Properties

Label 820.2.y.a.653.9
Level $820$
Weight $2$
Character 820.653
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 653.9
Character \(\chi\) \(=\) 820.653
Dual form 820.2.y.a.437.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.307196 - 0.741636i) q^{3} +(0.501977 + 2.17900i) q^{5} +(-3.73618 + 1.54758i) q^{7} +(1.66567 - 1.66567i) q^{9} +(-0.868860 + 2.09761i) q^{11} +(-2.41417 - 5.82833i) q^{13} +(1.46182 - 1.04166i) q^{15} +(-2.44492 + 5.90256i) q^{17} +(-2.66729 - 6.43941i) q^{19} +(2.29548 + 2.29548i) q^{21} +(-2.33878 + 2.33878i) q^{23} +(-4.49604 + 2.18761i) q^{25} +(-3.97191 - 1.64522i) q^{27} +(2.84330 - 6.86433i) q^{29} -5.79995i q^{31} +1.82258 q^{33} +(-5.24764 - 7.36427i) q^{35} +(4.56684 - 4.56684i) q^{37} +(-3.58088 + 3.58088i) q^{39} +(-6.30515 + 1.11584i) q^{41} -5.36561 q^{43} +(4.46560 + 2.79335i) q^{45} +(-2.08581 + 5.03559i) q^{47} +(6.61431 - 6.61431i) q^{49} +5.12863 q^{51} +(-4.52660 + 1.87498i) q^{53} +(-5.00683 - 0.840288i) q^{55} +(-3.95632 + 3.95632i) q^{57} +10.6611i q^{59} +(-7.29537 + 7.29537i) q^{61} +(-3.64548 + 8.80097i) q^{63} +(11.4880 - 8.18616i) q^{65} +(-1.91094 + 4.61341i) q^{67} +(2.45298 + 1.01606i) q^{69} +(-6.45817 - 2.67506i) q^{71} +11.6632 q^{73} +(3.00357 + 2.66240i) q^{75} -9.18169i q^{77} +(-7.85772 - 3.25478i) q^{79} -3.61570i q^{81} +(-2.07996 - 2.07996i) q^{83} +(-14.0890 - 2.36452i) q^{85} -5.96429 q^{87} +(-1.43272 + 3.45889i) q^{89} +(18.0396 + 18.0396i) q^{91} +(-4.30145 + 1.78172i) q^{93} +(12.6925 - 9.04444i) q^{95} +(-2.77685 - 1.15021i) q^{97} +(2.04669 + 4.94115i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.307196 0.741636i −0.177360 0.428184i 0.810052 0.586359i \(-0.199439\pi\)
−0.987411 + 0.158175i \(0.949439\pi\)
\(4\) 0 0
\(5\) 0.501977 + 2.17900i 0.224491 + 0.974476i
\(6\) 0 0
\(7\) −3.73618 + 1.54758i −1.41214 + 0.584929i −0.952874 0.303368i \(-0.901889\pi\)
−0.459270 + 0.888297i \(0.651889\pi\)
\(8\) 0 0
\(9\) 1.66567 1.66567i 0.555222 0.555222i
\(10\) 0 0
\(11\) −0.868860 + 2.09761i −0.261971 + 0.632454i −0.999060 0.0433414i \(-0.986200\pi\)
0.737089 + 0.675795i \(0.236200\pi\)
\(12\) 0 0
\(13\) −2.41417 5.82833i −0.669572 1.61649i −0.782328 0.622866i \(-0.785968\pi\)
0.112757 0.993623i \(-0.464032\pi\)
\(14\) 0 0
\(15\) 1.46182 1.04166i 0.377439 0.268956i
\(16\) 0 0
\(17\) −2.44492 + 5.90256i −0.592981 + 1.43158i 0.287630 + 0.957742i \(0.407133\pi\)
−0.880611 + 0.473840i \(0.842867\pi\)
\(18\) 0 0
\(19\) −2.66729 6.43941i −0.611918 1.47730i −0.860890 0.508791i \(-0.830093\pi\)
0.248972 0.968511i \(-0.419907\pi\)
\(20\) 0 0
\(21\) 2.29548 + 2.29548i 0.500914 + 0.500914i
\(22\) 0 0
\(23\) −2.33878 + 2.33878i −0.487669 + 0.487669i −0.907570 0.419901i \(-0.862065\pi\)
0.419901 + 0.907570i \(0.362065\pi\)
\(24\) 0 0
\(25\) −4.49604 + 2.18761i −0.899208 + 0.437522i
\(26\) 0 0
\(27\) −3.97191 1.64522i −0.764395 0.316623i
\(28\) 0 0
\(29\) 2.84330 6.86433i 0.527987 1.27467i −0.404852 0.914382i \(-0.632677\pi\)
0.932840 0.360292i \(-0.117323\pi\)
\(30\) 0 0
\(31\) 5.79995i 1.04170i −0.853648 0.520851i \(-0.825615\pi\)
0.853648 0.520851i \(-0.174385\pi\)
\(32\) 0 0
\(33\) 1.82258 0.317270
\(34\) 0 0
\(35\) −5.24764 7.36427i −0.887013 1.24479i
\(36\) 0 0
\(37\) 4.56684 4.56684i 0.750783 0.750783i −0.223842 0.974625i \(-0.571860\pi\)
0.974625 + 0.223842i \(0.0718600\pi\)
\(38\) 0 0
\(39\) −3.58088 + 3.58088i −0.573400 + 0.573400i
\(40\) 0 0
\(41\) −6.30515 + 1.11584i −0.984699 + 0.174265i
\(42\) 0 0
\(43\) −5.36561 −0.818248 −0.409124 0.912479i \(-0.634166\pi\)
−0.409124 + 0.912479i \(0.634166\pi\)
\(44\) 0 0
\(45\) 4.46560 + 2.79335i 0.665693 + 0.416408i
\(46\) 0 0
\(47\) −2.08581 + 5.03559i −0.304246 + 0.734516i 0.695624 + 0.718406i \(0.255128\pi\)
−0.999870 + 0.0161095i \(0.994872\pi\)
\(48\) 0 0
\(49\) 6.61431 6.61431i 0.944901 0.944901i
\(50\) 0 0
\(51\) 5.12863 0.718151
\(52\) 0 0
\(53\) −4.52660 + 1.87498i −0.621777 + 0.257548i −0.671255 0.741227i \(-0.734244\pi\)
0.0494778 + 0.998775i \(0.484244\pi\)
\(54\) 0 0
\(55\) −5.00683 0.840288i −0.675121 0.113304i
\(56\) 0 0
\(57\) −3.95632 + 3.95632i −0.524027 + 0.524027i
\(58\) 0 0
\(59\) 10.6611i 1.38795i 0.719999 + 0.693976i \(0.244142\pi\)
−0.719999 + 0.693976i \(0.755858\pi\)
\(60\) 0 0
\(61\) −7.29537 + 7.29537i −0.934076 + 0.934076i −0.997958 0.0638810i \(-0.979652\pi\)
0.0638810 + 0.997958i \(0.479652\pi\)
\(62\) 0 0
\(63\) −3.64548 + 8.80097i −0.459287 + 1.10882i
\(64\) 0 0
\(65\) 11.4880 8.18616i 1.42492 1.01537i
\(66\) 0 0
\(67\) −1.91094 + 4.61341i −0.233458 + 0.563617i −0.996580 0.0826374i \(-0.973666\pi\)
0.763122 + 0.646255i \(0.223666\pi\)
\(68\) 0 0
\(69\) 2.45298 + 1.01606i 0.295305 + 0.122319i
\(70\) 0 0
\(71\) −6.45817 2.67506i −0.766444 0.317471i −0.0350128 0.999387i \(-0.511147\pi\)
−0.731431 + 0.681915i \(0.761147\pi\)
\(72\) 0 0
\(73\) 11.6632 1.36507 0.682536 0.730852i \(-0.260877\pi\)
0.682536 + 0.730852i \(0.260877\pi\)
\(74\) 0 0
\(75\) 3.00357 + 2.66240i 0.346823 + 0.307428i
\(76\) 0 0
\(77\) 9.18169i 1.04635i
\(78\) 0 0
\(79\) −7.85772 3.25478i −0.884063 0.366191i −0.105992 0.994367i \(-0.533802\pi\)
−0.778071 + 0.628176i \(0.783802\pi\)
\(80\) 0 0
\(81\) 3.61570i 0.401744i
\(82\) 0 0
\(83\) −2.07996 2.07996i −0.228305 0.228305i 0.583679 0.811984i \(-0.301613\pi\)
