)
\(422\) 92.3154 0.218757
\(423\) 0 0
\(424\) 421.019i 0.992969i
\(425\) 110.179i 0.259245i
\(426\) 0 0
\(427\) 1003.84 2.35092
\(428\) 411.290i 0.960959i
\(429\) 0 0
\(430\) −84.1197 −0.195627
\(431\) 223.614i 0.518825i 0.965767 + 0.259413i \(0.0835290\pi\)
−0.965767 + 0.259413i \(0.916471\pi\)
\(432\) 0 0
\(433\) −181.032 −0.418087 −0.209044 0.977906i \(-0.567035\pi\)
−0.209044 + 0.977906i \(0.567035\pi\)
\(434\) −291.389 −0.671404
\(435\) 0 0
\(436\) 494.497i 1.13417i
\(437\) 39.2942i 0.0899181i
\(438\) 0 0
\(439\) 66.4465i 0.151359i −0.997132 0.0756794i \(-0.975887\pi\)
0.997132 0.0756794i \(-0.0241125\pi\)
\(440\) 94.8975 + 79.2006i 0.215676 + 0.180001i
\(441\) 0 0
\(442\) 235.567i 0.532958i
\(443\) −430.438 −0.971642 −0.485821 0.874058i \(-0.661479\pi\)
−0.485821 + 0.874058i \(0.661479\pi\)
\(444\) 0 0
\(445\) −163.392 −0.367173
\(446\) 166.270i 0.372803i
\(447\) 0 0
\(448\) 212.251i 0.473775i
\(449\) −261.662 −0.582766 −0.291383 0.956607i \(-0.594115\pi\)
−0.291383 + 0.956607i \(0.594115\pi\)
\(450\) 0 0
\(451\) −564.066 470.765i −1.25070 1.04382i
\(452\) 135.128 0.298957
\(453\) 0 0
\(454\) −164.503 −0.362342
\(455\) −300.640 −0.660747
\(456\) 0 0
\(457\) 187.453i 0.410181i −0.978743 0.205090i \(-0.934251\pi\)
0.978743 0.205090i \(-0.0657488\pi\)
\(458\) 241.793i 0.527932i
\(459\) 0 0
\(460\) −51.1802 −0.111261
\(461\) 683.006i 1.48157i 0.671740 + 0.740787i \(0.265547\pi\)
−0.671740 + 0.740787i \(0.734453\pi\)
\(462\) 0 0
\(463\) 72.4460 0.156471 0.0782354 0.996935i \(-0.475071\pi\)
0.0782354 + 0.996935i \(0.475071\pi\)
\(464\) 226.190i 0.487479i
\(465\) 0 0
\(466\) 175.113 0.375780
\(467\) −401.507 −0.859759 −0.429879 0.902886i \(-0.641444\pi\)
−0.429879 + 0.902886i \(0.641444\pi\)
\(468\) 0 0
\(469\) 581.573i 1.24003i
\(470\) 53.5183i 0.113869i
\(471\) 0 0
\(472\) 68.2135i 0.144520i
\(473\) 477.820 + 398.785i 1.01019 + 0.843097i
\(474\) 0 0
\(475\) 30.5405i 0.0642958i
\(476\) −655.630 −1.37737
\(477\) 0 0
\(478\) −242.537 −0.507400
\(479\) 620.609i 1.29563i −0.761796 0.647817i \(-0.775682\pi\)
0.761796 0.647817i \(-0.224318\pi\)
\(480\) 0 0
\(481\) 384.440i 0.799252i
\(482\) −99.4958 −0.206423
\(483\) 0 0
\(484\) −77.0038 423.564i −0.159099 0.875132i
\(485\) −84.7713 −0.174786
\(486\) 0 0
\(487\) −539.097 −1.10697 −0.553487 0.832857i \(-0.686703\pi\)
−0.553487 + 0.832857i \(0.686703\pi\)
\(488\) −603.242 −1.23615
\(489\) 0 0
\(490\) 31.1193i 0.0635088i
\(491\) 480.768i 0.979161i −0.871958 0.489580i \(-0.837150\pi\)
0.871958 0.489580i \(-0.162850\pi\)
\(492\) 0 0
\(493\) 457.682 0.928361
\(494\) 65.2967i 0.132180i
