Properties

Label 820.2.y.a.413.18
Level $820$
Weight $2$
Character 820.413
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 413.18
Character \(\chi\) \(=\) 820.413
Dual form 820.2.y.a.137.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.30222 - 0.953612i) q^{3} +(0.939983 - 2.02890i) q^{5} +(1.81993 + 4.39370i) q^{7} +(2.26953 - 2.26953i) q^{9} +(3.08755 + 1.27890i) q^{11} +(1.71733 - 0.711343i) q^{13} +(0.229267 - 5.56736i) q^{15} +(-4.11242 - 1.70342i) q^{17} +(-0.225557 + 0.0934287i) q^{19} +(8.37976 + 8.37976i) q^{21} +(-3.37958 + 3.37958i) q^{23} +(-3.23286 - 3.81426i) q^{25} +(0.199878 - 0.482549i) q^{27} +(-4.05714 - 1.68052i) q^{29} +9.60705i q^{31} +8.32780 q^{33} +(10.6251 + 0.437547i) q^{35} +(8.12274 - 8.12274i) q^{37} +(3.27534 - 3.27534i) q^{39} +(-4.10553 - 4.91372i) q^{41} -1.26633 q^{43} +(-2.47133 - 6.73797i) q^{45} +(-7.56224 - 3.13238i) q^{47} +(-11.0427 + 11.0427i) q^{49} -11.0921 q^{51} +(-2.33993 - 5.64909i) q^{53} +(5.49701 - 5.06218i) q^{55} +(-0.430187 + 0.430187i) q^{57} -11.0740i q^{59} +(8.54979 - 8.54979i) q^{61} +(14.1020 + 5.84124i) q^{63} +(0.171021 - 4.15295i) q^{65} +(0.679022 + 0.281260i) q^{67} +(-4.55774 + 11.0034i) q^{69} +(-0.438426 + 1.05846i) q^{71} +2.84077 q^{73} +(-11.0801 - 5.69838i) q^{75} +15.8933i q^{77} +(2.27767 - 5.49878i) q^{79} +8.32726i q^{81} +(-8.13593 - 8.13593i) q^{83} +(-7.32167 + 6.74250i) q^{85} -10.9430 q^{87} +(-14.3912 - 5.96104i) q^{89} +(6.25085 + 6.25085i) q^{91} +(9.16139 + 22.1176i) q^{93} +(-0.0224622 + 0.545454i) q^{95} +(-2.02715 + 4.89398i) q^{97} +(9.90980 - 4.10477i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.30222 0.953612i 1.32919 0.550568i 0.398765 0.917053i \(-0.369439\pi\)
0.930424 + 0.366485i \(0.119439\pi\)
\(4\) 0 0
\(5\) 0.939983 2.02890i 0.420373 0.907351i
\(6\) 0 0
\(7\) 1.81993 + 4.39370i 0.687868 + 1.66066i 0.749033 + 0.662533i \(0.230519\pi\)
−0.0611643 + 0.998128i \(0.519481\pi\)
\(8\) 0 0
\(9\) 2.26953 2.26953i 0.756510 0.756510i
\(10\) 0 0
\(11\) 3.08755 + 1.27890i 0.930931 + 0.385604i 0.796031 0.605255i \(-0.206929\pi\)
0.134899 + 0.990859i \(0.456929\pi\)
\(12\) 0 0
\(13\) 1.71733 0.711343i 0.476303 0.197291i −0.131599 0.991303i \(-0.542011\pi\)
0.607902 + 0.794012i \(0.292011\pi\)
\(14\) 0 0
\(15\) 0.229267 5.56736i 0.0591966 1.43748i
\(16\) 0 0
\(17\) −4.11242 1.70342i −0.997408 0.413140i −0.176562 0.984290i \(-0.556498\pi\)
−0.820846 + 0.571150i \(0.806498\pi\)
\(18\) 0 0
\(19\) −0.225557 + 0.0934287i −0.0517463 + 0.0214340i −0.408406 0.912800i \(-0.633915\pi\)
0.356660 + 0.934234i \(0.383915\pi\)
\(20\) 0 0
\(21\) 8.37976 + 8.37976i 1.82861 + 1.82861i
\(22\) 0 0
\(23\) −3.37958 + 3.37958i −0.704692 + 0.704692i −0.965414 0.260722i \(-0.916039\pi\)
0.260722 + 0.965414i \(0.416039\pi\)
\(24\) 0 0
\(25\) −3.23286 3.81426i −0.646573 0.762852i
\(26\) 0 0
\(27\) 0.199878 0.482549i 0.0384666 0.0928666i
\(28\) 0 0
\(29\) −4.05714 1.68052i −0.753391 0.312065i −0.0272669 0.999628i \(-0.508680\pi\)
−0.726124 + 0.687563i \(0.758680\pi\)
\(30\) 0 0
\(31\) 9.60705i 1.72548i 0.505651 + 0.862738i \(0.331252\pi\)
−0.505651 + 0.862738i \(0.668748\pi\)
\(32\) 0 0
\(33\) 8.32780 1.44968
\(34\) 0 0
\(35\) 10.6251 + 0.437547i 1.79596 + 0.0739590i
\(36\) 0 0
\(37\) 8.12274 8.12274i 1.33537 1.33537i 0.434882 0.900487i \(-0.356790\pi\)
0.900487 0.434882i \(-0.143210\pi\)
\(38\) 0 0
\(39\) 3.27534 3.27534i 0.524474 0.524474i
\(40\) 0 0
\(41\) −4.10553 4.91372i −0.641176 0.767394i
\(42\) 0 0
\(43\) −1.26633 −0.193113 −0.0965566 0.995327i \(-0.530783\pi\)
−0.0965566 + 0.995327i \(0.530783\pi\)
\(44\) 0 0
\(45\) −2.47133 6.73797i −0.368404 1.00444i
\(46\) 0 0
\(47\) −7.56224 3.13238i −1.10307 0.456905i −0.244522 0.969644i \(-0.578631\pi\)
−0.858545 + 0.512739i \(0.828631\pi\)
\(48\) 0 0
\(49\) −11.0427 + 11.0427i −1.57753 + 1.57753i
\(50\) 0 0
\(51\) −11.0921 −1.55320
\(52\) 0 0
\(53\) −2.33993 5.64909i −0.321414 0.775963i −0.999172 0.0406777i \(-0.987048\pi\)
0.677758 0.735285i \(-0.262952\pi\)
\(54\) 0 0
\(55\) 5.49701 5.06218i 0.741217 0.682584i
\(56\) 0 0
\(57\) −0.430187 + 0.430187i −0.0569797 + 0.0569797i
\(58\) 0 0
\(59\) 11.0740i 1.44171i −0.693085 0.720855i \(-0.743749\pi\)
0.693085 0.720855i \(-0.256251\pi\)
\(60\) 0 0
\(61\) 8.54979 8.54979i 1.09469 1.09469i 0.0996673 0.995021i \(-0.468222\pi\)
0.995021 0.0996673i \(-0.0317778\pi\)
\(62\) 0 0
\(63\) 14.1020 + 5.84124i 1.77669 + 0.735928i
\(64\) 0 0
\(65\) 0.171021 4.15295i 0.0212126 0.515110i
\(66\) 0 0
\(67\) 0.679022 + 0.281260i 0.0829557 + 0.0343614i 0.423775 0.905767i \(-0.360705\pi\)
−0.340820 + 0.940129i \(0.610705\pi\)
\(68\) 0 0
\(69\) −4.55774 + 11.0034i −0.548688 + 1.32465i
\(70\) 0 0
\(71\) −0.438426 + 1.05846i −0.0520316 + 0.125616i −0.947758 0.318990i \(-0.896656\pi\)
0.895726 + 0.444606i \(0.146656\pi\)
\(72\) 0 0
\(73\) 2.84077 0.332487 0.166243 0.986085i \(-0.446836\pi\)
0.166243 + 0.986085i \(0.446836\pi\)
\(74\) 0 0
\(75\) −11.0801 5.69838i −1.27942 0.657992i
\(76\) 0 0
\(77\) 15.8933i 1.81121i
\(78\) 0 0
\(79\) 2.27767 5.49878i 0.256258 0.618661i −0.742427 0.669927i \(-0.766326\pi\)
0.998685 + 0.0512659i \(0.0163256\pi\)
\(80\) 0 0
\(81\) 8.32726i 0.925251i
\(82\) 0 0
\(83\) −8.13593 8.13593i −0.893034 0.893034i 0.101774 0.994808i \(-0.467548\pi\)