−0.811984 + 0.583679i \(0.801613\pi\)
\(84\) 0 0
\(85\) −14.0890 2.36452i −1.52816 0.256469i
\(86\) 0 0
\(87\) −5.96429 −0.639439
\(88\) 0 0
\(89\) −1.43272 + 3.45889i −0.151868 + 0.366641i −0.981443 0.191754i \(-0.938583\pi\)
0.829575 + 0.558395i \(0.188583\pi\)
\(90\) 0 0
\(91\) 18.0396 + 18.0396i 1.89106 + 1.89106i
\(92\) 0 0
\(93\) −4.30145 + 1.78172i −0.446040 + 0.184756i
\(94\) 0 0
\(95\) 12.6925 9.04444i 1.30222 0.927940i
\(96\) 0 0
\(97\) −2.77685 1.15021i −0.281946 0.116786i 0.237229 0.971454i \(-0.423761\pi\)
−0.519175 + 0.854668i \(0.673761\pi\)
\(98\) 0 0
\(99\) 2.04669 + 4.94115i 0.205700 + 0.496604i
\(100\) 0 0
\(101\) 2.08050 0.861770i 0.207017 0.0857493i −0.276765 0.960937i \(-0.589263\pi\)
0.483783 + 0.875188i \(0.339263\pi\)
\(102\) 0 0
\(103\) 4.64935i 0.458115i 0.973413 + 0.229057i \(0.0735643\pi\)
−0.973413 + 0.229057i \(0.926436\pi\)
\(104\) 0 0
\(105\) −3.84956 + 6.15411i −0.375679 + 0.600580i
\(106\) 0 0
\(107\) 7.40215 + 7.40215i 0.715593 + 0.715593i 0.967699 0.252107i \(-0.0811234\pi\)
−0.252107 + 0.967699i \(0.581123\pi\)
\(108\) 0 0
\(109\) 9.97525 4.13189i 0.955456 0.395763i 0.150177 0.988659i \(-0.452016\pi\)
0.805279 + 0.592896i \(0.202016\pi\)
\(110\) 0 0
\(111\) −4.78984 1.98402i −0.454632 0.188315i
\(112\) 0 0
\(113\) 3.45580 3.45580i 0.325095 0.325095i −0.525623 0.850718i \(-0.676168\pi\)
0.850718 + 0.525623i \(0.176168\pi\)
\(114\) 0 0
\(115\) −6.27019 3.92217i −0.584699 0.365744i
\(116\) 0 0
\(117\) −13.7293 5.68684i −1.26927 0.525749i
\(118\) 0 0
\(119\) 25.8367i 2.36845i
\(120\) 0 0
\(121\) 4.13311 + 4.13311i 0.375738 + 0.375738i
\(122\) 0 0
\(123\) 2.76446 + 4.33335i 0.249263 + 0.390725i
\(124\) 0 0
\(125\) −7.02370 8.69872i −0.628218 0.778037i
\(126\) 0 0
\(127\) −14.7330 14.7330i −1.30734 1.30734i −0.923325 0.384019i \(-0.874540\pi\)
−0.384019 0.923325i \(-0.625460\pi\)
\(128\) 0 0
\(129\) 1.64829 + 3.97933i 0.145124 + 0.350361i
\(130\) 0 0
\(131\) 1.70792 + 1.70792i 0.149222 + 0.149222i 0.777770 0.628549i \(-0.216351\pi\)
−0.628549 + 0.777770i \(0.716351\pi\)
\(132\) 0 0
\(133\) 19.9310 + 19.9310i 1.72823 + 1.72823i
\(134\) 0 0
\(135\) 1.59112 9.48064i 0.136942 0.815963i
\(136\) 0 0
\(137\) −1.28961 + 3.11339i −0.110179 + 0.265995i −0.969346 0.245700i \(-0.920982\pi\)
0.859167 + 0.511695i \(0.170982\pi\)
\(138\) 0 0
\(139\) 7.52848i 0.638557i 0.947661 + 0.319279i \(0.103441\pi\)
−0.947661 + 0.319279i \(0.896559\pi\)
\(140\) 0 0
\(141\) 4.37533 0.368469
\(142\) 0 0
\(143\) 14.3232 1.19776
\(144\) 0 0
\(145\) 16.3846 + 2.74980i 1.36067 + 0.228359i
\(146\) 0 0
\(147\) −6.93730 2.87352i −0.572179 0.237004i
\(148\) 0 0
\(149\) −3.49692 8.44230i −0.286478 0.691620i 0.713481 0.700675i \(-0.247118\pi\)
−0.999959 + 0.00905484i \(0.997118\pi\)
\(150\) 0 0
\(151\) 1.89223 4.56824i 0.153987 0.371758i −0.827994 0.560737i \(-0.810518\pi\)
0.981981 + 0.188979i \(0.0605179\pi\)
\(152\) 0 0
\(153\) 5.75927 + 13.9041i 0.465610 + 1.12408i
\(154\) 0 0
\(155\) 12.6381 2.91144i 1.01511 0.233852i
\(156\) 0 0
\(157\) 5.45822 + 13.1773i 0.435613 + 1.05166i 0.977448 + 0.211178i \(0.0677299\pi\)
−0.541835 + 0.840485i \(0.682270\pi\)
\(158\) 0 0
\(159\) 2.78111 + 2.78111i 0.220556 + 0.220556i
\(160\) 0 0
\(161\) 5.11866 12.3575i 0.403407 0.973910i
\(162\) 0 0
\(163\) 11.4479 11.4479i 0.896671 0.896671i −0.0984693 0.995140i \(-0.531395\pi\)
0.995140 + 0.0984693i \(0.0313946\pi\)
\(164\) 0 0
\(165\) 0.914890 + 3.97138i 0.0712241 + 0.309172i
\(166\) 0 0
\(167\) 9.45768 3.91750i 0.731857 0.303145i 0.0145421 0.999894i \(-0.495371\pi\)
0.717315 + 0.696749i \(0.245371\pi\)
\(168\) 0 0
\(169\) −18.9488 + 18.9488i −1.45760 + 1.45760i
\(170\) 0 0
\(171\) −15.1687 6.28308i −1.15998 0.480479i
\(172\) 0 0
\(173\) 13.3113i 1.01204i 0.862521 + 0.506021i \(0.168884\pi\)
−0.862521 + 0.506021i \(0.831116\pi\)
\(174\) 0 0
\(175\) 13.4125 15.1313i 1.01389 1.14382i
\(176\) 0 0
\(177\) 7.90663 3.27503i 0.594298 0.246166i
\(178\) 0 0
\(179\) 11.5135 4.76907i 0.860563 0.356457i 0.0916351 0.995793i \(-0.470791\pi\)
0.768928 + 0.639336i \(0.220791\pi\)
\(180\) 0 0
\(181\) 3.50448 1.45160i 0.260486 0.107897i −0.248619 0.968601i \(-0.579977\pi\)
0.509105 + 0.860705i \(0.329977\pi\)
\(182\) 0 0
\(183\) 7.65162 + 3.16940i 0.565624 + 0.234289i
\(184\) 0 0
\(185\) 12.2436 + 7.65867i 0.900164 + 0.563076i
\(186\) 0 0
\(187\) −10.2570 10.2570i −0.750066 0.750066i
\(188\) 0 0
\(189\) 17.3859 1.26464
\(190\) 0 0
\(191\) 3.86268 + 9.32533i 0.279493 + 0.674757i 0.999822 0.0188763i \(-0.00600888\pi\)
−0.720328 + 0.693633i \(0.756009\pi\)
\(192\) 0 0
\(193\) −3.19679 7.71773i −0.230110 0.555535i 0.766080 0.642745i \(-0.222205\pi\)
−0.996190 + 0.0872107i \(0.972205\pi\)
\(194\) 0 0
\(195\) −9.60024 6.00520i −0.687487 0.430041i
\(196\) 0 0
\(197\) 1.47748i 0.105266i 0.998614 + 0.0526331i \(0.0167614\pi\)
−0.998614 + 0.0526331i \(0.983239\pi\)
\(198\) 0 0
\(199\) −7.12402 + 2.95087i −0.505009 + 0.209181i −0.620618 0.784113i \(-0.713118\pi\)
0.115609 + 0.993295i \(0.463118\pi\)
\(200\) 0 0
\(201\) 4.00850 0.282738
\(202\) 0 0
\(203\) 30.0466i 2.10886i
\(204\) 0 0
\(205\) −5.59644 13.1788i −0.390873 0.920445i
\(206\) 0 0
\(207\) 7.79124i 0.541528i
\(208\) 0 0
\(209\) 15.8249 1.09463