\(495\) 0 0
\(496\) −570.717 −1.15064
\(497\) 578.439i 1.16386i
\(498\) 0 0
\(499\) 566.286 1.13484 0.567421 0.823428i \(-0.307941\pi\)
0.567421 + 0.823428i \(0.307941\pi\)
\(500\) 39.7786 0.0795572
\(501\) 0 0
\(502\) 79.0998i 0.157569i
\(503\) 622.513i 1.23760i 0.785549 + 0.618800i \(0.212381\pi\)
−0.785549 + 0.618800i \(0.787619\pi\)
\(504\) 0 0
\(505\) 47.5755i 0.0942089i
\(506\) −36.1236 30.1484i −0.0713905 0.0595819i
\(507\) 0 0
\(508\) 30.0110i 0.0590768i
\(509\) −506.799 −0.995677 −0.497838 0.867270i \(-0.665873\pi\)
−0.497838 + 0.867270i \(0.665873\pi\)
\(510\) 0 0
\(511\) −652.485 −1.27688
\(512\) 516.670i 1.00912i
\(513\) 0 0
\(514\) 121.108i 0.235618i
\(515\) 330.628 0.641996
\(516\) 0 0
\(517\) −253.713 + 303.997i −0.490741 + 0.588002i
\(518\) 132.952 0.256664
\(519\) 0 0
\(520\) 180.664 0.347431
\(521\) 486.736 0.934233 0.467117 0.884196i \(-0.345293\pi\)
0.467117 + 0.884196i \(0.345293\pi\)
\(522\) 0 0
\(523\) 390.347i 0.746362i −0.927759 0.373181i \(-0.878267\pi\)
0.927759 0.373181i \(-0.121733\pi\)
\(524\) 662.203i 1.26375i
\(525\) 0 0
\(526\) −37.0487 −0.0704348
\(527\) 1154.81i 2.19129i
\(528\) 0 0
\(529\) −487.615 −0.921767
\(530\) 124.562i 0.235022i
\(531\) 0 0
\(532\) 181.733 0.341604
\(533\) −1073.86 −2.01474
\(534\) 0 0
\(535\) 258.487i 0.483154i
\(536\) 349.486i 0.652026i
\(537\) 0 0
\(538\) 31.0830i 0.0577751i
\(539\) 147.527 176.765i 0.273705 0.327951i
\(540\) 0 0
\(541\) 43.4279i 0.0802735i −0.999194 0.0401367i \(-0.987221\pi\)
0.999194 0.0401367i \(-0.0127794\pi\)
\(542\) 54.0154 0.0996594
\(543\) 0 0
\(544\) 602.506 1.10755
\(545\) 310.781i 0.570240i
\(546\) 0 0
\(547\) 298.284i 0.545309i 0.962112 + 0.272655i \(0.0879016\pi\)
−0.962112 + 0.272655i \(0.912098\pi\)
\(548\) −144.386 −0.263477
\(549\) 0 0
\(550\) 28.0762 + 23.4322i 0.0510476 + 0.0426039i
\(551\) −126.864 −0.230244
\(552\) 0 0
\(553\) 64.0453 0.115814
\(554\) −205.482 −0.370906
\(555\) 0 0
\(556\) 313.580i 0.563994i
\(557\) 401.329i 0.720520i −0.932852 0.360260i \(-0.882688\pi\)
0.932852 0.360260i \(-0.117312\pi\)
\(558\) 0 0
\(559\) 909.666 1.62731
\(560\) 203.638i 0.363640i
\(561\) 0 0
\(562\) −203.758 −0.362559
\(563\) 190.526i 0.338412i −0.985581 0.169206i \(-0.945880\pi\)
0.985581 0.169206i \(-0.0541203\pi\)
\(564\) 0 0
\(565\) 84.9253 0.150310
\(566\) 329.749 0.582595
\(567\) 0 0
\(568\) 347.602i 0.611976i
\(569\) 718.614i 1.26294i −0.775400 0.631471i \(-0.782452\pi\)
0.775400 0.631471i \(-0.217548\pi\)
\(570\) 0 0
\(571\) 324.008i 0.567440i −0.958907 0.283720i \(-0.908431\pi\)
0.958907 0.283720i \(-0.0915686\pi\)