−0.994808 + 0.101774i \(0.967548\pi\)
\(84\) 0 0
\(85\) −7.32167 + 6.74250i −0.794146 + 0.731326i
\(86\) 0 0
\(87\) −10.9430 −1.17321
\(88\) 0 0
\(89\) −14.3912 5.96104i −1.52547 0.631869i −0.546788 0.837271i \(-0.684150\pi\)
−0.978678 + 0.205402i \(0.934150\pi\)
\(90\) 0 0
\(91\) 6.25085 + 6.25085i 0.655267 + 0.655267i
\(92\) 0 0
\(93\) 9.16139 + 22.1176i 0.949992 + 2.29348i
\(94\) 0 0
\(95\) −0.0224622 + 0.545454i −0.00230457 + 0.0559624i
\(96\) 0 0
\(97\) −2.02715 + 4.89398i −0.205826 + 0.496908i −0.992758 0.120132i \(-0.961668\pi\)
0.786932 + 0.617040i \(0.211668\pi\)
\(98\) 0 0
\(99\) 9.90980 4.10477i 0.995972 0.412545i
\(100\) 0 0
\(101\) 3.86628 + 9.33402i 0.384709 + 0.928770i 0.991041 + 0.133558i \(0.0426403\pi\)
−0.606332 + 0.795212i \(0.707360\pi\)
\(102\) 0 0
\(103\) 7.95360i 0.783692i 0.920031 + 0.391846i \(0.128163\pi\)
−0.920031 + 0.391846i \(0.871837\pi\)
\(104\) 0 0
\(105\) 24.8785 9.12486i 2.42789 0.890495i
\(106\) 0 0
\(107\) 2.82796 + 2.82796i 0.273389 + 0.273389i 0.830463 0.557074i \(-0.188076\pi\)
−0.557074 + 0.830463i \(0.688076\pi\)
\(108\) 0 0
\(109\) 0.490710 + 1.18468i 0.0470014 + 0.113472i 0.945637 0.325225i \(-0.105440\pi\)
−0.898635 + 0.438697i \(0.855440\pi\)
\(110\) 0 0
\(111\) 10.9544 26.4463i 1.03975 2.51017i
\(112\) 0 0
\(113\) −5.14733 + 5.14733i −0.484220 + 0.484220i −0.906476 0.422257i \(-0.861238\pi\)
0.422257 + 0.906476i \(0.361238\pi\)
\(114\) 0 0
\(115\) 3.68009 + 10.0336i 0.343170 + 0.935637i
\(116\) 0 0
\(117\) 2.28313 5.51196i 0.211075 0.509581i
\(118\) 0 0
\(119\) 21.1688i 1.94054i
\(120\) 0 0
\(121\) 0.119181 + 0.119181i 0.0108347 + 0.0108347i
\(122\) 0 0
\(123\) −14.1376 7.39740i −1.27475 0.667001i
\(124\) 0 0
\(125\) −10.7776 + 2.97382i −0.963977 + 0.265986i
\(126\) 0 0
\(127\) −7.67074 7.67074i −0.680668 0.680668i 0.279483 0.960151i \(-0.409837\pi\)
−0.960151 + 0.279483i \(0.909837\pi\)
\(128\) 0 0
\(129\) −2.91537 + 1.20759i −0.256684 + 0.106322i
\(130\) 0 0
\(131\) 12.2673 + 12.2673i 1.07180 + 1.07180i 0.997215 + 0.0745802i \(0.0237617\pi\)
0.0745802 + 0.997215i \(0.476238\pi\)
\(132\) 0 0
\(133\) −0.820995 0.820995i −0.0711893 0.0711893i
\(134\) 0 0
\(135\) −0.791161 0.859120i −0.0680923 0.0739413i
\(136\) 0 0
\(137\) 12.7096 + 5.26448i 1.08585 + 0.449775i 0.852559 0.522631i \(-0.175049\pi\)
0.233294 + 0.972406i \(0.425049\pi\)
\(138\) 0 0
\(139\) 4.87550i 0.413534i 0.978390 + 0.206767i \(0.0662943\pi\)
−0.978390 + 0.206767i \(0.933706\pi\)
\(140\) 0 0
\(141\) −20.3970 −1.71774
\(142\) 0 0
\(143\) 6.21209 0.519481
\(144\) 0 0
\(145\) −7.22325 + 6.65186i −0.599858 + 0.552407i
\(146\) 0 0
\(147\) −14.8923 + 35.9531i −1.22829 + 2.96536i
\(148\) 0 0
\(149\) 17.3040 7.16754i 1.41760 0.587188i 0.463341 0.886180i \(-0.346650\pi\)
0.954256 + 0.298992i \(0.0966504\pi\)
\(150\) 0 0
\(151\) 4.79800 + 1.98740i 0.390456 + 0.161732i 0.569270 0.822151i \(-0.307226\pi\)
−0.178814 + 0.983883i \(0.557226\pi\)
\(152\) 0 0
\(153\) −13.1992 + 5.46730i −1.06709 + 0.442005i
\(154\) 0 0
\(155\) 19.4917 + 9.03046i 1.56561 + 0.725344i
\(156\) 0 0
\(157\) −1.07783 + 0.446451i −0.0860200 + 0.0356306i −0.425279 0.905063i \(-0.639824\pi\)
0.339259 + 0.940693i \(0.389824\pi\)
\(158\) 0 0
\(159\) −10.7741 10.7741i −0.854440 0.854440i
\(160\) 0 0
\(161\) −20.9995 8.69826i −1.65499 0.685519i
\(162\) 0 0
\(163\) −11.5006 + 11.5006i −0.900793 + 0.900793i −0.995505 0.0947116i \(-0.969807\pi\)
0.0947116 + 0.995505i \(0.469807\pi\)
\(164\) 0 0
\(165\) 7.82799 16.8963i 0.609408 1.31537i
\(166\) 0 0
\(167\) 5.80682 + 14.0189i 0.449345 + 1.08482i 0.972568 + 0.232620i \(0.0747297\pi\)
−0.523222 + 0.852196i \(0.675270\pi\)
\(168\) 0 0
\(169\) −6.74916 + 6.74916i −0.519166 + 0.519166i
\(170\) 0 0
\(171\) −0.299869 + 0.723948i −0.0229316 + 0.0553617i
\(172\) 0 0
\(173\) 5.40142i 0.410662i 0.978693 + 0.205331i \(0.0658272\pi\)
−0.978693 + 0.205331i \(0.934173\pi\)
\(174\) 0 0
\(175\) 10.8751 21.1459i 0.822082 1.59848i
\(176\) 0 0
\(177\) −10.5603 25.4948i −0.793760 1.91631i
\(178\) 0 0
\(179\) 3.76050 + 9.07864i 0.281073 + 0.678569i 0.999861 0.0166593i \(-0.00530307\pi\)
−0.718789 + 0.695229i \(0.755303\pi\)
\(180\) 0 0
\(181\) 4.83941 + 11.6834i 0.359711 + 0.868418i 0.995340 + 0.0964240i \(0.0307405\pi\)
−0.635630 + 0.771994i \(0.719260\pi\)
\(182\) 0 0
\(183\) 11.5303 27.8367i 0.852347 2.05775i
\(184\) 0 0
\(185\) −8.84498 24.1154i −0.650296 1.77300i
\(186\) 0 0
\(187\) −10.5188 10.5188i −0.769209 0.769209i
\(188\) 0 0
\(189\) 2.48394 0.180680
\(190\) 0 0
\(191\) 1.74315 0.722037i 0.126130 0.0522448i −0.318726 0.947847i \(-0.603255\pi\)
0.444856 + 0.895602i \(0.353255\pi\)
\(192\) 0 0
\(193\) −12.7054 + 5.26274i −0.914553 + 0.378820i −0.789798 0.613367i \(-0.789814\pi\)
−0.124755 + 0.992188i \(0.539814\pi\)
\(194\) 0 0
\(195\) −3.56657 9.72410i −0.255408 0.696357i
\(196\) 0 0
\(197\) 5.84936i 0.416750i −0.978049 0.208375i \(-0.933183\pi\)
0.978049 0.208375i \(-0.0668174\pi\)
\(198\) 0 0
\(199\) 5.41583 + 13.0750i 0.383918 + 0.926860i 0.991200 + 0.132374i \(0.0422599\pi\)
−0.607282 + 0.794487i \(0.707740\pi\)
\(200\) 0 0
\(201\) 1.83147 0.129182
\(202\) 0 0
\(203\) 20.8843i 1.46579i
\(204\) 0 0
\(205\) −13.8286 + 3.71089i −0.965829 + 0.259180i
\(206\) 0 0
\(207\) 15.3401i 1.06621i
\(208\) 0 0
