Properties

Label 820.2.y.a.137.7
Level $820$
Weight $2$
Character 820.137
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 137.7
Character \(\chi\) \(=\) 820.137
Dual form 820.2.y.a.413.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41402 - 0.585707i) q^{3} +(1.93611 + 1.11869i) q^{5} +(-0.549988 + 1.32779i) q^{7} +(-0.464917 - 0.464917i) q^{9} +(5.38595 - 2.23093i) q^{11} +(-2.48866 - 1.03084i) q^{13} +(-2.08248 - 2.71584i) q^{15} +(-3.07210 + 1.27250i) q^{17} +(5.44669 + 2.25609i) q^{19} +(1.55539 - 1.55539i) q^{21} +(0.656229 + 0.656229i) q^{23} +(2.49708 + 4.33181i) q^{25} +(2.14222 + 5.17177i) q^{27} +(1.75067 - 0.725150i) q^{29} -4.97291i q^{31} -8.92252 q^{33} +(-2.55022 + 1.95549i) q^{35} +(5.97617 + 5.97617i) q^{37} +(2.91525 + 2.91525i) q^{39} +(-6.38615 - 0.465961i) q^{41} +8.73974 q^{43} +(-0.380036 - 1.42023i) q^{45} +(12.5062 - 5.18025i) q^{47} +(3.48921 + 3.48921i) q^{49} +5.08932 q^{51} +(1.29979 - 3.13796i) q^{53} +(12.9235 + 1.70585i) q^{55} +(-6.38032 - 6.38032i) q^{57} -10.4117i q^{59} +(-1.06609 - 1.06609i) q^{61} +(0.873010 - 0.361612i) q^{63} +(-3.66515 - 4.77985i) q^{65} +(-0.682973 + 0.282897i) q^{67} +(-0.543564 - 1.31228i) q^{69} +(5.84810 + 14.1186i) q^{71} -7.69510 q^{73} +(-0.993751 - 7.58783i) q^{75} +8.37839i q^{77} +(-1.10679 - 2.67203i) q^{79} -6.59523i q^{81} +(0.371199 - 0.371199i) q^{83} +(-7.37146 - 0.973000i) q^{85} -2.90020 q^{87} +(15.0374 - 6.22868i) q^{89} +(2.73747 - 2.73747i) q^{91} +(-2.91266 + 7.03179i) q^{93} +(8.02155 + 10.4612i) q^{95} +(1.42744 + 3.44613i) q^{97} +(-3.54122 - 1.46682i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41402 0.585707i −0.816386 0.338158i −0.0648869 0.997893i \(-0.520669\pi\)
−0.751499 + 0.659735i \(0.770669\pi\)
\(4\) 0 0
\(5\) 1.93611 + 1.11869i 0.865857 + 0.500292i
\(6\) 0 0
\(7\) −0.549988 + 1.32779i −0.207876 + 0.501857i −0.993088 0.117370i \(-0.962554\pi\)
0.785212 + 0.619227i \(0.212554\pi\)
\(8\) 0 0
\(9\) −0.464917 0.464917i −0.154972 0.154972i
\(10\) 0 0
\(11\) 5.38595 2.23093i 1.62393 0.672652i 0.629393 0.777087i \(-0.283303\pi\)
0.994532 + 0.104435i \(0.0333034\pi\)
\(12\) 0 0
\(13\) −2.48866 1.03084i −0.690230 0.285903i 0.00986577 0.999951i \(-0.496860\pi\)
−0.700096 + 0.714049i \(0.746860\pi\)
\(14\) 0 0
\(15\) −2.08248 2.71584i −0.537695 0.701228i
\(16\) 0 0