\(572\) −483.094 403.186i −0.844570 0.704871i
\(573\) 0 0
\(574\) 371.375i 0.646994i
\(575\) −32.1657 −0.0559403
\(576\) 0 0
\(577\) 1131.01 1.96016 0.980079 0.198606i \(-0.0636415\pi\)
0.980079 + 0.198606i \(0.0636415\pi\)
\(578\) 130.706i 0.226135i
\(579\) 0 0
\(580\) 165.239i 0.284895i
\(581\) −47.6064 −0.0819387
\(582\) 0 0
\(583\) −590.509 + 707.542i −1.01288 + 1.21362i
\(584\) 392.099 0.671403
\(585\) 0 0
\(586\) 260.331 0.444251
\(587\) 856.901 1.45980 0.729898 0.683556i \(-0.239567\pi\)
0.729898 + 0.683556i \(0.239567\pi\)
\(588\) 0 0
\(589\) 320.101i 0.543465i
\(590\) 20.1815i 0.0342060i
\(591\) 0 0
\(592\) 260.400 0.439865
\(593\) 712.663i 1.20179i −0.799327 0.600896i \(-0.794810\pi\)
0.799327 0.600896i \(-0.205190\pi\)
\(594\) 0 0
\(595\) −412.050 −0.692520
\(596\) 322.351i 0.540857i
\(597\) 0 0
\(598\) −68.7714 −0.115002
\(599\) −822.850 −1.37371 −0.686853 0.726796i \(-0.741008\pi\)
−0.686853 + 0.726796i \(0.741008\pi\)
\(600\) 0 0
\(601\) 350.575i 0.583319i −0.956522 0.291659i \(-0.905793\pi\)
0.956522 0.291659i \(-0.0942074\pi\)
\(602\) 314.591i 0.522577i
\(603\) 0 0
\(604\) 135.577i 0.224465i
\(605\) −48.3952 266.201i −0.0799921 0.440001i
\(606\) 0 0
\(607\) 358.620i 0.590808i 0.955372 + 0.295404i \(0.0954542\pi\)
−0.955372 + 0.295404i \(0.904546\pi\)
\(608\) −167.008 −0.274684
\(609\) 0 0
\(610\) −178.474 −0.292580
\(611\) 578.744i 0.947208i
\(612\) 0 0
\(613\) 28.2177i 0.0460322i 0.999735 + 0.0230161i \(0.00732690\pi\)
−0.999735 + 0.0230161i \(0.992673\pi\)
\(614\) 61.6389 0.100389
\(615\) 0 0
\(616\) −296.195 + 354.898i −0.480836 + 0.576134i
\(617\) −550.410 −0.892074 −0.446037 0.895014i \(-0.647165\pi\)
−0.446037 + 0.895014i \(0.647165\pi\)
\(618\) 0 0
\(619\) −373.784 −0.603852 −0.301926 0.953331i \(-0.597629\pi\)
−0.301926 + 0.953331i \(0.597629\pi\)
\(620\) −416.927 −0.672464
\(621\) 0 0
\(622\) 294.453i 0.473397i
\(623\) 611.054i 0.980825i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 65.1488i 0.104072i
\(627\) 0 0
\(628\) −966.761 −1.53943
\(629\) 526.904i 0.837685i
\(630\) 0 0
\(631\) 1100.42 1.74393 0.871965 0.489568i \(-0.162846\pi\)
0.871965 + 0.489568i \(0.162846\pi\)
\(632\) −38.4869 −0.0608969
\(633\) 0 0
\(634\) 288.432i 0.454940i
\(635\) 18.8613i 0.0297028i
\(636\) 0 0
\(637\) 336.523i 0.528293i
\(638\) 97.3366 116.628i 0.152565 0.182802i
\(639\) 0 0
\(640\) 282.291i 0.441080i
\(641\) −653.649 −1.01973 −0.509867 0.860253i \(-0.670305\pi\)
−0.509867 + 0.860253i \(0.670305\pi\)
\(642\) 0 0
\(643\) −502.794 −0.781950 −0.390975 0.920401i \(-0.627862\pi\)
−0.390975 + 0.920401i \(0.627862\pi\)