\(209\) −0.815904 −0.0564373
\(210\) 0 0
\(211\) −4.23485 10.2238i −0.291539 0.703837i 0.708459 0.705752i \(-0.249391\pi\)
−0.999998 + 0.00191443i \(0.999391\pi\)
\(212\) 0 0
\(213\) 2.85489i 0.195614i
\(214\) 0 0
\(215\) −1.19033 + 2.56925i −0.0811796 + 0.175222i
\(216\) 0 0
\(217\) −42.2104 + 17.4841i −2.86543 + 1.18690i
\(218\) 0 0
\(219\) 6.54008 2.70899i 0.441937 0.183056i
\(220\) 0 0
\(221\) −8.27411 −0.556577
\(222\) 0 0
\(223\) 5.58256 + 5.58256i 0.373836 + 0.373836i 0.868872 0.495036i \(-0.164845\pi\)
−0.495036 + 0.868872i \(0.664845\pi\)
\(224\) 0 0
\(225\) −15.9937 1.31950i −1.06624 0.0879665i
\(226\) 0 0
\(227\) −0.394646 + 0.952759i −0.0261935 + 0.0632368i −0.936435 0.350841i \(-0.885896\pi\)
0.910242 + 0.414078i \(0.135896\pi\)
\(228\) 0 0
\(229\) 3.96815 + 9.57997i 0.262223 + 0.633062i 0.999075 0.0429914i \(-0.0136888\pi\)
−0.736853 + 0.676053i \(0.763689\pi\)
\(230\) 0 0
\(231\) 15.1560 + 36.5898i 0.997191 + 2.40743i
\(232\) 0 0
\(233\) 5.12878 + 12.3820i 0.335998 + 0.811170i 0.998092 + 0.0617495i \(0.0196680\pi\)
−0.662094 + 0.749421i \(0.730332\pi\)
\(234\) 0 0
\(235\) −13.4637 + 12.3986i −0.878273 + 0.808798i
\(236\) 0 0
\(237\) 14.8314i 0.963404i
\(238\) 0 0
\(239\) 4.12752 9.96472i 0.266987 0.644564i −0.732352 0.680927i \(-0.761577\pi\)
0.999339 + 0.0363628i \(0.0115772\pi\)
\(240\) 0 0
\(241\) 16.0789 16.0789i 1.03573 1.03573i 0.0363924 0.999338i \(-0.488413\pi\)
0.999338 0.0363924i \(-0.0115866\pi\)
\(242\) 0 0
\(243\) 8.54061 + 20.6189i 0.547880 + 1.32270i
\(244\) 0 0
\(245\) 12.0245 + 32.7844i 0.768220 + 2.09452i
\(246\) 0 0
\(247\) −0.320897 + 0.320897i −0.0204182 + 0.0204182i
\(248\) 0 0
\(249\) −26.4892 10.9722i −1.67869 0.695335i
\(250\) 0 0
\(251\) −5.71142 5.71142i −0.360502 0.360502i 0.503496 0.863998i \(-0.332047\pi\)
−0.863998 + 0.503496i \(0.832047\pi\)
\(252\) 0 0
\(253\) −14.7568 + 6.11246i −0.927752 + 0.384287i
\(254\) 0 0
\(255\) −10.4264 + 22.5047i −0.652925 + 1.40930i
\(256\) 0 0
\(257\) −15.9445 + 6.60442i −0.994589 + 0.411972i −0.819810 0.572635i \(-0.805921\pi\)
−0.174779 + 0.984608i \(0.555921\pi\)
\(258\) 0 0
\(259\) 50.4716 + 20.9060i 3.13615 + 1.29904i
\(260\) 0 0
\(261\) −13.0218 + 5.39380i −0.806029 + 0.333868i
\(262\) 0 0
\(263\) −1.89306 + 4.57025i −0.116731 + 0.281813i −0.971436 0.237300i \(-0.923738\pi\)
0.854706 + 0.519113i \(0.173738\pi\)
\(264\) 0 0
\(265\) −13.6609 0.562567i −0.839185 0.0345582i
\(266\) 0 0
\(267\) −38.8163 −2.37552
\(268\) 0 0
\(269\) 29.2245 1.78185 0.890926 0.454149i \(-0.150057\pi\)
0.890926 + 0.454149i \(0.150057\pi\)
\(270\) 0 0
\(271\) 8.57120i 0.520663i −0.965519 0.260332i \(-0.916168\pi\)
0.965519 0.260332i \(-0.0838319\pi\)
\(272\) 0 0
\(273\) 20.3517 + 8.42996i 1.23174 + 0.510205i
\(274\) 0 0
\(275\) −5.10355 15.9112i −0.307756 0.959484i
\(276\) 0 0
\(277\) −22.5943 22.5943i −1.35756 1.35756i −0.876916 0.480645i \(-0.840403\pi\)
−0.480645 0.876916i \(-0.659597\pi\)
\(278\) 0 0
\(279\) 21.8035 + 21.8035i 1.30534 + 1.30534i
\(280\) 0 0
\(281\) 12.5253 5.18815i 0.747197 0.309499i 0.0236000 0.999721i \(-0.492487\pi\)
0.723598 + 0.690222i \(0.242487\pi\)
\(282\) 0 0
\(283\) −20.4032 20.4032i −1.21285 1.21285i −0.970086 0.242760i \(-0.921947\pi\)
−0.242760 0.970086i \(-0.578053\pi\)
\(284\) 0 0
\(285\) 0.468438 + 1.27718i 0.0277479 + 0.0756534i
\(286\) 0 0
\(287\) 14.1176 26.9811i 0.833337 1.59264i
\(288\) 0 0
\(289\) 1.98952 + 1.98952i 0.117031 + 0.117031i
\(290\) 0 0
\(291\) 13.2001i 0.773806i
\(292\) 0 0
\(293\) −0.267450 + 0.645681i −0.0156246 + 0.0377211i −0.931499 0.363743i \(-0.881499\pi\)
0.915875 + 0.401464i \(0.131499\pi\)
\(294\) 0 0
\(295\) −22.4680 10.4094i −1.30814 0.606056i
\(296\) 0 0
\(297\) 1.23427 1.23427i 0.0716195 0.0716195i
\(298\) 0 0
\(299\) −3.39983 + 8.20792i −0.196617 + 0.474676i
\(300\) 0 0
\(301\) −2.30463 5.56386i −0.132836 0.320696i
\(302\) 0 0
\(303\) 17.8021 + 17.8021i 1.02270 + 1.02270i
\(304\) 0 0
\(305\) −9.31000 25.3833i −0.533089 1.45344i
\(306\) 0 0
\(307\) 2.63739i 0.150524i 0.997164 + 0.0752618i \(0.0239792\pi\)
−0.997164 + 0.0752618i \(0.976021\pi\)
\(308\) 0 0
\(309\) 7.58465 + 18.3110i 0.431475 + 1.04167i
\(310\) 0 0
\(311\) 20.1237 8.33552i 1.14111 0.472664i 0.269568 0.962981i \(-0.413119\pi\)
0.871544 + 0.490317i \(0.163119\pi\)
\(312\) 0 0
\(313\) −10.1585 + 24.5247i −0.574191 + 1.38622i 0.323767 + 0.946137i \(0.395051\pi\)
−0.897957 + 0.440082i \(0.854949\pi\)
\(314\) 0 0
\(315\) 25.1069 23.1209i 1.41462 1.30271i
\(316\) 0 0
\(317\) 5.57451 + 13.4580i 0.313095 + 0.755879i 0.999587 + 0.0287414i \(0.00914992\pi\)
−0.686491 + 0.727138i \(0.740850\pi\)
\(318\) 0 0
\(319\) −10.3774 10.3774i −0.581022 0.581022i
\(320\) 0 0
\(321\) 9.20735 + 3.81381i 0.513904 + 0.212866i
\(322\) 0 0
\(323\) 1.08673 0.0604674
\(324\) 0 0
\(325\) −8.26516 4.25069i −0.458469 0.235786i
\(326\) 0 0
\(327\) 2.25944 + 2.25944i 0.124948 + 0.124948i
\(328\) 0 0
\(329\) 38.9269i 2.14611i
\(330\) 0 0
\(331\) 7.96851 19.2377i 0.437989 1.05740i −0.538654 0.842527i \(-0.681067\pi\)
0.976642 0.214871i \(-0.0689331\pi\)
\(332\) 0 0
\(333\) 36.8696i 2.02044i
\(334\) 0 0
\(335\) 1.20892 1.11329i 0.0660502 0.0608254i
\(336\) 0 0
\(337\) 31.4036 1.71066 0.855331 0.518081i \(-0.173353\pi\)
0.855331 + 0.518081i \(0.173353\pi\)
\(338\) 0 0