\(210\) 0 0
\(211\) 11.4492 4.74240i 0.788193 0.326480i 0.0479763 0.998848i \(-0.484723\pi\)
0.740217 + 0.672368i \(0.234723\pi\)
\(212\) 0 0
\(213\) 5.61138i 0.384486i
\(214\) 0 0
\(215\) −2.69341 11.6916i −0.183689 0.797363i
\(216\) 0 0
\(217\) 8.97587 + 21.6697i 0.609322 + 1.47103i
\(218\) 0 0
\(219\) −3.58288 8.64984i −0.242109 0.584502i
\(220\) 0 0
\(221\) 40.3046 2.71118
\(222\) 0 0
\(223\) −16.6542 16.6542i −1.11525 1.11525i −0.992429 0.122822i \(-0.960806\pi\)
−0.122822 0.992429i \(-0.539194\pi\)
\(224\) 0 0
\(225\) −3.84507 + 11.1327i −0.256338 + 0.742181i
\(226\) 0 0
\(227\) −10.0261 4.15296i −0.665458 0.275642i 0.0242750 0.999705i \(-0.492272\pi\)
−0.689733 + 0.724063i \(0.742272\pi\)
\(228\) 0 0
\(229\) −5.61997 + 2.32787i −0.371378 + 0.153830i −0.560563 0.828112i \(-0.689415\pi\)
0.189185 + 0.981941i \(0.439415\pi\)
\(230\) 0 0
\(231\) −6.80947 + 2.82058i −0.448030 + 0.185580i
\(232\) 0 0
\(233\) −17.2314 + 7.13748i −1.12887 + 0.467592i −0.867395 0.497620i \(-0.834207\pi\)
−0.261471 + 0.965211i \(0.584207\pi\)
\(234\) 0 0
\(235\) −12.0195 2.01722i −0.784069 0.131589i
\(236\) 0 0
\(237\) 6.82743i 0.443489i
\(238\) 0 0
\(239\) 3.60092 + 1.49155i 0.232924 + 0.0964804i 0.496093 0.868269i \(-0.334768\pi\)
−0.263169 + 0.964750i \(0.584768\pi\)
\(240\) 0 0
\(241\) −5.26946 + 5.26946i −0.339436 + 0.339436i −0.856155 0.516719i \(-0.827153\pi\)
0.516719 + 0.856155i \(0.327153\pi\)
\(242\) 0 0
\(243\) −14.5973 + 6.04639i −0.936415 + 0.387876i
\(244\) 0 0
\(245\) 17.7328 + 11.0923i 1.13290 + 0.708662i
\(246\) 0 0
\(247\) −31.0917 + 31.0917i −1.97832 + 1.97832i
\(248\) 0 0
\(249\) −0.903617 + 2.18153i −0.0572644 + 0.138249i
\(250\) 0 0
\(251\) 15.0929 + 15.0929i 0.952653 + 0.952653i 0.998929 0.0462758i \(-0.0147353\pi\)
−0.0462758 + 0.998929i \(0.514735\pi\)
\(252\) 0 0
\(253\) −2.87378 6.93791i −0.180673 0.436183i
\(254\) 0 0
\(255\) 2.57445 + 11.1753i 0.161218 + 0.699821i
\(256\) 0 0
\(257\) −5.70319 13.7687i −0.355755 0.858869i −0.995887 0.0906042i \(-0.971120\pi\)
0.640132 0.768265i \(-0.278880\pi\)
\(258\) 0 0
\(259\) −9.99499 + 24.1301i −0.621059 + 1.49937i
\(260\) 0 0
\(261\) −6.69769 16.1697i −0.414577 1.00088i
\(262\) 0 0
\(263\) −0.189340 0.0784272i −0.0116752 0.00483603i 0.376838 0.926279i \(-0.377011\pi\)
−0.388513 + 0.921443i \(0.627011\pi\)
\(264\) 0 0
\(265\) −6.35782 8.92225i −0.390558 0.548090i
\(266\) 0 0
\(267\) 3.00536 0.183925
\(268\) 0 0
\(269\) 3.41414 0.208164 0.104082 0.994569i \(-0.466810\pi\)
0.104082 + 0.994569i \(0.466810\pi\)
\(270\) 0 0
\(271\) 15.8371i 0.962036i 0.876711 + 0.481018i \(0.159733\pi\)
−0.876711 + 0.481018i \(0.840267\pi\)
\(272\) 0 0
\(273\) 7.83713 18.9205i 0.474324 1.14512i
\(274\) 0 0
\(275\) −0.682329 11.3317i −0.0411460 0.683326i
\(276\) 0 0
\(277\) −12.6783 12.6783i −0.761763 0.761763i 0.214878 0.976641i \(-0.431065\pi\)
−0.976641 + 0.214878i \(0.931065\pi\)
\(278\) 0 0
\(279\) −9.66078 9.66078i −0.578376 0.578376i
\(280\) 0 0
\(281\) 7.03038 + 16.9728i 0.419397 + 1.01251i 0.982523 + 0.186143i \(0.0595987\pi\)
−0.563126 + 0.826371i \(0.690401\pi\)
\(282\) 0 0
\(283\) −15.6840 15.6840i −0.932315 0.932315i 0.0655348 0.997850i \(-0.479125\pi\)
−0.997850 + 0.0655348i \(0.979125\pi\)
\(284\) 0 0
\(285\) −10.6068 6.63482i −0.628291 0.393013i
\(286\) 0 0
\(287\) 21.8303 13.9267i 1.28860 0.822066i
\(288\) 0 0
\(289\) −16.8418 16.8418i −0.990694 0.990694i
\(290\) 0 0
\(291\) 2.41275i 0.141438i
\(292\) 0 0
\(293\) −26.7045 11.0614i −1.56009 0.646212i −0.574988 0.818162i \(-0.694993\pi\)
−0.985106 + 0.171950i \(0.944993\pi\)
\(294\) 0 0
\(295\) −23.2304 + 5.35160i −1.35253 + 0.311582i
\(296\) 0 0
\(297\) 6.90207 6.90207i 0.400499 0.400499i
\(298\) 0 0
\(299\) 19.2774 + 7.98495i 1.11484 + 0.461782i
\(300\) 0 0
\(301\) 20.0469 8.30369i 1.15548 0.478617i
\(302\) 0 0
\(303\) −1.27824 1.27824i −0.0734330 0.0734330i
\(304\) 0 0
\(305\) −19.5587 12.2345i −1.11993 0.700544i
\(306\) 0 0
\(307\) 2.43042i 0.138711i 0.997592 + 0.0693556i \(0.0220943\pi\)
−0.997592 + 0.0693556i \(0.977906\pi\)
\(308\) 0 0
\(309\) 3.44813 1.42826i 0.196157 0.0812510i
\(310\) 0 0
\(311\) −9.73781 23.5091i −0.552180 1.33308i −0.915838 0.401548i \(-0.868472\pi\)
0.363658 0.931533i \(-0.381528\pi\)
\(312\) 0 0
\(313\) 27.7751 + 11.5048i 1.56994 + 0.650291i 0.986780 0.162066i \(-0.0518156\pi\)
0.583161 + 0.812356i \(0.301816\pi\)
\(314\) 0 0
\(315\) −21.0072 3.52561i −1.18362 0.198645i
\(316\) 0 0
\(317\) 6.16319 2.55288i 0.346159 0.143384i −0.202828 0.979214i \(-0.565013\pi\)
0.548988 + 0.835830i \(0.315013\pi\)
\(318\) 0 0
\(319\) 11.9283 + 11.9283i 0.667855 + 0.667855i
\(320\) 0 0
\(321\) 3.21579 7.76361i 0.179488 0.433323i
\(322\) 0 0
\(323\) 44.5303 2.47773
\(324\) 0 0
\(325\) 23.6043 + 20.9231i 1.30933 + 1.16061i
\(326\) 0 0
\(327\) −6.12871 6.12871i −0.338919 0.338919i
\(328\) 0 0
\(329\) 22.0418i 1.21520i
\(330\) 0 0
\(331\) 23.5050 + 9.73608i 1.29195 + 0.535143i 0.919566 0.392935i \(-0.128540\pi\)
0.372384 + 0.928079i \(0.378540\pi\)
\(332\) 0 0
\(333\) 15.2136i 0.833702i
\(334\) 0 0
\(335\) −11.0118 1.84810i −0.601641 0.100972i
\(336\) 0 0
\(337\) 2.41226 0.131404 0.0657022 0.997839i \(-0.479071\pi\)
0.0657022 + 0.997839i \(0.479071\pi\)
\(338\) 0 0
\(339\) −3.62456 1.50134i −0.196859 0.0815416i
