Properties

Label 820.2.y.a.413.4
Level $820$
Weight $2$
Character 820.413
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 413.4
Character \(\chi\) \(=\) 820.413
Dual form 820.2.y.a.137.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.13627 + 0.884872i) q^{3} +(1.66644 + 1.49097i) q^{5} +(-0.602718 - 1.45509i) q^{7} +(1.65933 - 1.65933i) q^{9} +(-1.39221 - 0.576671i) q^{11} +(-3.95726 + 1.63915i) q^{13} +(-4.87928 - 1.71052i) q^{15} +(-0.170389 - 0.0705774i) q^{17} +(-1.32175 + 0.547487i) q^{19} +(2.57514 + 2.57514i) q^{21} +(-0.458474 + 0.458474i) q^{23} +(0.554042 + 4.96921i) q^{25} +(0.578137 - 1.39575i) q^{27} +(1.65360 + 0.684943i) q^{29} -6.64937i q^{31} +3.48441 q^{33} +(1.16510 - 3.32345i) q^{35} +(-3.16931 + 3.16931i) q^{37} +(7.00334 - 7.00334i) q^{39} +(-3.33737 - 5.46461i) q^{41} -11.9749 q^{43} +(5.23917 - 0.291168i) q^{45} +(-11.9353 - 4.94377i) q^{47} +(3.19573 - 3.19573i) q^{49} +0.426449 q^{51} +(-3.19682 - 7.71780i) q^{53} +(-1.46023 - 3.03672i) q^{55} +(2.33916 - 2.33916i) q^{57} +0.0773468i q^{59} +(-1.35891 + 1.35891i) q^{61} +(-3.41458 - 1.41436i) q^{63} +(-9.03846 - 3.16860i) q^{65} +(-3.78614 - 1.56827i) q^{67} +(0.573734 - 1.38512i) q^{69} +(1.33900 - 3.23263i) q^{71} +5.44939 q^{73} +(-5.58069 - 10.1253i) q^{75} +2.37335i q^{77} +(2.22709 - 5.37666i) q^{79} +10.5332i q^{81} +(6.71441 + 6.71441i) q^{83} +(-0.178714 - 0.371657i) q^{85} -4.13862 q^{87} +(-2.22346 - 0.920987i) q^{89} +(4.77023 + 4.77023i) q^{91} +(5.88384 + 14.2048i) q^{93} +(-3.01890 - 1.05833i) q^{95} +(-2.02301 + 4.88397i) q^{97} +(-3.26701 + 1.35324i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.13627 + 0.884872i −1.23338 + 0.510881i −0.901638 0.432491i \(-0.857635\pi\)
−0.331737 + 0.943372i \(0.607635\pi\)
\(4\) 0 0
\(5\) 1.66644 + 1.49097i 0.745254 + 0.666780i
\(6\) 0 0
\(7\) −0.602718 1.45509i −0.227806 0.549972i 0.768104 0.640325i \(-0.221200\pi\)
−0.995910 + 0.0903530i \(0.971200\pi\)
\(8\) 0 0
\(9\) 1.65933 1.65933i 0.553109 0.553109i
\(10\) 0 0
\(11\) −1.39221 0.576671i −0.419766 0.173873i 0.162795 0.986660i \(-0.447949\pi\)
−0.582561 + 0.812787i \(0.697949\pi\)
\(12\) 0 0
\(13\) −3.95726 + 1.63915i −1.09755 + 0.454619i −0.856633 0.515927i \(-0.827448\pi\)
−0.240915 + 0.970546i \(0.577448\pi\)
\(14\) 0 0
\(15\) −4.87928 1.71052i −1.25982 0.441654i
\(16\) 0 0
\(17\) −0.170389 0.0705774i −0.0413254 0.0171175i 0.361925 0.932207i \(-0.382120\pi\)
−0.403250 + 0.915090i \(0.632120\pi\)
\(18\) 0 0
\(19\) −1.32175 + 0.547487i −0.303230 + 0.125602i −0.529110 0.848553i \(-0.677474\pi\)
0.225880 + 0.974155i \(0.427474\pi\)
\(20\) 0 0
\(21\) 2.57514 + 2.57514i 0.561941 + 0.561941i
\(22\) 0 0
\(23\) −0.458474 + 0.458474i −0.0955985 + 0.0955985i −0.753289 0.657690i \(-0.771534\pi\)
0.657690 + 0.753289i \(0.271534\pi\)
\(24\) 0 0
\(25\) 0.554042 + 4.96921i 0.110808 + 0.993842i
\(26\) 0 0
\(27\) 0.578137 1.39575i 0.111263 0.268612i
\(28\) 0 0
\(29\) 1.65360 + 0.684943i 0.307065 + 0.127191i 0.530895 0.847438i \(-0.321856\pi\)
−0.223829 + 0.974628i \(0.571856\pi\)
\(30\) 0 0
\(31\) 6.64937i 1.19426i −0.802144 0.597131i \(-0.796307\pi\)
0.802144 0.597131i \(-0.203693\pi\)
\(32\) 0 0
\(33\) 3.48441 0.606557
\(34\) 0 0
\(35\) 1.16510 3.32345i 0.196937 0.561766i
\(36\) 0 0
\(37\) −3.16931 + 3.16931i −0.521032 + 0.521032i −0.917883 0.396851i \(-0.870103\pi\)
0.396851 + 0.917883i \(0.370103\pi\)
\(38\) 0 0
\(39\) 7.00334 7.00334i 1.12143 1.12143i
\(40\) 0 0
\(41\) −3.33737 5.46461i −0.521210 0.853429i
\(42\) 0 0
\(43\) −11.9749 −1.82615 −0.913075 0.407791i \(-0.866299\pi\)
−0.913075 + 0.407791i \(0.866299\pi\)
\(44\) 0 0
\(45\) 5.23917 0.291168i 0.781009 0.0434048i
\(46\) 0 0
\(47\) −11.9353 4.94377i −1.74094 0.721123i −0.998699 0.0509955i \(-0.983761\pi\)
−0.742246 0.670127i \(-0.766239\pi\)
\(48\) 0 0
\(49\) 3.19573 3.19573i 0.456533 0.456533i
\(50\) 0 0
\(51\) 0.426449 0.0597148
\(52\) 0 0
\(53\) −3.19682 7.71780i −0.439116 1.06012i −0.976255 0.216626i \(-0.930495\pi\)
0.537138 0.843494i \(-0.319505\pi\)
\(54\) 0 0
\(55\) −1.46023 3.03672i −0.196897 0.409471i
\(56\) 0 0
\(57\) 2.33916 2.33916i 0.309829 0.309829i
\(58\) 0 0
\(59\) 0.0773468i 0.0100697i 0.999987 + 0.00503485i \(0.00160265\pi\)
−0.999987 + 0.00503485i \(0.998397\pi\)
\(60\) 0 0
\(61\) −1.35891 + 1.35891i −0.173991 + 0.173991i −0.788730 0.614739i \(-0.789261\pi\)
0.614739 + 0.788730i \(0.289261\pi\)
\(62\) 0 0
\(63\) −3.41458 1.41436i −0.430196 0.178193i
\(64\) 0 0
\(65\) −9.03846 3.16860i −1.12108 0.393016i
\(66\) 0 0
\(67\) −3.78614 1.56827i −0.462551 0.191595i 0.139224 0.990261i \(-0.455539\pi\)
−0.601774 + 0.798666i \(0.705539\pi\)
\(68\) 0 0
\(69\) 0.573734 1.38512i 0.0690694 0.166748i
\(70\) 0 0
\(71\) 1.33900 3.23263i 0.158910 0.383643i −0.824292 0.566166i \(-0.808426\pi\)
0.983202 + 0.182523i \(0.0584263\pi\)
\(72\) 0 0
\(73\) 5.44939 0.637802 0.318901 0.947788i \(-0.396686\pi\)
0.318901 + 0.947788i \(0.396686\pi\)
\(74\) 0 0
\(75\) −5.58069 10.1253i −0.644403 1.16917i
\(76\) 0 0
\(77\) 2.37335i 0.270469i
\(78\) 0 0
\(79\) 2.22709 5.37666i 0.250567 0.604922i −0.747683 0.664056i \(-0.768834\pi\)
0.998250 + 0.0591337i \(0.0188338\pi\)
\(80\) 0 0
\(81\) 10.5332i 1.17036i
\(82\) 0 0
\(83\) 6.71441 + 6.71441i 0.737003 + 0.737003i 0.971997 0.234994i \(-0.0755071\pi\)