\(339\) −6.94174 + 16.7588i −0.377023 + 0.910215i
\(340\) 0 0
\(341\) −12.2865 + 29.6622i −0.665351 + 1.60630i
\(342\) 0 0
\(343\) −37.8592 15.6818i −2.04420 0.846736i
\(344\) 0 0
\(345\) 18.0405 + 19.5902i 0.971269 + 1.05470i
\(346\) 0 0
\(347\) −15.3701 6.36649i −0.825108 0.341771i −0.0701440 0.997537i \(-0.522346\pi\)
−0.754964 + 0.655766i \(0.772346\pi\)
\(348\) 0 0
\(349\) 15.0669 15.0669i 0.806514 0.806514i −0.177591 0.984104i \(-0.556830\pi\)
0.984104 + 0.177591i \(0.0568302\pi\)
\(350\) 0 0
\(351\) 0.970880i 0.0518217i
\(352\) 0 0
\(353\) 10.7011 10.7011i 0.569560 0.569560i −0.362445 0.932005i \(-0.618058\pi\)
0.932005 + 0.362445i \(0.118058\pi\)
\(354\) 0 0
\(355\) 1.73539 + 1.88445i 0.0921047 + 0.100016i
\(356\) 0 0
\(357\) −20.1868 48.7353i −1.06840 2.57935i
\(358\) 0 0
\(359\) 9.40023 0.496125 0.248063 0.968744i \(-0.420206\pi\)
0.248063 + 0.968744i \(0.420206\pi\)
\(360\) 0 0
\(361\) −13.3929 + 13.3929i −0.704889 + 0.704889i
\(362\) 0 0
\(363\) 0.388034 + 0.160729i 0.0203665 + 0.00843608i
\(364\) 0 0
\(365\) 2.67027 5.76363i 0.139768 0.301682i
\(366\) 0 0
\(367\) 10.9077 0.569377 0.284688 0.958620i \(-0.408110\pi\)
0.284688 + 0.958620i \(0.408110\pi\)
\(368\) 0 0
\(369\) −20.4695 1.83422i −1.06560 0.0954856i
\(370\) 0 0
\(371\) 20.5619 20.5619i 1.06752 1.06752i
\(372\) 0 0
\(373\) 13.7142 13.7142i 0.710097 0.710097i −0.256459 0.966555i \(-0.582556\pi\)
0.966555 + 0.256459i \(0.0825558\pi\)
\(374\) 0 0
\(375\) −21.9765 + 17.1240i −1.13486 + 0.884281i
\(376\) 0 0
\(377\) −8.16289 −0.420410
\(378\) 0 0
\(379\) 21.9556i 1.12778i −0.825849 0.563891i \(-0.809304\pi\)
0.825849 0.563891i \(-0.190696\pi\)
\(380\) 0 0
\(381\) −24.9747 10.3448i −1.27949 0.529982i
\(382\) 0 0
\(383\) −8.29014 + 20.0142i −0.423606 + 1.02268i 0.557669 + 0.830064i \(0.311696\pi\)
−0.981275 + 0.192612i \(0.938304\pi\)
\(384\) 0 0
\(385\) 32.2458 + 14.9394i 1.64340 + 0.761382i
\(386\) 0 0
\(387\) −2.87397 + 2.87397i −0.146092 + 0.146092i
\(388\) 0 0
\(389\) −7.74110 7.74110i −0.392490 0.392490i 0.483084 0.875574i \(-0.339516\pi\)
−0.875574 + 0.483084i \(0.839516\pi\)
\(390\) 0 0
\(391\) 19.6551 8.14141i 0.994002 0.411729i
\(392\) 0 0
\(393\) 39.9401 + 16.5438i 2.01471 + 0.834522i
\(394\) 0 0
\(395\) −9.01549 9.78991i −0.453619 0.492584i
\(396\) 0 0
\(397\) 35.4233 14.6728i 1.77785 0.736408i 0.784652 0.619937i \(-0.212842\pi\)
0.993194 0.116471i \(-0.0371581\pi\)
\(398\) 0 0
\(399\) −2.67302 1.10720i −0.133819 0.0554294i
\(400\) 0 0
\(401\) 0.208693 0.208693i 0.0104216 0.0104216i −0.701877 0.712298i \(-0.747654\pi\)
0.712298 + 0.701877i \(0.247654\pi\)
\(402\) 0 0
\(403\) 6.83391 + 16.4985i 0.340421 + 0.821849i
\(404\) 0 0
\(405\) 16.8952 + 7.82748i 0.839528 + 0.388951i
\(406\) 0 0
\(407\) 35.4675 14.6911i 1.75806 0.728213i
\(408\) 0 0
\(409\) −4.00115 −0.197844 −0.0989221 0.995095i \(-0.531539\pi\)
−0.0989221 + 0.995095i \(0.531539\pi\)
\(410\) 0 0
\(411\) 34.2806 1.69094
\(412\) 0 0
\(413\) 48.6557 20.1539i 2.39419 0.991707i
\(414\) 0 0
\(415\) −24.1546 + 8.85934i −1.18570 + 0.434888i
\(416\) 0 0
\(417\) 4.64933 + 11.2245i 0.227679 + 0.549665i
\(418\) 0 0
\(419\) 26.6694 26.6694i 1.30288 1.30288i 0.376445 0.926439i \(-0.377147\pi\)
0.926439 0.376445i \(-0.122853\pi\)
\(420\) 0 0
\(421\) 3.13599 + 1.29897i 0.152839 + 0.0633078i 0.457791 0.889060i \(-0.348641\pi\)
−0.304953 + 0.952367i \(0.598641\pi\)
\(422\) 0 0
\(423\) −24.2718 + 10.0537i −1.18013 + 0.488828i
\(424\) 0 0
\(425\) 6.79760 + 21.1928i 0.329732 + 1.02800i
\(426\) 0 0
\(427\) 53.1252 + 22.0052i 2.57091 + 1.06490i
\(428\) 0 0
\(429\) 14.3016 5.92392i 0.690489 0.286010i
\(430\) 0 0
\(431\) −2.36464 2.36464i −0.113901 0.113901i 0.647859 0.761760i \(-0.275664\pi\)
−0.761760 + 0.647859i \(0.775664\pi\)
\(432\) 0 0
\(433\) −4.26329 + 4.26329i −0.204881 + 0.204881i −0.802087 0.597207i \(-0.796277\pi\)
0.597207 + 0.802087i \(0.296277\pi\)
\(434\) 0 0
\(435\) −10.2862 + 22.2022i −0.493187 + 1.06452i
\(436\) 0 0
\(437\) 0.446538 1.07804i 0.0213608 0.0515696i
\(438\) 0 0
\(439\) 3.49173 + 1.44632i 0.166651 + 0.0690291i 0.464449 0.885600i \(-0.346252\pi\)
−0.297798 + 0.954629i \(0.596252\pi\)
\(440\) 0 0
\(441\) 50.1234i 2.38683i
\(442\) 0 0
\(443\) −7.32910 −0.348216 −0.174108 0.984727i \(-0.555704\pi\)
−0.174108 + 0.984727i \(0.555704\pi\)
\(444\) 0 0
\(445\) −25.6218 + 23.5951i −1.21459 + 1.11851i
\(446\) 0 0
\(447\) 33.0025 33.0025i 1.56097 1.56097i
\(448\) 0 0
\(449\) −19.9406 + 19.9406i −0.941055 + 0.941055i −0.998357 0.0573016i \(-0.981750\pi\)
0.0573016 + 0.998357i \(0.481750\pi\)
\(450\) 0 0
\(451\) −6.39184 20.4219i −0.300980 0.961631i
\(452\) 0 0
\(453\) 12.9413 0.608034
\(454\) 0 0
\(455\) 18.5580 6.80666i 0.870015 0.319101i
\(456\) 0 0
\(457\) −9.07504 3.75901i −0.424513 0.175839i 0.160191 0.987086i \(-0.448789\pi\)
−0.584703 + 0.811247i \(0.698789\pi\)
\(458\) 0 0
\(459\) −1.64397 + 1.64397i −0.0767337 + 0.0767337i
\(460\) 0 0
\(461\) −12.3439 −0.574912 −0.287456 0.957794i \(-0.592809\pi\)
−0.287456 + 0.957794i \(0.592809\pi\)
\(462\) 0 0
\(463\) 7.25484 + 17.5147i 0.337161 + 0.813979i 0.997986 + 0.0634385i \(0.0202067\pi\)
−0.660825 + 0.750540i \(0.729793\pi\)
\(464\) 0 0
\(465\) 53.4858 + 2.20258i 2.48035 + 0.102142i
\(466\) 0 0