\(340\) 0 0
\(341\) 12.1660 + 5.03934i 0.658828 + 0.272896i
\(342\) 0 0
\(343\) −3.64306 + 8.79512i −0.196707 + 0.474892i
\(344\) 0 0
\(345\) −0.982648 + 5.85508i −0.0529040 + 0.315227i
\(346\) 0 0
\(347\) −1.91911 + 4.63313i −0.103023 + 0.248719i −0.966983 0.254841i \(-0.917977\pi\)
0.863960 + 0.503560i \(0.167977\pi\)
\(348\) 0 0
\(349\) −9.85858 + 9.85858i −0.527718 + 0.527718i −0.919891 0.392173i \(-0.871723\pi\)
0.392173 + 0.919891i \(0.371723\pi\)
\(350\) 0 0
\(351\) 27.1215i 1.44764i
\(352\) 0 0
\(353\) −10.9615 + 10.9615i −0.583423 + 0.583423i −0.935842 0.352419i \(-0.885359\pi\)
0.352419 + 0.935842i \(0.385359\pi\)
\(354\) 0 0
\(355\) 2.58710 15.4151i 0.137309 0.818151i
\(356\) 0 0
\(357\) −19.1615 + 7.93694i −1.01413 + 0.420068i
\(358\) 0 0
\(359\) 29.9598 1.58122 0.790608 0.612323i \(-0.209765\pi\)
0.790608 + 0.612323i \(0.209765\pi\)
\(360\) 0 0
\(361\) −20.9165 + 20.9165i −1.10087 + 1.10087i
\(362\) 0 0
\(363\) 1.79559 4.33494i 0.0942441 0.227525i
\(364\) 0 0
\(365\) 5.85464 + 25.4140i 0.306446 + 1.33023i
\(366\) 0 0
\(367\) 16.4696 0.859705 0.429852 0.902899i \(-0.358566\pi\)
0.429852 + 0.902899i \(0.358566\pi\)
\(368\) 0 0
\(369\) −8.64365 + 12.3609i −0.449971 + 0.643482i
\(370\) 0 0
\(371\) 14.0105 14.0105i 0.727391 0.727391i
\(372\) 0 0
\(373\) 15.8668 15.8668i 0.821553 0.821553i −0.164778 0.986331i \(-0.552691\pi\)
0.986331 + 0.164778i \(0.0526907\pi\)
\(374\) 0 0
\(375\) −4.29364 + 7.88124i −0.221722 + 0.406985i
\(376\) 0 0
\(377\) −46.8718 −2.41402
\(378\) 0 0
\(379\) 21.3874i 1.09860i 0.835626 + 0.549299i \(0.185105\pi\)
−0.835626 + 0.549299i \(0.814895\pi\)
\(380\) 0 0
\(381\) −6.40062 + 15.4525i −0.327914 + 0.791654i
\(382\) 0 0
\(383\) −27.1745 11.2561i −1.38855 0.575158i −0.441799 0.897114i \(-0.645660\pi\)
−0.946755 + 0.321956i \(0.895660\pi\)
\(384\) 0 0
\(385\) 20.0068 4.60899i 1.01964 0.234896i
\(386\) 0 0
\(387\) −8.93731 + 8.93731i −0.454309 + 0.454309i
\(388\) 0 0
\(389\) −20.3117 20.3117i −1.02984 1.02984i −0.999541 0.0303030i \(-0.990353\pi\)
−0.0303030 0.999541i \(-0.509647\pi\)
\(390\) 0 0
\(391\) −8.08665 19.5229i −0.408960 0.987316i
\(392\) 0 0
\(393\) 0.741990 1.79132i 0.0374284 0.0903603i
\(394\) 0 0
\(395\) 3.14775 18.7558i 0.158380 0.943705i
\(396\) 0 0
\(397\) −7.30414 17.6338i −0.366584 0.885013i −0.994305 0.106574i \(-0.966012\pi\)
0.627720 0.778439i \(-0.283988\pi\)
\(398\) 0 0
\(399\) 8.65881 20.9042i 0.433483 1.04652i
\(400\) 0 0
\(401\) −23.0950 + 23.0950i −1.15331 + 1.15331i −0.167425 + 0.985885i \(0.553545\pi\)
−0.985885 + 0.167425i \(0.946455\pi\)
\(402\) 0 0
\(403\) −33.8040 + 14.0021i −1.68390 + 0.697494i
\(404\) 0 0
\(405\) 7.87859 1.81500i 0.391490 0.0901879i
\(406\) 0 0
\(407\) 5.61151 + 13.5474i 0.278152 + 0.671519i
\(408\) 0 0
\(409\) −18.0140 −0.890733 −0.445367 0.895348i \(-0.646927\pi\)
−0.445367 + 0.895348i \(0.646927\pi\)
\(410\) 0 0
\(411\) 2.70516 0.133436
\(412\) 0 0
\(413\) −16.4988 39.8316i −0.811853 1.95999i
\(414\) 0 0
\(415\) 3.48813 5.57631i 0.171225 0.273730i
\(416\) 0 0
\(417\) 5.58339 2.31272i 0.273420 0.113254i
\(418\) 0 0
\(419\) 13.7219 13.7219i 0.670358 0.670358i −0.287441 0.957798i \(-0.592804\pi\)
0.957798 + 0.287441i \(0.0928044\pi\)
\(420\) 0 0
\(421\) −14.5852 + 35.2118i −0.710838 + 1.71612i −0.0129430 + 0.999916i \(0.504120\pi\)
−0.697895 + 0.716200i \(0.745880\pi\)
\(422\) 0 0
\(423\) 4.91334 + 11.8619i 0.238895 + 0.576743i
\(424\) 0 0
\(425\) −1.92004 31.8867i −0.0931354 1.54673i
\(426\) 0 0
\(427\) 15.9667 38.5470i 0.772682 1.86542i
\(428\) 0 0
\(429\) −4.40002 10.6226i −0.212435 0.512863i
\(430\) 0 0
\(431\) −15.9189 15.9189i −0.766786 0.766786i 0.210753 0.977539i \(-0.432408\pi\)
−0.977539 + 0.210753i \(0.932408\pi\)
\(432\) 0 0
\(433\) −5.19835 + 5.19835i −0.249817 + 0.249817i −0.820895 0.571079i \(-0.806525\pi\)
0.571079 + 0.820895i \(0.306525\pi\)
\(434\) 0 0
\(435\) −2.99393 12.9961i −0.143548 0.623118i
\(436\) 0 0
\(437\) 21.2985 + 8.82214i 1.01885 + 0.422020i
\(438\) 0 0
\(439\) 0.921123 2.22379i 0.0439628 0.106136i −0.900373 0.435119i \(-0.856706\pi\)
0.944336 + 0.328984i \(0.106706\pi\)
\(440\) 0 0
\(441\) 22.0344i 1.04926i
\(442\) 0 0
\(443\) −1.32131 −0.0627773 −0.0313887 0.999507i \(-0.509993\pi\)
−0.0313887 + 0.999507i \(0.509993\pi\)
\(444\) 0 0
\(445\) −8.25608 1.38560i −0.391376 0.0656840i
\(446\) 0 0
\(447\) −5.18688 + 5.18688i −0.245331 + 0.245331i
\(448\) 0 0
\(449\) 7.75719 7.75719i 0.366084 0.366084i −0.499963 0.866047i \(-0.666653\pi\)
0.866047 + 0.499963i \(0.166653\pi\)
\(450\) 0 0
\(451\) 3.13769 14.1953i 0.147748 0.668429i
\(452\) 0 0
\(453\) −3.96925 −0.186492
\(454\) 0 0
\(455\) −30.2527 + 48.3636i −1.41827 + 2.26732i
\(456\) 0 0
\(457\) 2.56612 6.19516i 0.120038 0.289797i −0.852427 0.522846i \(-0.824870\pi\)
0.972465 + 0.233049i \(0.0748702\pi\)
\(458\) 0 0
\(459\) 19.4220 19.4220i 0.906543 0.906543i
\(460\) 0 0
\(461\) −4.23637 −0.197308 −0.0986538 0.995122i \(-0.531454\pi\)
−0.0986538 + 0.995122i \(0.531454\pi\)
\(462\) 0 0
\(463\) −17.4973 + 7.24763i −0.813170 + 0.336826i −0.750218 0.661190i \(-0.770052\pi\)
−0.0629520 + 0.998017i \(0.520052\pi\)
\(464\) 0 0
\(465\) −6.04159 8.47847i −0.280172 0.393179i
\(466\) 0 0