\(17\) −3.07210 + 1.27250i −0.745093 + 0.308627i −0.722737 0.691123i \(-0.757116\pi\)
−0.0223550 + 0.999750i \(0.507116\pi\)
\(18\) 0 0
\(19\) 5.44669 + 2.25609i 1.24956 + 0.517583i 0.906688 0.421801i \(-0.138602\pi\)
0.342867 + 0.939384i \(0.388602\pi\)
\(20\) 0 0
\(21\) 1.55539 1.55539i 0.339414 0.339414i
\(22\) 0 0
\(23\) 0.656229 + 0.656229i 0.136833 + 0.136833i 0.772206 0.635373i \(-0.219153\pi\)
−0.635373 + 0.772206i \(0.719153\pi\)
\(24\) 0 0
\(25\) 2.49708 + 4.33181i 0.499416 + 0.866362i
\(26\) 0 0
\(27\) 2.14222 + 5.17177i 0.412270 + 0.995308i
\(28\) 0 0
\(29\) 1.75067 0.725150i 0.325090 0.134657i −0.214169 0.976797i \(-0.568704\pi\)
0.539259 + 0.842140i \(0.318704\pi\)
\(30\) 0 0
\(31\) 4.97291i 0.893160i −0.894744 0.446580i \(-0.852642\pi\)
0.894744 0.446580i \(-0.147358\pi\)
\(32\) 0 0
\(33\) −8.92252 −1.55321
\(34\) 0 0
\(35\) −2.55022 + 1.95549i −0.431066 + 0.330538i
\(36\) 0 0
\(37\) 5.97617 + 5.97617i 0.982476 + 0.982476i 0.999849 0.0173729i \(-0.00553025\pi\)
−0.0173729 + 0.999849i \(0.505530\pi\)
\(38\) 0 0
\(39\) 2.91525 + 2.91525i 0.466814 + 0.466814i
\(40\) 0 0
\(41\) −6.38615 0.465961i −0.997349 0.0727710i
\(42\) 0 0
\(43\) 8.73974 1.33280 0.666399 0.745596i \(-0.267835\pi\)
0.666399 + 0.745596i \(0.267835\pi\)
\(44\) 0 0
\(45\) −0.380036 1.42023i −0.0566524 0.211715i
\(46\) 0 0
\(47\) 12.5062 5.18025i 1.82422 0.755617i 0.851223 0.524803i \(-0.175861\pi\)
0.972998 0.230814i \(-0.0741388\pi\)
\(48\) 0 0
\(49\) 3.48921 + 3.48921i 0.498459 + 0.498459i
\(50\) 0 0
\(51\) 5.08932 0.712648
\(52\) 0 0
\(53\) 1.29979 3.13796i 0.178539 0.431032i −0.809121 0.587642i \(-0.800056\pi\)
0.987661 + 0.156610i \(0.0500564\pi\)
\(54\) 0 0
\(55\) 12.9235 + 1.70585i 1.74261 + 0.230017i
\(56\) 0 0
\(57\) −6.38032 6.38032i −0.845094 0.845094i
\(58\) 0 0
\(59\) 10.4117i 1.35549i −0.735296 0.677746i \(-0.762957\pi\)
0.735296 0.677746i \(-0.237043\pi\)
\(60\) 0 0
\(61\) −1.06609 1.06609i −0.136499 0.136499i 0.635556 0.772055i \(-0.280771\pi\)
−0.772055 + 0.635556i \(0.780771\pi\)
\(62\) 0 0
\(63\) 0.873010 0.361612i 0.109989 0.0455589i
\(64\) 0 0
\(65\) −3.66515 4.77985i −0.454606 0.592868i
\(66\) 0 0
\(67\) −0.682973 + 0.282897i −0.0834384 + 0.0345613i −0.424012 0.905656i \(-0.639379\pi\)
0.340574 + 0.940218i \(0.389379\pi\)
\(68\) 0 0
\(69\) −0.543564 1.31228i −0.0654374 0.157980i
\(70\) 0 0