\(467\) −15.0928 + 15.0928i −0.698412 + 0.698412i −0.964068 0.265656i \(-0.914411\pi\)
0.265656 + 0.964068i \(0.414411\pi\)
\(468\) 0 0
\(469\) 3.49529i 0.161397i
\(470\) 0 0
\(471\) −2.05566 + 2.05566i −0.0947197 + 0.0947197i
\(472\) 0 0
\(473\) −3.90985 1.61951i −0.179775 0.0744653i
\(474\) 0 0
\(475\) 1.08556 + 0.558291i 0.0498088 + 0.0256161i
\(476\) 0 0
\(477\) −18.1313 7.51025i −0.830177 0.343871i
\(478\) 0 0
\(479\) 1.81043 4.37077i 0.0827208 0.199706i −0.877107 0.480295i \(-0.840530\pi\)
0.959828 + 0.280589i \(0.0905297\pi\)
\(480\) 0 0
\(481\) 8.17140 19.7275i 0.372584 0.899497i
\(482\) 0 0
\(483\) −56.6402 −2.57722
\(484\) 0 0
\(485\) 8.02390 + 8.71315i 0.364347 + 0.395644i
\(486\) 0 0
\(487\) 19.5733i 0.886949i 0.896287 + 0.443475i \(0.146254\pi\)
−0.896287 + 0.443475i \(0.853746\pi\)
\(488\) 0 0
\(489\) −15.5098 + 37.4439i −0.701376 + 1.69327i
\(490\) 0 0
\(491\) 10.9209i 0.492852i 0.969162 + 0.246426i \(0.0792562\pi\)
−0.969162 + 0.246426i \(0.920744\pi\)
\(492\) 0 0
\(493\) 13.8220 + 13.8220i 0.622512 + 0.622512i
\(494\) 0 0
\(495\) 0.986870 23.9644i 0.0443565 1.07712i
\(496\) 0 0
\(497\) −5.44843 −0.244396
\(498\) 0 0
\(499\) −5.39314 2.23391i −0.241430 0.100004i 0.258688 0.965961i \(-0.416710\pi\)
−0.500118 + 0.865957i \(0.666710\pi\)
\(500\) 0 0
\(501\) 26.7372 + 26.7372i 1.19453 + 1.19453i
\(502\) 0 0
\(503\) −7.33405 17.7060i −0.327009 0.789470i −0.998812 0.0487394i \(-0.984480\pi\)
0.671802 0.740730i \(-0.265520\pi\)
\(504\) 0 0
\(505\) 22.5720 + 0.929531i 1.00444 + 0.0413636i
\(506\) 0 0
\(507\) −9.10199 + 21.9741i −0.404233 + 0.975906i
\(508\) 0 0
\(509\) 21.3754 8.85398i 0.947448 0.392446i 0.145177 0.989406i \(-0.453625\pi\)
0.802271 + 0.596960i \(0.203625\pi\)
\(510\) 0 0
\(511\) 5.16999 + 12.4815i 0.228707 + 0.552147i
\(512\) 0 0
\(513\) 0.127517i 0.00563000i
\(514\) 0 0
\(515\) 16.1371 + 7.47625i 0.711084 + 0.329443i
\(516\) 0 0
\(517\) −19.3428 19.3428i −0.850694 0.850694i
\(518\) 0 0
\(519\) 5.15086 + 12.4353i 0.226098 + 0.545848i
\(520\) 0 0
\(521\) 12.1538 29.3420i 0.532469 1.28549i −0.397414 0.917640i \(-0.630092\pi\)
0.929883 0.367855i \(-0.119908\pi\)
\(522\) 0 0
\(523\) −9.73398 + 9.73398i −0.425637 + 0.425637i −0.887139 0.461502i \(-0.847311\pi\)
0.461502 + 0.887139i \(0.347311\pi\)
\(524\) 0 0
\(525\) 4.87196 59.0532i 0.212630 2.57729i
\(526\) 0 0
\(527\) 16.3648 39.5082i 0.712863 1.72100i
\(528\) 0 0
\(529\) 0.156816i 0.00681808i
\(530\) 0 0
\(531\) −25.1328 25.1328i −1.09067 1.09067i
\(532\) 0 0
\(533\) −10.5459 5.51806i −0.456794 0.239014i
\(534\) 0 0
\(535\) 8.39587 3.07941i 0.362985 0.133134i
\(536\) 0 0
\(537\) 17.3150 + 17.3150i 0.747197 + 0.747197i
\(538\) 0 0
\(539\) −48.2173 + 19.9723i −2.07687 + 0.860266i
\(540\) 0 0
\(541\) −20.2942 20.2942i −0.872515 0.872515i 0.120231 0.992746i \(-0.461636\pi\)
−0.992746 + 0.120231i \(0.961636\pi\)
\(542\) 0 0
\(543\) 22.2828 + 22.2828i 0.956246 + 0.956246i
\(544\) 0 0
\(545\) 2.86485 + 0.117976i 0.122717 + 0.00505356i
\(546\) 0 0
\(547\) −17.5051 7.25087i −0.748466 0.310025i −0.0243503 0.999703i \(-0.507752\pi\)
−0.724115 + 0.689679i \(0.757752\pi\)
\(548\) 0 0
\(549\) 38.8080i 1.65629i
\(550\) 0 0
\(551\) 1.07212 0.0456740
\(552\) 0 0
\(553\) 28.3051 1.20366
\(554\) 0 0
\(555\) −43.3599 47.0844i −1.84052 1.99862i
\(556\) 0 0
\(557\) −2.52918 + 6.10597i −0.107165 + 0.258718i −0.968361 0.249554i \(-0.919716\pi\)
0.861196 + 0.508273i \(0.169716\pi\)
\(558\) 0 0
\(559\) −2.17471 + 0.900794i −0.0919804 + 0.0380995i
\(560\) 0 0
\(561\) −34.2474 14.1857i −1.44593 0.598922i
\(562\) 0 0
\(563\) 1.62944 0.674938i 0.0686729 0.0284452i −0.348083 0.937464i \(-0.613167\pi\)
0.416755 + 0.909019i \(0.363167\pi\)
\(564\) 0 0
\(565\) 5.60501 + 15.2818i 0.235804 + 0.642910i
\(566\) 0 0
\(567\) −36.5875 + 15.1550i −1.53653 + 0.636451i
\(568\) 0 0
\(569\) 8.06645 + 8.06645i 0.338163 + 0.338163i 0.855676 0.517513i \(-0.173142\pi\)
−0.517513 + 0.855676i \(0.673142\pi\)
\(570\) 0 0
\(571\) 10.8371 + 4.48887i 0.453518 + 0.187853i 0.597737 0.801692i \(-0.296067\pi\)
−0.144218 + 0.989546i \(0.546067\pi\)
\(572\) 0 0
\(573\) 3.32458 3.32458i 0.138886 0.138886i
\(574\) 0 0
\(575\) 23.8164 + 1.96488i 0.993211 + 0.0819411i
\(576\) 0 0
\(577\) 9.04546 + 21.8377i 0.376567 + 0.909114i 0.992604 + 0.121397i \(0.0387373\pi\)
−0.616037 + 0.787717i \(0.711263\pi\)
\(578\) 0 0
\(579\) −24.2320 + 24.2320i −1.00705 + 1.00705i
\(580\) 0 0
\(581\) 20.9400 50.5536i 0.868737 2.09732i
\(582\) 0 0
\(583\) 20.4344i 0.846306i
\(584\) 0 0
\(585\) −9.03711 9.81339i −0.373639 0.405734i
\(586\) 0 0
\(587\) 3.39139 + 8.18754i 0.139978 + 0.337936i 0.978286 0.207261i \(-0.0664549\pi\)
−0.838308 + 0.545197i \(0.816455\pi\)
\(588\) 0 0
\(589\) −0.897574 2.16694i −0.0369839 0.0892870i
\(590\) 0 0
\(591\) −5.57802 13.4665i −0.229449 0.553939i
\(592\) 0 0
\(593\) −4.72677 + 11.4114i −0.194105 + 0.468611i −0.990727 0.135866i \(-0.956618\pi\)
0.796622 + 0.604478i \(0.206618\pi\)
\(594\) 0 0
\(595\) −42.9494 19.8983i −1.76075 0.815751i
\(596\) 0 0
\(597\) 24.9369 + 24.9369i 1.02060 + 1.02060i
\(598\) 0 0
\(599\) −26.7136 −1.09149 −0.545743 0.837952i \(-0.683753\pi\)
−0.545743 + 0.837952i \(0.683753\pi\)
\(600\) 0 0
\(601\) 41.2837 17.1003i 1.68400 0.697535i 0.684493 0.729019i \(-0.260024\pi\)
0.999504 + 0.0314847i \(0.0100236\pi\)
