Properties

Label 820.2.x.a.793.18
Level $820$
Weight $2$
Character 820.793
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 793.18
Character \(\chi\) \(=\) 820.793
Dual form 820.2.x.a.577.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.884872 - 2.13627i) q^{3} +(1.49097 - 1.66644i) q^{5} +(1.45509 + 0.602718i) q^{7} +(-1.65933 - 1.65933i) q^{9} +(-1.39221 + 0.576671i) q^{11} +(1.63915 - 3.95726i) q^{13} +(-2.24065 - 4.65969i) q^{15} +(0.0705774 + 0.170389i) q^{17} +(1.32175 + 0.547487i) q^{19} +(2.57514 - 2.57514i) q^{21} +(0.458474 - 0.458474i) q^{23} +(-0.554042 - 4.96921i) q^{25} +(1.39575 - 0.578137i) q^{27} +(-1.65360 + 0.684943i) q^{29} +6.64937i q^{31} +3.48441i q^{33} +(3.17388 - 1.52619i) q^{35} +(-3.16931 + 3.16931i) q^{37} +(-7.00334 - 7.00334i) q^{39} +(-3.33737 + 5.46461i) q^{41} -11.9749i q^{43} +(-5.23917 + 0.291168i) q^{45} +(4.94377 + 11.9353i) q^{47} +(-3.19573 - 3.19573i) q^{49} +0.426449 q^{51} +(-7.71780 - 3.19682i) q^{53} +(-1.11474 + 3.17982i) q^{55} +(2.33916 - 2.33916i) q^{57} +0.0773468i q^{59} +(-1.35891 - 1.35891i) q^{61} +(-1.41436 - 3.41458i) q^{63} +(-4.15062 - 8.63169i) q^{65} +(1.56827 + 3.78614i) q^{67} +(-0.573734 - 1.38512i) q^{69} +(1.33900 + 3.23263i) q^{71} +5.44939i q^{73} +(-11.1058 - 3.21353i) q^{75} -2.37335 q^{77} +(-2.22709 - 5.37666i) q^{79} -10.5332i q^{81} +(6.71441 + 6.71441i) q^{83} +(0.389172 + 0.136431i) q^{85} +4.13862i q^{87} +(2.22346 - 0.920987i) q^{89} +(4.77023 - 4.77023i) q^{91} +(14.2048 + 5.88384i) q^{93} +(2.88304 - 1.38633i) q^{95} +(-4.88397 + 2.02301i) q^{97} +(3.26701 + 1.35324i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.884872 2.13627i 0.510881 1.23338i −0.432491 0.901638i \(-0.642365\pi\)
0.943372 0.331737i \(-0.107635\pi\)
\(4\) 0 0
\(5\) 1.49097 1.66644i 0.666780 0.745254i
\(6\) 0 0
\(7\) 1.45509 + 0.602718i 0.549972 + 0.227806i 0.640325 0.768104i \(-0.278800\pi\)
−0.0903530 + 0.995910i \(0.528800\pi\)
\(8\) 0 0
\(9\) −1.65933 1.65933i −0.553109 0.553109i
\(10\) 0 0
\(11\) −1.39221 + 0.576671i −0.419766 + 0.173873i −0.582561 0.812787i \(-0.697949\pi\)
0.162795 + 0.986660i \(0.447949\pi\)
\(12\) 0 0
\(13\) 1.63915 3.95726i 0.454619 1.09755i −0.515927 0.856633i \(-0.672552\pi\)
0.970546 0.240915i \(-0.0774476\pi\)
\(14\) 0 0
\(15\) −2.24065 4.65969i −0.578533 1.20313i
\(16\) 0 0
\(17\) 0.0705774 + 0.170389i 0.0171175 + 0.0413254i 0.932207 0.361925i \(-0.117880\pi\)
−0.915090 + 0.403250i \(0.867880\pi\)
\(18\) 0 0
\(19\) 1.32175 + 0.547487i 0.303230 + 0.125602i 0.529110 0.848553i \(-0.322526\pi\)
−0.225880 + 0.974155i \(0.572526\pi\)
\(20\) 0 0
\(21\) 2.57514 2.57514i 0.561941 0.561941i
\(22\) 0 0
\(23\) 0.458474 0.458474i 0.0955985 0.0955985i −0.657690 0.753289i \(-0.728466\pi\)
0.753289 + 0.657690i \(0.228466\pi\)
\(24\) 0 0
\(25\) −0.554042 4.96921i −0.110808 0.993842i
\(26\) 0 0
\(27\) 1.39575 0.578137i 0.268612 0.111263i
\(28\) 0 0
\(29\) −1.65360 + 0.684943i −0.307065 + 0.127191i −0.530895 0.847438i \(-0.678144\pi\)
0.223829 + 0.974628i \(0.428144\pi\)
\(30\) 0 0
\(31\) 6.64937i 1.19426i 0.802144 + 0.597131i \(0.203693\pi\)
−0.802144 + 0.597131i \(0.796307\pi\)
\(32\) 0 0
\(33\) 3.48441i 0.606557i
\(34\) 0 0
\(35\) 3.17388 1.52619i 0.536484 0.257973i
\(36\) 0 0
\(37\) −3.16931 + 3.16931i −0.521032 + 0.521032i −0.917883 0.396851i \(-0.870103\pi\)
0.396851 + 0.917883i \(0.370103\pi\)
\(38\) 0 0
\(39\) −7.00334 7.00334i −1.12143 1.12143i
\(40\) 0 0
\(41\) −3.33737 + 5.46461i −0.521210 + 0.853429i
\(42\) 0 0
\(43\) 11.9749i 1.82615i −0.407791 0.913075i \(-0.633701\pi\)
0.407791 0.913075i \(-0.366299\pi\)
\(44\) 0 0
\(45\) −5.23917 + 0.291168i −0.781009 + 0.0434048i
\(46\) 0 0
\(47\) 4.94377 + 11.9353i 0.721123 + 1.74094i 0.670127 + 0.742246i \(0.266239\pi\)
0.0509955 + 0.998699i \(0.483761\pi\)
\(48\) 0 0
\(49\) −3.19573 3.19573i −0.456533 0.456533i
\(50\) 0 0
\(51\) 0.426449 0.0597148
\(52\) 0 0
\(53\) −7.71780 3.19682i −1.06012 0.439116i −0.216626 0.976255i \(-0.569505\pi\)
−0.843494 + 0.537138i \(0.819505\pi\)
\(54\) 0 0
\(55\) −1.11474 + 3.17982i −0.150312 + 0.428767i
\(56\) 0 0
\(57\) 2.33916 2.33916i 0.309829 0.309829i
\(58\) 0 0
\(59\) 0.0773468i 0.0100697i 0.999987 + 0.00503485i \(0.00160265\pi\)
−0.999987 + 0.00503485i \(0.998397\pi\)
\(60\) 0 0
\(61\) −1.35891 1.35891i −0.173991 0.173991i 0.614739 0.788730i \(-0.289261\pi\)
−0.788730 + 0.614739i \(0.789261\pi\)
\(62\) 0 0
\(63\) −1.41436 3.41458i −0.178193 0.430196i
\(64\) 0 0
\(65\) −4.15062 8.63169i −0.514821 1.07063i
\(66\) 0 0
\(67\) 1.56827 + 3.78614i 0.191595 + 0.462551i 0.990261 0.139224i \(-0.0444607\pi\)
−0.798666 + 0.601774i \(0.794461\pi\)
\(68\) 0 0
\(69\) −0.573734 1.38512i −0.0690694 0.166748i
\(70\) 0 0
\(71\) 1.33900 + 3.23263i 0.158910 + 0.383643i 0.983202 0.182523i \(-0.0584263\pi\)
−0.824292 + 0.566166i \(0.808426\pi\)
\(72\) 0 0
\(73\) 5.44939i 0.637802i 0.947788 + 0.318901i \(0.103314\pi\)
−0.947788 + 0.318901i \(0.896686\pi\)
\(74\) 0 0
\(75\) −11.1058 3.21353i −1.28239 0.371066i
\(76\) 0 0
\(77\) −2.37335 −0.270469
\(78\) 0 0
\(79\) −2.22709 5.37666i −0.250567 0.604922i 0.747683 0.664056i \(-0.231166\pi\)
−0.998250 + 0.0591337i \(0.981166\pi\)
\(80\) 0 0
\(81\) 10.5332i 1.17036i
\(82\) 0 0
\(83\) 6.71441 + 6.71441i 0.737003 + 0.737003i 0.971997 0.234994i \(-0.0755071\pi\)