\(71\) 5.84810 + 14.1186i 0.694042 + 1.67557i 0.736473 + 0.676467i \(0.236490\pi\)
−0.0424309 + 0.999099i \(0.513510\pi\)
\(72\) 0 0
\(73\) −7.69510 −0.900643 −0.450322 0.892866i \(-0.648691\pi\)
−0.450322 + 0.892866i \(0.648691\pi\)
\(74\) 0 0
\(75\) −0.993751 7.58783i −0.114749 0.876167i
\(76\) 0 0
\(77\) 8.37839i 0.954806i
\(78\) 0 0
\(79\) −1.10679 2.67203i −0.124524 0.300627i 0.849308 0.527898i \(-0.177020\pi\)
−0.973831 + 0.227271i \(0.927020\pi\)
\(80\) 0 0
\(81\) 6.59523i 0.732803i
\(82\) 0 0
\(83\) 0.371199 0.371199i 0.0407444 0.0407444i −0.686441 0.727185i \(-0.740828\pi\)
0.727185 + 0.686441i \(0.240828\pi\)
\(84\) 0 0
\(85\) −7.37146 0.973000i −0.799547 0.105537i
\(86\) 0 0
\(87\) −2.90020 −0.310934
\(88\) 0 0
\(89\) 15.0374 6.22868i 1.59396 0.660239i 0.603414 0.797428i \(-0.293807\pi\)
0.990545 + 0.137189i \(0.0438068\pi\)
\(90\) 0 0
\(91\) 2.73747 2.73747i 0.286965 0.286965i
\(92\) 0 0
\(93\) −2.91266 + 7.03179i −0.302029 + 0.729163i
\(94\) 0 0
\(95\) 8.02155 + 10.4612i 0.822994 + 1.07330i
\(96\) 0 0
\(97\) 1.42744 + 3.44613i 0.144934 + 0.349902i 0.979631 0.200809i \(-0.0643569\pi\)
−0.834696 + 0.550710i \(0.814357\pi\)
\(98\) 0 0
\(99\) −3.54122 1.46682i −0.355906 0.147421i
\(100\) 0 0
\(101\) 0.184996 0.446620i 0.0184078 0.0444404i −0.914408 0.404793i \(-0.867344\pi\)
0.932816 + 0.360353i \(0.117344\pi\)
\(102\) 0 0
\(103\) 10.3459i 1.01941i −0.860349 0.509705i \(-0.829755\pi\)
0.860349 0.509705i \(-0.170245\pi\)
\(104\) 0 0
\(105\) 4.75141 1.27142i 0.463690 0.124078i
\(106\) 0 0
\(107\) −9.24683 + 9.24683i −0.893925 + 0.893925i −0.994890 0.100965i \(-0.967807\pi\)
0.100965 + 0.994890i \(0.467807\pi\)
\(108\) 0 0
\(109\) −5.89492 + 14.2316i −0.564631 + 1.36314i 0.341396 + 0.939919i \(0.389100\pi\)
−0.906027 + 0.423220i \(0.860900\pi\)
\(110\) 0 0
\(111\) −4.95015 11.9507i −0.469847 1.13431i
\(112\) 0 0
\(113\) 1.65366 + 1.65366i 0.155563 + 0.155563i 0.780597 0.625034i \(-0.214915\pi\)
−0.625034 + 0.780597i \(0.714915\pi\)
\(114\) 0 0
\(115\) 0.536420 + 2.00465i 0.0500214 + 0.186935i
\(116\) 0 0
\(117\) 0.677767 + 1.63627i 0.0626596 + 0.151274i
\(118\) 0 0
\(119\) 4.77895i 0.438086i
\(120\) 0 0
\(121\) 16.2532 16.2532i 1.47757 1.47757i
\(122\) 0 0
\(123\) 8.75723 + 4.39929i 0.789613 + 0.396671i
\(124\) 0 0
\(125\) −0.0113103 + 11.1803i −0.00101163 + 0.999999i
\(126\) 0 0