−0.234994 + 0.971997i \(0.575507\pi\)
\(84\) 0 0
\(85\) −0.178714 0.371657i −0.0193843 0.0403119i
\(86\) 0 0
\(87\) −4.13862 −0.443706
\(88\) 0 0
\(89\) −2.22346 0.920987i −0.235686 0.0976244i 0.261715 0.965145i \(-0.415712\pi\)
−0.497401 + 0.867521i \(0.665712\pi\)
\(90\) 0 0
\(91\) 4.77023 + 4.77023i 0.500056 + 0.500056i
\(92\) 0 0
\(93\) 5.88384 + 14.2048i 0.610125 + 1.47297i
\(94\) 0 0
\(95\) −3.01890 1.05833i −0.309733 0.108582i
\(96\) 0 0
\(97\) −2.02301 + 4.88397i −0.205405 + 0.495892i −0.992689 0.120699i \(-0.961487\pi\)
0.787284 + 0.616590i \(0.211487\pi\)
\(98\) 0 0
\(99\) −3.26701 + 1.35324i −0.328347 + 0.136006i
\(100\) 0 0
\(101\) 2.49187 + 6.01591i 0.247950 + 0.598605i 0.998030 0.0627426i \(-0.0199847\pi\)
−0.750079 + 0.661348i \(0.769985\pi\)
\(102\) 0 0
\(103\) 9.09690i 0.896344i 0.893947 + 0.448172i \(0.147925\pi\)
−0.893947 + 0.448172i \(0.852075\pi\)
\(104\) 0 0
\(105\) 0.451869 + 8.13075i 0.0440979 + 0.793480i
\(106\) 0 0
\(107\) −9.06543 9.06543i −0.876388 0.876388i 0.116771 0.993159i \(-0.462746\pi\)
−0.993159 + 0.116771i \(0.962746\pi\)
\(108\) 0 0
\(109\) −1.16306 2.80788i −0.111401 0.268946i 0.858340 0.513081i \(-0.171496\pi\)
−0.969741 + 0.244135i \(0.921496\pi\)
\(110\) 0 0
\(111\) 3.96607 9.57494i 0.376443 0.908813i
\(112\) 0 0
\(113\) 1.95522 1.95522i 0.183932 0.183932i −0.609135 0.793067i \(-0.708483\pi\)
0.793067 + 0.609135i \(0.208483\pi\)
\(114\) 0 0
\(115\) −1.44759 + 0.0804502i −0.134988 + 0.00750202i
\(116\) 0 0
\(117\) −3.84651 + 9.28629i −0.355610 + 0.858517i
\(118\) 0 0
\(119\) 0.290470i 0.0266273i
\(120\) 0 0
\(121\) −6.17249 6.17249i −0.561135 0.561135i
\(122\) 0 0
\(123\) 11.9650 + 8.72073i 1.07885 + 0.786322i
\(124\) 0 0
\(125\) −6.48564 + 9.10694i −0.580094 + 0.814550i
\(126\) 0 0
\(127\) 2.33795 + 2.33795i 0.207459 + 0.207459i 0.803187 0.595728i \(-0.203136\pi\)
−0.595728 + 0.803187i \(0.703136\pi\)
\(128\) 0 0
\(129\) 25.5815 10.5962i 2.25233 0.932945i
\(130\) 0 0
\(131\) 4.77665 + 4.77665i 0.417338 + 0.417338i 0.884285 0.466947i \(-0.154646\pi\)
−0.466947 + 0.884285i \(0.654646\pi\)
\(132\) 0 0
\(133\) 1.59329 + 1.59329i 0.138155 + 0.138155i
\(134\) 0 0
\(135\) 3.04444 1.46394i 0.262024 0.125996i
\(136\) 0 0
\(137\) −16.5728 6.86468i −1.41591 0.586489i −0.462081 0.886838i \(-0.652897\pi\)
−0.953829 + 0.300349i \(0.902897\pi\)
\(138\) 0 0
\(139\) 13.3299i 1.13062i 0.824877 + 0.565312i \(0.191244\pi\)
−0.824877 + 0.565312i \(0.808756\pi\)
\(140\) 0 0
\(141\) 29.8716 2.51565
\(142\) 0 0
\(143\) 6.45458 0.539759
\(144\) 0 0
\(145\) 1.73440 + 3.60687i 0.144034 + 0.299535i
\(146\) 0 0
\(147\) −3.99913 + 9.65475i −0.329842 + 0.796310i
\(148\) 0 0
\(149\) −9.93788 + 4.11640i −0.814143 + 0.337229i −0.750606 0.660750i \(-0.770238\pi\)
−0.0635372 + 0.997979i \(0.520238\pi\)
\(150\) 0 0
\(151\) 7.30445 + 3.02560i 0.594428 + 0.246220i 0.659554 0.751657i \(-0.270745\pi\)
−0.0651266 + 0.997877i \(0.520745\pi\)
\(152\) 0 0
\(153\) −0.399842 + 0.165620i −0.0323253 + 0.0133896i
\(154\) 0 0
\(155\) 9.91398 11.0808i 0.796310 0.890029i
\(156\) 0 0
\(157\) 8.81424 3.65098i 0.703453 0.291380i −0.00213951 0.999998i \(-0.500681\pi\)
0.705592 + 0.708618i \(0.250681\pi\)
\(158\) 0 0
\(159\) 13.6585 + 13.6585i 1.08319 + 1.08319i
\(160\) 0 0
\(161\) 0.943452 + 0.390791i 0.0743545 + 0.0307986i
\(162\) 0 0
\(163\) −1.63616 + 1.63616i −0.128154 + 0.128154i −0.768274 0.640121i \(-0.778884\pi\)
0.640121 + 0.768274i \(0.278884\pi\)
\(164\) 0 0
\(165\) 5.80655 + 5.19513i 0.452039 + 0.404440i
\(166\) 0 0
\(167\) −0.143501 0.346441i −0.0111044 0.0268084i 0.918230 0.396047i \(-0.129618\pi\)
−0.929334 + 0.369239i \(0.879618\pi\)
\(168\) 0 0
\(169\) 3.78073 3.78073i 0.290826 0.290826i
\(170\) 0 0
\(171\) −1.28476 + 3.10168i −0.0982478 + 0.237191i
\(172\) 0 0
\(173\) 16.2750i 1.23736i 0.785641 + 0.618682i \(0.212333\pi\)
−0.785641 + 0.618682i \(0.787667\pi\)
\(174\) 0 0
\(175\) 6.89672 3.80121i 0.521343 0.287345i
\(176\) 0 0
\(177\) −0.0684420 0.165234i −0.00514442 0.0124197i
\(178\) 0 0
\(179\) 5.92157 + 14.2959i 0.442599 + 1.06853i 0.975034 + 0.222057i \(0.0712770\pi\)
−0.532435 + 0.846471i \(0.678723\pi\)
\(180\) 0 0
\(181\) 9.31005 + 22.4764i 0.692010 + 1.67066i 0.740691 + 0.671846i \(0.234498\pi\)
−0.0486802 + 0.998814i \(0.515502\pi\)
\(182\) 0 0
\(183\) 1.70054 4.10547i 0.125708 0.303485i
\(184\) 0 0
\(185\) −10.0068 + 0.556131i −0.735715 + 0.0408876i
\(186\) 0 0
\(187\) 0.196517 + 0.196517i 0.0143707 + 0.0143707i
\(188\) 0 0
\(189\) −2.37939 −0.173075
\(190\) 0 0
\(191\) −18.3456 + 7.59898i −1.32744 + 0.549843i −0.929924 0.367753i \(-0.880127\pi\)
−0.397515 + 0.917596i \(0.630127\pi\)
\(192\) 0 0
\(193\) 6.99575 2.89773i 0.503565 0.208583i −0.116416 0.993201i \(-0.537140\pi\)
0.619981 + 0.784617i \(0.287140\pi\)
\(194\) 0 0
\(195\) 22.1124 1.22890i 1.58350 0.0880035i
\(196\) 0 0
\(197\) 3.21187i 0.228837i 0.993433 + 0.114418i \(0.0365004\pi\)
−0.993433 + 0.114418i \(0.963500\pi\)
\(198\) 0 0
\(199\) −2.04581 4.93901i −0.145023 0.350117i 0.834631 0.550809i \(-0.185681\pi\)
−0.979654 + 0.200692i \(0.935681\pi\)
\(200\) 0 0
\(201\) 9.47593 0.668381
\(202\) 0 0
\(203\) 2.81896i 0.197852i
\(204\) 0 0
\(205\) 2.58602 14.0823i 0.180616 0.983554i
\(206\) 0 0
\(207\) 1.52152i 0.105753i
\(208\) 0 0
\(209\) 2.15587 0.149125
