Properties

Label 820.2.y.a.137.18
Level $820$
Weight $2$
Character 820.137
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 137.18
Character \(\chi\) \(=\) 820.137
Dual form 820.2.y.a.413.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.30222 + 0.953612i) q^{3} +(0.939983 + 2.02890i) q^{5} +(1.81993 - 4.39370i) q^{7} +(2.26953 + 2.26953i) q^{9} +(3.08755 - 1.27890i) q^{11} +(1.71733 + 0.711343i) q^{13} +(0.229267 + 5.56736i) q^{15} +(-4.11242 + 1.70342i) q^{17} +(-0.225557 - 0.0934287i) q^{19} +(8.37976 - 8.37976i) q^{21} +(-3.37958 - 3.37958i) q^{23} +(-3.23286 + 3.81426i) q^{25} +(0.199878 + 0.482549i) q^{27} +(-4.05714 + 1.68052i) q^{29} -9.60705i q^{31} +8.32780 q^{33} +(10.6251 - 0.437547i) q^{35} +(8.12274 + 8.12274i) q^{37} +(3.27534 + 3.27534i) q^{39} +(-4.10553 + 4.91372i) q^{41} -1.26633 q^{43} +(-2.47133 + 6.73797i) q^{45} +(-7.56224 + 3.13238i) q^{47} +(-11.0427 - 11.0427i) q^{49} -11.0921 q^{51} +(-2.33993 + 5.64909i) q^{53} +(5.49701 + 5.06218i) q^{55} +(-0.430187 - 0.430187i) q^{57} +11.0740i q^{59} +(8.54979 + 8.54979i) q^{61} +(14.1020 - 5.84124i) q^{63} +(0.171021 + 4.15295i) q^{65} +(0.679022 - 0.281260i) q^{67} +(-4.55774 - 11.0034i) q^{69} +(-0.438426 - 1.05846i) q^{71} +2.84077 q^{73} +(-11.0801 + 5.69838i) q^{75} -15.8933i q^{77} +(2.27767 + 5.49878i) q^{79} -8.32726i q^{81} +(-8.13593 + 8.13593i) q^{83} +(-7.32167 - 6.74250i) q^{85} -10.9430 q^{87} +(-14.3912 + 5.96104i) q^{89} +(6.25085 - 6.25085i) q^{91} +(9.16139 - 22.1176i) q^{93} +(-0.0224622 - 0.545454i) q^{95} +(-2.02715 - 4.89398i) q^{97} +(9.90980 + 4.10477i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.30222 + 0.953612i 1.32919 + 0.550568i 0.930424 0.366485i \(-0.119439\pi\)
0.398765 + 0.917053i \(0.369439\pi\)
\(4\) 0 0
\(5\) 0.939983 + 2.02890i 0.420373 + 0.907351i
\(6\) 0 0
\(7\) 1.81993 4.39370i 0.687868 1.66066i −0.0611643 0.998128i \(-0.519481\pi\)
0.749033 0.662533i \(-0.230519\pi\)
\(8\) 0 0
\(9\) 2.26953 + 2.26953i 0.756510 + 0.756510i
\(10\) 0 0
\(11\) 3.08755 1.27890i 0.930931 0.385604i 0.134899 0.990859i \(-0.456929\pi\)
0.796031 + 0.605255i \(0.206929\pi\)
\(12\) 0 0
\(13\) 1.71733 + 0.711343i 0.476303 + 0.197291i 0.607902 0.794012i \(-0.292011\pi\)
−0.131599 + 0.991303i \(0.542011\pi\)
\(14\) 0 0
\(15\) 0.229267 + 5.56736i 0.0591966 + 1.43748i
\(16\) 0 0
\(17\) −4.11242 + 1.70342i −0.997408 + 0.413140i −0.820846 0.571150i \(-0.806498\pi\)
−0.176562 + 0.984290i \(0.556498\pi\)
\(18\) 0 0
\(19\) −0.225557 0.0934287i −0.0517463 0.0214340i 0.356660 0.934234i \(-0.383915\pi\)
−0.408406 + 0.912800i \(0.633915\pi\)
\(20\) 0 0
\(21\) 8.37976 8.37976i 1.82861 1.82861i
\(22\) 0 0
\(23\) −3.37958 3.37958i −0.704692 0.704692i 0.260722 0.965414i \(-0.416039\pi\)
−0.965414 + 0.260722i \(0.916039\pi\)
\(24\) 0 0
\(25\) −3.23286 + 3.81426i −0.646573 + 0.762852i
\(26\) 0 0
\(27\) 0.199878 + 0.482549i 0.0384666 + 0.0928666i
\(28\) 0 0
\(29\) −4.05714 + 1.68052i −0.753391 + 0.312065i −0.726124 0.687563i \(-0.758680\pi\)
−0.0272669 + 0.999628i \(0.508680\pi\)
\(30\) 0 0
\(31\) 9.60705i 1.72548i −0.505651 0.862738i \(-0.668748\pi\)
0.505651 0.862738i \(-0.331252\pi\)
\(32\) 0 0
\(33\) 8.32780 1.44968
\(34\) 0 0
\(35\) 10.6251 0.437547i 1.79596 0.0739590i
\(36\) 0 0
\(37\) 8.12274 + 8.12274i 1.33537 + 1.33537i 0.900487 + 0.434882i \(0.143210\pi\)
0.434882 + 0.900487i \(0.356790\pi\)
\(38\) 0 0
\(39\) 3.27534 + 3.27534i 0.524474 + 0.524474i
\(40\) 0 0
\(41\) −4.10553 + 4.91372i −0.641176 + 0.767394i
\(42\) 0 0
\(43\) −1.26633 −0.193113 −0.0965566 0.995327i \(-0.530783\pi\)
−0.0965566 + 0.995327i \(0.530783\pi\)
\(44\) 0 0
\(45\) −2.47133 + 6.73797i −0.368404 + 1.00444i
\(46\) 0 0
\(47\) −7.56224 + 3.13238i −1.10307 + 0.456905i −0.858545 0.512739i \(-0.828631\pi\)
−0.244522 + 0.969644i \(0.578631\pi\)
\(48\) 0 0
\(49\) −11.0427 11.0427i −1.57753 1.57753i
\(50\) 0 0
\(51\) −11.0921 −1.55320
\(52\) 0 0
\(53\) −2.33993 + 5.64909i −0.321414 + 0.775963i 0.677758 + 0.735285i \(0.262952\pi\)
−0.999172 + 0.0406777i \(0.987048\pi\)
\(54\) 0 0
\(55\) 5.49701 + 5.06218i 0.741217 + 0.682584i
\(56\) 0 0
\(57\) −0.430187 0.430187i −0.0569797 0.0569797i
\(58\) 0 0
\(59\) 11.0740i 1.44171i 0.693085 + 0.720855i \(0.256251\pi\)
−0.693085 + 0.720855i \(0.743749\pi\)
\(60\) 0 0
\(61\) 8.54979 + 8.54979i 1.09469 + 1.09469i 0.995021 + 0.0996673i \(0.0317778\pi\)
0.0996673 + 0.995021i \(0.468222\pi\)
\(62\) 0 0
\(63\) 14.1020 5.84124i 1.77669 0.735928i
\(64\) 0 0
\(65\) 0.171021 + 4.15295i 0.0212126 + 0.515110i
\(66\) 0 0
\(67\) 0.679022 0.281260i 0.0829557 0.0343614i −0.340820 0.940129i \(-0.610705\pi\)
0.423775 + 0.905767i \(0.360705\pi\)
\(68\) 0 0
\(69\) −4.55774 11.0034i −0.548688 1.32465i
\(70\) 0 0
\(71\) −0.438426 1.05846i −0.0520316 0.125616i 0.895726 0.444606i \(-0.146656\pi\)
−0.947758 + 0.318990i \(0.896656\pi\)
\(72\) 0 0
\(73\) 2.84077 0.332487 0.166243 0.986085i \(-0.446836\pi\)
0.166243 + 0.986085i \(0.446836\pi\)
\(74\) 0 0
\(75\) −11.0801 + 5.69838i −1.27942 + 0.657992i
\(76\) 0 0
\(77\) 15.8933i 1.81121i
\(78\) 0 0
\(79\) 2.27767 + 5.49878i 0.256258 + 0.618661i 0.998685 0.0512659i \(-0.0163256\pi\)
−0.742427 + 0.669927i \(0.766326\pi\)
\(80\) 0 0
\(81\) 8.32726i 0.925251i
\(82\) 0 0