−0.234994 + 0.971997i \(0.575507\pi\)
\(84\) 0 0
\(85\) 0.389172 + 0.136431i 0.0422116 + 0.0147980i
\(86\) 0 0
\(87\) 4.13862i 0.443706i
\(88\) 0 0
\(89\) 2.22346 0.920987i 0.235686 0.0976244i −0.261715 0.965145i \(-0.584288\pi\)
0.497401 + 0.867521i \(0.334288\pi\)
\(90\) 0 0
\(91\) 4.77023 4.77023i 0.500056 0.500056i
\(92\) 0 0
\(93\) 14.2048 + 5.88384i 1.47297 + 0.610125i
\(94\) 0 0
\(95\) 2.88304 1.38633i 0.295794 0.142235i
\(96\) 0 0
\(97\) −4.88397 + 2.02301i −0.495892 + 0.205405i −0.616590 0.787284i \(-0.711487\pi\)
0.120699 + 0.992689i \(0.461487\pi\)
\(98\) 0 0
\(99\) 3.26701 + 1.35324i 0.328347 + 0.136006i
\(100\) 0 0
\(101\) 2.49187 6.01591i 0.247950 0.598605i −0.750079 0.661348i \(-0.769985\pi\)
0.998030 + 0.0627426i \(0.0199847\pi\)
\(102\) 0 0
\(103\) 9.09690 0.896344 0.448172 0.893947i \(-0.352075\pi\)
0.448172 + 0.893947i \(0.352075\pi\)
\(104\) 0 0
\(105\) −0.451869 8.13075i −0.0440979 0.793480i
\(106\) 0 0
\(107\) 9.06543 + 9.06543i 0.876388 + 0.876388i 0.993159 0.116771i \(-0.0372544\pi\)
−0.116771 + 0.993159i \(0.537254\pi\)
\(108\) 0 0
\(109\) 1.16306 2.80788i 0.111401 0.268946i −0.858340 0.513081i \(-0.828504\pi\)
0.969741 + 0.244135i \(0.0785040\pi\)
\(110\) 0 0
\(111\) 3.96607 + 9.57494i 0.376443 + 0.908813i
\(112\) 0 0
\(113\) −1.95522 + 1.95522i −0.183932 + 0.183932i −0.793067 0.609135i \(-0.791517\pi\)
0.609135 + 0.793067i \(0.291517\pi\)
\(114\) 0 0
\(115\) −0.0804502 1.44759i −0.00750202 0.134988i
\(116\) 0 0
\(117\) −9.28629 + 3.84651i −0.858517 + 0.355610i
\(118\) 0 0
\(119\) 0.290470i 0.0266273i
\(120\) 0 0
\(121\) −6.17249 + 6.17249i −0.561135 + 0.561135i
\(122\) 0 0
\(123\) 8.72073 + 11.9650i 0.786322 + 1.07885i
\(124\) 0 0
\(125\) −9.10694 6.48564i −0.814550 0.580094i
\(126\) 0 0
\(127\) −2.33795 2.33795i −0.207459 0.207459i 0.595728 0.803187i \(-0.296864\pi\)
−0.803187 + 0.595728i \(0.796864\pi\)
\(128\) 0 0
\(129\) −25.5815 10.5962i −2.25233 0.932945i
\(130\) 0 0
\(131\) 4.77665 4.77665i 0.417338 0.417338i −0.466947 0.884285i \(-0.654646\pi\)
0.884285 + 0.466947i \(0.154646\pi\)
\(132\) 0 0
\(133\) 1.59329 + 1.59329i 0.138155 + 0.138155i
\(134\) 0 0
\(135\) 1.11758 3.18791i 0.0961860 0.274372i
\(136\) 0 0
\(137\) 6.86468 + 16.5728i 0.586489 + 1.41591i 0.886838 + 0.462081i \(0.152897\pi\)
−0.300349 + 0.953829i \(0.597103\pi\)
\(138\) 0 0
\(139\) 13.3299i 1.13062i 0.824877 + 0.565312i \(0.191244\pi\)
−0.824877 + 0.565312i \(0.808756\pi\)
\(140\) 0 0
\(141\) 29.8716 2.51565
\(142\) 0 0
\(143\) 6.45458i 0.539759i
\(144\) 0 0
\(145\) −1.32404 + 3.77685i −0.109956 + 0.313650i
\(146\) 0 0
\(147\) −9.65475 + 3.99913i −0.796310 + 0.329842i
\(148\) 0 0
\(149\) 9.93788 + 4.11640i 0.814143 + 0.337229i 0.750606 0.660750i \(-0.229762\pi\)
0.0635372 + 0.997979i \(0.479762\pi\)
\(150\) 0 0
\(151\) 7.30445 3.02560i 0.594428 0.246220i −0.0651266 0.997877i \(-0.520745\pi\)
0.659554 + 0.751657i \(0.270745\pi\)
\(152\) 0 0
\(153\) 0.165620 0.399842i 0.0133896 0.0323253i
\(154\) 0 0
\(155\) 11.0808 + 9.91398i 0.890029 + 0.796310i
\(156\) 0 0
\(157\) 3.65098 8.81424i 0.291380 0.703453i −0.708618 0.705592i \(-0.750681\pi\)
0.999998 + 0.00213951i \(0.000681029\pi\)
\(158\) 0 0
\(159\) −13.6585 + 13.6585i −1.08319 + 1.08319i
\(160\) 0 0
\(161\) 0.943452 0.390791i 0.0743545 0.0307986i
\(162\) 0 0
\(163\) 1.63616 1.63616i 0.128154 0.128154i −0.640121 0.768274i \(-0.721116\pi\)
0.768274 + 0.640121i \(0.221116\pi\)
\(164\) 0 0
\(165\) 5.80655 + 5.19513i 0.452039 + 0.404440i
\(166\) 0 0
\(167\) 0.346441 + 0.143501i 0.0268084 + 0.0111044i 0.396047 0.918230i \(-0.370382\pi\)
−0.369239 + 0.929334i \(0.620382\pi\)
\(168\) 0 0
\(169\) −3.78073 3.78073i −0.290826 0.290826i
\(170\) 0 0
\(171\) −1.28476 3.10168i −0.0982478 0.237191i
\(172\) 0 0
\(173\) 16.2750 1.23736 0.618682 0.785641i \(-0.287667\pi\)
0.618682 + 0.785641i \(0.287667\pi\)
\(174\) 0 0
\(175\) 2.18885 7.56458i 0.165462 0.571828i
\(176\) 0 0
\(177\) 0.165234 + 0.0684420i 0.0124197 + 0.00514442i
\(178\) 0 0
\(179\) −5.92157 + 14.2959i −0.442599 + 1.06853i 0.532435 + 0.846471i \(0.321277\pi\)
−0.975034 + 0.222057i \(0.928723\pi\)
\(180\) 0 0
\(181\) 9.31005 22.4764i 0.692010 1.67066i −0.0486802 0.998814i \(-0.515502\pi\)
0.740691 0.671846i \(-0.234498\pi\)
\(182\) 0 0
\(183\) −4.10547 + 1.70054i −0.303485 + 0.125708i
\(184\) 0 0
\(185\) 0.556131 + 10.0068i 0.0408876 + 0.735715i
\(186\) 0 0
\(187\) −0.196517 0.196517i −0.0143707 0.0143707i
\(188\) 0 0
\(189\) 2.37939 0.173075
\(190\) 0 0
\(191\) −18.3456 7.59898i −1.32744 0.549843i −0.397515 0.917596i \(-0.630127\pi\)
−0.929924 + 0.367753i \(0.880127\pi\)
\(192\) 0 0
\(193\) −2.89773 + 6.99575i −0.208583 + 0.503565i −0.993201 0.116416i \(-0.962860\pi\)
0.784617 + 0.619981i \(0.212860\pi\)
\(194\) 0 0
\(195\) −22.1124 + 1.22890i −1.58350 + 0.0880035i
\(196\) 0 0
\(197\) −3.21187 −0.228837 −0.114418 0.993433i \(-0.536500\pi\)
−0.114418 + 0.993433i \(0.536500\pi\)
\(198\) 0 0
\(199\) 2.04581 4.93901i 0.145023 0.350117i −0.834631 0.550809i \(-0.814319\pi\)
0.979654 + 0.200692i \(0.0643191\pi\)
\(200\) 0 0
\(201\) 9.47593 0.668381
\(202\) 0 0
\(203\) −2.81896 −0.197852
\(204\) 0 0
\(205\) 4.13054 + 13.7091i 0.288489 + 0.957483i
\(206\) 0 0
\(207\) −1.52152 −0.105753
\(208\) 0 0
\(209\) −2.15587 −0.149125