\(602\) 0 0
\(603\) 2.17939 0.902733i 0.0887516 0.0367621i
\(604\) 0 0
\(605\) 0.353835 0.129778i 0.0143854 0.00527624i
\(606\) 0 0
\(607\) 38.1886i 1.55003i 0.631945 + 0.775013i \(0.282257\pi\)
−0.631945 + 0.775013i \(0.717743\pi\)
\(608\) 0 0
\(609\) −19.9155 48.0802i −0.807015 1.94831i
\(610\) 0 0
\(611\) −15.2151 −0.615537
\(612\) 0 0
\(613\) 41.6975i 1.68415i 0.539363 + 0.842073i \(0.318665\pi\)
−0.539363 + 0.842073i \(0.681335\pi\)
\(614\) 0 0
\(615\) −28.2977 + 21.7304i −1.14107 + 0.876253i
\(616\) 0 0
\(617\) 2.37669i 0.0956817i −0.998855 0.0478409i \(-0.984766\pi\)
0.998855 0.0478409i \(-0.0152340\pi\)
\(618\) 0 0
\(619\) −31.9132 −1.28270 −0.641350 0.767248i \(-0.721625\pi\)
−0.641350 + 0.767248i \(0.721625\pi\)
\(620\) 0 0
\(621\) 0.955309 + 2.30632i 0.0383352 + 0.0925494i
\(622\) 0 0
\(623\) 74.0793i 2.96792i
\(624\) 0 0
\(625\) −4.09718 + 24.6620i −0.163887 + 0.986479i
\(626\) 0 0
\(627\) −1.87839 + 0.778056i −0.0750158 + 0.0310726i
\(628\) 0 0
\(629\) −47.2405 + 19.5677i −1.88360 + 0.780213i
\(630\) 0 0
\(631\) −22.1295 −0.880963 −0.440482 0.897762i \(-0.645192\pi\)
−0.440482 + 0.897762i \(0.645192\pi\)
\(632\) 0 0
\(633\) −19.4991 19.4991i −0.775021 0.775021i
\(634\) 0 0
\(635\) −22.7735 + 8.35280i −0.903740 + 0.331471i
\(636\) 0 0
\(637\) −11.1088 + 26.8191i −0.440148 + 1.06261i
\(638\) 0 0
\(639\) 1.40717 + 3.39722i 0.0556670 + 0.134392i
\(640\) 0 0
\(641\) −1.62824 3.93092i −0.0643117 0.155262i 0.888456 0.458961i \(-0.151778\pi\)
−0.952768 + 0.303699i \(0.901778\pi\)
\(642\) 0 0
\(643\) 18.1657 + 43.8558i 0.716385 + 1.72951i 0.683394 + 0.730050i \(0.260503\pi\)
0.0329904 + 0.999456i \(0.489497\pi\)
\(644\) 0 0
\(645\) −0.290328 + 7.05010i −0.0114316 + 0.277597i
\(646\) 0 0
\(647\) 17.5227i 0.688890i −0.938806 0.344445i \(-0.888067\pi\)
0.938806 0.344445i \(-0.111933\pi\)
\(648\) 0 0
\(649\) 14.1626 34.1915i 0.555930 1.34213i
\(650\) 0 0
\(651\) −80.5047 + 80.5047i −3.15523 + 3.15523i
\(652\) 0 0
\(653\) −11.4075 27.5402i −0.446411 1.07773i −0.973657 0.228019i \(-0.926775\pi\)
0.527246 0.849713i \(-0.323225\pi\)
\(654\) 0 0
\(655\) 36.4200 13.3580i 1.42305 0.521941i
\(656\) 0 0
\(657\) 6.44721 6.44721i 0.251530 0.251530i
\(658\) 0 0
\(659\) −35.5800 14.7377i −1.38600 0.574101i −0.439922 0.898036i \(-0.644994\pi\)
−0.946079 + 0.323935i \(0.894994\pi\)
\(660\) 0 0
\(661\) 3.17147 + 3.17147i 0.123356 + 0.123356i 0.766090 0.642734i \(-0.222200\pi\)
−0.642734 + 0.766090i \(0.722200\pi\)
\(662\) 0 0
\(663\) −19.0488 + 7.89029i −0.739796 + 0.306433i
\(664\) 0 0
\(665\) −2.43744 + 0.893995i −0.0945198 + 0.0346676i
\(666\) 0 0
\(667\) 19.3909 8.03197i 0.750819 0.310999i
\(668\) 0 0
\(669\) 18.1759 + 7.52870i 0.702721 + 0.291076i
\(670\) 0 0
\(671\) 37.3322 15.4635i 1.44120 0.596963i
\(672\) 0 0
\(673\) 13.5097 32.6154i 0.520763 1.25723i −0.416668 0.909059i \(-0.636802\pi\)
0.937430 0.348173i \(-0.113198\pi\)
\(674\) 0 0
\(675\) −2.48675 + 0.797627i −0.0957149 + 0.0307007i
\(676\) 0 0
\(677\) 16.9700 0.652208 0.326104 0.945334i \(-0.394264\pi\)
0.326104 + 0.945334i \(0.394264\pi\)
\(678\) 0 0
\(679\) −25.1919 −0.966778
\(680\) 0 0
\(681\) 2.56980i 0.0984750i
\(682\) 0 0
\(683\) −46.0203 19.0623i −1.76092 0.729397i −0.996398 0.0847987i \(-0.972975\pi\)
−0.764522 0.644598i \(-0.777025\pi\)
\(684\) 0 0
\(685\) 22.6279 20.8379i 0.864567 0.796177i
\(686\) 0 0
\(687\) 18.2711 + 18.2711i 0.697087 + 0.697087i
\(688\) 0 0
\(689\) −8.03689 8.03689i −0.306181 0.306181i
\(690\) 0 0
\(691\) 33.1211 13.7192i 1.25999 0.521903i 0.350081 0.936720i \(-0.386154\pi\)
0.909905 + 0.414816i \(0.136154\pi\)
\(692\) 0 0
\(693\) 36.0702 + 36.0702i 1.37020 + 1.37020i
\(694\) 0 0
\(695\) 9.89189 + 4.58288i 0.375221 + 0.173839i
\(696\) 0 0
\(697\) 8.51352 + 27.2007i 0.322472 + 1.03030i
\(698\) 0 0
\(699\) 23.6152 + 23.6152i 0.893209 + 0.893209i
\(700\) 0 0
\(701\) 25.3713i 0.958261i 0.877744 + 0.479130i \(0.159048\pi\)
−0.877744 + 0.479130i \(0.840952\pi\)
\(702\) 0 0
\(703\) −1.07324 + 2.59104i −0.0404781 + 0.0977228i
\(704\) 0 0
\(705\) −19.1729 + 41.3835i −0.722092 + 1.55859i
\(706\) 0 0
\(707\) −33.9745 + 33.9745i −1.27774 + 1.27774i
\(708\) 0 0
\(709\) −9.08944 + 21.9439i −0.341361 + 0.824119i 0.656217 + 0.754572i \(0.272155\pi\)
−0.997579 + 0.0695471i \(0.977845\pi\)
\(710\) 0 0
\(711\) −7.31040 17.6489i −0.274162 0.661885i
\(712\) 0 0
\(713\) −32.4678 32.4678i −1.21593 1.21593i
\(714\) 0 0
\(715\) 5.83926 12.6037i 0.218376 0.471352i
\(716\) 0 0
\(717\) 26.8770i 1.00374i
\(718\) 0 0
\(719\) 11.8403 + 28.5850i 0.441568 + 1.06604i 0.975399 + 0.220448i \(0.0707520\pi\)
−0.533831 + 0.845591i \(0.679248\pi\)
\(720\) 0 0
\(721\) −34.9457 + 14.4750i −1.30145 + 0.539077i
\(722\) 0 0
\(723\) 21.6841 52.3501i 0.806441 1.94692i
\(724\) 0 0
\(725\) 6.70623 + 20.9079i 0.249063 + 0.776499i
\(726\) 0 0
\(727\) 5.89145 + 14.2232i 0.218502 + 0.527510i 0.994681 0.103002i \(-0.0328449\pi\)
−0.776179 + 0.630512i \(0.782845\pi\)
\(728\) 0 0
\(729\) 21.6600 + 21.6600i 0.802221 + 0.802221i
\(730\) 0 0
\(731\) 5.20767 + 2.15709i 0.192613 + 0.0797828i
\(732\) 0 0
\(733\) −34.7888 −1.28495 −0.642476 0.766306i \(-0.722093\pi\)
−0.642476 + 0.766306i \(0.722093\pi\)
\(734\) 0 0
\(735\) 58.9468 + 64.0102i 2.17428 + 2.36105i
\(736\) 0 0