\(83\) −8.13593 + 8.13593i −0.893034 + 0.893034i −0.994808 0.101774i \(-0.967548\pi\)
0.101774 + 0.994808i \(0.467548\pi\)
\(84\) 0 0
\(85\) −7.32167 6.74250i −0.794146 0.731326i
\(86\) 0 0
\(87\) −10.9430 −1.17321
\(88\) 0 0
\(89\) −14.3912 + 5.96104i −1.52547 + 0.631869i −0.978678 0.205402i \(-0.934150\pi\)
−0.546788 + 0.837271i \(0.684150\pi\)
\(90\) 0 0
\(91\) 6.25085 6.25085i 0.655267 0.655267i
\(92\) 0 0
\(93\) 9.16139 22.1176i 0.949992 2.29348i
\(94\) 0 0
\(95\) −0.0224622 0.545454i −0.00230457 0.0559624i
\(96\) 0 0
\(97\) −2.02715 4.89398i −0.205826 0.496908i 0.786932 0.617040i \(-0.211668\pi\)
−0.992758 + 0.120132i \(0.961668\pi\)
\(98\) 0 0
\(99\) 9.90980 + 4.10477i 0.995972 + 0.412545i
\(100\) 0 0
\(101\) 3.86628 9.33402i 0.384709 0.928770i −0.606332 0.795212i \(-0.707360\pi\)
0.991041 0.133558i \(-0.0426403\pi\)
\(102\) 0 0
\(103\) 7.95360i 0.783692i −0.920031 0.391846i \(-0.871837\pi\)
0.920031 0.391846i \(-0.128163\pi\)
\(104\) 0 0
\(105\) 24.8785 + 9.12486i 2.42789 + 0.890495i
\(106\) 0 0
\(107\) 2.82796 2.82796i 0.273389 0.273389i −0.557074 0.830463i \(-0.688076\pi\)
0.830463 + 0.557074i \(0.188076\pi\)
\(108\) 0 0
\(109\) 0.490710 1.18468i 0.0470014 0.113472i −0.898635 0.438697i \(-0.855440\pi\)
0.945637 + 0.325225i \(0.105440\pi\)
\(110\) 0 0
\(111\) 10.9544 + 26.4463i 1.03975 + 2.51017i
\(112\) 0 0
\(113\) −5.14733 5.14733i −0.484220 0.484220i 0.422257 0.906476i \(-0.361238\pi\)
−0.906476 + 0.422257i \(0.861238\pi\)
\(114\) 0 0
\(115\) 3.68009 10.0336i 0.343170 0.935637i
\(116\) 0 0
\(117\) 2.28313 + 5.51196i 0.211075 + 0.509581i
\(118\) 0 0
\(119\) 21.1688i 1.94054i
\(120\) 0 0
\(121\) 0.119181 0.119181i 0.0108347 0.0108347i
\(122\) 0 0
\(123\) −14.1376 + 7.39740i −1.27475 + 0.667001i
\(124\) 0 0
\(125\) −10.7776 2.97382i −0.963977 0.265986i
\(126\) 0 0
\(127\) −7.67074 + 7.67074i −0.680668 + 0.680668i −0.960151 0.279483i \(-0.909837\pi\)
0.279483 + 0.960151i \(0.409837\pi\)
\(128\) 0 0
\(129\) −2.91537 1.20759i −0.256684 0.106322i
\(130\) 0 0
\(131\) 12.2673 12.2673i 1.07180 1.07180i 0.0745802 0.997215i \(-0.476238\pi\)
0.997215 0.0745802i \(-0.0237617\pi\)
\(132\) 0 0
\(133\) −0.820995 + 0.820995i −0.0711893 + 0.0711893i
\(134\) 0 0
\(135\) −0.791161 + 0.859120i −0.0680923 + 0.0739413i
\(136\) 0 0
\(137\) 12.7096 5.26448i 1.08585 0.449775i 0.233294 0.972406i \(-0.425049\pi\)
0.852559 + 0.522631i \(0.175049\pi\)
\(138\) 0 0
\(139\) 4.87550i 0.413534i −0.978390 0.206767i \(-0.933706\pi\)
0.978390 0.206767i \(-0.0662943\pi\)
\(140\) 0 0
\(141\) −20.3970 −1.71774
\(142\) 0 0
\(143\) 6.21209 0.519481
\(144\) 0 0
\(145\) −7.22325 6.65186i −0.599858 0.552407i
\(146\) 0 0
\(147\) −14.8923 35.9531i −1.22829 2.96536i
\(148\) 0 0
\(149\) 17.3040 + 7.16754i 1.41760 + 0.587188i 0.954256 0.298992i \(-0.0966504\pi\)
0.463341 + 0.886180i \(0.346650\pi\)
\(150\) 0 0
\(151\) 4.79800 1.98740i 0.390456 0.161732i −0.178814 0.983883i \(-0.557226\pi\)
0.569270 + 0.822151i \(0.307226\pi\)
\(152\) 0 0
\(153\) −13.1992 5.46730i −1.06709 0.442005i
\(154\) 0 0
\(155\) 19.4917 9.03046i 1.56561 0.725344i
\(156\) 0 0
\(157\) −1.07783 0.446451i −0.0860200 0.0356306i 0.339259 0.940693i \(-0.389824\pi\)
−0.425279 + 0.905063i \(0.639824\pi\)
\(158\) 0 0
\(159\) −10.7741 + 10.7741i −0.854440 + 0.854440i
\(160\) 0 0
\(161\) −20.9995 + 8.69826i −1.65499 + 0.685519i
\(162\) 0 0
\(163\) −11.5006 11.5006i −0.900793 0.900793i 0.0947116 0.995505i \(-0.469807\pi\)
−0.995505 + 0.0947116i \(0.969807\pi\)
\(164\) 0 0
\(165\) 7.82799 + 16.8963i 0.609408 + 1.31537i
\(166\) 0 0
\(167\) 5.80682 14.0189i 0.449345 1.08482i −0.523222 0.852196i \(-0.675270\pi\)
0.972568 0.232620i \(-0.0747297\pi\)
\(168\) 0 0
\(169\) −6.74916 6.74916i −0.519166 0.519166i
\(170\) 0 0
\(171\) −0.299869 0.723948i −0.0229316 0.0553617i
\(172\) 0 0
\(173\) 5.40142i 0.410662i −0.978693 0.205331i \(-0.934173\pi\)
0.978693 0.205331i \(-0.0658272\pi\)
\(174\) 0 0
\(175\) 10.8751 + 21.1459i 0.822082 + 1.59848i
\(176\) 0 0
\(177\) −10.5603 + 25.4948i −0.793760 + 1.91631i
\(178\) 0 0
\(179\) 3.76050 9.07864i 0.281073 0.678569i −0.718789 0.695229i \(-0.755303\pi\)
0.999861 + 0.0166593i \(0.00530307\pi\)
\(180\) 0 0
\(181\) 4.83941 11.6834i 0.359711 0.868418i −0.635630 0.771994i \(-0.719260\pi\)
0.995340 0.0964240i \(-0.0307405\pi\)
\(182\) 0 0
\(183\) 11.5303 + 27.8367i 0.852347 + 2.05775i
\(184\) 0 0
\(185\) −8.84498 + 24.1154i −0.650296 + 1.77300i
\(186\) 0 0
\(187\) −10.5188 + 10.5188i −0.769209 + 0.769209i
\(188\) 0 0
\(189\) 2.48394 0.180680
\(190\) 0 0
\(191\) 1.74315 + 0.722037i 0.126130 + 0.0522448i 0.444856 0.895602i \(-0.353255\pi\)
−0.318726 + 0.947847i \(0.603255\pi\)
\(192\) 0 0
\(193\) −12.7054 5.26274i −0.914553 0.378820i −0.124755 0.992188i \(-0.539814\pi\)
−0.789798 + 0.613367i \(0.789814\pi\)
\(194\) 0 0
\(195\) −3.56657 + 9.72410i −0.255408 + 0.696357i
\(196\) 0 0
\(197\) 5.84936i 0.416750i 0.978049 + 0.208375i \(0.0668174\pi\)
−0.978049 + 0.208375i \(0.933183\pi\)
\(198\) 0 0
\(199\) 5.41583 13.0750i 0.383918 0.926860i −0.607282 0.794487i \(-0.707740\pi\)
0.991200 0.132374i \(-0.0422599\pi\)
\(200\) 0 0
\(201\) 1.83147 0.129182
\(202\) 0 0
\(203\) 20.8843i 1.46579i
\(204\) 0 0
\(205\) −13.8286 3.71089i −0.965829 0.259180i
\(206\) 0 0
\(207\) 15.3401i 1.06621i
\(208\) 0 0