\(644\) 191.404i 0.297211i
\(645\) 0 0
\(646\) 89.4940i 0.138536i
\(647\) −897.406 −1.38703 −0.693513 0.720444i \(-0.743938\pi\)
−0.693513 + 0.720444i \(0.743938\pi\)
\(648\) 0 0
\(649\) −95.6743 + 114.636i −0.147418 + 0.176635i
\(650\) 53.4509 0.0822322
\(651\) 0 0
\(652\) 456.852 0.700693
\(653\) 789.461 1.20898 0.604488 0.796615i \(-0.293378\pi\)
0.604488 + 0.796615i \(0.293378\pi\)
\(654\) 0 0
\(655\) 416.181i 0.635390i
\(656\) 727.378i 1.10881i
\(657\) 0 0
\(658\) 200.148 0.304176
\(659\) 127.662i 0.193721i 0.995298 + 0.0968607i \(0.0308801\pi\)
−0.995298 + 0.0968607i \(0.969120\pi\)
\(660\) 0 0
\(661\) 525.245 0.794621 0.397311 0.917684i \(-0.369944\pi\)
0.397311 + 0.917684i \(0.369944\pi\)
\(662\) 179.859i 0.271691i
\(663\) 0 0
\(664\) 28.6082 0.0430846
\(665\) 114.216 0.171753
\(666\) 0 0
\(667\) 133.615i 0.200323i
\(668\) 612.896i 0.917510i
\(669\) 0 0
\(670\) 103.398i 0.154326i
\(671\) 1013.78 + 846.089i 1.51084 + 1.26094i
\(672\) 0 0
\(673\) 952.301i 1.41501i −0.706709 0.707505i \(-0.749821\pi\)
0.706709 0.707505i \(-0.250179\pi\)
\(674\) 53.6767 0.0796390
\(675\) 0 0
\(676\) −318.420 −0.471035
\(677\) 258.470i 0.381788i 0.981611 + 0.190894i \(0.0611387\pi\)
−0.981611 + 0.190894i \(0.938861\pi\)
\(678\) 0 0
\(679\) 317.028i 0.466905i
\(680\) 247.614 0.364138
\(681\) 0 0
\(682\) −294.272 245.597i −0.431484 0.360113i
\(683\) −391.010 −0.572489 −0.286245 0.958157i \(-0.592407\pi\)
−0.286245 + 0.958157i \(0.592407\pi\)
\(684\) 0 0
\(685\) −90.7432 −0.132472
\(686\) 156.071 0.227508
\(687\) 0 0
\(688\) 616.161i 0.895583i
\(689\) 1347.01i 1.95502i
\(690\) 0 0
\(691\) 199.456 0.288648 0.144324 0.989531i \(-0.453899\pi\)
0.144324 + 0.989531i \(0.453899\pi\)
\(692\) 445.582i 0.643904i
\(693\) 0 0
\(694\) 70.2392 0.101209
\(695\) 197.079i 0.283566i
\(696\) 0 0
\(697\) −1471.80 −2.11163
\(698\) −342.898 −0.491258
\(699\) 0 0
\(700\) 148.764i 0.212520i
\(701\) 181.684i 0.259179i 0.991568 + 0.129589i \(0.0413659\pi\)
−0.991568 + 0.129589i \(0.958634\pi\)
\(702\) 0 0
\(703\) 146.052i 0.207755i
\(704\) −178.896 + 214.351i −0.254113 + 0.304476i
\(705\) 0 0
\(706\) 311.080i 0.440623i
\(707\) −177.923 −0.251660
\(708\) 0 0
\(709\) 975.319 1.37563 0.687813 0.725888i \(-0.258571\pi\)
0.687813 + 0.725888i \(0.258571\pi\)
\(710\) 102.841i 0.144846i
\(711\) 0 0
\(712\) 367.202i 0.515733i
\(713\) 337.135 0.472840
\(714\) 0 0
\(715\) −303.615 253.394i −0.424636 0.354397i
\(716\) −267.083 −0.373020
\(717\) 0 0
\(718\) 182.307 0.253910
\(719\) 1352.64 1.88128 0.940641 0.339402i \(-0.110225\pi\)