\(210\) 0 0
\(211\) −4.51324 + 10.8959i −0.310704 + 0.750106i 0.688975 + 0.724785i \(0.258061\pi\)
−0.999679 + 0.0253212i \(0.991939\pi\)
\(212\) 0 0
\(213\) 8.09061 0.554360
\(214\) 0 0
\(215\) −19.9554 17.8541i −1.36095 1.21764i
\(216\) 0 0
\(217\) −4.00769 + 9.67543i −0.272060 + 0.656811i
\(218\) 0 0
\(219\) 11.6414 + 4.82201i 0.786650 + 0.325841i
\(220\) 0 0
\(221\) 0.789962 0.0531386
\(222\) 0 0
\(223\) 16.8381 + 16.8381i 1.12756 + 1.12756i 0.990573 + 0.136987i \(0.0437420\pi\)
0.136987 + 0.990573i \(0.456258\pi\)
\(224\) 0 0
\(225\) −7.32621 + 9.16488i −0.488414 + 0.610992i
\(226\) 0 0
\(227\) −16.9742 + 7.03095i −1.12662 + 0.466660i −0.866630 0.498951i \(-0.833719\pi\)
−0.259988 + 0.965612i \(0.583719\pi\)
\(228\) 0 0
\(229\) 6.89561 16.6475i 0.455675 1.10010i −0.514456 0.857516i \(-0.672006\pi\)
0.970131 0.242580i \(-0.0779937\pi\)
\(230\) 0 0
\(231\) −2.10011 + 5.07012i −0.138177 + 0.333590i
\(232\) 0 0
\(233\) −15.5700 6.44929i −1.02002 0.422507i −0.190921 0.981605i \(-0.561147\pi\)
−0.829101 + 0.559098i \(0.811147\pi\)
\(234\) 0 0
\(235\) 27.2605 + 9.55666i 1.77828 + 0.623408i
\(236\) 0 0
\(237\) −13.4567 −0.874106
\(238\) 0 0
\(239\) 7.43031 + 17.9384i 0.480627 + 1.16034i 0.959312 + 0.282349i \(0.0911138\pi\)
−0.478685 + 0.877987i \(0.658886\pi\)
\(240\) 0 0
\(241\) 2.83591 + 2.83591i 0.182677 + 0.182677i 0.792521 0.609844i \(-0.208768\pi\)
−0.609844 + 0.792521i \(0.708768\pi\)
\(242\) 0 0
\(243\) −18.3145 7.58611i −1.17488 0.486649i
\(244\) 0 0
\(245\) −10.0902 + 0.560766i −0.644640 + 0.0358260i
\(246\) 0 0
\(247\) 4.33310 4.33310i 0.275709 0.275709i
\(248\) 0 0
\(249\) 20.2852 8.40240i 1.28552 0.532480i
\(250\) 0 0
\(251\) −3.86891 + 3.86891i −0.244204 + 0.244204i −0.818587 0.574383i \(-0.805242\pi\)
0.574383 + 0.818587i \(0.305242\pi\)
\(252\) 0 0
\(253\) −0.373902 + 0.902679i −0.0235070 + 0.0567510i
\(254\) 0 0
\(255\) 0.635821 0.710651i 0.0398166 0.0445027i
\(256\) 0 0
\(257\) −6.01724 + 14.5269i −0.375345 + 0.906163i 0.617480 + 0.786586i \(0.288154\pi\)
−0.992825 + 0.119576i \(0.961846\pi\)
\(258\) 0 0
\(259\) −6.52184 + 2.70143i −0.405247 + 0.167859i
\(260\) 0 0
\(261\) 3.88040 + 1.60732i 0.240191 + 0.0994904i
\(262\) 0 0
\(263\) 6.10431 2.52849i 0.376408 0.155913i −0.186455 0.982463i \(-0.559700\pi\)
0.562863 + 0.826550i \(0.309700\pi\)
\(264\) 0 0
\(265\) −16.8343 + 8.09490i −1.03412 + 0.497266i
\(266\) 0 0
\(267\) 5.56486i 0.340564i
\(268\) 0 0
\(269\) 1.56828 0.0956195 0.0478098 0.998856i \(-0.484776\pi\)
0.0478098 + 0.998856i \(0.484776\pi\)
\(270\) 0 0
\(271\) 0.530860i 0.0322474i 0.999870 + 0.0161237i \(0.00513256\pi\)
−0.999870 + 0.0161237i \(0.994867\pi\)
\(272\) 0 0
\(273\) −5.96945 14.4115i −0.361288 0.872226i
\(274\) 0 0
\(275\) 3.63694 + 6.59866i 0.219315 + 0.397914i
\(276\) 0 0
\(277\) 11.7515 + 11.7515i 0.706081 + 0.706081i 0.965709 0.259628i \(-0.0835999\pi\)
−0.259628 + 0.965709i \(0.583600\pi\)
\(278\) 0 0
\(279\) 11.0335 11.0335i 0.660557 0.660557i
\(280\) 0 0
\(281\) 12.6394 + 5.23542i 0.754005 + 0.312319i 0.726375 0.687299i \(-0.241204\pi\)
0.0276306 + 0.999618i \(0.491204\pi\)
\(282\) 0 0
\(283\) 21.0340 + 21.0340i 1.25034 + 1.25034i 0.955566 + 0.294776i \(0.0952452\pi\)
0.294776 + 0.955566i \(0.404755\pi\)
\(284\) 0 0
\(285\) −0.410461 7.38567i −0.0243136 0.437489i
\(286\) 0 0
\(287\) −8.14979 + 5.94001i −0.481067 + 0.350628i
\(288\) 0 0
\(289\) 11.9968 11.9968i 0.705692 0.705692i
\(290\) 0 0
\(291\) 12.2236i 0.716558i
\(292\) 0 0
\(293\) −18.0963 + 7.49572i −1.05720 + 0.437905i −0.842455 0.538766i \(-0.818891\pi\)
−0.214740 + 0.976671i \(0.568891\pi\)
\(294\) 0 0
\(295\) 0.128894 + 0.115322i 0.00750449 + 0.00671428i
\(296\) 0 0
\(297\) −1.60977 + 1.60977i −0.0934084 + 0.0934084i
\(298\) 0 0
\(299\) −1.06279 2.56581i −0.0614630 0.148385i
\(300\) 0 0
\(301\) 7.21747 17.4245i 0.416008 1.00433i
\(302\) 0 0
\(303\) −10.6466 10.6466i −0.611632 0.611632i
\(304\) 0 0
\(305\) −4.29064 + 0.238454i −0.245681 + 0.0136538i
\(306\) 0 0
\(307\) −21.9641 −1.25356 −0.626778 0.779198i \(-0.715627\pi\)
−0.626778 + 0.779198i \(0.715627\pi\)
\(308\) 0 0
\(309\) 8.04959 19.4334i 0.457925 1.10553i
\(310\) 0 0
\(311\) −23.4992 9.73369i −1.33252 0.551947i −0.401145 0.916015i \(-0.631388\pi\)
−0.931372 + 0.364068i \(0.881388\pi\)
\(312\) 0 0
\(313\) 3.46189 1.43396i 0.195678 0.0810523i −0.282693 0.959211i \(-0.591228\pi\)
0.478370 + 0.878158i \(0.341228\pi\)
\(314\) 0 0
\(315\) −7.79896 2.73407i −0.439421 0.154047i
\(316\) 0 0
\(317\) −7.44053 3.08197i −0.417902 0.173101i 0.163817 0.986491i \(-0.447619\pi\)
−0.581718 + 0.813390i \(0.697619\pi\)
\(318\) 0 0
\(319\) 1.90716 1.90716i 0.106781 0.106781i
\(320\) 0 0
\(321\) 27.3879 11.3445i 1.52864 0.633185i
\(322\) 0 0
\(323\) 0.263852i 0.0146811i
\(324\) 0 0
\(325\) −20.5726 5.95280i −1.14116 0.330202i
\(326\) 0 0
\(327\) −4.96923 4.96923i −0.274799 0.274799i
\(328\) 0 0
\(329\) 20.3467i 1.12175i
\(330\) 0 0
\(331\) −0.244976 0.591424i −0.0134651 0.0325076i 0.917004 0.398878i \(-0.130600\pi\)
−0.930469 + 0.366370i \(0.880600\pi\)
\(332\) 0 0
\(333\) 10.5179 0.576375
\(334\) 0 0
\(335\) 8.64761 + 3.03158i 0.472470 + 0.165633i
\(336\) 0 0
\(337\) 33.1410i 1.80531i −0.430368 0.902653i \(-0.641616\pi\)
0.430368 0.902653i \(-0.358384\pi\)
\(338\) 0 0