\(209\) −0.815904 −0.0564373
\(210\) 0 0
\(211\) −4.23485 + 10.2238i −0.291539 + 0.703837i −0.999998 0.00191443i \(-0.999391\pi\)
0.708459 + 0.705752i \(0.249391\pi\)
\(212\) 0 0
\(213\) 2.85489i 0.195614i
\(214\) 0 0
\(215\) −1.19033 2.56925i −0.0811796 0.175222i
\(216\) 0 0
\(217\) −42.2104 17.4841i −2.86543 1.18690i
\(218\) 0 0
\(219\) 6.54008 + 2.70899i 0.441937 + 0.183056i
\(220\) 0 0
\(221\) −8.27411 −0.556577
\(222\) 0 0
\(223\) 5.58256 5.58256i 0.373836 0.373836i −0.495036 0.868872i \(-0.664845\pi\)
0.868872 + 0.495036i \(0.164845\pi\)
\(224\) 0 0
\(225\) −15.9937 + 1.31950i −1.06624 + 0.0879665i
\(226\) 0 0
\(227\) −0.394646 0.952759i −0.0261935 0.0632368i 0.910242 0.414078i \(-0.135896\pi\)
−0.936435 + 0.350841i \(0.885896\pi\)
\(228\) 0 0
\(229\) 3.96815 9.57997i 0.262223 0.633062i −0.736853 0.676053i \(-0.763689\pi\)
0.999075 + 0.0429914i \(0.0136888\pi\)
\(230\) 0 0
\(231\) 15.1560 36.5898i 0.997191 2.40743i
\(232\) 0 0
\(233\) 5.12878 12.3820i 0.335998 0.811170i −0.662094 0.749421i \(-0.730332\pi\)
0.998092 0.0617495i \(-0.0196680\pi\)
\(234\) 0 0
\(235\) −13.4637 12.3986i −0.878273 0.808798i
\(236\) 0 0
\(237\) 14.8314i 0.963404i
\(238\) 0 0
\(239\) 4.12752 + 9.96472i 0.266987 + 0.644564i 0.999339 0.0363628i \(-0.0115772\pi\)
−0.732352 + 0.680927i \(0.761577\pi\)
\(240\) 0 0
\(241\) 16.0789 + 16.0789i 1.03573 + 1.03573i 0.999338 + 0.0363924i \(0.0115866\pi\)
0.0363924 + 0.999338i \(0.488413\pi\)
\(242\) 0 0
\(243\) 8.54061 20.6189i 0.547880 1.32270i
\(244\) 0 0
\(245\) 12.0245 32.7844i 0.768220 2.09452i
\(246\) 0 0
\(247\) −0.320897 0.320897i −0.0204182 0.0204182i
\(248\) 0 0
\(249\) −26.4892 + 10.9722i −1.67869 + 0.695335i
\(250\) 0 0
\(251\) −5.71142 + 5.71142i −0.360502 + 0.360502i −0.863998 0.503496i \(-0.832047\pi\)
0.503496 + 0.863998i \(0.332047\pi\)
\(252\) 0 0
\(253\) −14.7568 6.11246i −0.927752 0.384287i
\(254\) 0 0
\(255\) −10.4264 22.5047i −0.652925 1.40930i
\(256\) 0 0
\(257\) −15.9445 6.60442i −0.994589 0.411972i −0.174779 0.984608i \(-0.555921\pi\)
−0.819810 + 0.572635i \(0.805921\pi\)
\(258\) 0 0
\(259\) 50.4716 20.9060i 3.13615 1.29904i
\(260\) 0 0
\(261\) −13.0218 5.39380i −0.806029 0.333868i
\(262\) 0 0
\(263\) −1.89306 4.57025i −0.116731 0.281813i 0.854706 0.519113i \(-0.173738\pi\)
−0.971436 + 0.237300i \(0.923738\pi\)
\(264\) 0 0
\(265\) −13.6609 + 0.562567i −0.839185 + 0.0345582i
\(266\) 0 0
\(267\) −38.8163 −2.37552
\(268\) 0 0
\(269\) 29.2245 1.78185 0.890926 0.454149i \(-0.150057\pi\)
0.890926 + 0.454149i \(0.150057\pi\)
\(270\) 0 0
\(271\) 8.57120i 0.520663i 0.965519 + 0.260332i \(0.0838319\pi\)
−0.965519 + 0.260332i \(0.916168\pi\)
\(272\) 0 0
\(273\) 20.3517 8.42996i 1.23174 0.510205i
\(274\) 0 0
\(275\) −5.10355 + 15.9112i −0.307756 + 0.959484i
\(276\) 0 0
\(277\) −22.5943 + 22.5943i −1.35756 + 1.35756i −0.480645 + 0.876916i \(0.659597\pi\)
−0.876916 + 0.480645i \(0.840403\pi\)
\(278\) 0 0
\(279\) 21.8035 21.8035i 1.30534 1.30534i
\(280\) 0 0
\(281\) 12.5253 + 5.18815i 0.747197 + 0.309499i 0.723598 0.690222i \(-0.242487\pi\)
0.0236000 + 0.999721i \(0.492487\pi\)
\(282\) 0 0
\(283\) −20.4032 + 20.4032i −1.21285 + 1.21285i −0.242760 + 0.970086i \(0.578053\pi\)
−0.970086 + 0.242760i \(0.921947\pi\)
\(284\) 0 0
\(285\) 0.468438 1.27718i 0.0277479 0.0756534i
\(286\) 0 0
\(287\) 14.1176 + 26.9811i 0.833337 + 1.59264i
\(288\) 0 0
\(289\) 1.98952 1.98952i 0.117031 0.117031i
\(290\) 0 0
\(291\) 13.2001i 0.773806i
\(292\) 0 0
\(293\) −0.267450 0.645681i −0.0156246 0.0377211i 0.915875 0.401464i \(-0.131499\pi\)
−0.931499 + 0.363743i \(0.881499\pi\)
\(294\) 0 0
\(295\) −22.4680 + 10.4094i −1.30814 + 0.606056i
\(296\) 0 0
\(297\) 1.23427 + 1.23427i 0.0716195 + 0.0716195i
\(298\) 0 0
\(299\) −3.39983 8.20792i −0.196617 0.474676i
\(300\) 0 0
\(301\) −2.30463 + 5.56386i −0.132836 + 0.320696i
\(302\) 0 0
\(303\) 17.8021 17.8021i 1.02270 1.02270i
\(304\) 0 0
\(305\) −9.31000 + 25.3833i −0.533089 + 1.45344i
\(306\) 0 0
\(307\) 2.63739i 0.150524i −0.997164 0.0752618i \(-0.976021\pi\)
0.997164 0.0752618i \(-0.0239792\pi\)
\(308\) 0 0
\(309\) 7.58465 18.3110i 0.431475 1.04167i
\(310\) 0 0
\(311\) 20.1237 + 8.33552i 1.14111 + 0.472664i 0.871544 0.490317i \(-0.163119\pi\)
0.269568 + 0.962981i \(0.413119\pi\)
\(312\) 0 0
\(313\) −10.1585 24.5247i −0.574191 1.38622i −0.897957 0.440082i \(-0.854949\pi\)
0.323767 0.946137i \(-0.395051\pi\)
\(314\) 0 0
\(315\) 25.1069 + 23.1209i 1.41462 + 1.30271i
\(316\) 0 0
\(317\) 5.57451 13.4580i 0.313095 0.755879i −0.686491 0.727138i \(-0.740850\pi\)
0.999587 0.0287414i \(-0.00914992\pi\)
\(318\) 0 0
\(319\) −10.3774 + 10.3774i −0.581022 + 0.581022i
\(320\) 0 0
\(321\) 9.20735 3.81381i 0.513904 0.212866i
\(322\) 0 0
\(323\) 1.08673 0.0604674
\(324\) 0 0
\(325\) −8.26516 + 4.25069i −0.458469 + 0.235786i
\(326\) 0 0
\(327\) 2.25944 2.25944i 0.124948 0.124948i
\(328\) 0 0
\(329\) 38.9269i 2.14611i
\(330\) 0 0
\(331\) 7.96851 + 19.2377i 0.437989 + 1.05740i 0.976642 + 0.214871i \(0.0689331\pi\)
−0.538654 + 0.842527i \(0.681067\pi\)
\(332\) 0 0
\(333\) 36.8696i 2.02044i
\(334\) 0 0
\(335\) 1.20892 + 1.11329i 0.0660502 + 0.0608254i
\(336\) 0 0
\(337\) 31.4036 1.71066 0.855331 0.518081i \(-0.173353\pi\)
0.855331 + 0.518081i \(0.173353\pi\)
\(338\) 0 0