\(210\) 0 0
\(211\) −4.51324 10.8959i −0.310704 0.750106i −0.999679 0.0253212i \(-0.991939\pi\)
0.688975 0.724785i \(-0.258061\pi\)
\(212\) 0 0
\(213\) 8.09061i 0.554360i
\(214\) 0 0
\(215\) −19.9554 17.8541i −1.36095 1.21764i
\(216\) 0 0
\(217\) −9.67543 + 4.00769i −0.656811 + 0.272060i
\(218\) 0 0
\(219\) −11.6414 + 4.82201i −0.786650 + 0.325841i
\(220\) 0 0
\(221\) 0.789962 0.0531386
\(222\) 0 0
\(223\) 16.8381 + 16.8381i 1.12756 + 1.12756i 0.990573 + 0.136987i \(0.0437420\pi\)
0.136987 + 0.990573i \(0.456258\pi\)
\(224\) 0 0
\(225\) 9.16488 + 7.32621i 0.610992 + 0.488414i
\(226\) 0 0
\(227\) −7.03095 + 16.9742i −0.466660 + 1.12662i 0.498951 + 0.866630i \(0.333719\pi\)
−0.965612 + 0.259988i \(0.916281\pi\)
\(228\) 0 0
\(229\) −6.89561 16.6475i −0.455675 1.10010i −0.970131 0.242580i \(-0.922006\pi\)
0.514456 0.857516i \(-0.327994\pi\)
\(230\) 0 0
\(231\) −2.10011 5.07012i −0.138177 0.333590i
\(232\) 0 0
\(233\) −6.44929 15.5700i −0.422507 1.02002i −0.981605 0.190921i \(-0.938853\pi\)
0.559098 0.829101i \(-0.311147\pi\)
\(234\) 0 0
\(235\) −12.5185 26.0336i −0.816616 1.69825i
\(236\) 0 0
\(237\) 13.4567i 0.874106i
\(238\) 0 0
\(239\) −7.43031 + 17.9384i −0.480627 + 1.16034i 0.478685 + 0.877987i \(0.341114\pi\)
−0.959312 + 0.282349i \(0.908886\pi\)
\(240\) 0 0
\(241\) 2.83591 2.83591i 0.182677 0.182677i −0.609844 0.792521i \(-0.708768\pi\)
0.792521 + 0.609844i \(0.208768\pi\)
\(242\) 0 0
\(243\) −7.58611 18.3145i −0.486649 1.17488i
\(244\) 0 0
\(245\) 10.0902 0.560766i 0.644640 0.0358260i
\(246\) 0 0
\(247\) 4.33310 4.33310i 0.275709 0.275709i
\(248\) 0 0
\(249\) −20.2852 8.40240i −1.28552 0.532480i
\(250\) 0 0
\(251\) −3.86891 3.86891i −0.244204 0.244204i 0.574383 0.818587i \(-0.305242\pi\)
−0.818587 + 0.574383i \(0.805242\pi\)
\(252\) 0 0
\(253\) 0.902679 0.373902i 0.0567510 0.0235070i
\(254\) 0 0
\(255\) 0.710651 + 0.635821i 0.0445027 + 0.0398166i
\(256\) 0 0
\(257\) −14.5269 + 6.01724i −0.906163 + 0.375345i −0.786586 0.617480i \(-0.788154\pi\)
−0.119576 + 0.992825i \(0.538154\pi\)
\(258\) 0 0
\(259\) 6.52184 + 2.70143i 0.405247 + 0.167859i
\(260\) 0 0
\(261\) 3.88040 1.60732i 0.240191 0.0994904i
\(262\) 0 0
\(263\) −2.52849 + 6.10431i −0.155913 + 0.376408i −0.982463 0.186455i \(-0.940300\pi\)
0.826550 + 0.562863i \(0.190300\pi\)
\(264\) 0 0
\(265\) 6.17967 17.6276i 0.379614 1.08285i
\(266\) 0 0
\(267\) 5.56486 0.340564
\(268\) 0 0
\(269\) −1.56828 −0.0956195 −0.0478098 0.998856i \(-0.515224\pi\)
−0.0478098 + 0.998856i \(0.515224\pi\)
\(270\) 0 0
\(271\) 0.530860i 0.0322474i −0.999870 0.0161237i \(-0.994867\pi\)
0.999870 0.0161237i \(-0.00513256\pi\)
\(272\) 0 0
\(273\) −14.4115 5.96945i −0.872226 0.361288i
\(274\) 0 0
\(275\) 2.09426 7.23766i 0.126288 0.436447i
\(276\) 0 0
\(277\) −11.7515 11.7515i −0.706081 0.706081i 0.259628 0.965709i \(-0.416400\pi\)
−0.965709 + 0.259628i \(0.916400\pi\)
\(278\) 0 0
\(279\) −11.0335 11.0335i −0.660557 0.660557i
\(280\) 0 0
\(281\) 12.6394 5.23542i 0.754005 0.312319i 0.0276306 0.999618i \(-0.491204\pi\)
0.726375 + 0.687299i \(0.241204\pi\)
\(282\) 0 0
\(283\) 21.0340 + 21.0340i 1.25034 + 1.25034i 0.955566 + 0.294776i \(0.0952452\pi\)
0.294776 + 0.955566i \(0.404755\pi\)
\(284\) 0 0
\(285\) 7.38567 0.410461i 0.437489 0.0243136i
\(286\) 0 0
\(287\) −5.94001 + 8.14979i −0.350628 + 0.481067i
\(288\) 0 0
\(289\) −11.9968 11.9968i −0.705692 0.705692i
\(290\) 0 0
\(291\) 12.2236i 0.716558i
\(292\) 0 0
\(293\) 7.49572 18.0963i 0.437905 1.05720i −0.538766 0.842455i \(-0.681109\pi\)
0.976671 0.214740i \(-0.0688905\pi\)
\(294\) 0 0
\(295\) −0.115322 + 0.128894i −0.00671428 + 0.00750449i
\(296\) 0 0
\(297\) −1.60977 + 1.60977i −0.0934084 + 0.0934084i
\(298\) 0 0
\(299\) 1.06279 2.56581i 0.0614630 0.148385i
\(300\) 0 0
\(301\) 7.21747 + 17.4245i 0.416008 + 1.00433i
\(302\) 0 0
\(303\) −10.6466 10.6466i −0.611632 0.611632i
\(304\) 0 0
\(305\) −4.29064 + 0.238454i −0.245681 + 0.0136538i
\(306\) 0 0
\(307\) 21.9641i 1.25356i 0.779198 + 0.626778i \(0.215627\pi\)
−0.779198 + 0.626778i \(0.784373\pi\)
\(308\) 0 0
\(309\) −8.04959 19.4334i −0.457925 1.10553i
\(310\) 0 0
\(311\) −23.4992 + 9.73369i −1.33252 + 0.551947i −0.931372 0.364068i \(-0.881388\pi\)
−0.401145 + 0.916015i \(0.631388\pi\)
\(312\) 0 0
\(313\) −1.43396 + 3.46189i −0.0810523 + 0.195678i −0.959211 0.282693i \(-0.908772\pi\)
0.878158 + 0.478370i \(0.158772\pi\)
\(314\) 0 0
\(315\) −3.58142 7.44797i −0.201790 0.419646i
\(316\) 0 0
\(317\) 3.08197 + 7.44053i 0.173101 + 0.417902i 0.986491 0.163817i \(-0.0523805\pi\)
−0.813390 + 0.581718i \(0.802381\pi\)
\(318\) 0 0
\(319\) −1.90716 1.90716i −0.106781 0.106781i
\(320\) 0 0
\(321\) 27.3879 + 11.3445i 1.52864 + 0.633185i
\(322\) 0 0
\(323\) 0.263852 0.0146811
\(324\) 0 0
\(325\) −10.3378 18.7563i −0.573437 1.04041i
\(326\) 0 0
\(327\) 4.96923 + 4.96923i 0.274799 + 0.274799i
\(328\) 0 0
\(329\) 20.3467i 1.12175i
\(330\) 0 0
\(331\) −0.244976 + 0.591424i −0.0134651 + 0.0325076i −0.930469 0.366370i \(-0.880600\pi\)
0.917004 + 0.398878i \(0.130600\pi\)
\(332\) 0 0
\(333\) 10.5179i 0.576375i
\(334\) 0 0
\(335\) −3.97114 8.25844i −0.216966 0.451207i
\(336\) 0 0
\(337\) 33.1410 1.80531 0.902653 0.430368i \(-0.141616\pi\)
0.902653 + 0.430368i \(0.141616\pi\)
\(338\) 0 0
\(339\) −2.44676 + 5.90701i −0.132890 + 0.320825i