\(339\) 2.44676 + 5.90701i 0.132890 + 0.320825i
\(340\) 0 0
\(341\) −3.83449 9.25729i −0.207650 0.501310i
\(342\) 0 0
\(343\) −6.94298 16.7618i −0.374886 0.905054i
\(344\) 0 0
\(345\) −3.16363 1.10907i −0.170324 0.0597102i
\(346\) 0 0
\(347\) 2.99426 + 7.22879i 0.160740 + 0.388062i 0.983645 0.180118i \(-0.0576479\pi\)
−0.822905 + 0.568179i \(0.807648\pi\)
\(348\) 0 0
\(349\) −3.38718 3.38718i −0.181312 0.181312i 0.610616 0.791927i \(-0.290922\pi\)
−0.791927 + 0.610616i \(0.790922\pi\)
\(350\) 0 0
\(351\) 6.47099i 0.345396i
\(352\) 0 0
\(353\) −18.2189 + 18.2189i −0.969692 + 0.969692i −0.999554 0.0298623i \(-0.990493\pi\)
0.0298623 + 0.999554i \(0.490493\pi\)
\(354\) 0 0
\(355\) 7.38339 + 2.58838i 0.391870 + 0.137377i
\(356\) 0 0
\(357\) 0.620521 + 0.257028i 0.0328415 + 0.0136034i
\(358\) 0 0
\(359\) −4.49903 −0.237450 −0.118725 0.992927i \(-0.537881\pi\)
−0.118725 + 0.992927i \(0.537881\pi\)
\(360\) 0 0
\(361\) −11.9877 11.9877i −0.630934 0.630934i
\(362\) 0 0
\(363\) 7.72423 + 18.6479i 0.405417 + 0.978764i
\(364\) 0 0
\(365\) 9.08107 + 8.12485i 0.475325 + 0.425274i
\(366\) 0 0
\(367\) 19.3068i 1.00781i −0.863760 0.503904i \(-0.831897\pi\)
0.863760 0.503904i \(-0.168103\pi\)
\(368\) 0 0
\(369\) 14.6054 3.52979i 0.760325 0.183753i
\(370\) 0 0
\(371\) −9.30331 9.30331i −0.483004 0.483004i
\(372\) 0 0
\(373\) −16.4142 + 16.4142i −0.849893 + 0.849893i −0.990119 0.140227i \(-0.955217\pi\)
0.140227 + 0.990119i \(0.455217\pi\)
\(374\) 0 0
\(375\) −21.9136 + 13.7159i −1.13161 + 0.708287i
\(376\) 0 0
\(377\) 7.66645i 0.394842i
\(378\) 0 0
\(379\) 24.1645i 1.24125i −0.784109 0.620623i \(-0.786880\pi\)
0.784109 0.620623i \(-0.213120\pi\)
\(380\) 0 0
\(381\) −7.06326 + 2.92570i −0.361862 + 0.149888i
\(382\) 0 0
\(383\) 17.0831 7.07604i 0.872904 0.361569i 0.0991635 0.995071i \(-0.468383\pi\)
0.773741 + 0.633502i \(0.218383\pi\)
\(384\) 0 0
\(385\) −3.53859 + 3.95505i −0.180343 + 0.201568i
\(386\) 0 0
\(387\) −19.8702 + 19.8702i −1.01006 + 1.01006i
\(388\) 0 0
\(389\) 20.5174 20.5174i 1.04027 1.04027i 0.0411193 0.999154i \(-0.486908\pi\)
0.999154 0.0411193i \(-0.0130924\pi\)
\(390\) 0 0
\(391\) 0.110477 + 0.0457611i 0.00558706 + 0.00231424i
\(392\) 0 0
\(393\) −5.97749 14.4309i −0.301524 0.727944i
\(394\) 0 0
\(395\) −12.2804 4.30512i −0.617894 0.216614i
\(396\) 0 0
\(397\) 11.0685 26.7218i 0.555514 1.34113i −0.357772 0.933809i \(-0.616463\pi\)
0.913286 0.407320i \(-0.133537\pi\)
\(398\) 0 0
\(399\) 4.81354 1.99383i 0.240978 0.0998165i
\(400\) 0 0
\(401\) −12.5308 12.5308i −0.625757 0.625757i 0.321241 0.946998i \(-0.395900\pi\)
−0.946998 + 0.321241i \(0.895900\pi\)
\(402\) 0 0
\(403\) 26.3133 + 10.8993i 1.31076 + 0.542934i
\(404\) 0 0
\(405\) −17.5529 15.7046i −0.872212 0.780370i
\(406\) 0 0
\(407\) 2.58469 6.23999i 0.128118 0.309305i
\(408\) 0 0
\(409\) −10.4879 −0.518592 −0.259296 0.965798i \(-0.583491\pi\)
−0.259296 + 0.965798i \(0.583491\pi\)
\(410\) 0 0
\(411\) 41.4783 2.04597
\(412\) 0 0
\(413\) −0.0466183 + 0.112547i −0.00229394 + 0.00553806i
\(414\) 0 0
\(415\) 21.2001 1.17820i 1.04067 0.0578357i
\(416\) 0 0
\(417\) 28.4762 + 11.7952i 1.39448 + 0.577614i
\(418\) 0 0
\(419\) 3.29605 + 3.29605i 0.161023 + 0.161023i 0.783020 0.621997i \(-0.213678\pi\)
−0.621997 + 0.783020i \(0.713678\pi\)
\(420\) 0 0
\(421\) 19.8788 8.23406i 0.968833 0.401304i 0.158555 0.987350i \(-0.449316\pi\)
0.810278 + 0.586046i \(0.199316\pi\)
\(422\) 0 0
\(423\) 11.6013 28.0079i 0.564073 1.36179i
\(424\) 0 0
\(425\) 0.807596 0.445117i 0.0391742 0.0215913i
\(426\) 0 0
\(427\) −1.15830 2.79638i −0.0560541 0.135327i
\(428\) 0 0
\(429\) 13.7887 + 5.71147i 0.665725 + 0.275752i
\(430\) 0 0
\(431\) −21.6942 + 21.6942i −1.04497 + 1.04497i −0.0460305 + 0.998940i \(0.514657\pi\)
−0.998940 + 0.0460305i \(0.985343\pi\)
\(432\) 0 0
\(433\) 16.5381 16.5381i 0.794770 0.794770i −0.187495 0.982266i \(-0.560037\pi\)
0.982266 + 0.187495i \(0.0600369\pi\)
\(434\) 0 0
\(435\) 6.89676 + 6.17054i 0.330674 + 0.295855i
\(436\) 0 0
\(437\) 0.856997 0.354980i 0.0409957 0.0169810i
\(438\) 0 0
\(439\) −0.192509 + 0.0797398i −0.00918795 + 0.00380577i −0.387273 0.921965i \(-0.626583\pi\)
0.378085 + 0.925771i \(0.376583\pi\)
\(440\) 0 0
\(441\) 10.6055i 0.505025i
\(442\) 0 0
\(443\) 19.5262i 0.927718i −0.885909 0.463859i \(-0.846464\pi\)
0.885909 0.463859i \(-0.153536\pi\)
\(444\) 0 0
\(445\) 1.78033 5.07842i 0.0843958 0.240740i
\(446\) 0 0
\(447\) 17.5875 17.5875i 0.831860 0.831860i
\(448\) 0 0
\(449\) −16.7867 16.7867i −0.792215 0.792215i 0.189639 0.981854i \(-0.439268\pi\)
−0.981854 + 0.189639i \(0.939268\pi\)
\(450\) 0 0
\(451\) 1.49503 9.53242i 0.0703980 0.448864i
\(452\) 0 0
\(453\) 18.2815i 0.858942i
\(454\) 0 0
\(455\) −0.837050 15.0615i −0.0392415 0.706096i
\(456\) 0 0
\(457\) 5.20775 + 12.5726i 0.243608 + 0.588122i 0.997636 0.0687203i \(-0.0218916\pi\)
−0.754028 + 0.656843i \(0.771892\pi\)
\(458\) 0 0
\(459\) 0.197016 + 0.197016i 0.00919594 + 0.00919594i
\(460\) 0 0
\(461\) −37.3704 −1.74051 −0.870256 0.492599i \(-0.836047\pi\)
−0.870256 + 0.492599i \(0.836047\pi\)
\(462\) 0 0
\(463\) −20.7423 8.59176i −0.963979 0.399293i −0.155511 0.987834i \(-0.549702\pi\)
−0.808467 + 0.588541i \(0.799702\pi\)
\(464\) 0 0
\(465\) 30.9840 14.8989i 1.43685 0.690920i
\(466\) 0 0
\(467\) 12.6229 12.6229i 0.584117 0.584117i −0.351915 0.936032i \(-0.614469\pi\)