0.940641 + 0.339402i \(0.110225\pi\)
\(720\) 0 0
\(721\) 1236.48i 1.71496i
\(722\) 215.223i 0.298093i
\(723\) 0 0
\(724\) −1015.87 −1.40313
\(725\) 103.849i 0.143240i
\(726\) 0 0
\(727\) −268.503 −0.369330 −0.184665 0.982801i \(-0.559120\pi\)
−0.184665 + 0.982801i \(0.559120\pi\)
\(728\) 675.649i 0.928089i
\(729\) 0 0
\(730\) 116.006 0.158912
\(731\) 1246.76 1.70556
\(732\) 0 0
\(733\) 1111.10i 1.51583i 0.652353 + 0.757915i \(0.273782\pi\)
−0.652353 + 0.757915i \(0.726218\pi\)
\(734\) 190.001i 0.258857i
\(735\) 0 0
\(736\) 175.895i 0.238988i
\(737\) −490.178 + 587.327i −0.665100 + 0.796916i
\(738\) 0 0
\(739\) 962.884i 1.30296i −0.758668 0.651478i \(-0.774149\pi\)
0.758668 0.651478i \(-0.225851\pi\)
\(740\) 190.231 0.257069
\(741\) 0 0
\(742\) 465.838 0.627814
\(743\) 674.012i 0.907149i −0.891218 0.453574i \(-0.850149\pi\)
0.891218 0.453574i \(-0.149851\pi\)
\(744\) 0 0
\(745\) 202.591i 0.271934i
\(746\) −12.1323 −0.0162631
\(747\) 0 0
\(748\) −662.117 552.597i −0.885183 0.738766i
\(749\) 966.693 1.29065
\(750\) 0 0
\(751\) 360.050 0.479428 0.239714 0.970844i \(-0.422946\pi\)
0.239714 + 0.970844i \(0.422946\pi\)
\(752\) 392.012 0.521292
\(753\) 0 0
\(754\) 222.034i 0.294475i
\(755\) 85.2074i 0.112857i
\(756\) 0 0
\(757\) 573.607 0.757737 0.378869 0.925450i \(-0.376313\pi\)
0.378869 + 0.925450i \(0.376313\pi\)
\(758\) 223.779i 0.295223i
\(759\) 0 0
\(760\) −68.6358 −0.0903102
\(761\) 1229.64i 1.61582i −0.589305 0.807910i \(-0.700599\pi\)
0.589305 0.807910i \(-0.299401\pi\)
\(762\) 0 0
\(763\) −1162.26 −1.52328
\(764\) −912.545 −1.19443
\(765\) 0 0
\(766\) 141.120i 0.184229i
\(767\) 218.242i 0.284540i
\(768\) 0 0
\(769\) 1225.78i 1.59399i 0.603985 + 0.796996i \(0.293579\pi\)
−0.603985 + 0.796996i \(0.706421\pi\)
\(770\) −87.6318 + 105.000i −0.113808 + 0.136363i
\(771\) 0 0
\(772\) 562.072i 0.728073i
\(773\) −86.0374 −0.111303 −0.0556516 0.998450i \(-0.517724\pi\)
−0.0556516 + 0.998450i \(0.517724\pi\)
\(774\) 0 0
\(775\) −262.030 −0.338103
\(776\) 190.512i 0.245506i
\(777\) 0 0
\(778\) 352.991i 0.453715i
\(779\) 407.968 0.523707
\(780\) 0 0
\(781\) −487.537 + 584.162i −0.624247 + 0.747967i
\(782\) −94.2563 −0.120532
\(783\) 0 0
\(784\) −227.943 −0.290744
\(785\) −607.589 −0.773998
\(786\) 0 0
\(787\) 1109.97i 1.41038i −0.709021 0.705188i \(-0.750863\pi\)
0.709021 0.705188i \(-0.249137\pi\)
\(788\) 722.722i 0.917160i
\(789\) 0 0
\(790\) −11.3867 −0.0144135
\(791\) 317.604i 0.401523i
\(792\) 0 0
\(793\) 1930.01 2.43381
\(794\) 410.157i 0.516570i
\(795\) 0 0
\(796\) 1019.30 1.28053
\(797\) 532.778 0.668480 0.334240 0.942488i \(-0.391520\pi\)