\(737\) 1.73681 + 1.73681i 0.0639762 + 0.0639762i
\(738\) 0 0
\(739\) 19.2080i 0.706578i −0.935514 0.353289i \(-0.885063\pi\)
0.935514 0.353289i \(-0.114937\pi\)
\(740\) 0 0
\(741\) −0.432765 + 1.04479i −0.0158980 + 0.0383812i
\(742\) 0 0
\(743\) 20.0415i 0.735253i −0.929973 0.367627i \(-0.880170\pi\)
0.929973 0.367627i \(-0.119830\pi\)
\(744\) 0 0
\(745\) 1.72322 41.8454i 0.0631339 1.53310i
\(746\) 0 0
\(747\) −36.9295 −1.35118
\(748\) 0 0
\(749\) −7.27850 + 17.5719i −0.265951 + 0.642062i
\(750\) 0 0
\(751\) −6.08557 + 14.6919i −0.222066 + 0.536114i −0.995170 0.0981648i \(-0.968703\pi\)
0.773105 + 0.634279i \(0.218703\pi\)
\(752\) 0 0
\(753\) −18.5954 7.70249i −0.677656 0.280694i
\(754\) 0 0
\(755\) 8.54227 7.86654i 0.310885 0.286293i
\(756\) 0 0
\(757\) −14.6011 6.04798i −0.530687 0.219818i 0.101217 0.994864i \(-0.467726\pi\)
−0.631904 + 0.775047i \(0.717726\pi\)
\(758\) 0 0
\(759\) −28.1445 + 28.1445i −1.02158 + 1.02158i
\(760\) 0 0
\(761\) 34.5906i 1.25391i 0.779056 + 0.626954i \(0.215699\pi\)
−0.779056 + 0.626954i \(0.784301\pi\)
\(762\) 0 0
\(763\) −4.31206 + 4.31206i −0.156107 + 0.156107i
\(764\) 0 0
\(765\) −1.31445 + 31.9190i −0.0475240 + 1.15404i
\(766\) 0 0
\(767\) −7.87741 19.0178i −0.284437 0.686691i
\(768\) 0 0
\(769\) 11.7855 0.424995 0.212498 0.977162i \(-0.431840\pi\)
0.212498 + 0.977162i \(0.431840\pi\)
\(770\) 0 0
\(771\) −30.4097 + 30.4097i −1.09518 + 1.09518i
\(772\) 0 0
\(773\) −17.0009 7.04199i −0.611478 0.253283i 0.0553821 0.998465i \(-0.482362\pi\)
−0.666860 + 0.745183i \(0.732362\pi\)
\(774\) 0 0
\(775\) 36.6438 31.0583i 1.31628 1.11565i
\(776\) 0 0
\(777\) 136.133 4.88375
\(778\) 0 0
\(779\) 1.38511 + 0.724749i 0.0496268 + 0.0259668i
\(780\) 0 0
\(781\) −2.70733 + 2.70733i −0.0968757 + 0.0968757i
\(782\) 0 0
\(783\) −1.62187 + 1.62187i −0.0579608 + 0.0579608i
\(784\) 0 0
\(785\) −0.107336 + 2.60646i −0.00383098 + 0.0930285i
\(786\) 0 0
\(787\) 12.7861 0.455774 0.227887 0.973688i \(-0.426818\pi\)
0.227887 + 0.973688i \(0.426818\pi\)
\(788\) 0 0
\(789\) 12.3270i 0.438851i
\(790\) 0 0
\(791\) −31.9835 13.2480i −1.13720 0.471045i
\(792\) 0 0
\(793\) 8.60101 20.7647i 0.305431 0.737375i
\(794\) 0 0
\(795\) −31.9870 + 11.7321i −1.13446 + 0.416094i
\(796\) 0 0
\(797\) 6.16140 6.16140i 0.218248 0.218248i −0.589512 0.807760i \(-0.700680\pi\)
0.807760 + 0.589512i \(0.200680\pi\)
\(798\) 0 0
\(799\) 25.7633 + 25.7633i 0.911441 + 0.911441i
\(800\) 0 0
\(801\) −46.1901 + 19.1326i −1.63205 + 0.676016i
\(802\) 0 0
\(803\) 8.77100 + 3.63307i 0.309522 + 0.128208i
\(804\) 0 0
\(805\) −37.3870 + 34.4296i −1.31772 + 1.21348i
\(806\) 0 0
\(807\) 67.2814 27.8689i 2.36842 0.981030i
\(808\) 0 0
\(809\) 28.4639 + 11.7901i 1.00074 + 0.414520i 0.822068 0.569389i \(-0.192820\pi\)
0.178671 + 0.983909i \(0.442820\pi\)
\(810\) 0 0
\(811\) −3.05810 + 3.05810i −0.107384 + 0.107384i −0.758758 0.651373i \(-0.774193\pi\)
0.651373 + 0.758758i \(0.274193\pi\)
\(812\) 0 0
\(813\) −8.17359 19.7328i −0.286660 0.692060i
\(814\) 0 0
\(815\) 12.5231 + 34.1438i 0.438667 + 1.19601i
\(816\) 0 0
\(817\) 0.285629 0.118311i 0.00999290 0.00413919i
\(818\) 0 0
\(819\) 28.3730 0.991433
\(820\) 0 0
\(821\) −47.4549 −1.65619 −0.828093 0.560591i \(-0.810574\pi\)
−0.828093 + 0.560591i \(0.810574\pi\)
\(822\) 0 0
\(823\) −44.2374 + 18.3237i −1.54202 + 0.638725i −0.981851 0.189654i \(-0.939263\pi\)
−0.560168 + 0.828379i \(0.689263\pi\)
\(824\) 0 0
\(825\) −26.9226 31.7644i −0.937326 1.10589i
\(826\) 0 0
\(827\) −4.83377 11.6697i −0.168087 0.405797i 0.817281 0.576239i \(-0.195480\pi\)
−0.985368 + 0.170442i \(0.945480\pi\)
\(828\) 0 0
\(829\) 32.4596 32.4596i 1.12737 1.12737i 0.136767 0.990603i \(-0.456329\pi\)
0.990603 0.136767i \(-0.0436711\pi\)
\(830\) 0 0
\(831\) −73.5633 30.4709i −2.55188 1.05702i
\(832\) 0 0
\(833\) 64.2224 26.6018i 2.22517 0.921697i
\(834\) 0 0
\(835\) 33.9013 + 1.39608i 1.17320 + 0.0483132i
\(836\) 0 0
\(837\) 4.63587 + 1.92024i 0.160239 + 0.0663732i
\(838\) 0 0
\(839\) −2.36426 + 0.979310i −0.0816234 + 0.0338095i −0.423122 0.906073i \(-0.639066\pi\)
0.341498 + 0.939882i \(0.389066\pi\)
\(840\) 0 0
\(841\) −6.86989 6.86989i −0.236893 0.236893i
\(842\) 0 0
\(843\) 23.8886 23.8886i 0.822766 0.822766i
\(844\) 0 0
\(845\) 7.34927 + 20.0375i 0.252823 + 0.689309i
\(846\) 0 0
\(847\) −0.306745 + 0.740547i −0.0105399 + 0.0254455i
\(848\) 0 0
\(849\) −66.4296 27.5160i −2.27986 0.944347i
\(850\) 0 0
\(851\) 54.9029i 1.88205i
\(852\) 0 0
\(853\) 26.7825 0.917015 0.458508 0.888690i \(-0.348384\pi\)
0.458508 + 0.888690i \(0.348384\pi\)
\(854\) 0 0
\(855\) 1.18695 + 1.28890i 0.0405927 + 0.0440795i
\(856\) 0 0
\(857\) 11.1900 11.1900i 0.382243 0.382243i −0.489666 0.871910i \(-0.662881\pi\)
0.871910 + 0.489666i \(0.162881\pi\)
\(858\) 0 0
\(859\) −9.92550 + 9.92550i −0.338654 + 0.338654i −0.855860 0.517207i \(-0.826972\pi\)
0.517207 + 0.855860i \(0.326972\pi\)
\(860\) 0 0
\(861\) 6.77246 75.5791i 0.230805 2.57573i
\(862\) 0 0
\(863\) 9.99669 0.340291 0.170146 0.985419i \(-0.445576\pi\)
0.170146 + 0.985419i \(0.445576\pi\)
\(864\) 0 0
\(865\) 10.9589 + 5.07724i 0.372615 + 0.172631i
\(866\) 0 0
\(867\) 6.47755 + 2.68309i 0.219989 + 0.0911225i
\(868\) 0 0
\(869\) 14.0648 14.0648i 0.477116 0.477116i
\(870\) 0 0
\(871\) 1.36618 0.0462913
\(872\) 0 0