\(127\) −9.61037 + 9.61037i −0.852782 + 0.852782i −0.990475 0.137693i \(-0.956031\pi\)
0.137693 + 0.990475i \(0.456031\pi\)
\(128\) 0 0
\(129\) −12.3582 5.11892i −1.08808 0.450696i
\(130\) 0 0
\(131\) −11.0900 + 11.0900i −0.968939 + 0.968939i −0.999532 0.0305931i \(-0.990260\pi\)
0.0305931 + 0.999532i \(0.490260\pi\)
\(132\) 0 0
\(133\) −5.99122 + 5.99122i −0.519505 + 0.519505i
\(134\) 0 0
\(135\) −1.63801 + 12.4096i −0.140978 + 1.06805i
\(136\) 0 0
\(137\) −9.86097 + 4.08455i −0.842480 + 0.348966i −0.761831 0.647776i \(-0.775699\pi\)
−0.0806488 + 0.996743i \(0.525699\pi\)
\(138\) 0 0
\(139\) 16.9717i 1.43952i −0.694224 0.719759i \(-0.744252\pi\)
0.694224 0.719759i \(-0.255748\pi\)
\(140\) 0 0
\(141\) −20.7182 −1.74479
\(142\) 0 0
\(143\) −15.7035 −1.31320
\(144\) 0 0
\(145\) 4.20070 + 0.554474i 0.348850 + 0.0460466i
\(146\) 0 0
\(147\) −2.89016 6.97747i −0.238377 0.575492i
\(148\) 0 0
\(149\) 10.7689 + 4.46062i 0.882222 + 0.365428i 0.777358 0.629058i \(-0.216559\pi\)
0.104864 + 0.994487i \(0.466559\pi\)
\(150\) 0 0
\(151\) −7.32348 + 3.03348i −0.595976 + 0.246861i −0.660219 0.751073i \(-0.729537\pi\)
0.0642431 + 0.997934i \(0.479537\pi\)
\(152\) 0 0
\(153\) 2.01988 + 0.836660i 0.163297 + 0.0676400i
\(154\) 0 0
\(155\) 5.56312 9.62811i 0.446841 0.773349i
\(156\) 0 0
\(157\) −21.9634 9.09755i −1.75287 0.726064i −0.997492 0.0707784i \(-0.977452\pi\)
−0.755381 0.655286i \(-0.772548\pi\)
\(158\) 0 0
\(159\) −3.67585 + 3.67585i −0.291514 + 0.291514i
\(160\) 0 0
\(161\) −1.23225 + 0.510416i −0.0971151 + 0.0402264i
\(162\) 0 0
\(163\) −15.3240 15.3240i −1.20027 1.20027i −0.974085 0.226182i \(-0.927376\pi\)
−0.226182 0.974085i \(-0.572624\pi\)
\(164\) 0 0
\(165\) −17.2750 9.98151i −1.34486 0.777059i
\(166\) 0 0
\(167\) −4.94027 + 11.9269i −0.382290 + 0.922929i 0.609233 + 0.792991i \(0.291478\pi\)
−0.991522 + 0.129937i \(0.958522\pi\)
\(168\) 0 0
\(169\) −4.06158 4.06158i −0.312429 0.312429i
\(170\) 0 0
\(171\) −1.48336 3.58115i −0.113435 0.273857i
\(172\) 0 0
\(173\) 12.8991i 0.980699i −0.871526 0.490349i \(-0.836869\pi\)
0.871526 0.490349i \(-0.163131\pi\)
\(174\) 0 0
\(175\) −7.12509 + 0.933148i −0.538606 + 0.0705394i
\(176\) 0 0
\(177\) −6.09822 + 14.7224i −0.458370 + 1.10660i
\(178\) 0 0
\(179\) −4.82469 + 11.6478i −0.360615 + 0.870601i 0.634596 + 0.772844i \(0.281167\pi\)