\(340\) 0 0
\(341\) −3.83449 + 9.25729i −0.207650 + 0.501310i
\(342\) 0 0
\(343\) −16.7618 6.94298i −0.905054 0.374886i
\(344\) 0 0
\(345\) 3.02125 1.45279i 0.162659 0.0782158i
\(346\) 0 0
\(347\) −7.22879 2.99426i −0.388062 0.160740i 0.180118 0.983645i \(-0.442352\pi\)
−0.568179 + 0.822905i \(0.692352\pi\)
\(348\) 0 0
\(349\) 3.38718 3.38718i 0.181312 0.181312i −0.610616 0.791927i \(-0.709078\pi\)
0.791927 + 0.610616i \(0.209078\pi\)
\(350\) 0 0
\(351\) 6.47099i 0.345396i
\(352\) 0 0
\(353\) 18.2189 18.2189i 0.969692 0.969692i −0.0298623 0.999554i \(-0.509507\pi\)
0.999554 + 0.0298623i \(0.00950689\pi\)
\(354\) 0 0
\(355\) 7.05111 3.39058i 0.374234 0.179953i
\(356\) 0 0
\(357\) −0.257028 0.620521i −0.0136034 0.0328415i
\(358\) 0 0
\(359\) 4.49903 0.237450 0.118725 0.992927i \(-0.462119\pi\)
0.118725 + 0.992927i \(0.462119\pi\)
\(360\) 0 0
\(361\) −11.9877 + 11.9877i −0.630934 + 0.630934i
\(362\) 0 0
\(363\) 18.6479 + 7.72423i 0.978764 + 0.405417i
\(364\) 0 0
\(365\) 9.08107 + 8.12485i 0.475325 + 0.425274i
\(366\) 0 0
\(367\) 19.3068 1.00781 0.503904 0.863760i \(-0.331897\pi\)
0.503904 + 0.863760i \(0.331897\pi\)
\(368\) 0 0
\(369\) −14.6054 3.52979i −0.760325 0.183753i
\(370\) 0 0
\(371\) −9.30331 + 9.30331i −0.483004 + 0.483004i
\(372\) 0 0
\(373\) 16.4142 16.4142i 0.849893 0.849893i −0.140227 0.990119i \(-0.544783\pi\)
0.990119 + 0.140227i \(0.0447831\pi\)
\(374\) 0 0
\(375\) 5.79661 25.1938i 0.299335 1.30100i
\(376\) 0 0
\(377\) −7.66645 −0.394842
\(378\) 0 0
\(379\) 24.1645i 1.24125i −0.784109 0.620623i \(-0.786880\pi\)
0.784109 0.620623i \(-0.213120\pi\)
\(380\) 0 0
\(381\) −7.06326 2.92570i −0.361862 0.149888i
\(382\) 0 0
\(383\) −7.07604 + 17.0831i −0.361569 + 0.872904i 0.633502 + 0.773741i \(0.281617\pi\)
−0.995071 + 0.0991635i \(0.968383\pi\)
\(384\) 0 0
\(385\) −3.53859 + 3.95505i −0.180343 + 0.201568i
\(386\) 0 0
\(387\) −19.8702 + 19.8702i −1.01006 + 1.01006i
\(388\) 0 0
\(389\) −20.5174 20.5174i −1.04027 1.04027i −0.999154 0.0411193i \(-0.986908\pi\)
−0.0411193 0.999154i \(-0.513092\pi\)
\(390\) 0 0
\(391\) 0.110477 0.0457611i 0.00558706 0.00231424i
\(392\) 0 0
\(393\) −14.4309 5.97749i −0.727944 0.301524i
\(394\) 0 0
\(395\) 11.7277 5.63937i 0.590086 0.283748i
\(396\) 0 0
\(397\) 26.7218 11.0685i 1.34113 0.555514i 0.407320 0.913286i \(-0.366463\pi\)
0.933809 + 0.357772i \(0.116463\pi\)
\(398\) 0 0
\(399\) −4.81354 1.99383i −0.240978 0.0998165i
\(400\) 0 0
\(401\) −12.5308 + 12.5308i −0.625757 + 0.625757i −0.946998 0.321241i \(-0.895900\pi\)
0.321241 + 0.946998i \(0.395900\pi\)
\(402\) 0 0
\(403\) 10.8993 + 26.3133i 0.542934 + 1.31076i
\(404\) 0 0
\(405\) −15.7046 + 17.5529i −0.780370 + 0.872212i
\(406\) 0 0
\(407\) 6.23999 2.58469i 0.309305 0.128118i
\(408\) 0 0
\(409\) 10.4879 0.518592 0.259296 0.965798i \(-0.416509\pi\)
0.259296 + 0.965798i \(0.416509\pi\)
\(410\) 0 0
\(411\) 41.4783 2.04597
\(412\) 0 0
\(413\) 0.112547 0.0466183i 0.00553806 0.00229394i
\(414\) 0 0
\(415\) 1.17820 + 21.2001i 0.0578357 + 1.04067i
\(416\) 0 0
\(417\) −11.7952 28.4762i −0.577614 1.39448i
\(418\) 0 0
\(419\) −3.29605 + 3.29605i −0.161023 + 0.161023i −0.783020 0.621997i \(-0.786322\pi\)
0.621997 + 0.783020i \(0.286322\pi\)
\(420\) 0 0
\(421\) 19.8788 + 8.23406i 0.968833 + 0.401304i 0.810278 0.586046i \(-0.199316\pi\)
0.158555 + 0.987350i \(0.449316\pi\)
\(422\) 0 0
\(423\) −28.0079 + 11.6013i −1.36179 + 0.564073i
\(424\) 0 0
\(425\) 0.256311 0.885802i 0.0124329 0.0429677i
\(426\) 0 0
\(427\) 2.79638 + 1.15830i 0.135327 + 0.0560541i
\(428\) 0 0
\(429\) −13.7887 + 5.71147i −0.665725 + 0.275752i
\(430\) 0 0
\(431\) −21.6942 21.6942i −1.04497 1.04497i −0.998940 0.0460305i \(-0.985343\pi\)
−0.0460305 0.998940i \(-0.514657\pi\)
\(432\) 0 0
\(433\) −16.5381 + 16.5381i −0.794770 + 0.794770i −0.982266 0.187495i \(-0.939963\pi\)
0.187495 + 0.982266i \(0.439963\pi\)
\(434\) 0 0
\(435\) −6.89676 6.17054i −0.330674 0.295855i
\(436\) 0 0
\(437\) 0.354980 0.856997i 0.0169810 0.0409957i
\(438\) 0 0
\(439\) 0.192509 + 0.0797398i 0.00918795 + 0.00380577i 0.387273 0.921965i \(-0.373417\pi\)
−0.378085 + 0.925771i \(0.623417\pi\)
\(440\) 0 0
\(441\) 10.6055i 0.505025i
\(442\) 0 0
\(443\) −19.5262 −0.927718 −0.463859 0.885909i \(-0.653536\pi\)
−0.463859 + 0.885909i \(0.653536\pi\)
\(444\) 0 0
\(445\) −2.33210 4.84987i −0.110552 0.229906i
\(446\) 0 0
\(447\) 17.5875 17.5875i 0.831860 0.831860i
\(448\) 0 0
\(449\) 16.7867 16.7867i 0.792215 0.792215i −0.189639 0.981854i \(-0.560732\pi\)
0.981854 + 0.189639i \(0.0607316\pi\)
\(450\) 0 0
\(451\) 1.49503 + 9.53242i 0.0703980 + 0.448864i
\(452\) 0 0
\(453\) −18.2815 −0.858942
\(454\) 0 0
\(455\) 0.837050 + 15.0615i 0.0392415 + 0.706096i
\(456\) 0 0
\(457\) −12.5726 5.20775i −0.588122 0.243608i 0.0687203 0.997636i \(-0.478108\pi\)
−0.656843 + 0.754028i \(0.728108\pi\)
\(458\) 0 0
\(459\) −0.197016 + 0.197016i −0.00919594 + 0.00919594i
\(460\) 0 0
\(461\) −37.3704 −1.74051 −0.870256 0.492599i \(-0.836047\pi\)
−0.870256 + 0.492599i \(0.836047\pi\)
\(462\) 0 0
\(463\) −8.59176 20.7423i −0.399293 0.963979i −0.987834 0.155511i \(-0.950298\pi\)
0.588541 0.808467i \(-0.299702\pi\)
\(464\) 0 0
\(465\) −11.3739 + 32.4441i −0.527451 + 1.50456i
\(466\) 0 0
\(467\) 12.6229 12.6229i 0.584117 0.584117i −0.351915 0.936032i \(-0.614469\pi\)
