Properties

Label 820.2.x.a.273.9
Level $820$
Weight $2$
Character 820.273
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 273.9
Character \(\chi\) \(=\) 820.273
Dual form 820.2.x.a.817.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.741636 - 0.307196i) q^{3} +(2.17900 - 0.501977i) q^{5} +(-1.54758 + 3.73618i) q^{7} +(-1.66567 - 1.66567i) q^{9} +(-0.868860 - 2.09761i) q^{11} +(-5.82833 - 2.41417i) q^{13} +(-1.77023 - 0.297094i) q^{15} +(-5.90256 + 2.44492i) q^{17} +(2.66729 - 6.43941i) q^{19} +(2.29548 - 2.29548i) q^{21} +(2.33878 - 2.33878i) q^{23} +(4.49604 - 2.18761i) q^{25} +(1.64522 + 3.97191i) q^{27} +(-2.84330 - 6.86433i) q^{29} +5.79995i q^{31} +1.82258i q^{33} +(-1.49669 + 8.91797i) q^{35} +(4.56684 - 4.56684i) q^{37} +(3.58088 + 3.58088i) q^{39} +(-6.30515 - 1.11584i) q^{41} -5.36561i q^{43} +(-4.46560 - 2.79335i) q^{45} +(-5.03559 + 2.08581i) q^{47} +(-6.61431 - 6.61431i) q^{49} +5.12863 q^{51} +(1.87498 - 4.52660i) q^{53} +(-2.94619 - 4.13454i) q^{55} +(-3.95632 + 3.95632i) q^{57} +10.6611i q^{59} +(-7.29537 - 7.29537i) q^{61} +(8.80097 - 3.64548i) q^{63} +(-13.9118 - 2.33479i) q^{65} +(-4.61341 + 1.91094i) q^{67} +(-2.45298 + 1.01606i) q^{69} +(-6.45817 + 2.67506i) q^{71} +11.6632i q^{73} +(-4.00645 + 0.241246i) q^{75} +9.18169 q^{77} +(7.85772 - 3.25478i) q^{79} +3.61570i q^{81} +(-2.07996 - 2.07996i) q^{83} +(-11.6344 + 8.29042i) q^{85} +5.96429i q^{87} +(1.43272 + 3.45889i) q^{89} +(18.0396 - 18.0396i) q^{91} +(1.78172 - 4.30145i) q^{93} +(2.57958 - 15.3704i) q^{95} +(1.15021 + 2.77685i) q^{97} +(-2.04669 + 4.94115i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.741636 0.307196i −0.428184 0.177360i 0.158175 0.987411i \(-0.449439\pi\)
−0.586359 + 0.810052i \(0.699439\pi\)
\(4\) 0 0
\(5\) 2.17900 0.501977i 0.974476 0.224491i
\(6\) 0 0
\(7\) −1.54758 + 3.73618i −0.584929 + 1.41214i 0.303368 + 0.952874i \(0.401889\pi\)
−0.888297 + 0.459270i \(0.848111\pi\)
\(8\) 0 0
\(9\) −1.66567 1.66567i −0.555222 0.555222i
\(10\) 0 0
\(11\) −0.868860 2.09761i −0.261971 0.632454i 0.737089 0.675795i \(-0.236200\pi\)
−0.999060 + 0.0433414i \(0.986200\pi\)
\(12\) 0 0
\(13\) −5.82833 2.41417i −1.61649 0.669572i −0.622866 0.782328i \(-0.714032\pi\)
−0.993623 + 0.112757i \(0.964032\pi\)
\(14\) 0 0
\(15\) −1.77023 0.297094i −0.457071 0.0767094i
\(16\) 0 0
\(17\) −5.90256 + 2.44492i −1.43158 + 0.592981i −0.957742 0.287630i \(-0.907133\pi\)
−0.473840 + 0.880611i \(0.657133\pi\)
\(18\) 0 0
\(19\) 2.66729 6.43941i 0.611918 1.47730i −0.248972 0.968511i \(-0.580093\pi\)
0.860890 0.508791i \(-0.169907\pi\)
\(20\) 0 0
\(21\) 2.29548 2.29548i 0.500914 0.500914i
\(22\) 0 0
\(23\) 2.33878 2.33878i 0.487669 0.487669i −0.419901 0.907570i \(-0.637935\pi\)
0.907570 + 0.419901i \(0.137935\pi\)
\(24\) 0 0
\(25\) 4.49604 2.18761i 0.899208 0.437522i
\(26\) 0 0
\(27\) 1.64522 + 3.97191i 0.316623 + 0.764395i
\(28\) 0 0
\(29\) −2.84330 6.86433i −0.527987 1.27467i −0.932840 0.360292i \(-0.882677\pi\)
0.404852 0.914382i \(-0.367323\pi\)
\(30\) 0 0
\(31\) 5.79995i 1.04170i 0.853648 + 0.520851i \(0.174385\pi\)
−0.853648 + 0.520851i \(0.825615\pi\)
\(32\) 0 0
\(33\) 1.82258i 0.317270i
\(34\) 0 0
\(35\) −1.49669 + 8.91797i −0.252986 + 1.50741i
\(36\) 0 0
\(37\) 4.56684 4.56684i 0.750783 0.750783i −0.223842 0.974625i \(-0.571860\pi\)
0.974625 + 0.223842i \(0.0718600\pi\)
\(38\) 0 0
\(39\) 3.58088 + 3.58088i 0.573400 + 0.573400i
\(40\) 0 0
\(41\) −6.30515 1.11584i −0.984699 0.174265i
\(42\) 0 0
\(43\) 5.36561i 0.818248i −0.912479 0.409124i \(-0.865834\pi\)
0.912479 0.409124i \(-0.134166\pi\)
\(44\) 0 0
\(45\) −4.46560 2.79335i −0.665693 0.416408i
\(46\) 0 0
\(47\) −5.03559 + 2.08581i −0.734516 + 0.304246i −0.718406 0.695624i \(-0.755128\pi\)
−0.0161095 + 0.999870i \(0.505128\pi\)
\(48\) 0 0
\(49\) −6.61431 6.61431i −0.944901 0.944901i
\(50\) 0 0
\(51\) 5.12863 0.718151
\(52\) 0 0
\(53\) 1.87498 4.52660i 0.257548 0.621777i −0.741227 0.671255i \(-0.765756\pi\)
0.998775 + 0.0494778i \(0.0157557\pi\)
\(54\) 0 0
\(55\) −2.94619 4.13454i −0.397265 0.557501i
\(56\) 0 0
\(57\) −3.95632 + 3.95632i −0.524027 + 0.524027i
\(58\) 0 0
\(59\) 10.6611i 1.38795i 0.719999 + 0.693976i \(0.244142\pi\)
−0.719999 + 0.693976i \(0.755858\pi\)
\(60\) 0 0
\(61\) −7.29537 7.29537i −0.934076 0.934076i 0.0638810 0.997958i \(-0.479652\pi\)
−0.997958 + 0.0638810i \(0.979652\pi\)
\(62\) 0 0
\(63\) 8.80097 3.64548i 1.10882 0.459287i
\(64\) 0 0
\(65\) −13.9118 2.33479i −1.72554 0.289595i
\(66\) 0 0
\(67\) −4.61341 + 1.91094i −0.563617 + 0.233458i −0.646255 0.763122i \(-0.723666\pi\)
0.0826374 + 0.996580i \(0.473666\pi\)
\(68\) 0 0
\(69\) −2.45298 + 1.01606i −0.295305 + 0.122319i
\(70\) 0 0
\(71\) −6.45817 + 2.67506i −0.766444 + 0.317471i −0.731431 0.681915i \(-0.761147\pi\)
−0.0350128 + 0.999387i \(0.511147\pi\)
\(72\) 0 0
\(73\) 11.6632i 1.36507i 0.730852 + 0.682536i \(0.239123\pi\)
−0.730852 + 0.682536i \(0.760877\pi\)
\(74\) 0 0
\(75\) −4.00645 + 0.241246i −0.462625 + 0.0278567i
\(76\) 0 0
\(77\) 9.18169 1.04635
\(78\) 0 0
\(79\) 7.85772 3.25478i 0.884063 0.366191i 0.105992 0.994367i \(-0.466198\pi\)
0.778071 + 0.628176i \(0.216198\pi\)
\(80\) 0 0
\(81\) 3.61570i 0.401744i
\(82\) 0 0
\(83\) −2.07996 2.07996i −0.228305 0.228305i 0.583679 0.811984i \(-0.301613\pi\)