\(339\) −6.94174 16.7588i −0.377023 0.910215i
\(340\) 0 0
\(341\) −12.2865 29.6622i −0.665351 1.60630i
\(342\) 0 0
\(343\) −37.8592 + 15.6818i −2.04420 + 0.846736i
\(344\) 0 0
\(345\) 18.0405 19.5902i 0.971269 1.05470i
\(346\) 0 0
\(347\) −15.3701 + 6.36649i −0.825108 + 0.341771i −0.754964 0.655766i \(-0.772346\pi\)
−0.0701440 + 0.997537i \(0.522346\pi\)
\(348\) 0 0
\(349\) 15.0669 + 15.0669i 0.806514 + 0.806514i 0.984104 0.177591i \(-0.0568302\pi\)
−0.177591 + 0.984104i \(0.556830\pi\)
\(350\) 0 0
\(351\) 0.970880i 0.0518217i
\(352\) 0 0
\(353\) 10.7011 + 10.7011i 0.569560 + 0.569560i 0.932005 0.362445i \(-0.118058\pi\)
−0.362445 + 0.932005i \(0.618058\pi\)
\(354\) 0 0
\(355\) 1.73539 1.88445i 0.0921047 0.100016i
\(356\) 0 0
\(357\) −20.1868 + 48.7353i −1.06840 + 2.57935i
\(358\) 0 0
\(359\) 9.40023 0.496125 0.248063 0.968744i \(-0.420206\pi\)
0.248063 + 0.968744i \(0.420206\pi\)
\(360\) 0 0
\(361\) −13.3929 13.3929i −0.704889 0.704889i
\(362\) 0 0
\(363\) 0.388034 0.160729i 0.0203665 0.00843608i
\(364\) 0 0
\(365\) 2.67027 + 5.76363i 0.139768 + 0.301682i
\(366\) 0 0
\(367\) 10.9077 0.569377 0.284688 0.958620i \(-0.408110\pi\)
0.284688 + 0.958620i \(0.408110\pi\)
\(368\) 0 0
\(369\) −20.4695 + 1.83422i −1.06560 + 0.0954856i
\(370\) 0 0
\(371\) 20.5619 + 20.5619i 1.06752 + 1.06752i
\(372\) 0 0
\(373\) 13.7142 + 13.7142i 0.710097 + 0.710097i 0.966555 0.256459i \(-0.0825558\pi\)
−0.256459 + 0.966555i \(0.582556\pi\)
\(374\) 0 0
\(375\) −21.9765 17.1240i −1.13486 0.884281i
\(376\) 0 0
\(377\) −8.16289 −0.420410
\(378\) 0 0
\(379\) 21.9556i 1.12778i 0.825849 + 0.563891i \(0.190696\pi\)
−0.825849 + 0.563891i \(0.809304\pi\)
\(380\) 0 0
\(381\) −24.9747 + 10.3448i −1.27949 + 0.529982i
\(382\) 0 0
\(383\) −8.29014 20.0142i −0.423606 1.02268i −0.981275 0.192612i \(-0.938304\pi\)
0.557669 0.830064i \(-0.311696\pi\)
\(384\) 0 0
\(385\) 32.2458 14.9394i 1.64340 0.761382i
\(386\) 0 0
\(387\) −2.87397 2.87397i −0.146092 0.146092i
\(388\) 0 0
\(389\) −7.74110 + 7.74110i −0.392490 + 0.392490i −0.875574 0.483084i \(-0.839516\pi\)
0.483084 + 0.875574i \(0.339516\pi\)
\(390\) 0 0
\(391\) 19.6551 + 8.14141i 0.994002 + 0.411729i
\(392\) 0 0
\(393\) 39.9401 16.5438i 2.01471 0.834522i
\(394\) 0 0
\(395\) −9.01549 + 9.78991i −0.453619 + 0.492584i
\(396\) 0 0
\(397\) 35.4233 + 14.6728i 1.77785 + 0.736408i 0.993194 + 0.116471i \(0.0371581\pi\)
0.784652 + 0.619937i \(0.212842\pi\)
\(398\) 0 0
\(399\) −2.67302 + 1.10720i −0.133819 + 0.0554294i
\(400\) 0 0
\(401\) 0.208693 + 0.208693i 0.0104216 + 0.0104216i 0.712298 0.701877i \(-0.247654\pi\)
−0.701877 + 0.712298i \(0.747654\pi\)
\(402\) 0 0
\(403\) 6.83391 16.4985i 0.340421 0.821849i
\(404\) 0 0
\(405\) 16.8952 7.82748i 0.839528 0.388951i
\(406\) 0 0
\(407\) 35.4675 + 14.6911i 1.75806 + 0.728213i
\(408\) 0 0
\(409\) −4.00115 −0.197844 −0.0989221 0.995095i \(-0.531539\pi\)
−0.0989221 + 0.995095i \(0.531539\pi\)
\(410\) 0 0
\(411\) 34.2806 1.69094
\(412\) 0 0
\(413\) 48.6557 + 20.1539i 2.39419 + 0.991707i
\(414\) 0 0
\(415\) −24.1546 8.85934i −1.18570 0.434888i
\(416\) 0 0
\(417\) 4.64933 11.2245i 0.227679 0.549665i
\(418\) 0 0
\(419\) 26.6694 + 26.6694i 1.30288 + 1.30288i 0.926439 + 0.376445i \(0.122853\pi\)
0.376445 + 0.926439i \(0.377147\pi\)
\(420\) 0 0
\(421\) 3.13599 1.29897i 0.152839 0.0633078i −0.304953 0.952367i \(-0.598641\pi\)
0.457791 + 0.889060i \(0.348641\pi\)
\(422\) 0 0
\(423\) −24.2718 10.0537i −1.18013 0.488828i
\(424\) 0 0
\(425\) 6.79760 21.1928i 0.329732 1.02800i
\(426\) 0 0
\(427\) 53.1252 22.0052i 2.57091 1.06490i
\(428\) 0 0
\(429\) 14.3016 + 5.92392i 0.690489 + 0.286010i
\(430\) 0 0
\(431\) −2.36464 + 2.36464i −0.113901 + 0.113901i −0.761760 0.647859i \(-0.775664\pi\)
0.647859 + 0.761760i \(0.275664\pi\)
\(432\) 0 0
\(433\) −4.26329 4.26329i −0.204881 0.204881i 0.597207 0.802087i \(-0.296277\pi\)
−0.802087 + 0.597207i \(0.796277\pi\)
\(434\) 0 0
\(435\) −10.2862 22.2022i −0.493187 1.06452i
\(436\) 0 0
\(437\) 0.446538 + 1.07804i 0.0213608 + 0.0515696i
\(438\) 0 0
\(439\) 3.49173 1.44632i 0.166651 0.0690291i −0.297798 0.954629i \(-0.596252\pi\)
0.464449 + 0.885600i \(0.346252\pi\)
\(440\) 0 0
\(441\) 50.1234i 2.38683i
\(442\) 0 0
\(443\) −7.32910 −0.348216 −0.174108 0.984727i \(-0.555704\pi\)
−0.174108 + 0.984727i \(0.555704\pi\)
\(444\) 0 0
\(445\) −25.6218 23.5951i −1.21459 1.11851i
\(446\) 0 0
\(447\) 33.0025 + 33.0025i 1.56097 + 1.56097i
\(448\) 0 0
\(449\) −19.9406 19.9406i −0.941055 0.941055i 0.0573016 0.998357i \(-0.481750\pi\)
−0.998357 + 0.0573016i \(0.981750\pi\)
\(450\) 0 0
\(451\) −6.39184 + 20.4219i −0.300980 + 0.961631i
\(452\) 0 0
\(453\) 12.9413 0.608034
\(454\) 0 0
\(455\) 18.5580 + 6.80666i 0.870015 + 0.319101i
\(456\) 0 0
\(457\) −9.07504 + 3.75901i −0.424513 + 0.175839i −0.584703 0.811247i \(-0.698789\pi\)
0.160191 + 0.987086i \(0.448789\pi\)
\(458\) 0 0
\(459\) −1.64397 1.64397i −0.0767337 0.0767337i
\(460\) 0 0
\(461\) −12.3439 −0.574912 −0.287456 0.957794i \(-0.592809\pi\)
−0.287456 + 0.957794i \(0.592809\pi\)
\(462\) 0 0
\(463\) 7.25484 17.5147i 0.337161 0.813979i −0.660825 0.750540i \(-0.729793\pi\)
0.997986 0.0634385i \(-0.0202067\pi\)
\(464\) 0 0
\(465\) 53.4858 2.20258i 2.48035 0.102142i
\(466\) 0 0