0.936032 + 0.351915i \(0.114469\pi\)
\(468\) 0 0
\(469\) 6.45440i 0.298037i
\(470\) 0 0
\(471\) −15.5989 15.5989i −0.718761 0.718761i
\(472\) 0 0
\(473\) 6.90555 + 16.6715i 0.317518 + 0.766556i
\(474\) 0 0
\(475\) 1.98827 6.87138i 0.0912282 0.315281i
\(476\) 0 0
\(477\) 7.50178 + 18.1109i 0.343483 + 0.829242i
\(478\) 0 0
\(479\) −0.811220 1.95846i −0.0370656 0.0894842i 0.904263 0.426977i \(-0.140421\pi\)
−0.941328 + 0.337492i \(0.890421\pi\)
\(480\) 0 0
\(481\) 7.34682 + 17.7368i 0.334986 + 0.808728i
\(482\) 0 0
\(483\) 2.36127i 0.107441i
\(484\) 0 0
\(485\) −3.91061 + 11.1551i −0.177572 + 0.506526i
\(486\) 0 0
\(487\) 22.8061 1.03344 0.516722 0.856153i \(-0.327152\pi\)
0.516722 + 0.856153i \(0.327152\pi\)
\(488\) 0 0
\(489\) −2.04748 4.94306i −0.0925903 0.223533i
\(490\) 0 0
\(491\) 4.31101i 0.194553i 0.995257 + 0.0972766i \(0.0310131\pi\)
−0.995257 + 0.0972766i \(0.968987\pi\)
\(492\) 0 0
\(493\) −0.233413 0.233413i −0.0105124 0.0105124i
\(494\) 0 0
\(495\) 7.12609 3.42664i 0.320294 0.154016i
\(496\) 0 0
\(497\) 5.51081i 0.247194i
\(498\) 0 0
\(499\) −27.1306 + 11.2379i −1.21453 + 0.503076i −0.895668 0.444724i \(-0.853302\pi\)
−0.318866 + 0.947800i \(0.603302\pi\)
\(500\) 0 0
\(501\) 0.613112 0.613112i 0.0273918 0.0273918i
\(502\) 0 0
\(503\) −27.0470 11.2032i −1.20597 0.499528i −0.313044 0.949739i \(-0.601349\pi\)
−0.892922 + 0.450211i \(0.851349\pi\)
\(504\) 0 0
\(505\) −6.30985 13.1221i −0.280785 0.583924i
\(506\) 0 0
\(507\) −11.4221 + 4.73120i −0.507274 + 0.210120i
\(508\) 0 0
\(509\) −4.15079 1.71931i −0.183980 0.0762072i 0.288791 0.957392i \(-0.406747\pi\)
−0.472772 + 0.881185i \(0.656747\pi\)
\(510\) 0 0
\(511\) −3.28444 + 7.92935i −0.145295 + 0.350774i
\(512\) 0 0
\(513\) 2.16135 0.0954260
\(514\) 0 0
\(515\) 13.5632 15.1594i 0.597664 0.668004i
\(516\) 0 0
\(517\) −13.7655 13.7655i −0.605406 0.605406i
\(518\) 0 0
\(519\) 14.4013 34.7678i 0.632146 1.52614i
\(520\) 0 0
\(521\) −1.66341 4.01583i −0.0728754 0.175937i 0.883244 0.468913i \(-0.155354\pi\)
−0.956120 + 0.292976i \(0.905354\pi\)
\(522\) 0 0
\(523\) 5.03989 5.03989i 0.220379 0.220379i −0.588279 0.808658i \(-0.700194\pi\)
0.808658 + 0.588279i \(0.200194\pi\)
\(524\) 0 0
\(525\) −14.2231 11.3697i −0.620748 0.496213i
\(526\) 0 0
\(527\) −1.13298 + 0.469295i −0.0493534 + 0.0204428i
\(528\) 0 0
\(529\) 22.5796i 0.981722i
\(530\) 0 0
\(531\) 0.128344 0.128344i 0.00556964 0.00556964i
\(532\) 0 0
\(533\) 16.1544 + 22.1642i 0.699727 + 0.960037i
\(534\) 0 0
\(535\) 28.6232 1.59074i 1.23749 0.0687738i
\(536\) 0 0
\(537\) 25.3001 + 25.3001i 1.09178 + 1.09178i
\(538\) 0 0
\(539\) 6.29199 + 2.60623i 0.271015 + 0.112258i
\(540\) 0 0
\(541\) −21.6679 + 21.6679i −0.931578 + 0.931578i −0.997805 0.0662270i \(-0.978904\pi\)
0.0662270 + 0.997805i \(0.478904\pi\)
\(542\) 0 0
\(543\) −39.7775 39.7775i −1.70702 1.70702i
\(544\) 0 0
\(545\) −2.94508 6.12463i −0.126153 0.262350i
\(546\) 0 0
\(547\) −7.34027 17.7210i −0.313847 0.757695i −0.999555 0.0298180i \(-0.990507\pi\)
0.685708 0.727877i \(-0.259493\pi\)
\(548\) 0 0
\(549\) 4.50977i 0.192472i
\(550\) 0 0
\(551\) −2.56064 −0.109087
\(552\) 0 0
\(553\) 9.16584i 0.389771i
\(554\) 0 0
\(555\) 21.8693 + 7.66669i 0.928302 + 0.325433i
\(556\) 0 0
\(557\) −18.4596 + 7.64622i −0.782159 + 0.323981i −0.737786 0.675034i \(-0.764129\pi\)
−0.0443724 + 0.999015i \(0.514129\pi\)
\(558\) 0 0
\(559\) −47.3877 19.6286i −2.00429 0.830203i
\(560\) 0 0
\(561\) −0.593704 + 0.245920i −0.0250662 + 0.0103828i
\(562\) 0 0
\(563\) −11.3070 + 27.2976i −0.476534 + 1.15045i 0.484690 + 0.874686i \(0.338932\pi\)
−0.961224 + 0.275769i \(0.911068\pi\)
\(564\) 0 0
\(565\) 0.343090 + 6.17344i 0.0144339 + 0.259718i
\(566\) 0 0
\(567\) 6.34855 15.3268i 0.266614 0.643663i
\(568\) 0 0
\(569\) −28.2444 + 28.2444i −1.18407 + 1.18407i −0.205388 + 0.978681i \(0.565846\pi\)
−0.978681 + 0.205388i \(0.934154\pi\)
\(570\) 0 0
\(571\) −2.41510 + 1.00037i −0.101069 + 0.0418641i −0.432645 0.901564i \(-0.642420\pi\)
0.331576 + 0.943428i \(0.392420\pi\)
\(572\) 0 0
\(573\) −32.4669 + 32.4669i −1.35633 + 1.35633i
\(574\) 0 0
\(575\) −2.53227 2.02424i −0.105603 0.0844167i
\(576\) 0 0
\(577\) 6.22157 + 2.57706i 0.259007 + 0.107284i 0.508409 0.861116i \(-0.330234\pi\)
−0.249402 + 0.968400i \(0.580234\pi\)
\(578\) 0 0
\(579\) 12.3807 + 12.3807i 0.514523 + 0.514523i
\(580\) 0 0
\(581\) 5.72318 + 13.8170i 0.237437 + 0.573225i
\(582\) 0 0
\(583\) 12.5883 0.521353
\(584\) 0 0
\(585\) −7.43557 + 21.2100i −0.307423 + 0.876927i
\(586\) 0 0
\(587\) −9.87273 4.08942i −0.407491 0.168788i 0.169516 0.985527i \(-0.445780\pi\)
−0.577007 + 0.816739i \(0.695780\pi\)
\(588\) 0 0
\(589\) −3.64044 + 8.78880i −0.150002 + 0.362136i
\(590\) 0 0
\(591\) −2.84210 + 6.86143i −0.116908 + 0.282241i
\(592\) 0 0
\(593\) −32.2481 + 13.3576i −1.32427 + 0.548531i −0.929016 0.370040i \(-0.879344\pi\)
−0.395255 + 0.918571i \(0.629344\pi\)
\(594\) 0 0
\(595\) 0.484050 + 0.433080i 0.0198441 + 0.0177546i
\(596\) 0 0
\(597\) −8.74078 8.74078i −0.357736 0.357736i
\(598\) 0 0
\(599\) 43.9516 1.79581 0.897906 0.440188i \(-0.145088\pi\)
0.897906 + 0.440188i \(0.145088\pi\)
\(600\) 0 0
\(601\) −44.8988 18.5977i −1.83146 0.758615i −0.966447 0.256864i \(-0.917311\pi\)
−0.865012 0.501751i \(-0.832689\pi\)