−0.811984 + 0.583679i \(0.801613\pi\)
\(84\) 0 0
\(85\) −11.6344 + 8.29042i −1.26192 + 0.899222i
\(86\) 0 0
\(87\) 5.96429i 0.639439i
\(88\) 0 0
\(89\) 1.43272 + 3.45889i 0.151868 + 0.366641i 0.981443 0.191754i \(-0.0614175\pi\)
−0.829575 + 0.558395i \(0.811417\pi\)
\(90\) 0 0
\(91\) 18.0396 18.0396i 1.89106 1.89106i
\(92\) 0 0
\(93\) 1.78172 4.30145i 0.184756 0.446040i
\(94\) 0 0
\(95\) 2.57958 15.3704i 0.264659 1.57696i
\(96\) 0 0
\(97\) 1.15021 + 2.77685i 0.116786 + 0.281946i 0.971454 0.237229i \(-0.0762392\pi\)
−0.854668 + 0.519175i \(0.826239\pi\)
\(98\) 0 0
\(99\) −2.04669 + 4.94115i −0.205700 + 0.496604i
\(100\) 0 0
\(101\) 2.08050 + 0.861770i 0.207017 + 0.0857493i 0.483783 0.875188i \(-0.339263\pi\)
−0.276765 + 0.960937i \(0.589263\pi\)
\(102\) 0 0
\(103\) 4.64935 0.458115 0.229057 0.973413i \(-0.426436\pi\)
0.229057 + 0.973413i \(0.426436\pi\)
\(104\) 0 0
\(105\) 3.84956 6.15411i 0.375679 0.600580i
\(106\) 0 0
\(107\) −7.40215 7.40215i −0.715593 0.715593i 0.252107 0.967699i \(-0.418877\pi\)
−0.967699 + 0.252107i \(0.918877\pi\)
\(108\) 0 0
\(109\) −9.97525 4.13189i −0.955456 0.395763i −0.150177 0.988659i \(-0.547984\pi\)
−0.805279 + 0.592896i \(0.797984\pi\)
\(110\) 0 0
\(111\) −4.78984 + 1.98402i −0.454632 + 0.188315i
\(112\) 0 0
\(113\) −3.45580 + 3.45580i −0.325095 + 0.325095i −0.850718 0.525623i \(-0.823832\pi\)
0.525623 + 0.850718i \(0.323832\pi\)
\(114\) 0 0
\(115\) 3.92217 6.27019i 0.365744 0.584699i
\(116\) 0 0
\(117\) 5.68684 + 13.7293i 0.525749 + 1.26927i
\(118\) 0 0
\(119\) 25.8367i 2.36845i
\(120\) 0 0
\(121\) 4.13311 4.13311i 0.375738 0.375738i
\(122\) 0 0
\(123\) 4.33335 + 2.76446i 0.390725 + 0.249263i
\(124\) 0 0
\(125\) 8.69872 7.02370i 0.778037 0.628218i
\(126\) 0 0
\(127\) 14.7330 + 14.7330i 1.30734 + 1.30734i 0.923325 + 0.384019i \(0.125460\pi\)
0.384019 + 0.923325i \(0.374540\pi\)
\(128\) 0 0
\(129\) −1.64829 + 3.97933i −0.145124 + 0.350361i
\(130\) 0 0
\(131\) 1.70792 1.70792i 0.149222 0.149222i −0.628549 0.777770i \(-0.716351\pi\)
0.777770 + 0.628549i \(0.216351\pi\)
\(132\) 0 0
\(133\) 19.9310 + 19.9310i 1.72823 + 1.72823i
\(134\) 0 0
\(135\) 5.57873 + 7.82892i 0.480141 + 0.673806i
\(136\) 0 0
\(137\) −3.11339 + 1.28961i −0.265995 + 0.110179i −0.511695 0.859167i \(-0.670982\pi\)
0.245700 + 0.969346i \(0.420982\pi\)
\(138\) 0 0
\(139\) 7.52848i 0.638557i 0.947661 + 0.319279i \(0.103441\pi\)
−0.947661 + 0.319279i \(0.896559\pi\)
\(140\) 0 0
\(141\) 4.37533 0.368469
\(142\) 0 0
\(143\) 14.3232i 1.19776i
\(144\) 0 0
\(145\) −9.64127 13.5301i −0.800664 1.12361i
\(146\) 0 0
\(147\) 2.87352 + 6.93730i 0.237004 + 0.572179i
\(148\) 0 0
\(149\) 3.49692 8.44230i 0.286478 0.691620i −0.713481 0.700675i \(-0.752882\pi\)
0.999959 + 0.00905484i \(0.00288229\pi\)
\(150\) 0 0
\(151\) 1.89223 + 4.56824i 0.153987 + 0.371758i 0.981981 0.188979i \(-0.0605179\pi\)
−0.827994 + 0.560737i \(0.810518\pi\)
\(152\) 0 0
\(153\) 13.9041 + 5.75927i 1.12408 + 0.465610i
\(154\) 0 0
\(155\) 2.91144 + 12.6381i 0.233852 + 1.01511i
\(156\) 0 0
\(157\) −13.1773 5.45822i −1.05166 0.435613i −0.211178 0.977448i \(-0.567730\pi\)
−0.840485 + 0.541835i \(0.817730\pi\)
\(158\) 0 0
\(159\) −2.78111 + 2.78111i −0.220556 + 0.220556i
\(160\) 0 0
\(161\) 5.11866 + 12.3575i 0.403407 + 0.973910i
\(162\) 0 0
\(163\) −11.4479 + 11.4479i −0.896671 + 0.896671i −0.995140 0.0984693i \(-0.968605\pi\)
0.0984693 + 0.995140i \(0.468605\pi\)
\(164\) 0 0
\(165\) 0.914890 + 3.97138i 0.0712241 + 0.309172i
\(166\) 0 0
\(167\) 3.91750 9.45768i 0.303145 0.731857i −0.696749 0.717315i \(-0.745371\pi\)
0.999894 0.0145421i \(-0.00462906\pi\)
\(168\) 0 0
\(169\) 18.9488 + 18.9488i 1.45760 + 1.45760i
\(170\) 0 0
\(171\) −15.1687 + 6.28308i −1.15998 + 0.480479i
\(172\) 0 0
\(173\) 13.3113 1.01204 0.506021 0.862521i \(-0.331116\pi\)
0.506021 + 0.862521i \(0.331116\pi\)
\(174\) 0 0
\(175\) 1.21534 + 20.1835i 0.0918708 + 1.52573i
\(176\) 0 0
\(177\) 3.27503 7.90663i 0.246166 0.594298i
\(178\) 0 0
\(179\) −11.5135 4.76907i −0.860563 0.356457i −0.0916351 0.995793i \(-0.529209\pi\)
−0.768928 + 0.639336i \(0.779209\pi\)
\(180\) 0 0
\(181\) 3.50448 + 1.45160i 0.260486 + 0.107897i 0.509105 0.860705i \(-0.329977\pi\)
−0.248619 + 0.968601i \(0.579977\pi\)
\(182\) 0 0
\(183\) 3.16940 + 7.65162i 0.234289 + 0.565624i
\(184\) 0 0
\(185\) 7.65867 12.2436i 0.563076 0.900164i
\(186\) 0 0
\(187\) 10.2570 + 10.2570i 0.750066 + 0.750066i
\(188\) 0 0
\(189\) −17.3859 −1.26464
\(190\) 0 0
\(191\) 3.86268 9.32533i 0.279493 0.674757i −0.720328 0.693633i \(-0.756009\pi\)
0.999822 + 0.0188763i \(0.00600888\pi\)
\(192\) 0 0
\(193\) −7.71773 3.19679i −0.555535 0.230110i 0.0872107 0.996190i \(-0.472205\pi\)
−0.642745 + 0.766080i \(0.722205\pi\)
\(194\) 0 0
\(195\) 9.60024 + 6.00520i 0.687487 + 0.430041i
\(196\) 0 0
\(197\) −1.47748 −0.105266 −0.0526331 0.998614i \(-0.516761\pi\)
−0.0526331 + 0.998614i \(0.516761\pi\)
\(198\) 0 0
\(199\) 7.12402 + 2.95087i 0.505009 + 0.209181i 0.620618 0.784113i \(-0.286882\pi\)
−0.115609 + 0.993295i \(0.536882\pi\)
\(200\) 0 0
\(201\) 4.00850 0.282738
\(202\) 0 0
\(203\) 30.0466 2.10886
\(204\) 0 0
\(205\) −14.2990 + 0.733631i −0.998686 + 0.0512390i
\(206\) 0 0
\(207\) −7.79124 −0.541528
\(208\) 0 0
\(209\) −15.8249 −1.09463