\(467\) −12.2749 + 12.2749i −0.568016 + 0.568016i −0.931572 0.363557i \(-0.881562\pi\)
0.363557 + 0.931572i \(0.381562\pi\)
\(468\) 0 0
\(469\) 20.1938i 0.932465i
\(470\) 0 0
\(471\) 8.09602 8.09602i 0.373045 0.373045i
\(472\) 0 0
\(473\) 4.66196 11.2550i 0.214357 0.517504i
\(474\) 0 0
\(475\) 26.0791 + 23.1168i 1.19659 + 1.06067i
\(476\) 0 0
\(477\) −4.41672 + 10.6629i −0.202228 + 0.488220i
\(478\) 0 0
\(479\) −26.8771 11.1329i −1.22805 0.508673i −0.328086 0.944648i \(-0.606404\pi\)
−0.899959 + 0.435975i \(0.856404\pi\)
\(480\) 0 0
\(481\) −37.6422 15.5919i −1.71634 0.710929i
\(482\) 0 0
\(483\) −10.7372 −0.488560
\(484\) 0 0
\(485\) 1.11239 6.62812i 0.0505108 0.300967i
\(486\) 0 0
\(487\) 7.57636i 0.343317i 0.985156 + 0.171659i \(0.0549126\pi\)
−0.985156 + 0.171659i \(0.945087\pi\)
\(488\) 0 0
\(489\) −12.0070 4.97344i −0.542973 0.224907i
\(490\) 0 0
\(491\) 28.0432i 1.26557i −0.774327 0.632786i \(-0.781911\pi\)
0.774327 0.632786i \(-0.218089\pi\)
\(492\) 0 0
\(493\) 33.5655 + 33.5655i 1.51171 + 1.51171i
\(494\) 0 0
\(495\) −9.73935 + 6.94007i −0.437751 + 0.311933i
\(496\) 0 0
\(497\) 28.2688 1.26803
\(498\) 0 0
\(499\) −5.13521 + 12.3975i −0.229884 + 0.554988i −0.996163 0.0875196i \(-0.972106\pi\)
0.766279 + 0.642508i \(0.222106\pi\)
\(500\) 0 0
\(501\) −5.81072 5.81072i −0.259604 0.259604i
\(502\) 0 0
\(503\) −10.6162 + 4.39737i −0.473353 + 0.196069i −0.606590 0.795015i \(-0.707463\pi\)
0.133237 + 0.991084i \(0.457463\pi\)
\(504\) 0 0
\(505\) 2.92215 + 4.10080i 0.130034 + 0.182483i
\(506\) 0 0
\(507\) 19.8742 + 8.23214i 0.882642 + 0.365602i
\(508\) 0 0
\(509\) 0.888935 + 2.14608i 0.0394014 + 0.0951233i 0.942355 0.334614i \(-0.108606\pi\)
−0.902954 + 0.429738i \(0.858606\pi\)
\(510\) 0 0
\(511\) −43.5758 + 18.0497i −1.92768 + 0.798470i
\(512\) 0 0
\(513\) 29.9650i 1.32299i
\(514\) 0 0
\(515\) −10.1309 + 2.33387i −0.446422 + 0.102842i
\(516\) 0 0
\(517\) −8.75043 8.75043i −0.384844 0.384844i
\(518\) 0 0
\(519\) 9.87218 4.08919i 0.433340 0.179496i
\(520\) 0 0
\(521\) −37.7095 15.6198i −1.65208 0.684315i −0.654651 0.755931i \(-0.727185\pi\)
−0.997432 + 0.0716155i \(0.977185\pi\)
\(522\) 0 0
\(523\) 7.01605 7.01605i 0.306791 0.306791i −0.536873 0.843663i \(-0.680394\pi\)
0.843663 + 0.536873i \(0.180394\pi\)
\(524\) 0 0
\(525\) −15.3422 5.29895i −0.669587 0.231265i
\(526\) 0 0
\(527\) 34.2346 + 14.1804i 1.49128 + 0.617709i
\(528\) 0 0
\(529\) 12.0603i 0.524359i
\(530\) 0 0
\(531\) 17.7577 + 17.7577i 0.770621 + 0.770621i
\(532\) 0 0
\(533\) 21.7252 + 34.0547i 0.941023 + 1.47507i
\(534\) 0 0
\(535\) −12.4135 + 19.8450i −0.536684 + 0.857972i
\(536\) 0 0
\(537\) −7.07383 7.07383i −0.305258 0.305258i
\(538\) 0 0
\(539\) 8.12735 + 19.6212i 0.350070 + 0.845143i
\(540\) 0 0
\(541\) −25.0077 25.0077i −1.07516 1.07516i −0.996935 0.0782280i \(-0.975074\pi\)
−0.0782280 0.996935i \(-0.524926\pi\)
\(542\) 0 0
\(543\) −2.15313 2.15313i −0.0923994 0.0923994i
\(544\) 0 0
\(545\) 14.0107 + 19.6619i 0.600152 + 0.842224i
\(546\) 0 0
\(547\) −0.864950 + 2.08817i −0.0369826 + 0.0892839i −0.941292 0.337594i \(-0.890387\pi\)
0.904309 + 0.426878i \(0.140387\pi\)
\(548\) 0 0
\(549\) 24.3033i 1.03724i
\(550\) 0 0
\(551\) −51.7861 −2.20616
\(552\) 0 0
\(553\) 34.3949 1.46262
\(554\) 0 0
\(555\) 1.91878 11.4330i 0.0814475 0.485303i
\(556\) 0 0
\(557\) 25.6200 + 10.6122i 1.08555 + 0.449651i 0.852454 0.522802i \(-0.175113\pi\)
0.233100 + 0.972453i \(0.425113\pi\)
\(558\) 0 0
\(559\) 12.9535 + 31.2726i 0.547875 + 1.32269i
\(560\) 0 0
\(561\) −4.45606 + 10.7579i −0.188135 + 0.454198i
\(562\) 0 0
\(563\) 5.30406 + 12.8051i 0.223540 + 0.539673i 0.995366 0.0961612i \(-0.0306564\pi\)
−0.771826 + 0.635834i \(0.780656\pi\)
\(564\) 0 0
\(565\) 9.26491 + 5.79545i 0.389778 + 0.243816i
\(566\) 0 0
\(567\) 5.59557 + 13.5089i 0.234992 + 0.567321i
\(568\) 0 0
\(569\) −23.7930 23.7930i −0.997455 0.997455i 0.00254162 0.999997i \(-0.499191\pi\)
−0.999997 + 0.00254162i \(0.999191\pi\)
\(570\) 0 0
\(571\) 7.19779 17.3770i 0.301218 0.727205i −0.698712 0.715403i \(-0.746243\pi\)
0.999930 0.0118020i \(-0.00375678\pi\)
\(572\) 0 0
\(573\) 5.72940 5.72940i 0.239349 0.239349i
\(574\) 0 0
\(575\) 5.39890 15.6316i 0.225150 0.651881i
\(576\) 0 0
\(577\) 0.966784 0.400455i 0.0402477 0.0166712i −0.362469 0.931996i \(-0.618066\pi\)
0.402717 + 0.915325i \(0.368066\pi\)
\(578\) 0 0
\(579\) −4.74171 + 4.74171i −0.197059 + 0.197059i
\(580\) 0 0
\(581\) 10.9900 + 4.55220i 0.455941 + 0.188857i
\(582\) 0 0
\(583\) 11.1242i 0.460715i
\(584\) 0 0
\(585\) 5.49984 32.7706i 0.227390 1.35490i
\(586\) 0 0
\(587\) −12.0823 + 5.00464i −0.498688 + 0.206563i −0.617827 0.786314i \(-0.711987\pi\)
0.119139 + 0.992878i \(0.461987\pi\)
\(588\) 0 0
\(589\) −37.3482 + 15.4701i −1.53891 + 0.637436i
\(590\) 0 0
\(591\) 1.09575 0.453876i 0.0450733 0.0186700i
\(592\) 0 0
\(593\) −30.8930 12.7963i −1.26862 0.525480i −0.356077 0.934457i \(-0.615886\pi\)
−0.912545 + 0.408976i \(0.865886\pi\)
\(594\) 0 0
\(595\) 56.2982 12.9694i 2.30800 0.531695i
\(596\) 0 0
\(597\) 4.37694 + 4.37694i 0.179136 + 0.179136i
\(598\) 0 0
\(599\) 22.0182 0.899641 0.449820 0.893119i \(-0.351488\pi\)
0.449820 + 0.893119i \(0.351488\pi\)
\(600\) 0 0
\(601\) 6.27711 + 15.1543i 0.256049 + 0.618156i 0.998670 0.0515554i \(-0.0164179\pi\)
−0.742622 + 0.669711i \(0.766418\pi\)