−0.995210 + 0.0977565i \(0.968833\pi\)
\(180\) 0 0
\(181\) 2.55409 6.16613i 0.189844 0.458325i −0.800085 0.599886i \(-0.795212\pi\)
0.989929 + 0.141562i \(0.0452124\pi\)
\(182\) 0 0
\(183\) 0.883060 + 2.13189i 0.0652776 + 0.157594i
\(184\) 0 0
\(185\) 4.88509 + 18.2560i 0.359159 + 1.34221i
\(186\) 0 0
\(187\) −13.7073 + 13.7073i −1.00238 + 1.00238i
\(188\) 0 0
\(189\) −8.04521 −0.585203
\(190\) 0 0
\(191\) 5.94607 + 2.46294i 0.430242 + 0.178212i 0.587286 0.809379i \(-0.300196\pi\)
−0.157044 + 0.987592i \(0.550196\pi\)
\(192\) 0 0
\(193\) −2.72011 1.12671i −0.195798 0.0811020i 0.282630 0.959229i \(-0.408793\pi\)
−0.478428 + 0.878127i \(0.658793\pi\)
\(194\) 0 0
\(195\) 2.38301 + 8.90551i 0.170651 + 0.637737i
\(196\) 0 0
\(197\) 0.561451i 0.0400018i −0.999800 0.0200009i \(-0.993633\pi\)
0.999800 0.0200009i \(-0.00636690\pi\)
\(198\) 0 0
\(199\) 5.88064 14.1971i 0.416868 1.00641i −0.566382 0.824143i \(-0.691657\pi\)
0.983250 0.182265i \(-0.0583428\pi\)
\(200\) 0 0
\(201\) 1.13143 0.0798051
\(202\) 0 0
\(203\) 2.72334i 0.191141i
\(204\) 0 0
\(205\) −11.8430 8.04625i −0.827154 0.561975i
\(206\) 0 0
\(207\) 0.610184i 0.0424107i
\(208\) 0 0
\(209\) 34.3688 2.37734
\(210\) 0 0
\(211\) 0.973221 2.34956i 0.0669993 0.161751i −0.886833 0.462090i \(-0.847100\pi\)
0.953833 + 0.300339i \(0.0970998\pi\)
\(212\) 0 0
\(213\) 23.3892i 1.60260i
\(214\) 0 0
\(215\) 16.9211 + 9.77703i 1.15401 + 0.666788i
\(216\) 0 0
\(217\) 6.60297 + 2.73504i 0.448239 + 0.185666i
\(218\) 0 0
\(219\) 10.8810 + 4.50707i 0.735272 + 0.304560i
\(220\) 0 0
\(221\) 8.95715 0.602523
\(222\) 0 0
\(223\) 1.88894 1.88894i 0.126493 0.126493i −0.641026 0.767519i \(-0.721491\pi\)
0.767519 + 0.641026i \(0.221491\pi\)
\(224\) 0 0
\(225\) 0.852998 3.17487i 0.0568665 0.211658i
\(226\) 0 0
\(227\) −5.90434 14.2543i −0.391885 0.946094i −0.989529 0.144332i \(-0.953897\pi\)
0.597644 0.801761i \(-0.296103\pi\)
\(228\) 0 0
\(229\) −5.28313 + 12.7546i −0.349119 + 0.842848i 0.647605 + 0.761976i \(0.275771\pi\)
−0.996724 + 0.0808722i \(0.974229\pi\)
\(230\) 0 0
\(231\) 4.90728 11.8472i 0.322875 0.779490i
\(232\) 0 0
\(233\) 9.36219 22.6023i 0.613337 1.48073i −0.245975 0.969276i \(-0.579108\pi\)
0.859312 0.511451i \(-0.170892\pi\)
\(234\) 0 0
\(235\) 30.0086 + 3.96100i 1.95754 + 0.258387i
\(236\) 0 0
\(237\) 4.42656i 0.287536i
\(238\) 0 0