\(210\) 0 0
\(211\) 11.4492 + 4.74240i 0.788193 + 0.326480i 0.740217 0.672368i \(-0.234723\pi\)
0.0479763 + 0.998848i \(0.484723\pi\)
\(212\) 0 0
\(213\) 5.61138 0.384486
\(214\) 0 0
\(215\) −2.69341 11.6916i −0.183689 0.797363i
\(216\) 0 0
\(217\) −21.6697 8.97587i −1.47103 0.609322i
\(218\) 0 0
\(219\) 3.58288 8.64984i 0.242109 0.584502i
\(220\) 0 0
\(221\) 40.3046 2.71118
\(222\) 0 0
\(223\) −16.6542 16.6542i −1.11525 1.11525i −0.992429 0.122822i \(-0.960806\pi\)
−0.122822 0.992429i \(-0.539194\pi\)
\(224\) 0 0
\(225\) −11.1327 3.84507i −0.742181 0.256338i
\(226\) 0 0
\(227\) 4.15296 + 10.0261i 0.275642 + 0.665458i 0.999705 0.0242750i \(-0.00772773\pi\)
−0.724063 + 0.689733i \(0.757728\pi\)
\(228\) 0 0
\(229\) 5.61997 + 2.32787i 0.371378 + 0.153830i 0.560563 0.828112i \(-0.310585\pi\)
−0.189185 + 0.981941i \(0.560585\pi\)
\(230\) 0 0
\(231\) −6.80947 2.82058i −0.448030 0.185580i
\(232\) 0 0
\(233\) 7.13748 17.2314i 0.467592 1.12887i −0.497620 0.867395i \(-0.665793\pi\)
0.965211 0.261471i \(-0.0842075\pi\)
\(234\) 0 0
\(235\) −9.92549 + 7.07271i −0.647468 + 0.461373i
\(236\) 0 0
\(237\) −6.82743 −0.443489
\(238\) 0 0
\(239\) −3.60092 + 1.49155i −0.232924 + 0.0964804i −0.496093 0.868269i \(-0.665232\pi\)
0.263169 + 0.964750i \(0.415232\pi\)
\(240\) 0 0
\(241\) −5.26946 5.26946i −0.339436 0.339436i 0.516719 0.856155i \(-0.327153\pi\)
−0.856155 + 0.516719i \(0.827153\pi\)
\(242\) 0 0
\(243\) 6.04639 14.5973i 0.387876 0.936415i
\(244\) 0 0
\(245\) −17.7328 11.0923i −1.13290 0.708662i
\(246\) 0 0
\(247\) −31.0917 + 31.0917i −1.97832 + 1.97832i
\(248\) 0 0
\(249\) 0.903617 + 2.18153i 0.0572644 + 0.138249i
\(250\) 0 0
\(251\) 15.0929 15.0929i 0.952653 0.952653i −0.0462758 0.998929i \(-0.514735\pi\)
0.998929 + 0.0462758i \(0.0147353\pi\)
\(252\) 0 0
\(253\) −6.93791 2.87378i −0.436183 0.180673i
\(254\) 0 0
\(255\) 11.1753 2.57445i 0.699821 0.161218i
\(256\) 0 0
\(257\) 13.7687 + 5.70319i 0.858869 + 0.355755i 0.768265 0.640132i \(-0.221120\pi\)
0.0906042 + 0.995887i \(0.471120\pi\)
\(258\) 0 0
\(259\) 9.99499 + 24.1301i 0.621059 + 1.49937i
\(260\) 0 0
\(261\) −6.69769 + 16.1697i −0.414577 + 1.00088i
\(262\) 0 0
\(263\) −0.0784272 0.189340i −0.00483603 0.0116752i 0.921443 0.388513i \(-0.127011\pi\)
−0.926279 + 0.376838i \(0.877011\pi\)
\(264\) 0 0
\(265\) 1.81332 10.8046i 0.111392 0.663724i
\(266\) 0 0
\(267\) 3.00536i 0.183925i
\(268\) 0 0
\(269\) −3.41414 −0.208164 −0.104082 0.994569i \(-0.533190\pi\)
−0.104082 + 0.994569i \(0.533190\pi\)
\(270\) 0 0
\(271\) 15.8371i 0.962036i −0.876711 0.481018i \(-0.840267\pi\)
0.876711 0.481018i \(-0.159733\pi\)
\(272\) 0 0
\(273\) −18.9205 + 7.83713i −1.14512 + 0.474324i
\(274\) 0 0
\(275\) −8.49518 7.53022i −0.512279 0.454090i
\(276\) 0 0
\(277\) 12.6783 + 12.6783i 0.761763 + 0.761763i 0.976641 0.214878i \(-0.0689354\pi\)
−0.214878 + 0.976641i \(0.568935\pi\)
\(278\) 0 0
\(279\) 9.66078 9.66078i 0.578376 0.578376i
\(280\) 0 0
\(281\) 7.03038 16.9728i 0.419397 1.01251i −0.563126 0.826371i \(-0.690401\pi\)
0.982523 0.186143i \(-0.0595987\pi\)
\(282\) 0 0
\(283\) −15.6840 15.6840i −0.932315 0.932315i 0.0655348 0.997850i \(-0.479125\pi\)
−0.997850 + 0.0655348i \(0.979125\pi\)
\(284\) 0 0
\(285\) −6.63482 + 10.6068i −0.393013 + 0.628291i
\(286\) 0 0
\(287\) 13.9267 21.8303i 0.822066 1.28860i
\(288\) 0 0
\(289\) 16.8418 16.8418i 0.990694 0.990694i
\(290\) 0 0
\(291\) 2.41275i 0.141438i
\(292\) 0 0
\(293\) −11.0614 26.7045i −0.646212 1.56009i −0.818162 0.574988i \(-0.805007\pi\)
0.171950 0.985106i \(-0.444993\pi\)
\(294\) 0 0
\(295\) 5.35160 + 23.2304i 0.311582 + 1.35253i
\(296\) 0 0
\(297\) 6.90207 6.90207i 0.400499 0.400499i
\(298\) 0 0
\(299\) −19.2774 + 7.98495i −1.11484 + 0.461782i
\(300\) 0 0
\(301\) 20.0469 + 8.30369i 1.15548 + 0.478617i
\(302\) 0 0
\(303\) −1.27824 1.27824i −0.0734330 0.0734330i
\(304\) 0 0
\(305\) −19.5587 12.2345i −1.11993 0.700544i
\(306\) 0 0
\(307\) −2.43042 −0.138711 −0.0693556 0.997592i \(-0.522094\pi\)
−0.0693556 + 0.997592i \(0.522094\pi\)
\(308\) 0 0
\(309\) −3.44813 1.42826i −0.196157 0.0812510i
\(310\) 0 0
\(311\) −9.73781 + 23.5091i −0.552180 + 1.33308i 0.363658 + 0.931533i \(0.381528\pi\)
−0.915838 + 0.401548i \(0.868472\pi\)
\(312\) 0 0
\(313\) 11.5048 + 27.7751i 0.650291 + 1.56994i 0.812356 + 0.583161i \(0.198184\pi\)
−0.162066 + 0.986780i \(0.551816\pi\)
\(314\) 0 0
\(315\) 17.3473 12.3614i 0.977411 0.696484i
\(316\) 0 0
\(317\) 2.55288 6.16319i 0.143384 0.346159i −0.835830 0.548988i \(-0.815013\pi\)
0.979214 + 0.202828i \(0.0650134\pi\)
\(318\) 0 0
\(319\) −11.9283 + 11.9283i −0.667855 + 0.667855i
\(320\) 0 0
\(321\) 3.21579 + 7.76361i 0.179488 + 0.433323i
\(322\) 0 0
\(323\) 44.5303i 2.47773i
\(324\) 0 0
\(325\) −31.4857 + 1.89589i −1.74651 + 0.105165i
\(326\) 0 0
\(327\) 6.12871 + 6.12871i 0.338919 + 0.338919i
\(328\) 0 0
\(329\) 22.0418i 1.21520i
\(330\) 0 0
\(331\) 23.5050 9.73608i 1.29195 0.535143i 0.372384 0.928079i \(-0.378540\pi\)
0.919566 + 0.392935i \(0.128540\pi\)
\(332\) 0 0
\(333\) −15.2136 −0.833702
\(334\) 0 0
\(335\) −9.09335 + 6.47974i −0.496823 + 0.354026i
\(336\) 0 0
\(337\) 2.41226i 0.131404i −0.997839 0.0657022i \(-0.979071\pi\)
0.997839 0.0657022i \(-0.0209287\pi\)
\(338\) 0 0
\(339\) 3.62456 1.50134i 0.196859 0.0815416i