\(602\) 0 0
\(603\) 4.50141 + 10.8674i 0.183312 + 0.442554i
\(604\) 0 0
\(605\) −6.93131 + 11.0808i −0.281798 + 0.450497i
\(606\) 0 0
\(607\) 28.0844i 1.13991i 0.821676 + 0.569955i \(0.193039\pi\)
−0.821676 + 0.569955i \(0.806961\pi\)
\(608\) 0 0
\(609\) 22.2836 9.23019i 0.902979 0.374026i
\(610\) 0 0
\(611\) 34.3846 1.39105
\(612\) 0 0
\(613\) 35.7762i 1.44499i −0.691378 0.722493i \(-0.742996\pi\)
0.691378 0.722493i \(-0.257004\pi\)
\(614\) 0 0
\(615\) −8.05465 + 8.19899i −0.324795 + 0.330615i
\(616\) 0 0
\(617\) 15.9301i 0.641323i −0.947194 0.320662i \(-0.896095\pi\)
0.947194 0.320662i \(-0.103905\pi\)
\(618\) 0 0
\(619\) 1.25274 0.0503518 0.0251759 0.999683i \(-0.491985\pi\)
0.0251759 + 0.999683i \(0.491985\pi\)
\(620\) 0 0
\(621\) 13.1372 5.44161i 0.527178 0.218364i
\(622\) 0 0
\(623\) 15.1403i 0.606582i
\(624\) 0 0
\(625\) 15.4287 19.6711i 0.617149 0.786846i
\(626\) 0 0
\(627\) −4.86134 11.7363i −0.194143 0.468703i
\(628\) 0 0
\(629\) 15.7905 + 38.1216i 0.629608 + 1.52001i
\(630\) 0 0
\(631\) 23.4794 0.934700 0.467350 0.884072i \(-0.345209\pi\)
0.467350 + 0.884072i \(0.345209\pi\)
\(632\) 0 0
\(633\) −7.03427 7.03427i −0.279587 0.279587i
\(634\) 0 0
\(635\) 24.7075 39.4988i 0.980489 1.56746i
\(636\) 0 0
\(637\) −54.5185 22.5823i −2.16010 0.894743i
\(638\) 0 0
\(639\) −15.2129 + 6.30139i −0.601813 + 0.249279i
\(640\) 0 0
\(641\) 10.3487 4.28659i 0.408751 0.169310i −0.168827 0.985646i \(-0.553998\pi\)
0.577578 + 0.816336i \(0.303998\pi\)
\(642\) 0 0
\(643\) 32.3743 13.4099i 1.27672 0.528834i 0.361717 0.932288i \(-0.382191\pi\)
0.915000 + 0.403454i \(0.132191\pi\)
\(644\) 0 0
\(645\) −7.84354 + 5.58915i −0.308839 + 0.220073i
\(646\) 0 0
\(647\) 31.5710i 1.24118i −0.784133 0.620592i \(-0.786892\pi\)
0.784133 0.620592i \(-0.213108\pi\)
\(648\) 0 0
\(649\) −22.3628 9.26296i −0.877815 0.363603i
\(650\) 0 0
\(651\) 13.3137 13.3137i 0.521804 0.521804i
\(652\) 0 0
\(653\) 22.3575 9.26076i 0.874915 0.362402i 0.100392 0.994948i \(-0.467990\pi\)
0.774522 + 0.632546i \(0.217990\pi\)
\(654\) 0 0
\(655\) −2.86422 + 4.57889i −0.111914 + 0.178912i
\(656\) 0 0
\(657\) 19.4270 19.4270i 0.757918 0.757918i
\(658\) 0 0
\(659\) −12.8278 + 30.9690i −0.499699 + 1.20638i 0.449946 + 0.893056i \(0.351443\pi\)
−0.949646 + 0.313325i \(0.898557\pi\)
\(660\) 0 0
\(661\) 18.1588 + 18.1588i 0.706294 + 0.706294i 0.965754 0.259460i \(-0.0835447\pi\)
−0.259460 + 0.965754i \(0.583545\pi\)
\(662\) 0 0
\(663\) −12.3814 29.8913i −0.480854 1.16088i
\(664\) 0 0
\(665\) −33.4246 + 53.4343i −1.29615 + 2.07209i
\(666\) 0 0
\(667\) 9.40429 + 22.7040i 0.364136 + 0.879101i
\(668\) 0 0
\(669\) −7.23528 + 17.4675i −0.279732 + 0.675333i
\(670\) 0 0
\(671\) −8.96421 21.6415i −0.346059 0.835461i
\(672\) 0 0
\(673\) 12.4817 + 5.17009i 0.481134 + 0.199292i 0.610049 0.792363i \(-0.291150\pi\)
−0.128915 + 0.991656i \(0.541150\pi\)
\(674\) 0 0
\(675\) 21.4570 1.29202i 0.825879 0.0497298i
\(676\) 0 0
\(677\) 24.9353 0.958341 0.479171 0.877722i \(-0.340937\pi\)
0.479171 + 0.877722i \(0.340937\pi\)
\(678\) 0 0
\(679\) 12.1548 0.466460
\(680\) 0 0
\(681\) 8.71152i 0.333826i
\(682\) 0 0
\(683\) −4.56544 + 11.0219i −0.174692 + 0.421743i −0.986838 0.161710i \(-0.948299\pi\)
0.812147 + 0.583453i \(0.198299\pi\)
\(684\) 0 0
\(685\) −7.43141 1.24720i −0.283939 0.0476531i
\(686\) 0 0
\(687\) 3.45286 + 3.45286i 0.131735 + 0.131735i
\(688\) 0 0
\(689\) 21.8560 + 21.8560i 0.832648 + 0.832648i
\(690\) 0 0
\(691\) −8.34307 20.1420i −0.317385 0.766236i −0.999391 0.0348894i \(-0.988892\pi\)
0.682006 0.731347i \(-0.261108\pi\)
\(692\) 0 0
\(693\) −15.2936 15.2936i −0.580956 0.580956i
\(694\) 0 0
\(695\) −16.4045 + 3.77912i −0.622259 + 0.143350i
\(696\) 0 0
\(697\) 8.82929 39.9447i 0.334433 1.51301i
\(698\) 0 0
\(699\) 10.5868 + 10.5868i 0.400430 + 0.400430i
\(700\) 0 0
\(701\) 51.4034i 1.94148i 0.240137 + 0.970739i \(0.422808\pi\)
−0.240137 + 0.970739i \(0.577192\pi\)
\(702\) 0 0
\(703\) −41.5888 17.2266i −1.56855 0.649715i
\(704\) 0 0
\(705\) 2.19631 + 9.53381i 0.0827178 + 0.359064i
\(706\) 0 0
\(707\) −6.43946 + 6.43946i −0.242181 + 0.242181i
\(708\) 0 0
\(709\) −38.8799 16.1046i −1.46017 0.604821i −0.495574 0.868566i \(-0.665042\pi\)
−0.964592 + 0.263745i \(0.915042\pi\)
\(710\) 0 0
\(711\) −18.5097 + 7.66697i −0.694168 + 0.287534i
\(712\) 0 0
\(713\) 13.5648 + 13.5648i 0.508005 + 0.508005i
\(714\) 0 0
\(715\) 7.18989 + 31.2101i 0.268887 + 1.16719i
\(716\) 0 0
\(717\) 3.12877i 0.116846i
\(718\) 0 0
\(719\) 19.2440 7.97113i 0.717680 0.297273i 0.00620185 0.999981i \(-0.498026\pi\)
0.711479 + 0.702708i \(0.248026\pi\)
\(720\) 0 0
\(721\) −7.19523 17.3708i −0.267964 0.646923i
\(722\) 0 0
\(723\) 5.52678 + 2.28927i 0.205543 + 0.0851388i
\(724\) 0 0
\(725\) 2.23289 + 37.0823i 0.0829274 + 1.37720i
\(726\) 0 0
\(727\) 22.9846 9.52055i 0.852453 0.353098i 0.0867019 0.996234i \(-0.472367\pi\)
0.765751 + 0.643137i \(0.222367\pi\)
\(728\) 0 0
\(729\) 1.29838 + 1.29838i 0.0480883 + 0.0480883i
\(730\) 0 0
\(731\) 13.1185 31.6708i 0.485205 1.17139i
\(732\) 0 0
\(733\) −29.8571 −1.10280 −0.551399 0.834241i \(-0.685906\pi\)
−0.551399 + 0.834241i \(0.685906\pi\)
\(734\) 0 0
\(735\) 2.77903 16.5588i 0.102506 0.610780i
\(736\) 0 0
\(737\) −8.01681 8.01681i −0.295303 0.295303i