\(467\) −15.0928 15.0928i −0.698412 0.698412i 0.265656 0.964068i \(-0.414411\pi\)
−0.964068 + 0.265656i \(0.914411\pi\)
\(468\) 0 0
\(469\) 3.49529i 0.161397i
\(470\) 0 0
\(471\) −2.05566 2.05566i −0.0947197 0.0947197i
\(472\) 0 0
\(473\) −3.90985 + 1.61951i −0.179775 + 0.0744653i
\(474\) 0 0
\(475\) 1.08556 0.558291i 0.0498088 0.0256161i
\(476\) 0 0
\(477\) −18.1313 + 7.51025i −0.830177 + 0.343871i
\(478\) 0 0
\(479\) 1.81043 + 4.37077i 0.0827208 + 0.199706i 0.959828 0.280589i \(-0.0905297\pi\)
−0.877107 + 0.480295i \(0.840530\pi\)
\(480\) 0 0
\(481\) 8.17140 + 19.7275i 0.372584 + 0.899497i
\(482\) 0 0
\(483\) −56.6402 −2.57722
\(484\) 0 0
\(485\) 8.02390 8.71315i 0.364347 0.395644i
\(486\) 0 0
\(487\) 19.5733i 0.886949i −0.896287 0.443475i \(-0.853746\pi\)
0.896287 0.443475i \(-0.146254\pi\)
\(488\) 0 0
\(489\) −15.5098 37.4439i −0.701376 1.69327i
\(490\) 0 0
\(491\) 10.9209i 0.492852i −0.969162 0.246426i \(-0.920744\pi\)
0.969162 0.246426i \(-0.0792562\pi\)
\(492\) 0 0
\(493\) 13.8220 13.8220i 0.622512 0.622512i
\(494\) 0 0
\(495\) 0.986870 + 23.9644i 0.0443565 + 1.07712i
\(496\) 0 0
\(497\) −5.44843 −0.244396
\(498\) 0 0
\(499\) −5.39314 + 2.23391i −0.241430 + 0.100004i −0.500118 0.865957i \(-0.666710\pi\)
0.258688 + 0.965961i \(0.416710\pi\)
\(500\) 0 0
\(501\) 26.7372 26.7372i 1.19453 1.19453i
\(502\) 0 0
\(503\) −7.33405 + 17.7060i −0.327009 + 0.789470i 0.671802 + 0.740730i \(0.265520\pi\)
−0.998812 + 0.0487394i \(0.984480\pi\)
\(504\) 0 0
\(505\) 22.5720 0.929531i 1.00444 0.0413636i
\(506\) 0 0
\(507\) −9.10199 21.9741i −0.404233 0.975906i
\(508\) 0 0
\(509\) 21.3754 + 8.85398i 0.947448 + 0.392446i 0.802271 0.596960i \(-0.203625\pi\)
0.145177 + 0.989406i \(0.453625\pi\)
\(510\) 0 0
\(511\) 5.16999 12.4815i 0.228707 0.552147i
\(512\) 0 0
\(513\) 0.127517i 0.00563000i
\(514\) 0 0
\(515\) 16.1371 7.47625i 0.711084 0.329443i
\(516\) 0 0
\(517\) −19.3428 + 19.3428i −0.850694 + 0.850694i
\(518\) 0 0
\(519\) 5.15086 12.4353i 0.226098 0.545848i
\(520\) 0 0
\(521\) 12.1538 + 29.3420i 0.532469 + 1.28549i 0.929883 + 0.367855i \(0.119908\pi\)
−0.397414 + 0.917640i \(0.630092\pi\)
\(522\) 0 0
\(523\) −9.73398 9.73398i −0.425637 0.425637i 0.461502 0.887139i \(-0.347311\pi\)
−0.887139 + 0.461502i \(0.847311\pi\)
\(524\) 0 0
\(525\) 4.87196 + 59.0532i 0.212630 + 2.57729i
\(526\) 0 0
\(527\) 16.3648 + 39.5082i 0.712863 + 1.72100i
\(528\) 0 0
\(529\) 0.156816i 0.00681808i
\(530\) 0 0
\(531\) −25.1328 + 25.1328i −1.09067 + 1.09067i
\(532\) 0 0
\(533\) −10.5459 + 5.51806i −0.456794 + 0.239014i
\(534\) 0 0
\(535\) 8.39587 + 3.07941i 0.362985 + 0.133134i
\(536\) 0 0
\(537\) 17.3150 17.3150i 0.747197 0.747197i
\(538\) 0 0
\(539\) −48.2173 19.9723i −2.07687 0.860266i
\(540\) 0 0
\(541\) −20.2942 + 20.2942i −0.872515 + 0.872515i −0.992746 0.120231i \(-0.961636\pi\)
0.120231 + 0.992746i \(0.461636\pi\)
\(542\) 0 0
\(543\) 22.2828 22.2828i 0.956246 0.956246i
\(544\) 0 0
\(545\) 2.86485 0.117976i 0.122717 0.00505356i
\(546\) 0 0
\(547\) −17.5051 + 7.25087i −0.748466 + 0.310025i −0.724115 0.689679i \(-0.757752\pi\)
−0.0243503 + 0.999703i \(0.507752\pi\)
\(548\) 0 0
\(549\) 38.8080i 1.65629i
\(550\) 0 0
\(551\) 1.07212 0.0456740
\(552\) 0 0
\(553\) 28.3051 1.20366
\(554\) 0 0
\(555\) −43.3599 + 47.0844i −1.84052 + 1.99862i
\(556\) 0 0
\(557\) −2.52918 6.10597i −0.107165 0.258718i 0.861196 0.508273i \(-0.169716\pi\)
−0.968361 + 0.249554i \(0.919716\pi\)
\(558\) 0 0
\(559\) −2.17471 0.900794i −0.0919804 0.0380995i
\(560\) 0 0
\(561\) −34.2474 + 14.1857i −1.44593 + 0.598922i
\(562\) 0 0
\(563\) 1.62944 + 0.674938i 0.0686729 + 0.0284452i 0.416755 0.909019i \(-0.363167\pi\)
−0.348083 + 0.937464i \(0.613167\pi\)
\(564\) 0 0
\(565\) 5.60501 15.2818i 0.235804 0.642910i
\(566\) 0 0
\(567\) −36.5875 15.1550i −1.53653 0.636451i
\(568\) 0 0
\(569\) 8.06645 8.06645i 0.338163 0.338163i −0.517513 0.855676i \(-0.673142\pi\)
0.855676 + 0.517513i \(0.173142\pi\)
\(570\) 0 0
\(571\) 10.8371 4.48887i 0.453518 0.187853i −0.144218 0.989546i \(-0.546067\pi\)
0.597737 + 0.801692i \(0.296067\pi\)
\(572\) 0 0
\(573\) 3.32458 + 3.32458i 0.138886 + 0.138886i
\(574\) 0 0
\(575\) 23.8164 1.96488i 0.993211 0.0819411i
\(576\) 0 0
\(577\) 9.04546 21.8377i 0.376567 0.909114i −0.616037 0.787717i \(-0.711263\pi\)
0.992604 0.121397i \(-0.0387373\pi\)
\(578\) 0 0
\(579\) −24.2320 24.2320i −1.00705 1.00705i
\(580\) 0 0
\(581\) 20.9400 + 50.5536i 0.868737 + 2.09732i
\(582\) 0 0
\(583\) 20.4344i 0.846306i
\(584\) 0 0
\(585\) −9.03711 + 9.81339i −0.373639 + 0.405734i
\(586\) 0 0
\(587\) 3.39139 8.18754i 0.139978 0.337936i −0.838308 0.545197i \(-0.816455\pi\)
0.978286 + 0.207261i \(0.0664549\pi\)
\(588\) 0 0
\(589\) −0.897574 + 2.16694i −0.0369839 + 0.0892870i
\(590\) 0 0
\(591\) −5.57802 + 13.4665i −0.229449 + 0.553939i
\(592\) 0 0
\(593\) −4.72677 11.4114i −0.194105 0.468611i 0.796622 0.604478i \(-0.206618\pi\)
−0.990727 + 0.135866i \(0.956618\pi\)
\(594\) 0 0
\(595\) −42.9494 + 19.8983i −1.76075 + 0.815751i
\(596\) 0 0
\(597\) 24.9369 24.9369i 1.02060 1.02060i
\(598\) 0 0
\(599\) −26.7136 −1.09149 −0.545743 0.837952i \(-0.683753\pi\)
−0.545743 + 0.837952i \(0.683753\pi\)
\(600\) 0 0
\(601\) 41.2837 + 17.1003i 1.68400 + 0.697535i 0.999504 0.0314847i \(-0.0100236\pi\)
0.684493 + 0.729019i \(0.260024\pi\)