\(340\) 0 0
\(341\) 12.1660 5.03934i 0.658828 0.272896i
\(342\) 0 0
\(343\) 8.79512 3.64306i 0.474892 0.196707i
\(344\) 0 0
\(345\) −4.83500 + 3.44533i −0.260308 + 0.185490i
\(346\) 0 0
\(347\) −4.63313 + 1.91911i −0.248719 + 0.103023i −0.503560 0.863960i \(-0.667977\pi\)
0.254841 + 0.966983i \(0.417977\pi\)
\(348\) 0 0
\(349\) 9.85858 + 9.85858i 0.527718 + 0.527718i 0.919891 0.392173i \(-0.128277\pi\)
−0.392173 + 0.919891i \(0.628277\pi\)
\(350\) 0 0
\(351\) 27.1215i 1.44764i
\(352\) 0 0
\(353\) 10.9615 10.9615i 0.583423 0.583423i −0.352419 0.935842i \(-0.614641\pi\)
0.935842 + 0.352419i \(0.114641\pi\)
\(354\) 0 0
\(355\) −12.7295 + 9.07080i −0.675612 + 0.481428i
\(356\) 0 0
\(357\) −7.93694 + 19.1615i −0.420068 + 1.01413i
\(358\) 0 0
\(359\) −29.9598 −1.58122 −0.790608 0.612323i \(-0.790235\pi\)
−0.790608 + 0.612323i \(0.790235\pi\)
\(360\) 0 0
\(361\) −20.9165 20.9165i −1.10087 1.10087i
\(362\) 0 0
\(363\) −4.33494 + 1.79559i −0.227525 + 0.0942441i
\(364\) 0 0
\(365\) 5.85464 + 25.4140i 0.306446 + 1.33023i
\(366\) 0 0
\(367\) 16.4696i 0.859705i −0.902899 0.429852i \(-0.858566\pi\)
0.902899 0.429852i \(-0.141434\pi\)
\(368\) 0 0
\(369\) 8.64365 + 12.3609i 0.449971 + 0.643482i
\(370\) 0 0
\(371\) 14.0105 + 14.0105i 0.727391 + 0.727391i
\(372\) 0 0
\(373\) −15.8668 + 15.8668i −0.821553 + 0.821553i −0.986331 0.164778i \(-0.947309\pi\)
0.164778 + 0.986331i \(0.447309\pi\)
\(374\) 0 0
\(375\) −8.60894 + 2.53682i −0.444564 + 0.131001i
\(376\) 0 0
\(377\) 46.8718i 2.41402i
\(378\) 0 0
\(379\) 21.3874i 1.09860i 0.835626 + 0.549299i \(0.185105\pi\)
−0.835626 + 0.549299i \(0.814895\pi\)
\(380\) 0 0
\(381\) −6.40062 15.4525i −0.327914 0.791654i
\(382\) 0 0
\(383\) −11.2561 27.1745i −0.575158 1.38855i −0.897114 0.441799i \(-0.854340\pi\)
0.321956 0.946755i \(-0.395660\pi\)
\(384\) 0 0
\(385\) 20.0068 4.60899i 1.01964 0.234896i
\(386\) 0 0
\(387\) −8.93731 + 8.93731i −0.454309 + 0.454309i
\(388\) 0 0
\(389\) 20.3117 20.3117i 1.02984 1.02984i 0.0303030 0.999541i \(-0.490353\pi\)
0.999541 0.0303030i \(-0.00964721\pi\)
\(390\) 0 0
\(391\) −8.08665 + 19.5229i −0.408960 + 0.987316i
\(392\) 0 0
\(393\) −1.79132 + 0.741990i −0.0903603 + 0.0374284i
\(394\) 0 0
\(395\) 15.4881 11.0365i 0.779292 0.555308i
\(396\) 0 0
\(397\) 17.6338 + 7.30414i 0.885013 + 0.366584i 0.778439 0.627720i \(-0.216012\pi\)
0.106574 + 0.994305i \(0.466012\pi\)
\(398\) 0 0
\(399\) −8.65881 20.9042i −0.433483 1.04652i
\(400\) 0 0
\(401\) −23.0950 23.0950i −1.15331 1.15331i −0.985885 0.167425i \(-0.946455\pi\)
−0.167425 0.985885i \(-0.553545\pi\)
\(402\) 0 0
\(403\) 14.0021 33.8040i 0.697494 1.68390i
\(404\) 0 0
\(405\) 1.81500 + 7.87859i 0.0901879 + 0.391490i
\(406\) 0 0
\(407\) −13.5474 5.61151i −0.671519 0.278152i
\(408\) 0 0
\(409\) 18.0140 0.890733 0.445367 0.895348i \(-0.353073\pi\)
0.445367 + 0.895348i \(0.353073\pi\)
\(410\) 0 0
\(411\) 2.70516 0.133436
\(412\) 0 0
\(413\) −39.8316 16.4988i −1.95999 0.811853i
\(414\) 0 0
\(415\) −5.57631 3.48813i −0.273730 0.171225i
\(416\) 0 0
\(417\) 2.31272 5.58339i 0.113254 0.273420i
\(418\) 0 0
\(419\) −13.7219 13.7219i −0.670358 0.670358i 0.287441 0.957798i \(-0.407196\pi\)
−0.957798 + 0.287441i \(0.907196\pi\)
\(420\) 0 0
\(421\) −14.5852 35.2118i −0.710838 1.71612i −0.697895 0.716200i \(-0.745880\pi\)
−0.0129430 0.999916i \(-0.504120\pi\)
\(422\) 0 0
\(423\) 11.8619 + 4.91334i 0.576743 + 0.238895i
\(424\) 0 0
\(425\) −21.1896 + 23.9050i −1.02785 + 1.15956i
\(426\) 0 0
\(427\) 38.5470 15.9667i 1.86542 0.772682i
\(428\) 0 0
\(429\) 4.40002 10.6226i 0.212435 0.512863i
\(430\) 0 0
\(431\) −15.9189 + 15.9189i −0.766786 + 0.766786i −0.977539 0.210753i \(-0.932408\pi\)
0.210753 + 0.977539i \(0.432408\pi\)
\(432\) 0 0
\(433\) 5.19835 5.19835i 0.249817 0.249817i −0.571079 0.820895i \(-0.693475\pi\)
0.820895 + 0.571079i \(0.193475\pi\)
\(434\) 0 0
\(435\) 2.99393 + 12.9961i 0.143548 + 0.623118i
\(436\) 0 0
\(437\) −8.82214 21.2985i −0.422020 1.01885i
\(438\) 0 0
\(439\) −0.921123 2.22379i −0.0439628 0.106136i 0.900373 0.435119i \(-0.143294\pi\)
−0.944336 + 0.328984i \(0.893294\pi\)
\(440\) 0 0
\(441\) 22.0344i 1.04926i
\(442\) 0 0
\(443\) 1.32131i 0.0627773i −0.999507 0.0313887i \(-0.990007\pi\)
0.999507 0.0313887i \(-0.00999296\pi\)
\(444\) 0 0
\(445\) 4.85816 + 6.81770i 0.230299 + 0.323190i
\(446\) 0 0
\(447\) −5.18688 + 5.18688i −0.245331 + 0.245331i
\(448\) 0 0
\(449\) −7.75719 7.75719i −0.366084 0.366084i 0.499963 0.866047i \(-0.333347\pi\)
−0.866047 + 0.499963i \(0.833347\pi\)
\(450\) 0 0
\(451\) 3.13769 + 14.1953i 0.147748 + 0.668429i
\(452\) 0 0
\(453\) 3.96925i 0.186492i
\(454\) 0 0
\(455\) 30.2527 48.3636i 1.41827 2.26732i
\(456\) 0 0
\(457\) 6.19516 2.56612i 0.289797 0.120038i −0.233049 0.972465i \(-0.574870\pi\)
0.522846 + 0.852427i \(0.324870\pi\)
\(458\) 0 0
\(459\) −19.4220 19.4220i −0.906543 0.906543i
\(460\) 0 0
\(461\) −4.23637 −0.197308 −0.0986538 0.995122i \(-0.531454\pi\)
−0.0986538 + 0.995122i \(0.531454\pi\)
\(462\) 0 0
\(463\) 7.24763 17.4973i 0.336826 0.813170i −0.661190 0.750218i \(-0.729948\pi\)
0.998017 0.0629520i \(-0.0200515\pi\)
\(464\) 0 0
\(465\) 1.72313 10.2672i 0.0799083 0.476131i
\(466\) 0 0
\(467\) −12.2749 + 12.2749i −0.568016 + 0.568016i −0.931572 0.363557i \(-0.881562\pi\)