0.334240 + 0.942488i \(0.391520\pi\)
\(798\) 0 0
\(799\) 793.212i 0.992756i
\(800\) 136.710i 0.170888i
\(801\) 0 0
\(802\) 199.856i 0.249197i
\(803\) −658.941 549.947i −0.820599 0.684865i
\(804\) 0 0
\(805\) 120.293i 0.149433i
\(806\) −560.230 −0.695075
\(807\) 0 0
\(808\) 106.920 0.132326
\(809\) 803.028i 0.992619i 0.868146 + 0.496309i \(0.165312\pi\)
−0.868146 + 0.496309i \(0.834688\pi\)
\(810\) 0 0
\(811\) 323.073i 0.398364i 0.979962 + 0.199182i \(0.0638285\pi\)
−0.979962 + 0.199182i \(0.936171\pi\)
\(812\) 617.963 0.761038
\(813\) 0 0
\(814\) 134.267 + 112.058i 0.164947 + 0.137664i
\(815\) 287.122 0.352296
\(816\) 0 0
\(817\) −345.589 −0.422998
\(818\) 462.964 0.565971
\(819\) 0 0
\(820\) 531.373i 0.648016i
\(821\) 345.071i 0.420306i 0.977668 + 0.210153i \(0.0673962\pi\)
−0.977668 + 0.210153i \(0.932604\pi\)
\(822\) 0 0
\(823\) −61.4018 −0.0746073 −0.0373036 0.999304i \(-0.511877\pi\)
−0.0373036 + 0.999304i \(0.511877\pi\)
\(824\) 743.043i 0.901751i
\(825\) 0 0
\(826\) 75.4751 0.0913742
\(827\) 1331.04i 1.60948i −0.593626 0.804741i \(-0.702304\pi\)
0.593626 0.804741i \(-0.297696\pi\)
\(828\) 0 0
\(829\) 177.243 0.213803 0.106902 0.994270i \(-0.465907\pi\)
0.106902 + 0.994270i \(0.465907\pi\)
\(830\) 8.46396 0.0101975
\(831\) 0 0
\(832\) 408.078i 0.490478i
\(833\) 461.229i 0.553697i
\(834\) 0 0
\(835\) 385.193i 0.461308i
\(836\) 183.531 + 153.174i 0.219535 + 0.183222i
\(837\) 0 0
\(838\) 217.165i 0.259147i
\(839\) −477.684 −0.569349 −0.284675 0.958624i \(-0.591886\pi\)
−0.284675 + 0.958624i \(0.591886\pi\)
\(840\) 0 0
\(841\) 409.612 0.487054
\(842\) 15.6571i 0.0185951i
\(843\) 0 0
\(844\) 493.981i 0.585286i
\(845\) −200.120 −0.236828
\(846\) 0 0
\(847\) 995.540 180.989i 1.17537 0.213682i
\(848\) 912.393 1.07594
\(849\) 0 0
\(850\) 73.2585 0.0861865
\(851\) −153.824 −0.180757
\(852\) 0 0
\(853\) 129.866i 0.152247i −0.997098 0.0761234i \(-0.975746\pi\)
0.997098 0.0761234i \(-0.0242543\pi\)
\(854\) 667.459i 0.781568i
\(855\) 0 0
\(856\) −580.917 −0.678641
\(857\) 419.114i 0.489048i 0.969643 + 0.244524i \(0.0786317\pi\)
−0.969643 + 0.244524i \(0.921368\pi\)
\(858\) 0 0
\(859\) 254.977 0.296830 0.148415 0.988925i \(-0.452583\pi\)
0.148415 + 0.988925i \(0.452583\pi\)
\(860\) 450.126i 0.523402i
\(861\) 0 0
\(862\) 148.681 0.172484
\(863\) 59.8124 0.0693075 0.0346538 0.999399i \(-0.488967\pi\)
0.0346538 + 0.999399i \(0.488967\pi\)
\(864\) 0 0
\(865\) 280.039i 0.323744i
\(866\) 120.368i 0.138994i
\(867\) 0 0
\(868\) 1559.23i 1.79635i
\(869\) 64.6790 + 53.9806i 0.0744293 + 0.0621180i
\(870\) 0 0
\(871\) 1118.14i 1.28375i