\(602\) 0 0
\(603\) 2.17939 + 0.902733i 0.0887516 + 0.0367621i
\(604\) 0 0
\(605\) 0.353835 + 0.129778i 0.0143854 + 0.00527624i
\(606\) 0 0
\(607\) 38.1886i 1.55003i −0.631945 0.775013i \(-0.717743\pi\)
0.631945 0.775013i \(-0.282257\pi\)
\(608\) 0 0
\(609\) −19.9155 + 48.0802i −0.807015 + 1.94831i
\(610\) 0 0
\(611\) −15.2151 −0.615537
\(612\) 0 0
\(613\) 41.6975i 1.68415i −0.539363 0.842073i \(-0.681335\pi\)
0.539363 0.842073i \(-0.318665\pi\)
\(614\) 0 0
\(615\) −28.2977 21.7304i −1.14107 0.876253i
\(616\) 0 0
\(617\) 2.37669i 0.0956817i 0.998855 + 0.0478409i \(0.0152340\pi\)
−0.998855 + 0.0478409i \(0.984766\pi\)
\(618\) 0 0
\(619\) −31.9132 −1.28270 −0.641350 0.767248i \(-0.721625\pi\)
−0.641350 + 0.767248i \(0.721625\pi\)
\(620\) 0 0
\(621\) 0.955309 2.30632i 0.0383352 0.0925494i
\(622\) 0 0
\(623\) 74.0793i 2.96792i
\(624\) 0 0
\(625\) −4.09718 24.6620i −0.163887 0.986479i
\(626\) 0 0
\(627\) −1.87839 0.778056i −0.0750158 0.0310726i
\(628\) 0 0
\(629\) −47.2405 19.5677i −1.88360 0.780213i
\(630\) 0 0
\(631\) −22.1295 −0.880963 −0.440482 0.897762i \(-0.645192\pi\)
−0.440482 + 0.897762i \(0.645192\pi\)
\(632\) 0 0
\(633\) −19.4991 + 19.4991i −0.775021 + 0.775021i
\(634\) 0 0
\(635\) −22.7735 8.35280i −0.903740 0.331471i
\(636\) 0 0
\(637\) −11.1088 26.8191i −0.440148 1.06261i
\(638\) 0 0
\(639\) 1.40717 3.39722i 0.0556670 0.134392i
\(640\) 0 0
\(641\) −1.62824 + 3.93092i −0.0643117 + 0.155262i −0.952768 0.303699i \(-0.901778\pi\)
0.888456 + 0.458961i \(0.151778\pi\)
\(642\) 0 0
\(643\) 18.1657 43.8558i 0.716385 1.72951i 0.0329904 0.999456i \(-0.489497\pi\)
0.683394 0.730050i \(-0.260503\pi\)
\(644\) 0 0
\(645\) −0.290328 7.05010i −0.0114316 0.277597i
\(646\) 0 0
\(647\) 17.5227i 0.688890i 0.938806 + 0.344445i \(0.111933\pi\)
−0.938806 + 0.344445i \(0.888067\pi\)
\(648\) 0 0
\(649\) 14.1626 + 34.1915i 0.555930 + 1.34213i
\(650\) 0 0
\(651\) −80.5047 80.5047i −3.15523 3.15523i
\(652\) 0 0
\(653\) −11.4075 + 27.5402i −0.446411 + 1.07773i 0.527246 + 0.849713i \(0.323225\pi\)
−0.973657 + 0.228019i \(0.926775\pi\)
\(654\) 0 0
\(655\) 36.4200 + 13.3580i 1.42305 + 0.521941i
\(656\) 0 0
\(657\) 6.44721 + 6.44721i 0.251530 + 0.251530i
\(658\) 0 0
\(659\) −35.5800 + 14.7377i −1.38600 + 0.574101i −0.946079 0.323935i \(-0.894994\pi\)
−0.439922 + 0.898036i \(0.644994\pi\)
\(660\) 0 0
\(661\) 3.17147 3.17147i 0.123356 0.123356i −0.642734 0.766090i \(-0.722200\pi\)
0.766090 + 0.642734i \(0.222200\pi\)
\(662\) 0 0
\(663\) −19.0488 7.89029i −0.739796 0.306433i
\(664\) 0 0
\(665\) −2.43744 0.893995i −0.0945198 0.0346676i
\(666\) 0 0
\(667\) 19.3909 + 8.03197i 0.750819 + 0.310999i
\(668\) 0 0
\(669\) 18.1759 7.52870i 0.702721 0.291076i
\(670\) 0 0
\(671\) 37.3322 + 15.4635i 1.44120 + 0.596963i
\(672\) 0 0
\(673\) 13.5097 + 32.6154i 0.520763 + 1.25723i 0.937430 + 0.348173i \(0.113198\pi\)
−0.416668 + 0.909059i \(0.636802\pi\)
\(674\) 0 0
\(675\) −2.48675 0.797627i −0.0957149 0.0307007i
\(676\) 0 0
\(677\) 16.9700 0.652208 0.326104 0.945334i \(-0.394264\pi\)
0.326104 + 0.945334i \(0.394264\pi\)
\(678\) 0 0
\(679\) −25.1919 −0.966778
\(680\) 0 0
\(681\) 2.56980i 0.0984750i
\(682\) 0 0
\(683\) −46.0203 + 19.0623i −1.76092 + 0.729397i −0.764522 + 0.644598i \(0.777025\pi\)
−0.996398 + 0.0847987i \(0.972975\pi\)
\(684\) 0 0
\(685\) 22.6279 + 20.8379i 0.864567 + 0.796177i
\(686\) 0 0
\(687\) 18.2711 18.2711i 0.697087 0.697087i
\(688\) 0 0
\(689\) −8.03689 + 8.03689i −0.306181 + 0.306181i
\(690\) 0 0
\(691\) 33.1211 + 13.7192i 1.25999 + 0.521903i 0.909905 0.414816i \(-0.136154\pi\)
0.350081 + 0.936720i \(0.386154\pi\)
\(692\) 0 0
\(693\) 36.0702 36.0702i 1.37020 1.37020i
\(694\) 0 0
\(695\) 9.89189 4.58288i 0.375221 0.173839i
\(696\) 0 0
\(697\) 8.51352 27.2007i 0.322472 1.03030i
\(698\) 0 0
\(699\) 23.6152 23.6152i 0.893209 0.893209i
\(700\) 0 0
\(701\) 25.3713i 0.958261i −0.877744 0.479130i \(-0.840952\pi\)
0.877744 0.479130i \(-0.159048\pi\)
\(702\) 0 0
\(703\) −1.07324 2.59104i −0.0404781 0.0977228i
\(704\) 0 0
\(705\) −19.1729 41.3835i −0.722092 1.55859i
\(706\) 0 0
\(707\) −33.9745 33.9745i −1.27774 1.27774i
\(708\) 0 0
\(709\) −9.08944 21.9439i −0.341361 0.824119i −0.997579 0.0695471i \(-0.977845\pi\)
0.656217 0.754572i \(-0.272155\pi\)
\(710\) 0 0
\(711\) −7.31040 + 17.6489i −0.274162 + 0.661885i
\(712\) 0 0
\(713\) −32.4678 + 32.4678i −1.21593 + 1.21593i
\(714\) 0 0
\(715\) 5.83926 + 12.6037i 0.218376 + 0.471352i
\(716\) 0 0
\(717\) 26.8770i 1.00374i
\(718\) 0 0
\(719\) 11.8403 28.5850i 0.441568 1.06604i −0.533831 0.845591i \(-0.679248\pi\)
0.975399 0.220448i \(-0.0707520\pi\)
\(720\) 0 0
\(721\) −34.9457 14.4750i −1.30145 0.539077i
\(722\) 0 0
\(723\) 21.6841 + 52.3501i 0.806441 + 1.94692i
\(724\) 0 0
\(725\) 6.70623 20.9079i 0.249063 0.776499i
\(726\) 0 0
\(727\) 5.89145 14.2232i 0.218502 0.527510i −0.776179 0.630512i \(-0.782845\pi\)
0.994681 + 0.103002i \(0.0328449\pi\)
\(728\) 0 0
\(729\) 21.6600 21.6600i 0.802221 0.802221i
\(730\) 0 0
\(731\) 5.20767 2.15709i 0.192613 0.0797828i
\(732\) 0 0
\(733\) −34.7888 −1.28495 −0.642476 0.766306i \(-0.722093\pi\)
−0.642476 + 0.766306i \(0.722093\pi\)
\(734\) 0 0
\(735\) 58.9468 64.0102i 2.17428 2.36105i
\(736\) 0 0
\(737\) 1.73681 1.73681i 0.0639762 0.0639762i