0.363557 + 0.931572i \(0.381562\pi\)
\(468\) 0 0
\(469\) 20.1938i 0.932465i
\(470\) 0 0
\(471\) 8.09602 + 8.09602i 0.373045 + 0.373045i
\(472\) 0 0
\(473\) −11.2550 + 4.66196i −0.517504 + 0.214357i
\(474\) 0 0
\(475\) −2.09466 34.7868i −0.0961098 1.59613i
\(476\) 0 0
\(477\) −10.6629 + 4.41672i −0.488220 + 0.202228i
\(478\) 0 0
\(479\) 26.8771 11.1329i 1.22805 0.508673i 0.328086 0.944648i \(-0.393596\pi\)
0.899959 + 0.435975i \(0.143596\pi\)
\(480\) 0 0
\(481\) −37.6422 + 15.5919i −1.71634 + 0.710929i
\(482\) 0 0
\(483\) 10.7372i 0.488560i
\(484\) 0 0
\(485\) 3.90021 + 5.47336i 0.177100 + 0.248533i
\(486\) 0 0
\(487\) −7.57636 −0.343317 −0.171659 0.985156i \(-0.554913\pi\)
−0.171659 + 0.985156i \(0.554913\pi\)
\(488\) 0 0
\(489\) 12.0070 4.97344i 0.542973 0.224907i
\(490\) 0 0
\(491\) 28.0432i 1.26557i 0.774327 + 0.632786i \(0.218089\pi\)
−0.774327 + 0.632786i \(0.781911\pi\)
\(492\) 0 0
\(493\) 33.5655 + 33.5655i 1.51171 + 1.51171i
\(494\) 0 0
\(495\) −1.97939 + 11.7941i −0.0889669 + 0.530107i
\(496\) 0 0
\(497\) 28.2688i 1.26803i
\(498\) 0 0
\(499\) 5.13521 + 12.3975i 0.229884 + 0.554988i 0.996163 0.0875196i \(-0.0278940\pi\)
−0.766279 + 0.642508i \(0.777894\pi\)
\(500\) 0 0
\(501\) −5.81072 + 5.81072i −0.259604 + 0.259604i
\(502\) 0 0
\(503\) 4.39737 10.6162i 0.196069 0.473353i −0.795015 0.606590i \(-0.792537\pi\)
0.991084 + 0.133237i \(0.0425371\pi\)
\(504\) 0 0
\(505\) 4.96598 + 0.833432i 0.220983 + 0.0370872i
\(506\) 0 0
\(507\) −8.23214 19.8742i −0.365602 0.882642i
\(508\) 0 0
\(509\) −0.888935 + 2.14608i −0.0394014 + 0.0951233i −0.942355 0.334614i \(-0.891394\pi\)
0.902954 + 0.429738i \(0.141394\pi\)
\(510\) 0 0
\(511\) −43.5758 18.0497i −1.92768 0.798470i
\(512\) 0 0
\(513\) 29.9650 1.32299
\(514\) 0 0
\(515\) 10.1309 2.33387i 0.446422 0.102842i
\(516\) 0 0
\(517\) 8.75043 + 8.75043i 0.384844 + 0.384844i
\(518\) 0 0
\(519\) −9.87218 4.08919i −0.433340 0.179496i
\(520\) 0 0
\(521\) −37.7095 + 15.6198i −1.65208 + 0.684315i −0.997432 0.0716155i \(-0.977185\pi\)
−0.654651 + 0.755931i \(0.727185\pi\)
\(522\) 0 0
\(523\) −7.01605 + 7.01605i −0.306791 + 0.306791i −0.843663 0.536873i \(-0.819606\pi\)
0.536873 + 0.843663i \(0.319606\pi\)
\(524\) 0 0
\(525\) 5.29895 15.3422i 0.231265 0.669587i
\(526\) 0 0
\(527\) −14.1804 34.2346i −0.617709 1.49128i
\(528\) 0 0
\(529\) 12.0603i 0.524359i
\(530\) 0 0
\(531\) 17.7577 17.7577i 0.770621 0.770621i
\(532\) 0 0
\(533\) 34.0547 + 21.7252i 1.47507 + 0.941023i
\(534\) 0 0
\(535\) −19.8450 12.4135i −0.857972 0.536684i
\(536\) 0 0
\(537\) 7.07383 + 7.07383i 0.305258 + 0.305258i
\(538\) 0 0
\(539\) −8.12735 + 19.6212i −0.350070 + 0.845143i
\(540\) 0 0
\(541\) −25.0077 + 25.0077i −1.07516 + 1.07516i −0.0782280 + 0.996935i \(0.524926\pi\)
−0.996935 + 0.0782280i \(0.975074\pi\)
\(542\) 0 0
\(543\) −2.15313 2.15313i −0.0923994 0.0923994i
\(544\) 0 0
\(545\) −23.8101 3.99601i −1.01991 0.171170i
\(546\) 0 0
\(547\) −2.08817 + 0.864950i −0.0892839 + 0.0369826i −0.426878 0.904309i \(-0.640387\pi\)
0.337594 + 0.941292i \(0.390387\pi\)
\(548\) 0 0
\(549\) 24.3033i 1.03724i
\(550\) 0 0
\(551\) −51.7861 −2.20616
\(552\) 0 0
\(553\) 34.3949i 1.46262i
\(554\) 0 0
\(555\) −9.44112 + 6.72756i −0.400753 + 0.285569i
\(556\) 0 0
\(557\) −10.6122 25.6200i −0.449651 1.08555i −0.972453 0.233100i \(-0.925113\pi\)
0.522802 0.852454i \(-0.324887\pi\)
\(558\) 0 0
\(559\) −12.9535 + 31.2726i −0.547875 + 1.32269i
\(560\) 0 0
\(561\) −4.45606 10.7579i −0.188135 0.454198i
\(562\) 0 0
\(563\) 12.8051 + 5.30406i 0.539673 + 0.223540i 0.635834 0.771826i \(-0.280656\pi\)
−0.0961612 + 0.995366i \(0.530656\pi\)
\(564\) 0 0
\(565\) −5.79545 + 9.26491i −0.243816 + 0.389778i
\(566\) 0 0
\(567\) −13.5089 5.59557i −0.567321 0.234992i
\(568\) 0 0
\(569\) 23.7930 23.7930i 0.997455 0.997455i −0.00254162 0.999997i \(-0.500809\pi\)
0.999997 + 0.00254162i \(0.000809024\pi\)
\(570\) 0 0
\(571\) 7.19779 + 17.3770i 0.301218 + 0.727205i 0.999930 + 0.0118020i \(0.00375678\pi\)
−0.698712 + 0.715403i \(0.746243\pi\)
\(572\) 0 0
\(573\) −5.72940 + 5.72940i −0.239349 + 0.239349i
\(574\) 0 0
\(575\) 5.39890 15.6316i 0.225150 0.651881i
\(576\) 0 0
\(577\) 0.400455 0.966784i 0.0166712 0.0402477i −0.915325 0.402717i \(-0.868066\pi\)
0.931996 + 0.362469i \(0.118066\pi\)
\(578\) 0 0
\(579\) 4.74171 + 4.74171i 0.197059 + 0.197059i
\(580\) 0 0
\(581\) 10.9900 4.55220i 0.455941 0.188857i
\(582\) 0 0
\(583\) −11.1242 −0.460715
\(584\) 0 0
\(585\) 19.2834 + 27.0613i 0.797269 + 1.11885i
\(586\) 0 0
\(587\) −5.00464 + 12.0823i −0.206563 + 0.498688i −0.992878 0.119139i \(-0.961987\pi\)
0.786314 + 0.617827i \(0.211987\pi\)
\(588\) 0 0
\(589\) 37.3482 + 15.4701i 1.53891 + 0.637436i
\(590\) 0 0
\(591\) 1.09575 + 0.453876i 0.0450733 + 0.0186700i
\(592\) 0 0
\(593\) −12.7963 30.8930i −0.525480 1.26862i −0.934457 0.356077i \(-0.884114\pi\)
0.408976 0.912545i \(-0.365886\pi\)
\(594\) 0 0
\(595\) −12.9694 56.2982i −0.531695 2.30800i
\(596\) 0 0
\(597\) −4.37694 4.37694i −0.179136 0.179136i
\(598\) 0 0
\(599\) −22.0182 −0.899641 −0.449820 0.893119i \(-0.648512\pi\)
−0.449820 + 0.893119i \(0.648512\pi\)
\(600\) 0 0
\(601\) 6.27711 15.1543i 0.256049 0.618156i −0.742622 0.669711i \(-0.766418\pi\)
0.998670 + 0.0515554i \(0.0164179\pi\)