\(872\) 698.439 0.800962
\(873\) 0 0
\(874\) 26.1268 0.0298934
\(875\) 93.4952i 0.106852i
\(876\) 0 0
\(877\) 563.009i 0.641971i −0.947084 0.320986i \(-0.895986\pi\)
0.947084 0.320986i \(-0.104014\pi\)
\(878\) −44.1804 −0.0503194
\(879\) 0 0
\(880\) −171.636 + 205.653i −0.195041 + 0.233697i
\(881\) −1178.14 −1.33728 −0.668641 0.743586i \(-0.733124\pi\)
−0.668641 + 0.743586i \(0.733124\pi\)
\(882\) 0 0
\(883\) −704.399 −0.797733 −0.398867 0.917009i \(-0.630596\pi\)
−0.398867 + 0.917009i \(0.630596\pi\)
\(884\) −1260.53 −1.42593
\(885\) 0 0
\(886\) 286.199i 0.323024i
\(887\) 1582.21i 1.78378i 0.452257 + 0.891888i \(0.350619\pi\)
−0.452257 + 0.891888i \(0.649381\pi\)
\(888\) 0 0
\(889\) 70.5376 0.0793448
\(890\) 108.640i 0.122067i
\(891\) 0 0
\(892\) −889.714 −0.997438
\(893\) 219.870i 0.246214i
\(894\) 0 0
\(895\) −167.856 −0.187548
\(896\) 1055.71 1.17825
\(897\) 0 0
\(898\) 173.980i 0.193741i
\(899\) 1088.47i 1.21075i
\(900\) 0 0
\(901\) 1846.17i 2.04903i
\(902\) −313.013 + 375.049i −0.347021 + 0.415797i
\(903\) 0 0
\(904\) 190.859i 0.211127i
\(905\) −638.451 −0.705471
\(906\) 0 0
\(907\) −436.018 −0.480725 −0.240363 0.970683i \(-0.577266\pi\)
−0.240363 + 0.970683i \(0.577266\pi\)
\(908\) 880.260i 0.969449i
\(909\) 0 0
\(910\) 199.896i 0.219666i
\(911\) 82.7040 0.0907838 0.0453919 0.998969i \(-0.485546\pi\)
0.0453919 + 0.998969i \(0.485546\pi\)
\(912\) 0 0
\(913\) −48.0774 40.1250i −0.0526587 0.0439485i
\(914\) −124.638 −0.136365
\(915\) 0 0
\(916\) 1293.84 1.41249
\(917\) 1556.44 1.69731
\(918\) 0 0
\(919\) 1713.21i 1.86421i 0.362193 + 0.932103i \(0.382028\pi\)
−0.362193 + 0.932103i \(0.617972\pi\)
\(920\) 72.2881i 0.0785740i
\(921\) 0 0
\(922\) 454.132 0.492551
\(923\) 1112.12i 1.20489i
\(924\) 0 0
\(925\) 119.556 0.129250
\(926\) 48.1695i 0.0520189i
\(927\) 0 0
\(928\) −567.891 −0.611952
\(929\) −537.309 −0.578374 −0.289187 0.957273i \(-0.593385\pi\)
−0.289187 + 0.957273i \(0.593385\pi\)
\(930\) 0 0
\(931\) 127.848i 0.137323i
\(932\) 937.034i 1.00540i
\(933\) 0 0
\(934\) 266.963i 0.285828i
\(935\) −416.126 347.296i −0.445055 0.371439i
\(936\) 0 0
\(937\) 321.591i 0.343213i −0.985166 0.171607i \(-0.945104\pi\)
0.985166 0.171607i \(-0.0548958\pi\)
\(938\) 386.690 0.412249
\(939\) 0 0
\(940\) 286.377 0.304657
\(941\) 880.847i 0.936076i 0.883708 + 0.468038i \(0.155039\pi\)
−0.883708 + 0.468038i \(0.844961\pi\)
\(942\) 0 0
\(943\) 429.677i 0.455649i
\(944\) 147.826 0.156595
\(945\) 0 0
\(946\) 265.153 317.704i 0.280289 0.335839i
\(947\) 227.350 0.240074 0.120037 0.992769i \(-0.461699\pi\)
0.120037 + 0.992769i \(0.461699\pi\)