\(738\) 0 0
\(739\) 19.2080i 0.706578i 0.935514 + 0.353289i \(0.114937\pi\)
−0.935514 + 0.353289i \(0.885063\pi\)
\(740\) 0 0
\(741\) −0.432765 1.04479i −0.0158980 0.0383812i
\(742\) 0 0
\(743\) 20.0415i 0.735253i 0.929973 + 0.367627i \(0.119830\pi\)
−0.929973 + 0.367627i \(0.880170\pi\)
\(744\) 0 0
\(745\) 1.72322 + 41.8454i 0.0631339 + 1.53310i
\(746\) 0 0
\(747\) −36.9295 −1.35118
\(748\) 0 0
\(749\) −7.27850 17.5719i −0.265951 0.642062i
\(750\) 0 0
\(751\) −6.08557 14.6919i −0.222066 0.536114i 0.773105 0.634279i \(-0.218703\pi\)
−0.995170 + 0.0981648i \(0.968703\pi\)
\(752\) 0 0
\(753\) −18.5954 + 7.70249i −0.677656 + 0.280694i
\(754\) 0 0
\(755\) 8.54227 + 7.86654i 0.310885 + 0.286293i
\(756\) 0 0
\(757\) −14.6011 + 6.04798i −0.530687 + 0.219818i −0.631904 0.775047i \(-0.717726\pi\)
0.101217 + 0.994864i \(0.467726\pi\)
\(758\) 0 0
\(759\) −28.1445 28.1445i −1.02158 1.02158i
\(760\) 0 0
\(761\) 34.5906i 1.25391i −0.779056 0.626954i \(-0.784301\pi\)
0.779056 0.626954i \(-0.215699\pi\)
\(762\) 0 0
\(763\) −4.31206 4.31206i −0.156107 0.156107i
\(764\) 0 0
\(765\) −1.31445 31.9190i −0.0475240 1.15404i
\(766\) 0 0
\(767\) −7.87741 + 19.0178i −0.284437 + 0.686691i
\(768\) 0 0
\(769\) 11.7855 0.424995 0.212498 0.977162i \(-0.431840\pi\)
0.212498 + 0.977162i \(0.431840\pi\)
\(770\) 0 0
\(771\) −30.4097 30.4097i −1.09518 1.09518i
\(772\) 0 0
\(773\) −17.0009 + 7.04199i −0.611478 + 0.253283i −0.666860 0.745183i \(-0.732362\pi\)
0.0553821 + 0.998465i \(0.482362\pi\)
\(774\) 0 0
\(775\) 36.6438 + 31.0583i 1.31628 + 1.11565i
\(776\) 0 0
\(777\) 136.133 4.88375
\(778\) 0 0
\(779\) 1.38511 0.724749i 0.0496268 0.0259668i
\(780\) 0 0
\(781\) −2.70733 2.70733i −0.0968757 0.0968757i
\(782\) 0 0
\(783\) −1.62187 1.62187i −0.0579608 0.0579608i
\(784\) 0 0
\(785\) −0.107336 2.60646i −0.00383098 0.0930285i
\(786\) 0 0
\(787\) 12.7861 0.455774 0.227887 0.973688i \(-0.426818\pi\)
0.227887 + 0.973688i \(0.426818\pi\)
\(788\) 0 0
\(789\) 12.3270i 0.438851i
\(790\) 0 0
\(791\) −31.9835 + 13.2480i −1.13720 + 0.471045i
\(792\) 0 0
\(793\) 8.60101 + 20.7647i 0.305431 + 0.737375i
\(794\) 0 0
\(795\) −31.9870 11.7321i −1.13446 0.416094i
\(796\) 0 0
\(797\) 6.16140 + 6.16140i 0.218248 + 0.218248i 0.807760 0.589512i \(-0.200680\pi\)
−0.589512 + 0.807760i \(0.700680\pi\)
\(798\) 0 0
\(799\) 25.7633 25.7633i 0.911441 0.911441i
\(800\) 0 0
\(801\) −46.1901 19.1326i −1.63205 0.676016i
\(802\) 0 0
\(803\) 8.77100 3.63307i 0.309522 0.128208i
\(804\) 0 0
\(805\) −37.3870 34.4296i −1.31772 1.21348i
\(806\) 0 0
\(807\) 67.2814 + 27.8689i 2.36842 + 0.981030i
\(808\) 0 0
\(809\) 28.4639 11.7901i 1.00074 0.414520i 0.178671 0.983909i \(-0.442820\pi\)
0.822068 + 0.569389i \(0.192820\pi\)
\(810\) 0 0
\(811\) −3.05810 3.05810i −0.107384 0.107384i 0.651373 0.758758i \(-0.274193\pi\)
−0.758758 + 0.651373i \(0.774193\pi\)
\(812\) 0 0
\(813\) −8.17359 + 19.7328i −0.286660 + 0.692060i
\(814\) 0 0
\(815\) 12.5231 34.1438i 0.438667 1.19601i
\(816\) 0 0
\(817\) 0.285629 + 0.118311i 0.00999290 + 0.00413919i
\(818\) 0 0
\(819\) 28.3730 0.991433
\(820\) 0 0
\(821\) −47.4549 −1.65619 −0.828093 0.560591i \(-0.810574\pi\)
−0.828093 + 0.560591i \(0.810574\pi\)
\(822\) 0 0
\(823\) −44.2374 18.3237i −1.54202 0.638725i −0.560168 0.828379i \(-0.689263\pi\)
−0.981851 + 0.189654i \(0.939263\pi\)
\(824\) 0 0
\(825\) −26.9226 + 31.7644i −0.937326 + 1.10589i
\(826\) 0 0
\(827\) −4.83377 + 11.6697i −0.168087 + 0.405797i −0.985368 0.170442i \(-0.945480\pi\)
0.817281 + 0.576239i \(0.195480\pi\)
\(828\) 0 0
\(829\) 32.4596 + 32.4596i 1.12737 + 1.12737i 0.990603 + 0.136767i \(0.0436711\pi\)
0.136767 + 0.990603i \(0.456329\pi\)
\(830\) 0 0
\(831\) −73.5633 + 30.4709i −2.55188 + 1.05702i
\(832\) 0 0
\(833\) 64.2224 + 26.6018i 2.22517 + 0.921697i
\(834\) 0 0
\(835\) 33.9013 1.39608i 1.17320 0.0483132i
\(836\) 0 0
\(837\) 4.63587 1.92024i 0.160239 0.0663732i
\(838\) 0 0
\(839\) −2.36426 0.979310i −0.0816234 0.0338095i 0.341498 0.939882i \(-0.389066\pi\)
−0.423122 + 0.906073i \(0.639066\pi\)
\(840\) 0 0
\(841\) −6.86989 + 6.86989i −0.236893 + 0.236893i
\(842\) 0 0
\(843\) 23.8886 + 23.8886i 0.822766 + 0.822766i
\(844\) 0 0
\(845\) 7.34927 20.0375i 0.252823 0.689309i
\(846\) 0 0
\(847\) −0.306745 0.740547i −0.0105399 0.0254455i
\(848\) 0 0
\(849\) −66.4296 + 27.5160i −2.27986 + 0.944347i
\(850\) 0 0
\(851\) 54.9029i 1.88205i
\(852\) 0 0
\(853\) 26.7825 0.917015 0.458508 0.888690i \(-0.348384\pi\)
0.458508 + 0.888690i \(0.348384\pi\)
\(854\) 0 0
\(855\) 1.18695 1.28890i 0.0405927 0.0440795i
\(856\) 0 0
\(857\) 11.1900 + 11.1900i 0.382243 + 0.382243i 0.871910 0.489666i \(-0.162881\pi\)
−0.489666 + 0.871910i \(0.662881\pi\)
\(858\) 0 0
\(859\) −9.92550 9.92550i −0.338654 0.338654i 0.517207 0.855860i \(-0.326972\pi\)
−0.855860 + 0.517207i \(0.826972\pi\)
\(860\) 0 0
\(861\) 6.77246 + 75.5791i 0.230805 + 2.57573i
\(862\) 0 0
\(863\) 9.99669 0.340291 0.170146 0.985419i \(-0.445576\pi\)
0.170146 + 0.985419i \(0.445576\pi\)
\(864\) 0 0
\(865\) 10.9589 5.07724i 0.372615 0.172631i
\(866\) 0 0
\(867\) 6.47755 2.68309i 0.219989 0.0911225i
\(868\) 0 0
\(869\) 14.0648 + 14.0648i 0.477116 + 0.477116i
\(870\) 0 0
\(871\) 1.36618 0.0462913
\(872\) 0 0
\(873\) 6.50635 15.7077i 0.220207 0.531626i