\(602\) 0 0
\(603\) 3.68017 8.88472i 0.149868 0.361814i
\(604\) 0 0
\(605\) 1.08311 + 19.4890i 0.0440346 + 0.792342i
\(606\) 0 0
\(607\) −10.8953 −0.442227 −0.221114 0.975248i \(-0.570969\pi\)
−0.221114 + 0.975248i \(0.570969\pi\)
\(608\) 0 0
\(609\) −2.49442 + 6.02206i −0.101079 + 0.244026i
\(610\) 0 0
\(611\) 55.3348 2.23861
\(612\) 0 0
\(613\) −12.8309 −0.518234 −0.259117 0.965846i \(-0.583432\pi\)
−0.259117 + 0.965846i \(0.583432\pi\)
\(614\) 0 0
\(615\) 32.9413 + 3.30683i 1.32832 + 0.133344i
\(616\) 0 0
\(617\) 31.5009 1.26818 0.634089 0.773260i \(-0.281375\pi\)
0.634089 + 0.773260i \(0.281375\pi\)
\(618\) 0 0
\(619\) −46.0556 −1.85113 −0.925566 0.378586i \(-0.876410\pi\)
−0.925566 + 0.378586i \(0.876410\pi\)
\(620\) 0 0
\(621\) 0.374853 0.904975i 0.0150423 0.0363154i
\(622\) 0 0
\(623\) 3.79043 0.151860
\(624\) 0 0
\(625\) −24.3861 + 5.50630i −0.975443 + 0.220252i
\(626\) 0 0
\(627\) −1.90767 + 4.60551i −0.0761849 + 0.183927i
\(628\) 0 0
\(629\) −0.763698 0.316334i −0.0304506 0.0126131i
\(630\) 0 0
\(631\) −5.97318 −0.237789 −0.118894 0.992907i \(-0.537935\pi\)
−0.118894 + 0.992907i \(0.537935\pi\)
\(632\) 0 0
\(633\) 19.2830 + 19.2830i 0.766430 + 0.766430i
\(634\) 0 0
\(635\) −7.38184 + 0.410248i −0.292939 + 0.0162802i
\(636\) 0 0
\(637\) −17.8846 + 7.40806i −0.708615 + 0.293518i
\(638\) 0 0
\(639\) 3.14215 7.58583i 0.124302 0.300091i
\(640\) 0 0
\(641\) −1.27714 + 3.08329i −0.0504440 + 0.121783i −0.947093 0.320960i \(-0.895994\pi\)
0.896649 + 0.442743i \(0.145994\pi\)
\(642\) 0 0
\(643\) 9.82483 + 4.06958i 0.387453 + 0.160488i 0.567902 0.823096i \(-0.307755\pi\)
−0.180449 + 0.983584i \(0.557755\pi\)
\(644\) 0 0
\(645\) −55.7992 + 26.8315i −2.19709 + 1.05649i
\(646\) 0 0
\(647\) 33.6866 1.32436 0.662179 0.749346i \(-0.269632\pi\)
0.662179 + 0.749346i \(0.269632\pi\)
\(648\) 0 0
\(649\) −0.0446036 0.107683i −0.00175085 0.00422692i
\(650\) 0 0
\(651\) 17.1230 + 17.1230i 0.671104 + 0.671104i
\(652\) 0 0
\(653\) −23.7395 9.83323i −0.928999 0.384804i −0.133700 0.991022i \(-0.542686\pi\)
−0.795299 + 0.606218i \(0.792686\pi\)
\(654\) 0 0
\(655\) −0.838176 15.0818i −0.0327503 0.589296i
\(656\) 0 0
\(657\) 9.04231 9.04231i 0.352774 0.352774i
\(658\) 0 0
\(659\) −31.4854 + 13.0417i −1.22650 + 0.508032i −0.899470 0.436982i \(-0.856047\pi\)
−0.327029 + 0.945014i \(0.606047\pi\)
\(660\) 0 0
\(661\) −13.4561 + 13.4561i −0.523383 + 0.523383i −0.918591 0.395209i \(-0.870672\pi\)
0.395209 + 0.918591i \(0.370672\pi\)
\(662\) 0 0
\(663\) 0.699015 1.68757i 0.0271475 0.0655398i
\(664\) 0 0
\(665\) 5.03065 0.279580i 0.195080 0.0108416i
\(666\) 0 0
\(667\) −0.444104 + 1.07216i −0.0171958 + 0.0415142i
\(668\) 0 0
\(669\) 50.8702 21.0711i 1.96675 0.814656i
\(670\) 0 0
\(671\) 2.67553 + 1.10824i 0.103288 + 0.0427832i
\(672\) 0 0
\(673\) 23.7517 9.83826i 0.915559 0.379237i 0.125377 0.992109i \(-0.459986\pi\)
0.790182 + 0.612872i \(0.209986\pi\)
\(674\) 0 0
\(675\) −3.64619 6.61544i −0.140342 0.254629i
\(676\) 0 0
\(677\) 29.7046i 1.14164i 0.821075 + 0.570821i \(0.193375\pi\)
−0.821075 + 0.570821i \(0.806625\pi\)
\(678\) 0 0
\(679\) −8.32592 −0.319519
\(680\) 0 0
\(681\) 42.4830i 1.62795i
\(682\) 0 0
\(683\) −12.1284 29.2807i −0.464082 1.12039i −0.966706 0.255888i \(-0.917632\pi\)
0.502624 0.864505i \(-0.332368\pi\)
\(684\) 0 0
\(685\) 37.8526 + 13.2699i 1.44627 + 0.507017i
\(686\) 0 0
\(687\) −29.4618 29.4618i −1.12404 1.12404i
\(688\) 0 0
\(689\) −25.3013 + 25.3013i −0.963902 + 0.963902i
\(690\) 0 0
\(691\) −24.5212 10.1570i −0.932830 0.386391i −0.136079 0.990698i \(-0.543450\pi\)
−0.796752 + 0.604307i \(0.793450\pi\)
\(692\) 0 0
\(693\) 3.93817 + 3.93817i 0.149599 + 0.149599i
\(694\) 0 0
\(695\) 22.2134 + 19.8744i 0.842603 + 0.753878i
\(696\) 0 0
\(697\) −1.16665 0.182973i −0.0441901 0.00693059i
\(698\) 0 0
\(699\) −27.5548 + 27.5548i −1.04222 + 1.04222i
\(700\) 0 0
\(701\) 34.4360i 1.30063i 0.759665 + 0.650314i \(0.225363\pi\)
−0.759665 + 0.650314i \(0.774637\pi\)
\(702\) 0 0
\(703\) −5.92420 + 2.45388i −0.223435 + 0.0925500i
\(704\) 0 0
\(705\) 44.5376 49.7793i 1.67738 1.87480i
\(706\) 0 0
\(707\) 7.25179 7.25179i 0.272732 0.272732i
\(708\) 0 0
\(709\) 17.3721 + 41.9399i 0.652422 + 1.57509i 0.809252 + 0.587461i \(0.199872\pi\)
−0.156830 + 0.987626i \(0.550128\pi\)
\(710\) 0 0
\(711\) −5.22618 + 12.6171i −0.195997 + 0.473179i
\(712\) 0 0
\(713\) 3.04856 + 3.04856i 0.114170 + 0.114170i
\(714\) 0 0
\(715\) 10.7562 + 9.62355i 0.402258 + 0.359901i
\(716\) 0 0
\(717\) 44.8960 1.67667
\(718\) 0 0
\(719\) 9.15213 22.0952i 0.341317 0.824012i −0.656266 0.754529i \(-0.727865\pi\)
0.997583 0.0694827i \(-0.0221349\pi\)
\(720\) 0 0
\(721\) 13.2368 + 5.48287i 0.492964 + 0.204193i
\(722\) 0 0
\(723\) 8.56768 3.54885i 0.318636 0.131983i
\(724\) 0 0
\(725\) 4.31979 + 7.83759i 0.160433 + 0.291081i
\(726\) 0 0
\(727\) 3.53535 + 1.46439i 0.131119 + 0.0543112i 0.447278 0.894395i \(-0.352393\pi\)
−0.316159 + 0.948706i \(0.602393\pi\)
\(728\) 0 0
\(729\) −10.0677 + 10.0677i −0.372877 + 0.372877i
\(730\) 0 0
\(731\) 2.04039 0.845156i 0.0754664 0.0312592i
\(732\) 0 0
\(733\) 16.8384i 0.621939i 0.950420 + 0.310970i \(0.100654\pi\)
−0.950420 + 0.310970i \(0.899346\pi\)
\(734\) 0 0
\(735\) −7.73059 + 22.0516i −0.285147 + 0.813386i
\(736\) 0 0
\(737\) −4.36671 4.36671i −0.160850 0.160850i