\(948\) 0 0
\(949\) −1254.48 −1.32190
\(950\) −20.3064 −0.0213752
\(951\) 0 0
\(952\) 926.028i 0.972718i
\(953\) 46.3722i 0.0486592i 0.999704 + 0.0243296i \(0.00774512\pi\)
−0.999704 + 0.0243296i \(0.992255\pi\)
\(954\) 0 0
\(955\) −573.515 −0.600539
\(956\) 1297.82i 1.35755i
\(957\) 0 0
\(958\) −412.644 −0.430735
\(959\) 339.362i 0.353871i
\(960\) 0 0
\(961\) 1785.39 1.85785
\(962\) 255.615 0.265712
\(963\) 0 0
\(964\) 532.404i 0.552286i
\(965\) 353.251i 0.366063i
\(966\) 0 0
\(967\) 264.144i 0.273158i 0.990629 + 0.136579i \(0.0436108\pi\)
−0.990629 + 0.136579i \(0.956389\pi\)
\(968\) −598.252 + 108.762i −0.618029 + 0.112357i
\(969\) 0 0
\(970\) 56.3647i 0.0581079i
\(971\) −666.134 −0.686029 −0.343015 0.939330i \(-0.611448\pi\)
−0.343015 + 0.939330i \(0.611448\pi\)
\(972\) 0 0
\(973\) 737.037 0.757489
\(974\) 358.447i 0.368015i
\(975\) 0 0
\(976\) 1307.29i 1.33944i
\(977\) −1339.01 −1.37053 −0.685266 0.728293i \(-0.740314\pi\)
−0.685266 + 0.728293i \(0.740314\pi\)
\(978\) 0 0
\(979\) 515.026 617.100i 0.526074 0.630337i
\(980\) −166.520 −0.169918
\(981\) 0 0
\(982\) −319.664 −0.325523
\(983\) −1241.99 −1.26347 −0.631735 0.775185i \(-0.717657\pi\)
−0.631735 + 0.775185i \(0.717657\pi\)
\(984\) 0 0
\(985\) 454.216i 0.461133i
\(986\) 304.314i 0.308635i
\(987\) 0 0
\(988\) 349.404 0.353647
\(989\) 363.979i 0.368028i
\(990\) 0 0
\(991\) 886.745 0.894798 0.447399 0.894334i \(-0.352350\pi\)
0.447399 + 0.894334i \(0.352350\pi\)
\(992\) 1432.89i 1.44444i
\(993\) 0 0
\(994\) 384.605 0.386927
\(995\) 640.610 0.643829
\(996\) 0 0
\(997\) 20.1579i 0.0202185i −0.999949 0.0101093i \(-0.996782\pi\)
0.999949 0.0101093i \(-0.00321793\pi\)
\(998\) 376.525i 0.377280i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.b.c.406.7 16
3.2 odd 2 165.3.b.a.76.10 yes 16
11.10 odd 2 inner 495.3.b.c.406.10 16
12.11 even 2 2640.3.c.c.241.2 16
15.2 even 4 825.3.h.b.274.13 32
15.8 even 4 825.3.h.b.274.19 32
15.14 odd 2 825.3.b.d.76.7 16
33.32 even 2 165.3.b.a.76.7 16
132.131 odd 2 2640.3.c.c.241.3 16
165.32 odd 4 825.3.h.b.274.20 32
165.98 odd 4 825.3.h.b.274.14 32
165.164 even 2 825.3.b.d.76.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.3.b.a.76.7 16 33.32 even 2
165.3.b.a.76.10 yes 16 3.2 odd 2
495.3.b.c.406.7 16 1.1 even 1 trivial
495.3.b.c.406.10 16 11.10 odd 2 inner
825.3.b.d.76.7 16 15.14 odd 2
825.3.b.d.76.10 16 165.164 even 2
825.3.h.b.274.13 32 15.2 even 4
825.3.h.b.274.14 32 165.98 odd 4
825.3.h.b.274.19 32 15.8 even 4
825.3.h.b.274.20 32 165.32 odd 4
2640.3.c.c.241.2 16 12.11 even 2
2640.3.c.c.241.3 16 132.131 odd 2