0.936032 + 0.351915i \(0.114469\pi\)
\(468\) 0 0
\(469\) 6.45440i 0.298037i
\(470\) 0 0
\(471\) −15.5989 + 15.5989i −0.718761 + 0.718761i
\(472\) 0 0
\(473\) 16.6715 + 6.90555i 0.766556 + 0.317518i
\(474\) 0 0
\(475\) −3.45288 6.26472i −0.158429 0.287445i
\(476\) 0 0
\(477\) −18.1109 7.50178i −0.829242 0.343483i
\(478\) 0 0
\(479\) 0.811220 1.95846i 0.0370656 0.0894842i −0.904263 0.426977i \(-0.859579\pi\)
0.941328 + 0.337492i \(0.109579\pi\)
\(480\) 0 0
\(481\) 7.34682 17.7368i 0.334986 0.808728i
\(482\) 0 0
\(483\) −2.36127 −0.107441
\(484\) 0 0
\(485\) −10.6530 + 5.12261i −0.483730 + 0.232606i
\(486\) 0 0
\(487\) 22.8061i 1.03344i −0.856153 0.516722i \(-0.827152\pi\)
0.856153 0.516722i \(-0.172848\pi\)
\(488\) 0 0
\(489\) 2.04748 4.94306i 0.0925903 0.223533i
\(490\) 0 0
\(491\) 4.31101i 0.194553i −0.995257 0.0972766i \(-0.968987\pi\)
0.995257 0.0972766i \(-0.0310131\pi\)
\(492\) 0 0
\(493\) −0.233413 0.233413i −0.0105124 0.0105124i
\(494\) 0 0
\(495\) −7.46191 2.61591i −0.335388 0.117576i
\(496\) 0 0
\(497\) −5.51081 −0.247194
\(498\) 0 0
\(499\) 27.1306 + 11.2379i 1.21453 + 0.503076i 0.895668 0.444724i \(-0.146698\pi\)
0.318866 + 0.947800i \(0.396698\pi\)
\(500\) 0 0
\(501\) 0.613112 + 0.613112i 0.0273918 + 0.0273918i
\(502\) 0 0
\(503\) −11.2032 27.0470i −0.499528 1.20597i −0.949739 0.313044i \(-0.898651\pi\)
0.450211 0.892922i \(-0.351349\pi\)
\(504\) 0 0
\(505\) −4.81696 + 13.7404i −0.214352 + 0.611442i
\(506\) 0 0
\(507\) −4.73120 + 11.4221i −0.210120 + 0.507274i
\(508\) 0 0
\(509\) 4.15079 1.71931i 0.183980 0.0762072i −0.288791 0.957392i \(-0.593253\pi\)
0.472772 + 0.881185i \(0.343253\pi\)
\(510\) 0 0
\(511\) −3.28444 7.92935i −0.145295 0.350774i
\(512\) 0 0
\(513\) 2.16135i 0.0954260i
\(514\) 0 0
\(515\) −13.5632 + 15.1594i −0.597664 + 0.668004i
\(516\) 0 0
\(517\) 13.7655 + 13.7655i 0.605406 + 0.605406i
\(518\) 0 0
\(519\) −14.4013 34.7678i −0.632146 1.52614i
\(520\) 0 0
\(521\) −1.66341 + 4.01583i −0.0728754 + 0.175937i −0.956120 0.292976i \(-0.905354\pi\)
0.883244 + 0.468913i \(0.155354\pi\)
\(522\) 0 0
\(523\) −5.03989 + 5.03989i −0.220379 + 0.220379i −0.808658 0.588279i \(-0.799806\pi\)
0.588279 + 0.808658i \(0.299806\pi\)
\(524\) 0 0
\(525\) −11.3697 + 14.2231i −0.496213 + 0.620748i
\(526\) 0 0
\(527\) −0.469295 + 1.13298i −0.0204428 + 0.0493534i
\(528\) 0 0
\(529\) 22.5796i 0.981722i
\(530\) 0 0
\(531\) 0.128344 + 0.128344i 0.00556964 + 0.00556964i
\(532\) 0 0
\(533\) 22.1642 + 16.1544i 0.960037 + 0.699727i
\(534\) 0 0
\(535\) −1.59074 28.6232i −0.0687738 1.23749i
\(536\) 0 0
\(537\) −25.3001 25.3001i −1.09178 1.09178i
\(538\) 0 0
\(539\) −6.29199 + 2.60623i −0.271015 + 0.112258i
\(540\) 0 0
\(541\) −21.6679 21.6679i −0.931578 0.931578i 0.0662270 0.997805i \(-0.478904\pi\)
−0.997805 + 0.0662270i \(0.978904\pi\)
\(542\) 0 0
\(543\) −39.7775 39.7775i −1.70702 1.70702i
\(544\) 0 0
\(545\) 2.24828 6.41325i 0.0963059 0.274714i
\(546\) 0 0
\(547\) 17.7210 + 7.34027i 0.757695 + 0.313847i 0.727877 0.685708i \(-0.240507\pi\)
0.0298180 + 0.999555i \(0.490507\pi\)
\(548\) 0 0
\(549\) 4.50977i 0.192472i
\(550\) 0 0
\(551\) −2.56064 −0.109087
\(552\) 0 0
\(553\) −9.16584 −0.389771
\(554\) 0 0
\(555\) 20.8851 10.0428i 0.886524 0.426292i
\(556\) 0 0
\(557\) −7.64622 + 18.4596i −0.323981 + 0.782159i 0.675034 + 0.737786i \(0.264129\pi\)
−0.999015 + 0.0443724i \(0.985871\pi\)
\(558\) 0 0
\(559\) 47.3877 19.6286i 2.00429 0.830203i
\(560\) 0 0
\(561\) −0.593704 0.245920i −0.0250662 0.0103828i
\(562\) 0 0
\(563\) 27.2976 11.3070i 1.15045 0.476534i 0.275769 0.961224i \(-0.411068\pi\)
0.874686 + 0.484690i \(0.161068\pi\)
\(564\) 0 0
\(565\) 6.17344 0.343090i 0.259718 0.0144339i
\(566\) 0 0
\(567\) 15.3268 6.34855i 0.643663 0.266614i
\(568\) 0 0
\(569\) 28.2444 + 28.2444i 1.18407 + 1.18407i 0.978681 + 0.205388i \(0.0658458\pi\)
0.205388 + 0.978681i \(0.434154\pi\)
\(570\) 0 0
\(571\) −2.41510 1.00037i −0.101069 0.0418641i 0.331576 0.943428i \(-0.392420\pi\)
−0.432645 + 0.901564i \(0.642420\pi\)
\(572\) 0 0
\(573\) 32.4669 32.4669i 1.35633 1.35633i
\(574\) 0 0
\(575\) −2.53227 2.02424i −0.105603 0.0844167i
\(576\) 0 0
\(577\) −2.57706 6.22157i −0.107284 0.259007i 0.861116 0.508409i \(-0.169766\pi\)
−0.968400 + 0.249402i \(0.919766\pi\)
\(578\) 0 0
\(579\) −12.3807 + 12.3807i −0.514523 + 0.514523i
\(580\) 0 0
\(581\) 5.72318 13.8170i 0.237437 0.573225i
\(582\) 0 0
\(583\) 12.5883i 0.521353i
\(584\) 0 0
\(585\) −20.2555 + 9.74003i −0.837462 + 0.402701i
\(586\) 0 0
\(587\) 4.08942 + 9.87273i 0.168788 + 0.407491i 0.985527 0.169516i \(-0.0542205\pi\)
−0.816739 + 0.577007i \(0.804220\pi\)
\(588\) 0 0
\(589\) 3.64044 + 8.78880i 0.150002 + 0.362136i
\(590\) 0 0
\(591\) −2.84210 6.86143i −0.116908 0.282241i
\(592\) 0 0
\(593\) 13.3576 32.2481i 0.548531 1.32427i −0.370040 0.929016i \(-0.620656\pi\)
0.918571 0.395255i \(-0.129344\pi\)
\(594\) 0 0
\(595\) −0.433080 + 0.484050i −0.0177546 + 0.0198441i
\(596\) 0 0
\(597\) 8.74078 + 8.74078i 0.357736 + 0.357736i
\(598\) 0 0
\(599\) −43.9516 −1.79581 −0.897906 0.440188i \(-0.854912\pi\)
−0.897906 + 0.440188i \(0.854912\pi\)
\(600\) 0 0
\(601\) −44.8988 + 18.5977i −1.83146 + 0.758615i −0.865012 + 0.501751i \(0.832689\pi\)
−0.966447 + 0.256864i \(0.917311\pi\)
\(602\) 0 0