\(874\) 0 0
\(875\) −32.6805 + 41.9413i −1.10480 + 1.41788i
\(876\) 0 0
\(877\) 4.12554 + 4.12554i 0.139310 + 0.139310i 0.773322 0.634013i \(-0.218593\pi\)
−0.634013 + 0.773322i \(0.718593\pi\)
\(878\) 0 0
\(879\) 1.74155i 0.0587409i
\(880\) 0 0
\(881\) 15.9100 + 15.9100i 0.536022 + 0.536022i 0.922358 0.386336i \(-0.126259\pi\)
−0.386336 + 0.922358i \(0.626259\pi\)
\(882\) 0 0
\(883\) −13.6173 + 5.64045i −0.458257 + 0.189816i −0.599856 0.800108i \(-0.704776\pi\)
0.141599 + 0.989924i \(0.454776\pi\)
\(884\) 0 0
\(885\) −61.6528 + 2.53891i −2.07244 + 0.0853444i
\(886\) 0 0
\(887\) 15.0984 6.25396i 0.506954 0.209987i −0.114522 0.993421i \(-0.536533\pi\)
0.621476 + 0.783434i \(0.286533\pi\)
\(888\) 0 0
\(889\) 19.7427 + 47.6631i 0.662149 + 1.59857i
\(890\) 0 0
\(891\) −10.6498 25.7108i −0.356781 0.861345i
\(892\) 0 0
\(893\) 1.99837 0.0668729
\(894\) 0 0
\(895\) 21.9544 0.904099i 0.733856 0.0302207i
\(896\) 0 0
\(897\) 22.1386i 0.739186i
\(898\) 0 0
\(899\) 16.1448 + 38.9771i 0.538461 + 1.29996i
\(900\) 0 0
\(901\) 27.2173i 0.906740i
\(902\) 0 0
\(903\) −10.6115 + 10.6115i −0.353129 + 0.353129i
\(904\) 0 0
\(905\) 28.2533 1.16349i 0.939173 0.0386758i
\(906\) 0 0
\(907\) 6.16728 0.204781 0.102391 0.994744i \(-0.467351\pi\)
0.102391 + 0.994744i \(0.467351\pi\)
\(908\) 0 0
\(909\) 29.9585 12.4092i 0.993660 0.411587i
\(910\) 0 0
\(911\) 12.0258 12.0258i 0.398433 0.398433i −0.479247 0.877680i \(-0.659090\pi\)
0.877680 + 0.479247i \(0.159090\pi\)
\(912\) 0 0
\(913\) −14.7150 + 35.5251i −0.486995 + 1.17571i
\(914\) 0 0
\(915\) −45.6395 + 49.5599i −1.50880 + 1.63840i
\(916\) 0 0
\(917\) −31.5731 76.2241i −1.04263 2.51714i
\(918\) 0 0
\(919\) −40.4109 16.7387i −1.33303 0.552160i −0.401514 0.915853i \(-0.631516\pi\)
−0.931519 + 0.363693i \(0.881516\pi\)
\(920\) 0 0
\(921\) 2.51504 6.07185i 0.0828734 0.200074i
\(922\) 0 0
\(923\) 2.12959i 0.0700964i
\(924\) 0 0
\(925\) −57.2419 + 4.72253i −1.88210 + 0.155276i
\(926\) 0 0
\(927\) 18.0509 18.0509i 0.592871 0.592871i
\(928\) 0 0
\(929\) 2.20155 5.31502i 0.0722306 0.174380i −0.883641 0.468165i \(-0.844915\pi\)
0.955871 + 0.293785i \(0.0949151\pi\)
\(930\) 0 0
\(931\) 1.45905 + 3.52246i 0.0478184 + 0.115444i
\(932\) 0 0
\(933\) 38.3804 + 38.3804i 1.25652 + 1.25652i
\(934\) 0 0
\(935\) −31.2290 11.4541i −1.02130 0.374588i
\(936\) 0 0
\(937\) 4.41312 + 10.6542i 0.144170 + 0.348058i 0.979426 0.201804i \(-0.0646804\pi\)
−0.835256 + 0.549862i \(0.814680\pi\)
\(938\) 0 0
\(939\) 66.1486i 2.15868i
\(940\) 0 0
\(941\) 41.3204 41.3204i 1.34701 1.34701i 0.458114 0.888894i \(-0.348525\pi\)
0.888894 0.458114i \(-0.151475\pi\)
\(942\) 0 0
\(943\) 30.4813 2.73135i 0.992608 0.0889452i
\(944\) 0 0
\(945\) 2.33486 + 5.03966i 0.0759529 + 0.163940i
\(946\) 0 0
\(947\) 6.07026 6.07026i 0.197257 0.197257i −0.601566 0.798823i \(-0.705456\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(948\) 0 0
\(949\) 4.87855 + 2.02076i 0.158364 + 0.0655967i
\(950\) 0 0
\(951\) 25.6675 25.6675i 0.832326 0.832326i
\(952\) 0 0
\(953\) 38.3744 38.3744i 1.24307 1.24307i 0.284350 0.958721i \(-0.408222\pi\)
0.958721 0.284350i \(-0.0917777\pi\)
\(954\) 0 0
\(955\) 0.173592 + 4.21538i 0.00561731 + 0.136407i
\(956\) 0 0
\(957\) −33.7870 + 13.9950i −1.09218 + 0.452395i
\(958\) 0 0
\(959\) 65.4230i 2.11262i
\(960\) 0 0
\(961\) −61.2953 −1.97727
\(962\) 0 0
\(963\) 12.8363 0.413643
\(964\) 0 0
\(965\) −1.26527 30.7248i −0.0407304 0.989066i
\(966\) 0 0
\(967\) −13.1734 31.8034i −0.423628 1.02273i −0.981268 0.192646i \(-0.938293\pi\)
0.557640 0.830083i \(-0.311707\pi\)
\(968\) 0 0
\(969\) 2.50190 + 1.03632i 0.0803726 + 0.0332914i
\(970\) 0 0
\(971\) −7.42464 + 3.07539i −0.238268 + 0.0986938i −0.498622 0.866819i \(-0.666161\pi\)
0.260354 + 0.965513i \(0.416161\pi\)
\(972\) 0 0
\(973\) −21.4215 8.87306i −0.686740 0.284457i
\(974\) 0 0
\(975\) −23.0817 + 1.90427i −0.739207 + 0.0609855i
\(976\) 0 0
\(977\) 19.6456 + 8.13749i 0.628520 + 0.260341i 0.674124 0.738618i \(-0.264521\pi\)
−0.0456044 + 0.998960i \(0.514521\pi\)
\(978\) 0 0
\(979\) −36.8100 + 36.8100i −1.17645 + 1.17645i
\(980\) 0 0
\(981\) 3.80234 1.57498i 0.121399 0.0502853i
\(982\) 0 0
\(983\) 23.2199 + 23.2199i 0.740601 + 0.740601i 0.972694 0.232093i \(-0.0745574\pi\)
−0.232093 + 0.972694i \(0.574557\pi\)
\(984\) 0 0
\(985\) −11.8678 + 5.49830i −0.378139 + 0.175190i
\(986\) 0 0
\(987\) −37.1212 + 89.6184i −1.18158 + 2.85258i
\(988\) 0 0
\(989\) 4.27966 + 4.27966i 0.136085 + 0.136085i
\(990\) 0 0
\(991\) 16.8885 + 40.7723i 0.536479 + 1.29518i 0.927165 + 0.374652i \(0.122238\pi\)
−0.390686 + 0.920524i \(0.627762\pi\)
\(992\) 0 0
\(993\) 51.8883i 1.64662i
\(994\) 0 0
\(995\) 31.6186 1.30208i 1.00238 0.0412786i
\(996\) 0 0
\(997\) −22.8281 + 55.1118i −0.722972 + 1.74541i −0.0582703 + 0.998301i \(0.518559\pi\)
−0.664702 + 0.747109i \(0.731441\pi\)
\(998\) 0 0
\(999\) −2.29606 + 5.54318i −0.0726441 + 0.175378i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.137.18 yes 84
5.3 odd 4 820.2.x.a.793.4 yes 84
41.3 odd 8 820.2.x.a.577.4 84
205.3 even 8 inner 820.2.y.a.413.18 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.4 84 41.3 odd 8
820.2.x.a.793.4 yes 84 5.3 odd 4
820.2.y.a.137.18 yes 84 1.1 even 1 trivial
820.2.y.a.413.18 yes 84 205.3 even 8 inner