\(602\) 0 0
\(603\) 10.8674 + 4.50141i 0.442554 + 0.183312i
\(604\) 0 0
\(605\) 6.93131 11.0808i 0.281798 0.450497i
\(606\) 0 0
\(607\) −28.0844 −1.13991 −0.569955 0.821676i \(-0.693039\pi\)
−0.569955 + 0.821676i \(0.693039\pi\)
\(608\) 0 0
\(609\) −22.2836 9.23019i −0.902979 0.374026i
\(610\) 0 0
\(611\) 34.3846 1.39105
\(612\) 0 0
\(613\) −35.7762 −1.44499 −0.722493 0.691378i \(-0.757004\pi\)
−0.722493 + 0.691378i \(0.757004\pi\)
\(614\) 0 0
\(615\) 10.8300 + 3.84851i 0.436709 + 0.155187i
\(616\) 0 0
\(617\) 15.9301 0.641323 0.320662 0.947194i \(-0.396095\pi\)
0.320662 + 0.947194i \(0.396095\pi\)
\(618\) 0 0
\(619\) −1.25274 −0.0503518 −0.0251759 0.999683i \(-0.508015\pi\)
−0.0251759 + 0.999683i \(0.508015\pi\)
\(620\) 0 0
\(621\) 13.1372 + 5.44161i 0.527178 + 0.218364i
\(622\) 0 0
\(623\) −15.1403 −0.606582
\(624\) 0 0
\(625\) 15.4287 19.6711i 0.617149 0.786846i
\(626\) 0 0
\(627\) 11.7363 + 4.86134i 0.468703 + 0.194143i
\(628\) 0 0
\(629\) −15.7905 + 38.1216i −0.629608 + 1.52001i
\(630\) 0 0
\(631\) 23.4794 0.934700 0.467350 0.884072i \(-0.345209\pi\)
0.467350 + 0.884072i \(0.345209\pi\)
\(632\) 0 0
\(633\) −7.03427 7.03427i −0.279587 0.279587i
\(634\) 0 0
\(635\) 39.4988 + 24.7075i 1.56746 + 0.980489i
\(636\) 0 0
\(637\) 22.5823 + 54.5185i 0.894743 + 2.16010i
\(638\) 0 0
\(639\) 15.2129 + 6.30139i 0.601813 + 0.249279i
\(640\) 0 0
\(641\) 10.3487 + 4.28659i 0.408751 + 0.169310i 0.577578 0.816336i \(-0.303998\pi\)
−0.168827 + 0.985646i \(0.553998\pi\)
\(642\) 0 0
\(643\) −13.4099 + 32.3743i −0.528834 + 1.27672i 0.403454 + 0.915000i \(0.367809\pi\)
−0.932288 + 0.361717i \(0.882191\pi\)
\(644\) 0 0
\(645\) −1.59409 + 9.49835i −0.0627673 + 0.373997i
\(646\) 0 0
\(647\) 31.5710 1.24118 0.620592 0.784133i \(-0.286892\pi\)
0.620592 + 0.784133i \(0.286892\pi\)
\(648\) 0 0
\(649\) 22.3628 9.26296i 0.877815 0.363603i
\(650\) 0 0
\(651\) 13.3137 + 13.3137i 0.521804 + 0.521804i
\(652\) 0 0
\(653\) −9.26076 + 22.3575i −0.362402 + 0.874915i 0.632546 + 0.774522i \(0.282010\pi\)
−0.994948 + 0.100392i \(0.967990\pi\)
\(654\) 0 0
\(655\) 2.86422 4.57889i 0.111914 0.178912i
\(656\) 0 0
\(657\) 19.4270 19.4270i 0.757918 0.757918i
\(658\) 0 0
\(659\) 12.8278 + 30.9690i 0.499699 + 1.20638i 0.949646 + 0.313325i \(0.101443\pi\)
−0.449946 + 0.893056i \(0.648557\pi\)
\(660\) 0 0
\(661\) 18.1588 18.1588i 0.706294 0.706294i −0.259460 0.965754i \(-0.583545\pi\)
0.965754 + 0.259460i \(0.0835447\pi\)
\(662\) 0 0
\(663\) −29.8913 12.3814i −1.16088 0.480854i
\(664\) 0 0
\(665\) 53.4343 + 33.4246i 2.07209 + 1.29615i
\(666\) 0 0
\(667\) −22.7040 9.40429i −0.879101 0.364136i
\(668\) 0 0
\(669\) 7.23528 + 17.4675i 0.279732 + 0.675333i
\(670\) 0 0
\(671\) −8.96421 + 21.6415i −0.346059 + 0.835461i
\(672\) 0 0
\(673\) 5.17009 + 12.4817i 0.199292 + 0.481134i 0.991656 0.128915i \(-0.0411496\pi\)
−0.792363 + 0.610049i \(0.791150\pi\)
\(674\) 0 0
\(675\) 16.0860 + 14.2588i 0.619149 + 0.548820i
\(676\) 0 0
\(677\) 24.9353i 0.958341i −0.877722 0.479171i \(-0.840937\pi\)
0.877722 0.479171i \(-0.159063\pi\)
\(678\) 0 0
\(679\) −12.1548 −0.466460
\(680\) 0 0
\(681\) 8.71152i 0.333826i
\(682\) 0 0
\(683\) 11.0219 4.56544i 0.421743 0.174692i −0.161710 0.986838i \(-0.551701\pi\)
0.583453 + 0.812147i \(0.301701\pi\)
\(684\) 0 0
\(685\) −6.13670 + 4.37289i −0.234471 + 0.167080i
\(686\) 0 0
\(687\) −3.45286 3.45286i −0.131735 0.131735i
\(688\) 0 0
\(689\) −21.8560 + 21.8560i −0.832648 + 0.832648i
\(690\) 0 0
\(691\) −8.34307 + 20.1420i −0.317385 + 0.766236i 0.682006 + 0.731347i \(0.261108\pi\)
−0.999391 + 0.0348894i \(0.988892\pi\)
\(692\) 0 0
\(693\) −15.2936 15.2936i −0.580956 0.580956i
\(694\) 0 0
\(695\) 3.77912 + 16.4045i 0.143350 + 0.622259i
\(696\) 0 0
\(697\) 39.9447 8.82929i 1.51301 0.334433i
\(698\) 0 0
\(699\) −10.5868 + 10.5868i −0.400430 + 0.400430i
\(700\) 0 0
\(701\) 51.4034i 1.94148i −0.240137 0.970739i \(-0.577192\pi\)
0.240137 0.970739i \(-0.422808\pi\)
\(702\) 0 0
\(703\) −17.2266 41.5888i −0.649715 1.56855i
\(704\) 0 0
\(705\) 9.53381 2.19631i 0.359064 0.0827178i
\(706\) 0 0
\(707\) −6.43946 + 6.43946i −0.242181 + 0.242181i
\(708\) 0 0
\(709\) 38.8799 16.1046i 1.46017 0.604821i 0.495574 0.868566i \(-0.334958\pi\)
0.964592 + 0.263745i \(0.0849579\pi\)
\(710\) 0 0
\(711\) −18.5097 7.66697i −0.694168 0.287534i
\(712\) 0 0
\(713\) 13.5648 + 13.5648i 0.508005 + 0.508005i
\(714\) 0 0
\(715\) 7.18989 + 31.2101i 0.268887 + 1.16719i
\(716\) 0 0
\(717\) 3.12877 0.116846
\(718\) 0 0
\(719\) −19.2440 7.97113i −0.717680 0.297273i −0.00620185 0.999981i \(-0.501974\pi\)
−0.711479 + 0.702708i \(0.751974\pi\)
\(720\) 0 0
\(721\) −7.19523 + 17.3708i −0.267964 + 0.646923i
\(722\) 0 0
\(723\) 2.28927 + 5.52678i 0.0851388 + 0.205543i
\(724\) 0 0
\(725\) −27.8000 24.6423i −1.03247 0.915191i
\(726\) 0 0
\(727\) 9.52055 22.9846i 0.353098 0.852453i −0.643137 0.765751i \(-0.722367\pi\)
0.996234 0.0867019i \(-0.0276328\pi\)
\(728\) 0 0
\(729\) −1.29838 + 1.29838i −0.0480883 + 0.0480883i
\(730\) 0 0
\(731\) 13.1185 + 31.6708i 0.485205 + 1.17139i
\(732\) 0 0
\(733\) 29.8571i 1.10280i −0.834241 0.551399i \(-0.814094\pi\)
0.834241 0.551399i \(-0.185906\pi\)
\(734\) 0 0
\(735\) 9.74375 + 13.6739i 0.359404 + 0.504369i
\(736\) 0 0
\(737\) 8.01681 + 8.01681i 0.295303 + 0.295303i