\(603\) −8.88472 + 3.68017i −0.361814 + 0.149868i
\(604\) 0 0
\(605\) −1.08311 19.4890i −0.0440346 0.792342i
\(606\) 0 0
\(607\) 10.8953i 0.442227i 0.975248 + 0.221114i \(0.0709692\pi\)
−0.975248 + 0.221114i \(0.929031\pi\)
\(608\) 0 0
\(609\) 2.49442 + 6.02206i 0.101079 + 0.244026i
\(610\) 0 0
\(611\) 55.3348 2.23861
\(612\) 0 0
\(613\) 12.8309i 0.518234i −0.965846 0.259117i \(-0.916568\pi\)
0.965846 0.259117i \(-0.0834315\pi\)
\(614\) 0 0
\(615\) 6.93663 + 32.3720i 0.279712 + 1.30536i
\(616\) 0 0
\(617\) 31.5009i 1.26818i −0.773260 0.634089i \(-0.781375\pi\)
0.773260 0.634089i \(-0.218625\pi\)
\(618\) 0 0
\(619\) 46.0556 1.85113 0.925566 0.378586i \(-0.123590\pi\)
0.925566 + 0.378586i \(0.123590\pi\)
\(620\) 0 0
\(621\) 0.374853 + 0.904975i 0.0150423 + 0.0363154i
\(622\) 0 0
\(623\) 3.79043i 0.151860i
\(624\) 0 0
\(625\) −24.3861 + 5.50630i −0.975443 + 0.220252i
\(626\) 0 0
\(627\) −4.60551 + 1.90767i −0.183927 + 0.0761849i
\(628\) 0 0
\(629\) 0.763698 0.316334i 0.0304506 0.0126131i
\(630\) 0 0
\(631\) −5.97318 −0.237789 −0.118894 0.992907i \(-0.537935\pi\)
−0.118894 + 0.992907i \(0.537935\pi\)
\(632\) 0 0
\(633\) 19.2830 + 19.2830i 0.766430 + 0.766430i
\(634\) 0 0
\(635\) 0.410248 + 7.38184i 0.0162802 + 0.292939i
\(636\) 0 0
\(637\) −7.40806 + 17.8846i −0.293518 + 0.708615i
\(638\) 0 0
\(639\) −3.14215 7.58583i −0.124302 0.300091i
\(640\) 0 0
\(641\) −1.27714 3.08329i −0.0504440 0.121783i 0.896649 0.442743i \(-0.145994\pi\)
−0.947093 + 0.320960i \(0.895994\pi\)
\(642\) 0 0
\(643\) 4.06958 + 9.82483i 0.160488 + 0.387453i 0.983584 0.180449i \(-0.0577551\pi\)
−0.823096 + 0.567902i \(0.807755\pi\)
\(644\) 0 0
\(645\) 58.4287 + 20.4832i 2.30063 + 0.806527i
\(646\) 0 0
\(647\) 33.6866i 1.32436i −0.749346 0.662179i \(-0.769632\pi\)
0.749346 0.662179i \(-0.230368\pi\)
\(648\) 0 0
\(649\) 0.0446036 0.107683i 0.00175085 0.00422692i
\(650\) 0 0
\(651\) 17.1230 17.1230i 0.671104 0.671104i
\(652\) 0 0
\(653\) −9.83323 23.7395i −0.384804 0.928999i −0.991022 0.133700i \(-0.957314\pi\)
0.606218 0.795299i \(-0.292686\pi\)
\(654\) 0 0
\(655\) 0.838176 + 15.0818i 0.0327503 + 0.589296i
\(656\) 0 0
\(657\) 9.04231 9.04231i 0.352774 0.352774i
\(658\) 0 0
\(659\) 31.4854 + 13.0417i 1.22650 + 0.508032i 0.899470 0.436982i \(-0.143953\pi\)
0.327029 + 0.945014i \(0.393953\pi\)
\(660\) 0 0
\(661\) −13.4561 13.4561i −0.523383 0.523383i 0.395209 0.918591i \(-0.370672\pi\)
−0.918591 + 0.395209i \(0.870672\pi\)
\(662\) 0 0
\(663\) −1.68757 + 0.699015i −0.0655398 + 0.0271475i
\(664\) 0 0
\(665\) 0.279580 + 5.03065i 0.0108416 + 0.195080i
\(666\) 0 0
\(667\) −1.07216 + 0.444104i −0.0415142 + 0.0171958i
\(668\) 0 0
\(669\) −50.8702 21.0711i −1.96675 0.814656i
\(670\) 0 0
\(671\) 2.67553 1.10824i 0.103288 0.0427832i
\(672\) 0 0
\(673\) −9.83826 + 23.7517i −0.379237 + 0.915559i 0.612872 + 0.790182i \(0.290014\pi\)
−0.992109 + 0.125377i \(0.959986\pi\)
\(674\) 0 0
\(675\) 7.25607 + 2.09958i 0.279286 + 0.0808130i
\(676\) 0 0
\(677\) −29.7046 −1.14164 −0.570821 0.821075i \(-0.693375\pi\)
−0.570821 + 0.821075i \(0.693375\pi\)
\(678\) 0 0
\(679\) 8.32592 0.319519
\(680\) 0 0
\(681\) 42.4830i 1.62795i
\(682\) 0 0
\(683\) −29.2807 12.1284i −1.12039 0.464082i −0.255888 0.966706i \(-0.582368\pi\)
−0.864505 + 0.502624i \(0.832368\pi\)
\(684\) 0 0
\(685\) −17.3826 36.1491i −0.664154 1.38118i
\(686\) 0 0
\(687\) 29.4618 + 29.4618i 1.12404 + 1.12404i
\(688\) 0 0
\(689\) 25.3013 + 25.3013i 0.963902 + 0.963902i
\(690\) 0 0
\(691\) −24.5212 + 10.1570i −0.932830 + 0.386391i −0.796752 0.604307i \(-0.793450\pi\)
−0.136079 + 0.990698i \(0.543450\pi\)
\(692\) 0 0
\(693\) 3.93817 + 3.93817i 0.149599 + 0.149599i
\(694\) 0 0
\(695\) −19.8744 + 22.2134i −0.753878 + 0.842603i
\(696\) 0 0
\(697\) 0.182973 + 1.16665i 0.00693059 + 0.0441901i
\(698\) 0 0
\(699\) 27.5548 + 27.5548i 1.04222 + 1.04222i
\(700\) 0 0
\(701\) 34.4360i 1.30063i −0.759665 0.650314i \(-0.774637\pi\)
0.759665 0.650314i \(-0.225363\pi\)
\(702\) 0 0
\(703\) 2.45388 5.92420i 0.0925500 0.223435i
\(704\) 0 0
\(705\) 49.7793 + 44.5376i 1.87480 + 1.67738i
\(706\) 0 0
\(707\) 7.25179 7.25179i 0.272732 0.272732i
\(708\) 0 0
\(709\) −17.3721 + 41.9399i −0.652422 + 1.57509i 0.156830 + 0.987626i \(0.449872\pi\)
−0.809252 + 0.587461i \(0.800128\pi\)
\(710\) 0 0
\(711\) −5.22618 12.6171i −0.195997 0.473179i
\(712\) 0 0
\(713\) 3.04856 + 3.04856i 0.114170 + 0.114170i
\(714\) 0 0
\(715\) 10.7562 + 9.62355i 0.402258 + 0.359901i
\(716\) 0 0
\(717\) 44.8960i 1.67667i
\(718\) 0 0
\(719\) −9.15213 22.0952i −0.341317 0.824012i −0.997583 0.0694827i \(-0.977865\pi\)
0.656266 0.754529i \(-0.272135\pi\)
\(720\) 0 0
\(721\) 13.2368 5.48287i 0.492964 0.204193i
\(722\) 0 0
\(723\) −3.54885 + 8.56768i −0.131983 + 0.318636i
\(724\) 0 0
\(725\) −2.48746 + 8.59656i −0.0923820 + 0.319268i
\(726\) 0 0
\(727\) −1.46439 3.53535i −0.0543112 0.131119i 0.894395 0.447278i \(-0.147607\pi\)
−0.948706 + 0.316159i \(0.897607\pi\)
\(728\) 0 0
\(729\) 10.0677 + 10.0677i 0.372877 + 0.372877i
\(730\) 0 0
\(731\) 2.04039 + 0.845156i 0.0754664 + 0.0312592i
\(732\) 0 0
\(733\) 16.8384 0.621939 0.310970 0.950420i \(-0.399346\pi\)
0.310970 + 0.950420i \(0.399346\pi\)
\(734\) 0 0
\(735\) −21.0592 + 10.1265i −0.776780 + 0.373521i
\(736\) 0 0
\(737\) 4.36671 + 4.36671i 0.160850 + 0.160850i