\(738\) 0 0
\(739\) 47.0589i 1.73109i −0.500830 0.865545i \(-0.666972\pi\)
0.500830 0.865545i \(-0.333028\pi\)
\(740\) 0 0
\(741\) 32.6100 + 13.5075i 1.19796 + 0.496210i
\(742\) 0 0
\(743\) 41.0683i 1.50665i −0.657648 0.753325i \(-0.728449\pi\)
0.657648 0.753325i \(-0.271551\pi\)
\(744\) 0 0
\(745\) 16.6404 11.8576i 0.609656 0.434429i
\(746\) 0 0
\(747\) −6.92902 −0.253520
\(748\) 0 0
\(749\) −39.1112 16.2004i −1.42909 0.591949i
\(750\) 0 0
\(751\) 12.5950 + 5.21703i 0.459599 + 0.190372i 0.600456 0.799658i \(-0.294986\pi\)
−0.140857 + 0.990030i \(0.544986\pi\)
\(752\) 0 0
\(753\) 6.55695 15.8299i 0.238949 0.576873i
\(754\) 0 0
\(755\) 10.9040 + 1.83000i 0.396838 + 0.0666006i
\(756\) 0 0
\(757\) −11.9098 + 28.7528i −0.432869 + 1.04504i 0.545489 + 0.838118i \(0.316344\pi\)
−0.978358 + 0.206920i \(0.933656\pi\)
\(758\) 0 0
\(759\) −4.26260 + 4.26260i −0.154722 + 0.154722i
\(760\) 0 0
\(761\) 15.0665i 0.546161i −0.961991 0.273081i \(-0.911957\pi\)
0.961991 0.273081i \(-0.0880426\pi\)
\(762\) 0 0
\(763\) −30.8749 + 30.8749i −1.11775 + 1.11775i
\(764\) 0 0
\(765\) −27.4060 + 19.5290i −0.990865 + 0.706071i
\(766\) 0 0
\(767\) 62.1362 25.7376i 2.24361 0.929333i
\(768\) 0 0
\(769\) 4.54226 0.163798 0.0818991 0.996641i \(-0.473901\pi\)
0.0818991 + 0.996641i \(0.473901\pi\)
\(770\) 0 0
\(771\) −8.45939 + 8.45939i −0.304657 + 0.304657i
\(772\) 0 0
\(773\) 17.1089 41.3044i 0.615363 1.48562i −0.241671 0.970358i \(-0.577696\pi\)
0.857034 0.515260i \(-0.172304\pi\)
\(774\) 0 0
\(775\) 12.6880 + 26.0768i 0.455767 + 0.936706i
\(776\) 0 0
\(777\) 20.9661 0.752156
\(778\) 0 0
\(779\) 24.0030 + 37.6252i 0.859996 + 1.34806i
\(780\) 0 0
\(781\) 11.2225 11.2225i 0.401572 0.401572i
\(782\) 0 0
\(783\) −22.5867 + 22.5867i −0.807181 + 0.807181i
\(784\) 0 0
\(785\) −25.9734 + 18.5081i −0.927029 + 0.660583i
\(786\) 0 0
\(787\) 31.4406 1.12074 0.560368 0.828243i \(-0.310660\pi\)
0.560368 + 0.828243i \(0.310660\pi\)
\(788\) 0 0
\(789\) 0.164514i 0.00585685i
\(790\) 0 0
\(791\) −7.56338 + 18.2596i −0.268923 + 0.649238i
\(792\) 0 0
\(793\) 60.1321 + 24.9076i 2.13536 + 0.884493i
\(794\) 0 0
\(795\) −4.66397 + 7.45607i −0.165414 + 0.264440i
\(796\) 0 0
\(797\) 0.705448 0.705448i 0.0249883 0.0249883i −0.694502 0.719491i \(-0.744375\pi\)
0.719491 + 0.694502i \(0.244375\pi\)
\(798\) 0 0
\(799\) −24.6232 24.6232i −0.871107 0.871107i
\(800\) 0 0
\(801\) 3.37492 + 8.14777i 0.119247 + 0.287887i
\(802\) 0 0
\(803\) −10.1337 + 24.4648i −0.357609 + 0.863345i
\(804\) 0 0
\(805\) 29.4964 + 4.95034i 1.03961 + 0.174476i
\(806\) 0 0
\(807\) −1.04881 2.53205i −0.0369199 0.0891325i
\(808\) 0 0
\(809\) 3.52212 8.50315i 0.123831 0.298955i −0.849792 0.527119i \(-0.823272\pi\)
0.973623 + 0.228164i \(0.0732723\pi\)
\(810\) 0 0
\(811\) 16.4192 16.4192i 0.576557 0.576557i −0.357396 0.933953i \(-0.616335\pi\)
0.933953 + 0.357396i \(0.116335\pi\)
\(812\) 0 0
\(813\) 11.7454 4.86509i 0.411928 0.170626i
\(814\) 0 0
\(815\) 30.6916 + 19.1984i 1.07508 + 0.672490i
\(816\) 0 0
\(817\) 14.3116 + 34.5513i 0.500701 + 1.20880i
\(818\) 0 0
\(819\) 60.0958 2.09992
\(820\) 0 0
\(821\) −13.0829 −0.456596 −0.228298 0.973591i \(-0.573316\pi\)
−0.228298 + 0.973591i \(0.573316\pi\)
\(822\) 0 0
\(823\) 4.45835 + 10.7634i 0.155408 + 0.375189i 0.982338 0.187117i \(-0.0599144\pi\)
−0.826929 + 0.562306i \(0.809914\pi\)
\(824\) 0 0
\(825\) −8.19437 + 3.98708i −0.285291 + 0.138812i
\(826\) 0 0
\(827\) −41.9838 + 17.3903i −1.45992 + 0.604718i −0.964535 0.263956i \(-0.914973\pi\)
−0.495384 + 0.868674i \(0.664973\pi\)
\(828\) 0 0
\(829\) 6.78221 6.78221i 0.235556 0.235556i −0.579451 0.815007i \(-0.696733\pi\)
0.815007 + 0.579451i \(0.196733\pi\)
\(830\) 0 0
\(831\) −5.50795 + 13.2974i −0.191069 + 0.461281i
\(832\) 0 0
\(833\) 22.8699 + 55.2128i 0.792395 + 1.91301i
\(834\) 0 0
\(835\) 13.2837 + 18.6417i 0.459703 + 0.645124i
\(836\) 0 0
\(837\) −9.54219 + 23.0369i −0.329826 + 0.796272i
\(838\) 0 0
\(839\) 2.79958 + 6.75879i 0.0966523 + 0.233339i 0.964809 0.262950i \(-0.0846955\pi\)
−0.868157 + 0.496289i \(0.834695\pi\)
\(840\) 0 0
\(841\) −18.5286 18.5286i −0.638916 0.638916i
\(842\) 0 0
\(843\) 10.4280 10.4280i 0.359158 0.359158i
\(844\) 0 0
\(845\) −50.8013 31.7776i −1.74762 1.09318i
\(846\) 0 0
\(847\) −21.8384 9.04575i −0.750375 0.310816i
\(848\) 0 0
\(849\) −6.81375 + 16.4499i −0.233847 + 0.564558i
\(850\) 0 0
\(851\) 21.3616i 0.732267i
\(852\) 0 0
\(853\) −16.0968 −0.551145 −0.275572 0.961280i \(-0.588867\pi\)
−0.275572 + 0.961280i \(0.588867\pi\)
\(854\) 0 0
\(855\) 6.07647 36.2065i 0.207811 1.23824i
\(856\) 0 0
\(857\) −7.36223 + 7.36223i −0.251489 + 0.251489i −0.821581 0.570092i \(-0.806908\pi\)
0.570092 + 0.821581i \(0.306908\pi\)
\(858\) 0 0
\(859\) −9.58283 + 9.58283i −0.326962 + 0.326962i −0.851430 0.524468i \(-0.824264\pi\)
0.524468 + 0.851430i \(0.324264\pi\)
\(860\) 0 0
\(861\) −17.0347 11.9120i −0.580542 0.405958i
\(862\) 0 0
\(863\) −8.23461 −0.280309 −0.140155 0.990130i \(-0.544760\pi\)
−0.140155 + 0.990130i \(0.544760\pi\)
\(864\) 0 0
\(865\) −29.0054 + 6.68198i −0.986212 + 0.227194i
\(866\) 0 0
\(867\) −7.31676 + 17.6642i −0.248490 + 0.599908i
\(868\) 0 0
\(869\) 13.6545 13.6545i 0.463198 0.463198i
\(870\) 0 0
\(871\) 31.5018 1.06740
\(872\) 0 0