\(738\) 0 0
\(739\) 47.0589i 1.73109i −0.500830 0.865545i \(-0.666972\pi\)
0.500830 0.865545i \(-0.333028\pi\)
\(740\) 0 0
\(741\) 32.6100 13.5075i 1.19796 0.496210i
\(742\) 0 0
\(743\) −41.0683 −1.50665 −0.753325 0.657648i \(-0.771551\pi\)
−0.753325 + 0.657648i \(0.771551\pi\)
\(744\) 0 0
\(745\) 3.38192 20.1511i 0.123904 0.738279i
\(746\) 0 0
\(747\) 6.92902i 0.253520i
\(748\) 0 0
\(749\) 39.1112 16.2004i 1.42909 0.591949i
\(750\) 0 0
\(751\) 12.5950 5.21703i 0.459599 0.190372i −0.140857 0.990030i \(-0.544986\pi\)
0.600456 + 0.799658i \(0.294986\pi\)
\(752\) 0 0
\(753\) −15.8299 + 6.55695i −0.576873 + 0.238949i
\(754\) 0 0
\(755\) 6.41630 + 9.00431i 0.233513 + 0.327700i
\(756\) 0 0
\(757\) −28.7528 + 11.9098i −1.04504 + 0.432869i −0.838118 0.545489i \(-0.816344\pi\)
−0.206920 + 0.978358i \(0.566344\pi\)
\(758\) 0 0
\(759\) 4.26260 + 4.26260i 0.154722 + 0.154722i
\(760\) 0 0
\(761\) 15.0665i 0.546161i 0.961991 + 0.273081i \(0.0880426\pi\)
−0.961991 + 0.273081i \(0.911957\pi\)
\(762\) 0 0
\(763\) 30.8749 30.8749i 1.11775 1.11775i
\(764\) 0 0
\(765\) 33.1880 + 5.56989i 1.19992 + 0.201380i
\(766\) 0 0
\(767\) 25.7376 62.1362i 0.929333 2.24361i
\(768\) 0 0
\(769\) −4.54226 −0.163798 −0.0818991 0.996641i \(-0.526099\pi\)
−0.0818991 + 0.996641i \(0.526099\pi\)
\(770\) 0 0
\(771\) −8.45939 8.45939i −0.304657 0.304657i
\(772\) 0 0
\(773\) −41.3044 + 17.1089i −1.48562 + 0.615363i −0.970358 0.241671i \(-0.922304\pi\)
−0.515260 + 0.857034i \(0.672304\pi\)
\(774\) 0 0
\(775\) 12.6880 + 26.0768i 0.455767 + 0.936706i
\(776\) 0 0
\(777\) 20.9661i 0.752156i
\(778\) 0 0
\(779\) −24.0030 + 37.6252i −0.859996 + 1.34806i
\(780\) 0 0
\(781\) 11.2225 + 11.2225i 0.401572 + 0.401572i
\(782\) 0 0
\(783\) 22.5867 22.5867i 0.807181 0.807181i
\(784\) 0 0
\(785\) −31.4532 5.27873i −1.12261 0.188406i
\(786\) 0 0
\(787\) 31.4406i 1.12074i −0.828243 0.560368i \(-0.810660\pi\)
0.828243 0.560368i \(-0.189340\pi\)
\(788\) 0 0
\(789\) 0.164514i 0.00585685i
\(790\) 0 0
\(791\) −7.56338 18.2596i −0.268923 0.649238i
\(792\) 0 0
\(793\) 24.9076 + 60.1321i 0.884493 + 2.13536i
\(794\) 0 0
\(795\) −4.66397 + 7.45607i −0.165414 + 0.264440i
\(796\) 0 0
\(797\) 0.705448 0.705448i 0.0249883 0.0249883i −0.694502 0.719491i \(-0.744375\pi\)
0.719491 + 0.694502i \(0.244375\pi\)
\(798\) 0 0
\(799\) 24.6232 24.6232i 0.871107 0.871107i
\(800\) 0 0
\(801\) 3.37492 8.14777i 0.119247 0.287887i
\(802\) 0 0
\(803\) 24.4648 10.1337i 0.863345 0.357609i
\(804\) 0 0
\(805\) 17.3567 + 24.3575i 0.611744 + 0.858491i
\(806\) 0 0
\(807\) 2.53205 + 1.04881i 0.0891325 + 0.0369199i
\(808\) 0 0
\(809\) −3.52212 8.50315i −0.123831 0.298955i 0.849792 0.527119i \(-0.176728\pi\)
−0.973623 + 0.228164i \(0.926728\pi\)
\(810\) 0 0
\(811\) 16.4192 + 16.4192i 0.576557 + 0.576557i 0.933953 0.357396i \(-0.116335\pi\)
−0.357396 + 0.933953i \(0.616335\pi\)
\(812\) 0 0
\(813\) −4.86509 + 11.7454i −0.170626 + 0.411928i
\(814\) 0 0
\(815\) −19.1984 + 30.6916i −0.672490 + 1.07508i
\(816\) 0 0
\(817\) −34.5513 14.3116i −1.20880 0.500701i
\(818\) 0 0
\(819\) −60.0958 −2.09992
\(820\) 0 0
\(821\) −13.0829 −0.456596 −0.228298 0.973591i \(-0.573316\pi\)
−0.228298 + 0.973591i \(0.573316\pi\)
\(822\) 0 0
\(823\) 10.7634 + 4.45835i 0.375189 + 0.155408i 0.562306 0.826929i \(-0.309914\pi\)
−0.187117 + 0.982338i \(0.559914\pi\)
\(824\) 0 0
\(825\) 3.98708 + 8.19437i 0.138812 + 0.285291i
\(826\) 0 0
\(827\) −17.3903 + 41.9838i −0.604718 + 1.45992i 0.263956 + 0.964535i \(0.414973\pi\)
−0.868674 + 0.495384i \(0.835027\pi\)
\(828\) 0 0
\(829\) −6.78221 6.78221i −0.235556 0.235556i 0.579451 0.815007i \(-0.303267\pi\)
−0.815007 + 0.579451i \(0.803267\pi\)
\(830\) 0 0
\(831\) −5.50795 13.2974i −0.191069 0.461281i
\(832\) 0 0
\(833\) 55.2128 + 22.8699i 1.91301 + 0.792395i
\(834\) 0 0
\(835\) 3.78868 22.5747i 0.131113 0.781230i
\(836\) 0 0
\(837\) −23.0369 + 9.54219i −0.796272 + 0.329826i
\(838\) 0 0
\(839\) −2.79958 + 6.75879i −0.0966523 + 0.233339i −0.964809 0.262950i \(-0.915305\pi\)
0.868157 + 0.496289i \(0.165305\pi\)
\(840\) 0 0
\(841\) −18.5286 + 18.5286i −0.638916 + 0.638916i
\(842\) 0 0
\(843\) −10.4280 + 10.4280i −0.359158 + 0.359158i
\(844\) 0 0
\(845\) 50.8013 + 31.7776i 1.74762 + 1.09318i
\(846\) 0 0
\(847\) 9.04575 + 21.8384i 0.310816 + 0.750375i
\(848\) 0 0
\(849\) 6.81375 + 16.4499i 0.233847 + 0.564558i
\(850\) 0 0
\(851\) 21.3616i 0.732267i
\(852\) 0 0
\(853\) 16.0968i 0.551145i −0.961280 0.275572i \(-0.911133\pi\)
0.961280 0.275572i \(-0.0888674\pi\)
\(854\) 0 0
\(855\) −29.8986 + 21.3051i −1.02251 + 0.728621i
\(856\) 0 0
\(857\) −7.36223 + 7.36223i −0.251489 + 0.251489i −0.821581 0.570092i \(-0.806908\pi\)
0.570092 + 0.821581i \(0.306908\pi\)
\(858\) 0 0
\(859\) 9.58283 + 9.58283i 0.326962 + 0.326962i 0.851430 0.524468i \(-0.175736\pi\)
−0.524468 + 0.851430i \(0.675736\pi\)
\(860\) 0 0
\(861\) −17.0347 + 11.9120i −0.580542 + 0.405958i
\(862\) 0 0
\(863\) 8.23461i 0.280309i −0.990130 0.140155i \(-0.955240\pi\)
0.990130 0.140155i \(-0.0447600\pi\)
\(864\) 0 0
\(865\) 29.0054 6.68198i 0.986212 0.227194i
\(866\) 0 0
\(867\) −17.6642 + 7.31676i −0.599908 + 0.248490i
\(868\) 0 0
\(869\) −13.6545 13.6545i −0.463198 0.463198i
\(870\) 0 0
\(871\) 31.5018 1.06740
\(872\) 0 0