\(738\) 0 0
\(739\) 48.2723i 1.77573i 0.460107 + 0.887863i \(0.347811\pi\)
−0.460107 + 0.887863i \(0.652189\pi\)
\(740\) 0 0
\(741\) −5.42243 + 13.0909i −0.199198 + 0.480906i
\(742\) 0 0
\(743\) 35.3649i 1.29741i 0.761039 + 0.648706i \(0.224690\pi\)
−0.761039 + 0.648706i \(0.775310\pi\)
\(744\) 0 0
\(745\) −22.6983 7.95730i −0.831601 0.291533i
\(746\) 0 0
\(747\) 22.2828 0.815286
\(748\) 0 0
\(749\) −7.72712 + 18.6549i −0.282343 + 0.681636i
\(750\) 0 0
\(751\) −12.4521 + 30.0621i −0.454385 + 1.09698i 0.516253 + 0.856436i \(0.327326\pi\)
−0.970638 + 0.240546i \(0.922674\pi\)
\(752\) 0 0
\(753\) 11.6885 + 4.84155i 0.425954 + 0.176436i
\(754\) 0 0
\(755\) 7.66135 + 15.9327i 0.278825 + 0.579849i
\(756\) 0 0
\(757\) 24.4045 + 10.1087i 0.886997 + 0.367406i 0.779206 0.626768i \(-0.215622\pi\)
0.107790 + 0.994174i \(0.465622\pi\)
\(758\) 0 0
\(759\) −1.59751 + 1.59751i −0.0579860 + 0.0579860i
\(760\) 0 0
\(761\) 29.7337i 1.07785i 0.842355 + 0.538923i \(0.181169\pi\)
−0.842355 + 0.538923i \(0.818831\pi\)
\(762\) 0 0
\(763\) −3.38472 + 3.38472i −0.122535 + 0.122535i
\(764\) 0 0
\(765\) −0.913247 0.320155i −0.0330185 0.0115752i
\(766\) 0 0
\(767\) −0.126783 0.306082i −0.00457788 0.0110520i
\(768\) 0 0
\(769\) 33.1135 1.19410 0.597052 0.802202i \(-0.296339\pi\)
0.597052 + 0.802202i \(0.296339\pi\)
\(770\) 0 0
\(771\) 25.7089 25.7089i 0.925882 0.925882i
\(772\) 0 0
\(773\) 8.78360 + 3.63829i 0.315924 + 0.130860i 0.535011 0.844845i \(-0.320308\pi\)
−0.219086 + 0.975705i \(0.570308\pi\)
\(774\) 0 0
\(775\) 33.0421 3.68403i 1.18691 0.132334i
\(776\) 0 0
\(777\) −16.3228 −0.585578
\(778\) 0 0
\(779\) 7.40297 + 5.39568i 0.265239 + 0.193320i
\(780\) 0 0
\(781\) −3.72833 + 3.72833i −0.133410 + 0.133410i
\(782\) 0 0
\(783\) 1.91201 1.91201i 0.0683298 0.0683298i
\(784\) 0 0
\(785\) 20.1319 + 7.05760i 0.718538 + 0.251896i
\(786\) 0 0
\(787\) −32.7988 −1.16915 −0.584575 0.811340i \(-0.698739\pi\)
−0.584575 + 0.811340i \(0.698739\pi\)
\(788\) 0 0
\(789\) 15.2778i 0.543905i
\(790\) 0 0
\(791\) −4.02348 1.66658i −0.143058 0.0592567i
\(792\) 0 0
\(793\) 3.15011 7.60505i 0.111864 0.270063i
\(794\) 0 0
\(795\) 2.39671 + 43.1255i 0.0850025 + 1.52950i
\(796\) 0 0
\(797\) 17.2389 17.2389i 0.610632 0.610632i −0.332479 0.943111i \(-0.607885\pi\)
0.943111 + 0.332479i \(0.107885\pi\)
\(798\) 0 0
\(799\) 1.68473 + 1.68473i 0.0596014 + 0.0596014i
\(800\) 0 0
\(801\) −5.21766 + 2.16123i −0.184357 + 0.0763632i
\(802\) 0 0
\(803\) −7.58667 3.14250i −0.267728 0.110896i
\(804\) 0 0
\(805\) 0.989551 + 2.05788i 0.0348771 + 0.0725309i
\(806\) 0 0
\(807\) 3.35026 1.38772i 0.117935 0.0488502i
\(808\) 0 0
\(809\) 7.48960 + 3.10230i 0.263320 + 0.109071i 0.510438 0.859915i \(-0.329483\pi\)
−0.247117 + 0.968986i \(0.579483\pi\)
\(810\) 0 0
\(811\) 5.69874 5.69874i 0.200110 0.200110i −0.599937 0.800047i \(-0.704808\pi\)
0.800047 + 0.599937i \(0.204808\pi\)
\(812\) 0 0
\(813\) 0.469743 + 1.13406i 0.0164746 + 0.0397732i
\(814\) 0 0
\(815\) −5.16601 + 0.287102i −0.180957 + 0.0100568i
\(816\) 0 0
\(817\) 15.8278 6.55609i 0.553744 0.229368i
\(818\) 0 0
\(819\) 15.8307 0.553171
\(820\) 0 0
\(821\) 2.97302 0.103759 0.0518796 0.998653i \(-0.483479\pi\)
0.0518796 + 0.998653i \(0.483479\pi\)
\(822\) 0 0
\(823\) −17.9862 + 7.45013i −0.626960 + 0.259695i −0.673461 0.739223i \(-0.735193\pi\)
0.0465009 + 0.998918i \(0.485193\pi\)
\(824\) 0 0
\(825\) 1.93051 + 17.3147i 0.0672116 + 0.602822i
\(826\) 0 0
\(827\) 20.0605 + 48.4303i 0.697571 + 1.68409i 0.728940 + 0.684577i \(0.240013\pi\)
−0.0313693 + 0.999508i \(0.509987\pi\)
\(828\) 0 0
\(829\) −37.8392 + 37.8392i −1.31421 + 1.31421i −0.395926 + 0.918282i \(0.629576\pi\)
−0.918282 + 0.395926i \(0.870424\pi\)
\(830\) 0 0
\(831\) 35.5030 + 14.7058i 1.23159 + 0.510140i
\(832\) 0 0
\(833\) −0.770064 + 0.318971i −0.0266811 + 0.0110517i
\(834\) 0 0
\(835\) 0.277397 0.791278i 0.00959972 0.0273833i
\(836\) 0 0
\(837\) −9.28083 3.84425i −0.320792 0.132877i
\(838\) 0 0
\(839\) 5.31366 2.20099i 0.183448 0.0759867i −0.289069 0.957308i \(-0.593346\pi\)
0.472517 + 0.881322i \(0.343346\pi\)
\(840\) 0 0
\(841\) −18.2409 18.2409i −0.628995 0.628995i
\(842\) 0 0
\(843\) −22.3685 + 22.3685i −0.770414 + 0.770414i
\(844\) 0 0
\(845\) 11.9373 0.663419i 0.410656 0.0228223i
\(846\) 0 0
\(847\) −5.26126 + 12.7018i −0.180779 + 0.436439i
\(848\) 0 0
\(849\) −63.5467 26.3219i −2.18092 0.903366i
\(850\) 0 0
\(851\) 2.90610i 0.0996197i
\(852\) 0 0
\(853\) −31.1224 −1.06561 −0.532806 0.846237i \(-0.678862\pi\)
−0.532806 + 0.846237i \(0.678862\pi\)
\(854\) 0 0
\(855\) −6.76546 + 3.25323i −0.231374 + 0.111258i
\(856\) 0 0
\(857\) 3.38066 3.38066i 0.115481 0.115481i −0.647005 0.762486i \(-0.723979\pi\)
0.762486 + 0.647005i \(0.223979\pi\)
\(858\) 0 0
\(859\) 27.3952 27.3952i 0.934712 0.934712i −0.0632836 0.997996i \(-0.520157\pi\)
0.997996 + 0.0632836i \(0.0201573\pi\)
\(860\) 0 0
\(861\) 5.47793 22.6663i 0.186688 0.772465i
\(862\) 0 0
\(863\) −11.9866 −0.408028 −0.204014 0.978968i \(-0.565399\pi\)
−0.204014 + 0.978968i \(0.565399\pi\)
\(864\) 0 0
\(865\) −24.2655 + 27.1213i −0.825050 + 0.922151i
\(866\) 0 0
\(867\) 36.2439 + 15.0127i 1.23091 + 0.509859i
\(868\) 0 0
\(869\) −6.20113 + 6.20113i −0.210359 + 0.210359i
\(870\) 0 0
\(871\) 17.5534 0.594774
\(872\) 0 0