\(738\) 0 0
\(739\) 48.2723i 1.77573i 0.460107 + 0.887863i \(0.347811\pi\)
−0.460107 + 0.887863i \(0.652189\pi\)
\(740\) 0 0
\(741\) −5.42243 13.0909i −0.199198 0.480906i
\(742\) 0 0
\(743\) 35.3649 1.29741 0.648706 0.761039i \(-0.275310\pi\)
0.648706 + 0.761039i \(0.275310\pi\)
\(744\) 0 0
\(745\) 21.6768 10.4235i 0.794176 0.381886i
\(746\) 0 0
\(747\) 22.2828i 0.815286i
\(748\) 0 0
\(749\) 7.72712 + 18.6549i 0.282343 + 0.681636i
\(750\) 0 0
\(751\) −12.4521 30.0621i −0.454385 1.09698i −0.970638 0.240546i \(-0.922674\pi\)
0.516253 0.856436i \(-0.327326\pi\)
\(752\) 0 0
\(753\) 4.84155 + 11.6885i 0.176436 + 0.425954i
\(754\) 0 0
\(755\) 5.84870 16.6835i 0.212856 0.607174i
\(756\) 0 0
\(757\) −10.1087 24.4045i −0.367406 0.886997i −0.994174 0.107790i \(-0.965622\pi\)
0.626768 0.779206i \(-0.284378\pi\)
\(758\) 0 0
\(759\) 1.59751 + 1.59751i 0.0579860 + 0.0579860i
\(760\) 0 0
\(761\) 29.7337i 1.07785i −0.842355 0.538923i \(-0.818831\pi\)
0.842355 0.538923i \(-0.181169\pi\)
\(762\) 0 0
\(763\) 3.38472 3.38472i 0.122535 0.122535i
\(764\) 0 0
\(765\) −0.419379 0.872147i −0.0151627 0.0315325i
\(766\) 0 0
\(767\) 0.306082 + 0.126783i 0.0110520 + 0.00457788i
\(768\) 0 0
\(769\) −33.1135 −1.19410 −0.597052 0.802202i \(-0.703661\pi\)
−0.597052 + 0.802202i \(0.703661\pi\)
\(770\) 0 0
\(771\) 25.7089 + 25.7089i 0.925882 + 0.925882i
\(772\) 0 0
\(773\) 3.63829 + 8.78360i 0.130860 + 0.315924i 0.975705 0.219086i \(-0.0703076\pi\)
−0.844845 + 0.535011i \(0.820308\pi\)
\(774\) 0 0
\(775\) 33.0421 3.68403i 1.18691 0.132334i
\(776\) 0 0
\(777\) 16.3228i 0.585578i
\(778\) 0 0
\(779\) −7.40297 + 5.39568i −0.265239 + 0.193320i
\(780\) 0 0
\(781\) −3.72833 3.72833i −0.133410 0.133410i
\(782\) 0 0
\(783\) −1.91201 + 1.91201i −0.0683298 + 0.0683298i
\(784\) 0 0
\(785\) −9.24491 19.2259i −0.329965 0.686200i
\(786\) 0 0
\(787\) 32.7988i 1.16915i 0.811340 + 0.584575i \(0.198739\pi\)
−0.811340 + 0.584575i \(0.801261\pi\)
\(788\) 0 0
\(789\) 15.2778i 0.543905i
\(790\) 0 0
\(791\) −4.02348 + 1.66658i −0.143058 + 0.0592567i
\(792\) 0 0
\(793\) −7.60505 + 3.15011i −0.270063 + 0.111864i
\(794\) 0 0
\(795\) 2.39671 + 43.1255i 0.0850025 + 1.52950i
\(796\) 0 0
\(797\) 17.2389 17.2389i 0.610632 0.610632i −0.332479 0.943111i \(-0.607885\pi\)
0.943111 + 0.332479i \(0.107885\pi\)
\(798\) 0 0
\(799\) −1.68473 + 1.68473i −0.0596014 + 0.0596014i
\(800\) 0 0
\(801\) −5.21766 2.16123i −0.184357 0.0763632i
\(802\) 0 0
\(803\) −3.14250 7.58667i −0.110896 0.267728i
\(804\) 0 0
\(805\) 0.755426 2.15486i 0.0266253 0.0759489i
\(806\) 0 0
\(807\) 1.38772 3.35026i 0.0488502 0.117935i
\(808\) 0 0
\(809\) −7.48960 + 3.10230i −0.263320 + 0.109071i −0.510438 0.859915i \(-0.670517\pi\)
0.247117 + 0.968986i \(0.420517\pi\)
\(810\) 0 0
\(811\) 5.69874 + 5.69874i 0.200110 + 0.200110i 0.800047 0.599937i \(-0.204808\pi\)
−0.599937 + 0.800047i \(0.704808\pi\)
\(812\) 0 0
\(813\) 1.13406 + 0.469743i 0.0397732 + 0.0164746i
\(814\) 0 0
\(815\) −0.287102 5.16601i −0.0100568 0.180957i
\(816\) 0 0
\(817\) 6.55609 15.8278i 0.229368 0.553744i
\(818\) 0 0
\(819\) −15.8307 −0.553171
\(820\) 0 0
\(821\) 2.97302 0.103759 0.0518796 0.998653i \(-0.483479\pi\)
0.0518796 + 0.998653i \(0.483479\pi\)
\(822\) 0 0
\(823\) 7.45013 17.9862i 0.259695 0.626960i −0.739223 0.673461i \(-0.764807\pi\)
0.998918 + 0.0465009i \(0.0148070\pi\)
\(824\) 0 0
\(825\) 17.3147 1.93051i 0.602822 0.0672116i
\(826\) 0 0
\(827\) −48.4303 20.0605i −1.68409 0.697571i −0.684577 0.728940i \(-0.740013\pi\)
−0.999508 + 0.0313693i \(0.990013\pi\)
\(828\) 0 0
\(829\) 37.8392 + 37.8392i 1.31421 + 1.31421i 0.918282 + 0.395926i \(0.129576\pi\)
0.395926 + 0.918282i \(0.370424\pi\)
\(830\) 0 0
\(831\) 35.5030 14.7058i 1.23159 0.510140i
\(832\) 0 0
\(833\) 0.318971 0.770064i 0.0110517 0.0266811i
\(834\) 0 0
\(835\) 0.755668 0.363369i 0.0261510 0.0125749i
\(836\) 0 0
\(837\) 3.84425 + 9.28083i 0.132877 + 0.320792i
\(838\) 0 0
\(839\) −5.31366 2.20099i −0.183448 0.0759867i 0.289069 0.957308i \(-0.406654\pi\)
−0.472517 + 0.881322i \(0.656654\pi\)
\(840\) 0 0
\(841\) −18.2409 + 18.2409i −0.628995 + 0.628995i
\(842\) 0 0
\(843\) 22.3685 22.3685i 0.770414 0.770414i
\(844\) 0 0
\(845\) −11.9373 + 0.663419i −0.410656 + 0.0228223i
\(846\) 0 0
\(847\) −12.7018 + 5.26126i −0.436439 + 0.180779i
\(848\) 0 0
\(849\) 63.5467 26.3219i 2.18092 0.903366i
\(850\) 0 0
\(851\) 2.90610i 0.0996197i
\(852\) 0 0
\(853\) 31.1224i 1.06561i −0.846237 0.532806i \(-0.821138\pi\)
0.846237 0.532806i \(-0.178862\pi\)
\(854\) 0 0
\(855\) −7.08428 2.48352i −0.242277 0.0849347i
\(856\) 0 0
\(857\) 3.38066 3.38066i 0.115481 0.115481i −0.647005 0.762486i \(-0.723979\pi\)
0.762486 + 0.647005i \(0.223979\pi\)
\(858\) 0 0
\(859\) −27.3952 27.3952i −0.934712 0.934712i 0.0632836 0.997996i \(-0.479843\pi\)
−0.997996 + 0.0632836i \(0.979843\pi\)
\(860\) 0 0
\(861\) 5.47793 + 22.6663i 0.186688 + 0.772465i
\(862\) 0 0
\(863\) 11.9866i 0.408028i −0.978968 0.204014i \(-0.934601\pi\)
0.978968 0.204014i \(-0.0653988\pi\)
\(864\) 0 0
\(865\) 24.2655 27.1213i 0.825050 0.922151i
\(866\) 0 0
\(867\) −15.0127 36.2439i −0.509859 1.23091i
\(868\) 0 0
\(869\) 6.20113 + 6.20113i 0.210359 + 0.210359i
\(870\) 0 0
\(871\) 17.5534 0.594774
\(872\) 0 0
\(873\) 11.4609 + 4.74727i 0.387894 + 0.160671i