\(873\) 2.70944 6.54116i 0.0917006 0.221385i
\(874\) 0 0
\(875\) 12.7799 + 43.3697i 0.432038 + 1.46616i
\(876\) 0 0
\(877\) 36.4594 36.4594i 1.23115 1.23115i 0.267623 0.963524i \(-0.413762\pi\)
0.963524 0.267623i \(-0.0862381\pi\)
\(878\) 0 0
\(879\) 23.2030i 0.782619i
\(880\) 0 0
\(881\) 41.3441 + 41.3441i 1.39292 + 1.39292i 0.818706 + 0.574213i \(0.194692\pi\)
0.574213 + 0.818706i \(0.305308\pi\)
\(882\) 0 0
\(883\) −25.1279 + 10.4083i −0.845622 + 0.350268i −0.763068 0.646318i \(-0.776308\pi\)
−0.0825543 + 0.996587i \(0.526308\pi\)
\(884\) 0 0
\(885\) 3.16734 18.8725i 0.106469 0.634392i
\(886\) 0 0
\(887\) 40.0070 16.5714i 1.34330 0.556414i 0.408882 0.912587i \(-0.365919\pi\)
0.934420 + 0.356173i \(0.115919\pi\)
\(888\) 0 0
\(889\) −77.8457 + 32.2447i −2.61086 + 1.08145i
\(890\) 0 0
\(891\) 7.58434 3.14154i 0.254085 0.105245i
\(892\) 0 0
\(893\) 37.9896i 1.27127i
\(894\) 0 0
\(895\) −27.4819 4.61224i −0.918619 0.154170i
\(896\) 0 0
\(897\) 16.7498 0.559258
\(898\) 0 0
\(899\) 39.8128 16.4910i 1.32783 0.550005i
\(900\) 0 0
\(901\) 31.3027i 1.04285i
\(902\) 0 0
\(903\) −12.3166 12.3166i −0.409872 0.409872i
\(904\) 0 0
\(905\) 8.36492 + 1.40387i 0.278059 + 0.0466662i
\(906\) 0 0
\(907\) 39.8764i 1.32407i −0.749471 0.662037i \(-0.769692\pi\)
0.749471 0.662037i \(-0.230308\pi\)
\(908\) 0 0
\(909\) −2.02999 4.90083i −0.0673306 0.162550i
\(910\) 0 0
\(911\) 14.8501 14.8501i 0.492005 0.492005i −0.416932 0.908938i \(-0.636895\pi\)
0.908938 + 0.416932i \(0.136895\pi\)
\(912\) 0 0
\(913\) −2.55575 + 6.17013i −0.0845831 + 0.204202i
\(914\) 0 0
\(915\) 10.7471 + 15.0819i 0.355287 + 0.498591i
\(916\) 0 0
\(917\) 3.73796 + 9.02424i 0.123438 + 0.298007i
\(918\) 0 0
\(919\) 2.09210 5.05077i 0.0690119 0.166609i −0.885610 0.464429i \(-0.846259\pi\)
0.954622 + 0.297820i \(0.0962595\pi\)
\(920\) 0 0
\(921\) 1.80248 + 0.746613i 0.0593939 + 0.0246017i
\(922\) 0 0
\(923\) 44.0984 1.45152
\(924\) 0 0
\(925\) 10.5422 30.5231i 0.346626 1.00359i
\(926\) 0 0
\(927\) −7.74427 7.74427i −0.254355 0.254355i
\(928\) 0 0
\(929\) 33.0991 + 13.7101i 1.08594 + 0.449813i 0.852591 0.522579i \(-0.175030\pi\)
0.233354 + 0.972392i \(0.425030\pi\)
\(930\) 0 0
\(931\) −60.2345 + 24.9499i −1.97410 + 0.817701i
\(932\) 0 0
\(933\) 14.4438 14.4438i 0.472869 0.472869i
\(934\) 0 0
\(935\) 27.4987 + 17.2012i 0.899304 + 0.562539i
\(936\) 0 0
\(937\) 18.6611 + 45.0518i 0.609631 + 1.47178i 0.863403 + 0.504515i \(0.168329\pi\)
−0.253772 + 0.967264i \(0.581671\pi\)
\(938\) 0 0
\(939\) 24.1333i 0.787559i
\(940\) 0 0
\(941\) −34.5386 + 34.5386i −1.12593 + 1.12593i −0.135094 + 0.990833i \(0.543134\pi\)
−0.990833 + 0.135094i \(0.956866\pi\)
\(942\) 0 0
\(943\) −17.3560 + 12.1366i −0.565190 + 0.395223i
\(944\) 0 0
\(945\) −37.8838 + 8.72731i −1.23236 + 0.283899i
\(946\) 0 0
\(947\) −13.9238 13.9238i −0.452464 0.452464i 0.443707 0.896172i \(-0.353663\pi\)
−0.896172 + 0.443707i \(0.853663\pi\)
\(948\) 0 0
\(949\) 28.1570 67.9769i 0.914014 2.20662i
\(950\) 0 0
\(951\) −3.78661 + 3.78661i −0.122789 + 0.122789i
\(952\) 0 0
\(953\) −10.7779 10.7779i −0.349132 0.349132i 0.510654 0.859786i \(-0.329403\pi\)
−0.859786 + 0.510654i \(0.829403\pi\)
\(954\) 0 0
\(955\) 3.73566 22.2588i 0.120883 0.720278i
\(956\) 0 0
\(957\) 12.5108 5.18213i 0.404415 0.167514i
\(958\) 0 0
\(959\) 13.6279i 0.440069i
\(960\) 0 0
\(961\) −2.63943 −0.0851429
\(962\) 0 0
\(963\) 24.6590i 0.794625i
\(964\) 0 0
\(965\) −18.4216 3.09167i −0.593013 0.0995243i
\(966\) 0 0
\(967\) 4.12311 + 9.95408i 0.132590 + 0.320102i 0.976206 0.216846i \(-0.0695771\pi\)
−0.843615 + 0.536948i \(0.819577\pi\)
\(968\) 0 0
\(969\) 13.6795 33.0253i 0.439450 1.06093i
\(970\) 0 0
\(971\) −17.7917 42.9529i −0.570962 1.37842i −0.900737 0.434365i \(-0.856973\pi\)
0.329775 0.944059i \(-0.393027\pi\)
\(972\) 0 0
\(973\) −28.1278 11.6509i −0.901734 0.373511i
\(974\) 0 0
\(975\) 23.9333 + 8.26621i 0.766480 + 0.264731i
\(976\) 0 0
\(977\) −28.7981 11.9285i −0.921332 0.381628i −0.128948 0.991651i \(-0.541160\pi\)
−0.792384 + 0.610023i \(0.791160\pi\)
\(978\) 0 0
\(979\) 6.01057 6.01057i 0.192099 0.192099i
\(980\) 0 0
\(981\) 9.73309 + 23.4978i 0.310754 + 0.750226i
\(982\) 0 0
\(983\) −10.4931 + 10.4931i −0.334679 + 0.334679i −0.854360 0.519681i \(-0.826051\pi\)
0.519681 + 0.854360i \(0.326051\pi\)
\(984\) 0 0
\(985\) −3.21943 + 0.741661i −0.102579 + 0.0236313i
\(986\) 0 0
\(987\) −6.77115 + 16.3470i −0.215528 + 0.520331i
\(988\) 0 0
\(989\) −12.5490 12.5490i −0.399034 0.399034i
\(990\) 0 0
\(991\) 33.7166 13.9659i 1.07104 0.443641i 0.223685 0.974661i \(-0.428191\pi\)
0.847359 + 0.531020i \(0.178191\pi\)
\(992\) 0 0
\(993\) −20.4230 −0.648105
\(994\) 0 0
\(995\) 17.0045 + 2.85383i 0.539078 + 0.0904725i
\(996\) 0 0
\(997\) 15.4638 37.3330i 0.489744 1.18235i −0.465105 0.885255i \(-0.653983\pi\)
0.954849 0.297091i \(-0.0960165\pi\)
\(998\) 0 0
\(999\) 25.6525 + 10.6256i 0.811610 + 0.336180i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.273.9 84
5.2 odd 4 820.2.y.a.437.9 yes 84
41.38 odd 8 820.2.y.a.653.9 yes 84
205.202 even 8 inner 820.2.x.a.817.9 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.273.9 84 1.1 even 1 trivial
820.2.x.a.817.9 yes 84 205.202 even 8 inner
820.2.y.a.437.9 yes 84 5.2 odd 4
820.2.y.a.653.9 yes 84 41.38 odd 8