\(873\) 4.74727 + 11.4609i 0.160671 + 0.387894i
\(874\) 0 0
\(875\) 17.1604 + 3.94828i 0.580129 + 0.133476i
\(876\) 0 0
\(877\) 26.7866 26.7866i 0.904519 0.904519i −0.0913041 0.995823i \(-0.529104\pi\)
0.995823 + 0.0913041i \(0.0291035\pi\)
\(878\) 0 0
\(879\) 45.2913i 1.52764i
\(880\) 0 0
\(881\) −5.31578 + 5.31578i −0.179093 + 0.179093i −0.790960 0.611867i \(-0.790419\pi\)
0.611867 + 0.790960i \(0.290419\pi\)
\(882\) 0 0
\(883\) 44.0831 + 18.2598i 1.48351 + 0.614492i 0.969894 0.243526i \(-0.0783041\pi\)
0.513620 + 0.858018i \(0.328304\pi\)
\(884\) 0 0
\(885\) 0.132303 0.377397i 0.00444733 0.0126860i
\(886\) 0 0
\(887\) 30.8524 + 12.7795i 1.03592 + 0.429094i 0.834847 0.550482i \(-0.185556\pi\)
0.201076 + 0.979576i \(0.435556\pi\)
\(888\) 0 0
\(889\) 1.99280 4.81104i 0.0668364 0.161357i
\(890\) 0 0
\(891\) 6.07418 14.6644i 0.203493 0.491275i
\(892\) 0 0
\(893\) 18.4822 0.618482
\(894\) 0 0
\(895\) −11.4468 + 32.6521i −0.382624 + 1.09144i
\(896\) 0 0
\(897\) 6.42171i 0.214414i
\(898\) 0 0
\(899\) 4.55444 10.9954i 0.151899 0.366717i
\(900\) 0 0
\(901\) 1.54065i 0.0513265i
\(902\) 0 0
\(903\) −30.8369 30.8369i −1.02619 1.02619i
\(904\) 0 0
\(905\) −17.9970 + 51.3366i −0.598240 + 1.70649i
\(906\) 0 0
\(907\) −56.1058 −1.86296 −0.931481 0.363789i \(-0.881483\pi\)
−0.931481 + 0.363789i \(0.881483\pi\)
\(908\) 0 0
\(909\) 14.1172 + 5.84753i 0.468238 + 0.193950i
\(910\) 0 0
\(911\) 15.6177 + 15.6177i 0.517438 + 0.517438i 0.916795 0.399357i \(-0.130767\pi\)
−0.399357 + 0.916795i \(0.630767\pi\)
\(912\) 0 0
\(913\) −5.47584 13.2198i −0.181224 0.437513i
\(914\) 0 0
\(915\) 8.95496 4.30607i 0.296042 0.142354i
\(916\) 0 0
\(917\) 4.07148 9.82943i 0.134452 0.324596i
\(918\) 0 0
\(919\) 20.2659 8.39442i 0.668511 0.276906i −0.0225038 0.999747i \(-0.507164\pi\)
0.691015 + 0.722840i \(0.257164\pi\)
\(920\) 0 0
\(921\) −19.4354 46.9212i −0.640418 1.54611i
\(922\) 0 0
\(923\) 14.9872i 0.493310i
\(924\) 0 0
\(925\) −17.5049 13.9930i −0.575558 0.460089i
\(926\) 0 0
\(927\) 15.0947 + 15.0947i 0.495776 + 0.495776i
\(928\) 0 0
\(929\) −9.96672 24.0618i −0.326997 0.789442i −0.998812 0.0487226i \(-0.984485\pi\)
0.671815 0.740719i \(-0.265515\pi\)
\(930\) 0 0
\(931\) −2.47434 + 5.97358i −0.0810931 + 0.195776i
\(932\) 0 0
\(933\) 41.5875 41.5875i 1.36151 1.36151i
\(934\) 0 0
\(935\) 0.0344835 + 0.620483i 0.00112773 + 0.0202920i
\(936\) 0 0
\(937\) 21.3072 51.4402i 0.696076 1.68048i −0.0360874 0.999349i \(-0.511489\pi\)
0.732164 0.681129i \(-0.238511\pi\)
\(938\) 0 0
\(939\) 8.66440i 0.282752i
\(940\) 0 0
\(941\) 2.58682 + 2.58682i 0.0843280 + 0.0843280i 0.748013 0.663685i \(-0.231008\pi\)
−0.663685 + 0.748013i \(0.731008\pi\)
\(942\) 0 0
\(943\) 4.03548 + 0.975285i 0.131413 + 0.0317597i
\(944\) 0 0
\(945\) −3.96511 3.54759i −0.128985 0.115403i
\(946\) 0 0
\(947\) −25.5399 25.5399i −0.829937 0.829937i 0.157571 0.987508i \(-0.449634\pi\)
−0.987508 + 0.157571i \(0.949634\pi\)
\(948\) 0 0
\(949\) −21.5647 + 8.93237i −0.700018 + 0.289957i
\(950\) 0 0
\(951\) −13.1678 13.1678i −0.426996 0.426996i
\(952\) 0 0
\(953\) 31.1622 + 31.1622i 1.00944 + 1.00944i 0.999955 + 0.00948891i \(0.00302046\pi\)
0.00948891 + 0.999955i \(0.496980\pi\)
\(954\) 0 0
\(955\) −41.9016 14.6894i −1.35590 0.475337i
\(956\) 0 0
\(957\) 5.76181 + 2.38662i 0.186253 + 0.0771484i
\(958\) 0 0
\(959\) 28.2524i 0.912317i
\(960\) 0 0
\(961\) −13.2141 −0.426261
\(962\) 0 0
\(963\) −30.0850 −0.969476
\(964\) 0 0
\(965\) 15.9784 + 5.60152i 0.514363 + 0.180319i
\(966\) 0 0
\(967\) 9.33892 22.5462i 0.300320 0.725036i −0.699625 0.714510i \(-0.746650\pi\)
0.999945 0.0105254i \(-0.00335039\pi\)
\(968\) 0 0
\(969\) −0.563659 + 0.233475i −0.0181073 + 0.00750030i
\(970\) 0 0
\(971\) 3.68538 + 1.52654i 0.118270 + 0.0489889i 0.441034 0.897491i \(-0.354612\pi\)
−0.322764 + 0.946480i \(0.604612\pi\)
\(972\) 0 0
\(973\) 19.3962 8.03415i 0.621812 0.257563i
\(974\) 0 0
\(975\) 38.6812 + 30.9209i 1.23879 + 0.990262i
\(976\) 0 0
\(977\) 9.18730 3.80550i 0.293928 0.121749i −0.230847 0.972990i \(-0.574150\pi\)
0.524775 + 0.851241i \(0.324150\pi\)
\(978\) 0 0
\(979\) 2.56441 + 2.56441i 0.0819588 + 0.0819588i
\(980\) 0 0
\(981\) −6.58910 2.72929i −0.210374 0.0871396i
\(982\) 0 0
\(983\) 12.1643 12.1643i 0.387982 0.387982i −0.485985 0.873967i \(-0.661539\pi\)
0.873967 + 0.485985i \(0.161539\pi\)
\(984\) 0 0
\(985\) −4.78879 + 5.35239i −0.152584 + 0.170541i
\(986\) 0 0
\(987\) −18.0042 43.4659i −0.573080 1.38354i
\(988\) 0 0
\(989\) 5.49017 5.49017i 0.174577 0.174577i
\(990\) 0 0
\(991\) 17.6998 42.7311i 0.562252 1.35740i −0.345708 0.938342i \(-0.612361\pi\)
0.907961 0.419055i \(-0.137639\pi\)
\(992\) 0 0
\(993\) 1.48021i 0.0469731i
\(994\) 0 0
\(995\) 3.95469 11.2808i 0.125372 0.357625i
\(996\) 0 0
\(997\) 7.82168 + 18.8832i 0.247715 + 0.598037i 0.998009 0.0630669i \(-0.0200882\pi\)
−0.750294 + 0.661104i \(0.770088\pi\)
\(998\) 0 0
\(999\) 2.59126 + 6.25586i 0.0819838 + 0.197926i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.413.4 yes 84
5.2 odd 4 820.2.x.a.577.18 84
41.14 odd 8 820.2.x.a.793.18 yes 84
205.137 even 8 inner 820.2.y.a.137.4 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.18 84 5.2 odd 4
820.2.x.a.793.18 yes 84 41.14 odd 8
820.2.y.a.137.4 yes 84 205.137 even 8 inner
820.2.y.a.413.4 yes 84 1.1 even 1 trivial