\(873\) −6.54116 + 2.70944i −0.221385 + 0.0917006i
\(874\) 0 0
\(875\) 39.7037 + 21.6303i 1.34223 + 0.731237i
\(876\) 0 0
\(877\) 36.4594 36.4594i 1.23115 1.23115i 0.267623 0.963524i \(-0.413762\pi\)
0.963524 0.267623i \(-0.0862381\pi\)
\(878\) 0 0
\(879\) 23.2030i 0.782619i
\(880\) 0 0
\(881\) 41.3441 41.3441i 1.39292 1.39292i 0.574213 0.818706i \(-0.305308\pi\)
0.818706 0.574213i \(-0.194692\pi\)
\(882\) 0 0
\(883\) 10.4083 25.1279i 0.350268 0.845622i −0.646318 0.763068i \(-0.723692\pi\)
0.996587 0.0825543i \(-0.0263078\pi\)
\(884\) 0 0
\(885\) 11.1052 + 15.5845i 0.373298 + 0.523868i
\(886\) 0 0
\(887\) 16.5714 40.0070i 0.556414 1.34330i −0.356173 0.934420i \(-0.615919\pi\)
0.912587 0.408882i \(-0.134081\pi\)
\(888\) 0 0
\(889\) 77.8457 + 32.2447i 2.61086 + 1.08145i
\(890\) 0 0
\(891\) 7.58434 + 3.14154i 0.254085 + 0.105245i
\(892\) 0 0
\(893\) 37.9896 1.27127
\(894\) 0 0
\(895\) 16.1713 + 22.6940i 0.540547 + 0.758577i
\(896\) 0 0
\(897\) 16.7498i 0.559258i
\(898\) 0 0
\(899\) −39.8128 16.4910i −1.32783 0.550005i
\(900\) 0 0
\(901\) 31.3027i 1.04285i
\(902\) 0 0
\(903\) −12.3166 12.3166i −0.409872 0.409872i
\(904\) 0 0
\(905\) 4.92221 + 6.90758i 0.163620 + 0.229616i
\(906\) 0 0
\(907\) 39.8764 1.32407 0.662037 0.749471i \(-0.269692\pi\)
0.662037 + 0.749471i \(0.269692\pi\)
\(908\) 0 0
\(909\) 2.02999 4.90083i 0.0673306 0.162550i
\(910\) 0 0
\(911\) 14.8501 + 14.8501i 0.492005 + 0.492005i 0.908938 0.416932i \(-0.136895\pi\)
−0.416932 + 0.908938i \(0.636895\pi\)
\(912\) 0 0
\(913\) 6.17013 2.55575i 0.204202 0.0845831i
\(914\) 0 0
\(915\) −3.06518 + 18.2638i −0.101332 + 0.603783i
\(916\) 0 0
\(917\) −9.02424 3.73796i −0.298007 0.123438i
\(918\) 0 0
\(919\) −2.09210 5.05077i −0.0690119 0.166609i 0.885610 0.464429i \(-0.153741\pi\)
−0.954622 + 0.297820i \(0.903741\pi\)
\(920\) 0 0
\(921\) 1.80248 0.746613i 0.0593939 0.0246017i
\(922\) 0 0
\(923\) 44.0984i 1.45152i
\(924\) 0 0
\(925\) −10.5422 + 30.5231i −0.346626 + 1.00359i
\(926\) 0 0
\(927\) 7.74427 + 7.74427i 0.254355 + 0.254355i
\(928\) 0 0
\(929\) −33.0991 + 13.7101i −1.08594 + 0.449813i −0.852591 0.522579i \(-0.824970\pi\)
−0.233354 + 0.972392i \(0.574970\pi\)
\(930\) 0 0
\(931\) −60.2345 24.9499i −1.97410 0.817701i
\(932\) 0 0
\(933\) −14.4438 + 14.4438i −0.472869 + 0.472869i
\(934\) 0 0
\(935\) 17.2012 27.4987i 0.562539 0.899304i
\(936\) 0 0
\(937\) −45.0518 18.6611i −1.47178 0.609631i −0.504515 0.863403i \(-0.668329\pi\)
−0.967264 + 0.253772i \(0.918329\pi\)
\(938\) 0 0
\(939\) 24.1333i 0.787559i
\(940\) 0 0
\(941\) −34.5386 34.5386i −1.12593 1.12593i −0.990833 0.135094i \(-0.956866\pi\)
−0.135094 0.990833i \(-0.543134\pi\)
\(942\) 0 0
\(943\) 12.1366 17.3560i 0.395223 0.565190i
\(944\) 0 0
\(945\) 8.72731 + 37.8838i 0.283899 + 1.23236i
\(946\) 0 0
\(947\) 13.9238 + 13.9238i 0.452464 + 0.452464i 0.896172 0.443707i \(-0.146337\pi\)
−0.443707 + 0.896172i \(0.646337\pi\)
\(948\) 0 0
\(949\) −28.1570 67.9769i −0.914014 2.20662i
\(950\) 0 0
\(951\) −3.78661 3.78661i −0.122789 0.122789i
\(952\) 0 0
\(953\) −10.7779 10.7779i −0.349132 0.349132i 0.510654 0.859786i \(-0.329403\pi\)
−0.859786 + 0.510654i \(0.829403\pi\)
\(954\) 0 0
\(955\) −18.3809 + 13.0978i −0.594791 + 0.423836i
\(956\) 0 0
\(957\) 5.18213 12.5108i 0.167514 0.404415i
\(958\) 0 0
\(959\) 13.6279i 0.440069i
\(960\) 0 0
\(961\) −2.63943 −0.0851429
\(962\) 0 0
\(963\) 24.6590 0.794625
\(964\) 0 0
\(965\) 15.2122 10.8399i 0.489698 0.348949i
\(966\) 0 0
\(967\) −9.95408 4.12311i −0.320102 0.132590i 0.216846 0.976206i \(-0.430423\pi\)
−0.536948 + 0.843615i \(0.680423\pi\)
\(968\) 0 0
\(969\) −13.6795 33.0253i −0.439450 1.06093i
\(970\) 0 0
\(971\) −17.7917 + 42.9529i −0.570962 + 1.37842i 0.329775 + 0.944059i \(0.393027\pi\)
−0.900737 + 0.434365i \(0.856973\pi\)
\(972\) 0 0
\(973\) −11.6509 28.1278i −0.373511 0.901734i
\(974\) 0 0
\(975\) 8.26621 23.9333i 0.264731 0.766480i
\(976\) 0 0
\(977\) 11.9285 + 28.7981i 0.381628 + 0.921332i 0.991651 + 0.128948i \(0.0411601\pi\)
−0.610023 + 0.792384i \(0.708840\pi\)
\(978\) 0 0
\(979\) −6.01057 6.01057i −0.192099 0.192099i
\(980\) 0 0
\(981\) 9.73309 23.4978i 0.310754 0.750226i
\(982\) 0 0
\(983\) 10.4931 10.4931i 0.334679 0.334679i −0.519681 0.854360i \(-0.673949\pi\)
0.854360 + 0.519681i \(0.173949\pi\)
\(984\) 0 0
\(985\) −3.21943 + 0.741661i −0.102579 + 0.0236313i
\(986\) 0 0
\(987\) −16.3470 + 6.77115i −0.520331 + 0.215528i
\(988\) 0 0
\(989\) 12.5490 12.5490i 0.399034 0.399034i
\(990\) 0 0
\(991\) 33.7166 + 13.9659i 1.07104 + 0.443641i 0.847359 0.531020i \(-0.178191\pi\)
0.223685 + 0.974661i \(0.428191\pi\)
\(992\) 0 0
\(993\) 20.4230i 0.648105i
\(994\) 0 0
\(995\) −10.0060 14.0419i −0.317212 0.445160i
\(996\) 0 0
\(997\) 37.3330 15.4638i 1.18235 0.489744i 0.297091 0.954849i \(-0.403983\pi\)
0.885255 + 0.465105i \(0.153983\pi\)
\(998\) 0 0
\(999\) −25.6525 + 10.6256i −0.811610 + 0.336180i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.653.9 yes 84
5.2 odd 4 820.2.x.a.817.9 yes 84
41.27 odd 8 820.2.x.a.273.9 84
205.27 even 8 inner 820.2.y.a.437.9 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.273.9 84 41.27 odd 8
820.2.x.a.817.9 yes 84 5.2 odd 4
820.2.y.a.437.9 yes 84 205.27 even 8 inner
820.2.y.a.653.9 yes 84 1.1 even 1 trivial