\(873\) 6.50635 + 15.7077i 0.220207 + 0.531626i
\(874\) 0 0
\(875\) −32.6805 41.9413i −1.10480 1.41788i
\(876\) 0 0
\(877\) 4.12554 4.12554i 0.139310 0.139310i −0.634013 0.773322i \(-0.718593\pi\)
0.773322 + 0.634013i \(0.218593\pi\)
\(878\) 0 0
\(879\) 1.74155i 0.0587409i
\(880\) 0 0
\(881\) 15.9100 15.9100i 0.536022 0.536022i −0.386336 0.922358i \(-0.626259\pi\)
0.922358 + 0.386336i \(0.126259\pi\)
\(882\) 0 0
\(883\) −13.6173 5.64045i −0.458257 0.189816i 0.141599 0.989924i \(-0.454776\pi\)
−0.599856 + 0.800108i \(0.704776\pi\)
\(884\) 0 0
\(885\) −61.6528 2.53891i −2.07244 0.0853444i
\(886\) 0 0
\(887\) 15.0984 + 6.25396i 0.506954 + 0.209987i 0.621476 0.783434i \(-0.286533\pi\)
−0.114522 + 0.993421i \(0.536533\pi\)
\(888\) 0 0
\(889\) 19.7427 47.6631i 0.662149 1.59857i
\(890\) 0 0
\(891\) −10.6498 + 25.7108i −0.356781 + 0.861345i
\(892\) 0 0
\(893\) 1.99837 0.0668729
\(894\) 0 0
\(895\) 21.9544 + 0.904099i 0.733856 + 0.0302207i
\(896\) 0 0
\(897\) 22.1386i 0.739186i
\(898\) 0 0
\(899\) 16.1448 38.9771i 0.538461 1.29996i
\(900\) 0 0
\(901\) 27.2173i 0.906740i
\(902\) 0 0
\(903\) −10.6115 10.6115i −0.353129 0.353129i
\(904\) 0 0
\(905\) 28.2533 + 1.16349i 0.939173 + 0.0386758i
\(906\) 0 0
\(907\) 6.16728 0.204781 0.102391 0.994744i \(-0.467351\pi\)
0.102391 + 0.994744i \(0.467351\pi\)
\(908\) 0 0
\(909\) 29.9585 + 12.4092i 0.993660 + 0.411587i
\(910\) 0 0
\(911\) 12.0258 + 12.0258i 0.398433 + 0.398433i 0.877680 0.479247i \(-0.159090\pi\)
−0.479247 + 0.877680i \(0.659090\pi\)
\(912\) 0 0
\(913\) −14.7150 35.5251i −0.486995 1.17571i
\(914\) 0 0
\(915\) −45.6395 49.5599i −1.50880 1.63840i
\(916\) 0 0
\(917\) −31.5731 + 76.2241i −1.04263 + 2.51714i
\(918\) 0 0
\(919\) −40.4109 + 16.7387i −1.33303 + 0.552160i −0.931519 0.363693i \(-0.881516\pi\)
−0.401514 + 0.915853i \(0.631516\pi\)
\(920\) 0 0
\(921\) 2.51504 + 6.07185i 0.0828734 + 0.200074i
\(922\) 0 0
\(923\) 2.12959i 0.0700964i
\(924\) 0 0
\(925\) −57.2419 4.72253i −1.88210 0.155276i
\(926\) 0 0
\(927\) 18.0509 + 18.0509i 0.592871 + 0.592871i
\(928\) 0 0
\(929\) 2.20155 + 5.31502i 0.0722306 + 0.174380i 0.955871 0.293785i \(-0.0949151\pi\)
−0.883641 + 0.468165i \(0.844915\pi\)
\(930\) 0 0
\(931\) 1.45905 3.52246i 0.0478184 0.115444i
\(932\) 0 0
\(933\) 38.3804 38.3804i 1.25652 1.25652i
\(934\) 0 0
\(935\) −31.2290 + 11.4541i −1.02130 + 0.374588i
\(936\) 0 0
\(937\) 4.41312 10.6542i 0.144170 0.348058i −0.835256 0.549862i \(-0.814680\pi\)
0.979426 + 0.201804i \(0.0646804\pi\)
\(938\) 0 0
\(939\) 66.1486i 2.15868i
\(940\) 0 0
\(941\) 41.3204 + 41.3204i 1.34701 + 1.34701i 0.888894 + 0.458114i \(0.151475\pi\)
0.458114 + 0.888894i \(0.348525\pi\)
\(942\) 0 0
\(943\) 30.4813 + 2.73135i 0.992608 + 0.0889452i
\(944\) 0 0
\(945\) 2.33486 5.03966i 0.0759529 0.163940i
\(946\) 0 0
\(947\) 6.07026 + 6.07026i 0.197257 + 0.197257i 0.798823 0.601566i \(-0.205456\pi\)
−0.601566 + 0.798823i \(0.705456\pi\)
\(948\) 0 0
\(949\) 4.87855 2.02076i 0.158364 0.0655967i
\(950\) 0 0
\(951\) 25.6675 + 25.6675i 0.832326 + 0.832326i
\(952\) 0 0
\(953\) 38.3744 + 38.3744i 1.24307 + 1.24307i 0.958721 + 0.284350i \(0.0917777\pi\)
0.284350 + 0.958721i \(0.408222\pi\)
\(954\) 0 0
\(955\) 0.173592 4.21538i 0.00561731 0.136407i
\(956\) 0 0
\(957\) −33.7870 13.9950i −1.09218 0.452395i
\(958\) 0 0
\(959\) 65.4230i 2.11262i
\(960\) 0 0
\(961\) −61.2953 −1.97727
\(962\) 0 0
\(963\) 12.8363 0.413643
\(964\) 0 0
\(965\) −1.26527 + 30.7248i −0.0407304 + 0.989066i
\(966\) 0 0
\(967\) −13.1734 + 31.8034i −0.423628 + 1.02273i 0.557640 + 0.830083i \(0.311707\pi\)
−0.981268 + 0.192646i \(0.938293\pi\)
\(968\) 0 0
\(969\) 2.50190 1.03632i 0.0803726 0.0332914i
\(970\) 0 0
\(971\) −7.42464 3.07539i −0.238268 0.0986938i 0.260354 0.965513i \(-0.416161\pi\)
−0.498622 + 0.866819i \(0.666161\pi\)
\(972\) 0 0
\(973\) −21.4215 + 8.87306i −0.686740 + 0.284457i
\(974\) 0 0
\(975\) −23.0817 1.90427i −0.739207 0.0609855i
\(976\) 0 0
\(977\) 19.6456 8.13749i 0.628520 0.260341i −0.0456044 0.998960i \(-0.514521\pi\)
0.674124 + 0.738618i \(0.264521\pi\)
\(978\) 0 0
\(979\) −36.8100 36.8100i −1.17645 1.17645i
\(980\) 0 0
\(981\) 3.80234 + 1.57498i 0.121399 + 0.0502853i
\(982\) 0 0
\(983\) 23.2199 23.2199i 0.740601 0.740601i −0.232093 0.972694i \(-0.574557\pi\)
0.972694 + 0.232093i \(0.0745574\pi\)
\(984\) 0 0
\(985\) −11.8678 5.49830i −0.378139 0.175190i
\(986\) 0 0
\(987\) −37.1212 89.6184i −1.18158 2.85258i
\(988\) 0 0
\(989\) 4.27966 4.27966i 0.136085 0.136085i
\(990\) 0 0
\(991\) 16.8885 40.7723i 0.536479 1.29518i −0.390686 0.920524i \(-0.627762\pi\)
0.927165 0.374652i \(-0.122238\pi\)
\(992\) 0 0
\(993\) 51.8883i 1.64662i
\(994\) 0 0
\(995\) 31.6186 + 1.30208i 1.00238 + 0.0412786i
\(996\) 0 0
\(997\) −22.8281 55.1118i −0.722972 1.74541i −0.664702 0.747109i \(-0.731441\pi\)
−0.0582703 0.998301i \(-0.518559\pi\)
\(998\) 0 0
\(999\) −2.29606 5.54318i −0.0726441 0.175378i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.413.18 yes 84
5.2 odd 4 820.2.x.a.577.4 84
41.14 odd 8 820.2.x.a.793.4 yes 84
205.137 even 8 inner 820.2.y.a.137.18 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.4 84 5.2 odd 4
820.2.x.a.793.4 yes 84 41.14 odd 8
820.2.y.a.137.18 yes 84 205.137 even 8 inner
820.2.y.a.413.18 yes 84 1.1 even 1 trivial