\(874\) 0 0
\(875\) −9.34241 14.9261i −0.315831 0.504595i
\(876\) 0 0
\(877\) 26.7866 26.7866i 0.904519 0.904519i −0.0913041 0.995823i \(-0.529104\pi\)
0.995823 + 0.0913041i \(0.0291035\pi\)
\(878\) 0 0
\(879\) 45.2913i 1.52764i
\(880\) 0 0
\(881\) −5.31578 5.31578i −0.179093 0.179093i 0.611867 0.790960i \(-0.290419\pi\)
−0.790960 + 0.611867i \(0.790419\pi\)
\(882\) 0 0
\(883\) 18.2598 + 44.0831i 0.614492 + 1.48351i 0.858018 + 0.513620i \(0.171696\pi\)
−0.243526 + 0.969894i \(0.578304\pi\)
\(884\) 0 0
\(885\) 0.360412 0.173307i 0.0121151 0.00582566i
\(886\) 0 0
\(887\) −12.7795 30.8524i −0.429094 1.03592i −0.979576 0.201076i \(-0.935556\pi\)
0.550482 0.834847i \(-0.314444\pi\)
\(888\) 0 0
\(889\) −1.99280 4.81104i −0.0668364 0.161357i
\(890\) 0 0
\(891\) 6.07418 + 14.6644i 0.203493 + 0.491275i
\(892\) 0 0
\(893\) 18.4822i 0.618482i
\(894\) 0 0
\(895\) 14.9944 + 31.1827i 0.501209 + 1.04232i
\(896\) 0 0
\(897\) −6.42171 −0.214414
\(898\) 0 0
\(899\) −4.55444 10.9954i −0.151899 0.366717i
\(900\) 0 0
\(901\) 1.54065i 0.0513265i
\(902\) 0 0
\(903\) −30.8369 30.8369i −1.02619 1.02619i
\(904\) 0 0
\(905\) −23.5747 49.0262i −0.783649 1.62969i
\(906\) 0 0
\(907\) 56.1058i 1.86296i 0.363789 + 0.931481i \(0.381483\pi\)
−0.363789 + 0.931481i \(0.618517\pi\)
\(908\) 0 0
\(909\) −14.1172 + 5.84753i −0.468238 + 0.193950i
\(910\) 0 0
\(911\) 15.6177 15.6177i 0.517438 0.517438i −0.399357 0.916795i \(-0.630767\pi\)
0.916795 + 0.399357i \(0.130767\pi\)
\(912\) 0 0
\(913\) −13.2198 5.47584i −0.437513 0.181224i
\(914\) 0 0
\(915\) −3.28727 + 9.37697i −0.108674 + 0.309993i
\(916\) 0 0
\(917\) 9.82943 4.07148i 0.324596 0.134452i
\(918\) 0 0
\(919\) −20.2659 8.39442i −0.668511 0.276906i 0.0225038 0.999747i \(-0.492836\pi\)
−0.691015 + 0.722840i \(0.742836\pi\)
\(920\) 0 0
\(921\) −19.4354 + 46.9212i −0.640418 + 1.54611i
\(922\) 0 0
\(923\) 14.9872 0.493310
\(924\) 0 0
\(925\) 17.5049 + 13.9930i 0.575558 + 0.460089i
\(926\) 0 0
\(927\) −15.0947 15.0947i −0.495776 0.495776i
\(928\) 0 0
\(929\) 9.96672 24.0618i 0.326997 0.789442i −0.671815 0.740719i \(-0.734485\pi\)
0.998812 0.0487226i \(-0.0155150\pi\)
\(930\) 0 0
\(931\) −2.47434 5.97358i −0.0810931 0.195776i
\(932\) 0 0
\(933\) −41.5875 + 41.5875i −1.36151 + 1.36151i
\(934\) 0 0
\(935\) −0.620483 + 0.0344835i −0.0202920 + 0.00112773i
\(936\) 0 0
\(937\) 51.4402 21.3072i 1.68048 0.696076i 0.681129 0.732164i \(-0.261489\pi\)
0.999349 + 0.0360874i \(0.0114895\pi\)
\(938\) 0 0
\(939\) 8.66440i 0.282752i
\(940\) 0 0
\(941\) 2.58682 2.58682i 0.0843280 0.0843280i −0.663685 0.748013i \(-0.731008\pi\)
0.748013 + 0.663685i \(0.231008\pi\)
\(942\) 0 0
\(943\) 0.975285 + 4.03548i 0.0317597 + 0.131413i
\(944\) 0 0
\(945\) 3.54759 3.96511i 0.115403 0.128985i
\(946\) 0 0
\(947\) 25.5399 + 25.5399i 0.829937 + 0.829937i 0.987508 0.157571i \(-0.0503664\pi\)
−0.157571 + 0.987508i \(0.550366\pi\)
\(948\) 0 0
\(949\) 21.5647 + 8.93237i 0.700018 + 0.289957i
\(950\) 0 0
\(951\) −13.1678 + 13.1678i −0.426996 + 0.426996i
\(952\) 0 0
\(953\) 31.1622 + 31.1622i 1.00944 + 1.00944i 0.999955 + 0.00948891i \(0.00302046\pi\)
0.00948891 + 0.999955i \(0.496980\pi\)
\(954\) 0 0
\(955\) −40.0159 + 19.2420i −1.29488 + 0.622655i
\(956\) 0 0
\(957\) −2.38662 5.76181i −0.0771484 0.186253i
\(958\) 0 0
\(959\) 28.2524i 0.912317i
\(960\) 0 0
\(961\) −13.2141 −0.426261
\(962\) 0 0
\(963\) 30.0850i 0.969476i
\(964\) 0 0
\(965\) 7.33757 + 15.2593i 0.236205 + 0.491215i
\(966\) 0 0
\(967\) 22.5462 9.33892i 0.725036 0.300320i 0.0105254 0.999945i \(-0.496650\pi\)
0.714510 + 0.699625i \(0.246650\pi\)
\(968\) 0 0
\(969\) 0.563659 + 0.233475i 0.0181073 + 0.00750030i
\(970\) 0 0
\(971\) 3.68538 1.52654i 0.118270 0.0489889i −0.322764 0.946480i \(-0.604612\pi\)
0.441034 + 0.897491i \(0.354612\pi\)
\(972\) 0 0
\(973\) −8.03415 + 19.3962i −0.257563 + 0.621812i
\(974\) 0 0
\(975\) −30.9209 + 38.6812i −0.990262 + 1.23879i
\(976\) 0 0
\(977\) 3.80550 9.18730i 0.121749 0.293928i −0.851241 0.524775i \(-0.824150\pi\)
0.972990 + 0.230847i \(0.0741496\pi\)
\(978\) 0 0
\(979\) −2.56441 + 2.56441i −0.0819588 + 0.0819588i
\(980\) 0 0
\(981\) −6.58910 + 2.72929i −0.210374 + 0.0871396i
\(982\) 0 0
\(983\) −12.1643 + 12.1643i −0.387982 + 0.387982i −0.873967 0.485985i \(-0.838461\pi\)
0.485985 + 0.873967i \(0.338461\pi\)
\(984\) 0 0
\(985\) −4.78879 + 5.35239i −0.152584 + 0.170541i
\(986\) 0 0
\(987\) 43.4659 + 18.0042i 1.38354 + 0.573080i
\(988\) 0 0
\(989\) −5.49017 5.49017i −0.174577 0.174577i
\(990\) 0 0
\(991\) 17.6998 + 42.7311i 0.562252 + 1.35740i 0.907961 + 0.419055i \(0.137639\pi\)
−0.345708 + 0.938342i \(0.612361\pi\)
\(992\) 0 0
\(993\) −1.48021 −0.0469731
\(994\) 0 0
\(995\) −5.18034 10.7731i −0.164228 0.341531i
\(996\) 0 0
\(997\) −18.8832 7.82168i −0.598037 0.247715i 0.0630669 0.998009i \(-0.479912\pi\)
−0.661104 + 0.750294i \(0.729912\pi\)
\(998\) 0 0
\(999\) −2.59126 + 6.25586i −0.0819838 + 0.197926i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.793.18 yes 84
5.2 odd 4 820.2.y.a.137.4 yes 84
41.3 odd 8 820.2.y.a.413.4 yes 84
205.167 even 8 inner 820.2.x.a.577.18 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.18 84 205.167 even 8 inner
820.2.x.a.793.18 yes 84 1.1 even 1 trivial
820.2.y.a.137.4 yes 84 5.2 odd 4
820.2.y.a.413.4 yes 84 41.3 odd 8