\(239\) −0.255794 0.617540i −0.0165459 0.0399454i 0.915391 0.402567i \(-0.131882\pi\)
−0.931937 + 0.362621i \(0.881882\pi\)
\(240\) 0 0
\(241\) −13.3944 13.3944i −0.862807 0.862807i 0.128856 0.991663i \(-0.458869\pi\)
−0.991663 + 0.128856i \(0.958869\pi\)
\(242\) 0 0
\(243\) 2.56378 6.18952i 0.164467 0.397058i
\(244\) 0 0
\(245\) 2.85218 + 10.6588i 0.182219 + 0.680969i
\(246\) 0 0
\(247\) −11.2293 11.2293i −0.714503 0.714503i
\(248\) 0 0
\(249\) −0.742297 + 0.307469i −0.0470411 + 0.0194851i
\(250\) 0 0
\(251\) −9.79463 + 9.79463i −0.618232 + 0.618232i −0.945078 0.326846i \(-0.894014\pi\)
0.326846 + 0.945078i \(0.394014\pi\)
\(252\) 0 0
\(253\) 4.99842 + 2.07041i 0.314248 + 0.130166i
\(254\) 0 0
\(255\) 9.85351 + 5.69336i 0.617051 + 0.356532i
\(256\) 0 0
\(257\) −1.51552 0.627750i −0.0945358 0.0391580i 0.334914 0.942249i \(-0.391293\pi\)
−0.429450 + 0.903091i \(0.641293\pi\)
\(258\) 0 0
\(259\) −11.2219 + 4.64827i −0.697296 + 0.288829i
\(260\) 0 0
\(261\) −1.15105 0.476780i −0.0712481 0.0295119i
\(262\) 0 0
\(263\) 10.8000 + 26.0735i 0.665955 + 1.60776i 0.788315 + 0.615272i \(0.210954\pi\)
−0.122359 + 0.992486i \(0.539046\pi\)
\(264\) 0 0
\(265\) 6.02693 4.62140i 0.370232 0.283890i
\(266\) 0 0
\(267\) −24.9113 −1.52455
\(268\) 0 0
\(269\) −13.9422 −0.850074 −0.425037 0.905176i \(-0.639739\pi\)
−0.425037 + 0.905176i \(0.639739\pi\)
\(270\) 0 0
\(271\) 10.6195i 0.645092i 0.946554 + 0.322546i \(0.104539\pi\)
−0.946554 + 0.322546i \(0.895461\pi\)
\(272\) 0 0
\(273\) −5.47419 + 2.26748i −0.331313 + 0.137234i
\(274\) 0 0
\(275\) 23.1131 + 17.7601i 1.39377 + 1.07097i
\(276\) 0 0
\(277\) 1.89578 1.89578i 0.113907 0.113907i −0.647856 0.761763i \(-0.724334\pi\)
0.761763 + 0.647856i \(0.224334\pi\)
\(278\) 0 0
\(279\) −2.31199 + 2.31199i −0.138415 + 0.138415i
\(280\) 0 0
\(281\) −22.4999 9.31976i −1.34223 0.555970i −0.408112 0.912932i \(-0.633813\pi\)
−0.934119 + 0.356961i \(0.883813\pi\)
\(282\) 0 0
\(283\) 8.18447 8.18447i 0.486516 0.486516i −0.420689 0.907205i \(-0.638212\pi\)
0.907205 + 0.420689i \(0.138212\pi\)
\(284\) 0 0
\(285\) −5.21545 19.4906i −0.308937 1.15452i
\(286\) 0 0
\(287\) 4.13100 8.22318i 0.243845 0.485399i
\(288\) 0 0
\(289\) −4.20231 + 4.20231i −0.247195 + 0.247195i
\(290\) 0 0
\(291\) 5.70896i 0.334665i
\(292\) 0 0
\(293\) 5.60255 + 13.5257i 0.327304 + 0.790182i 0.998791 + 0.0491655i \(0.0156562\pi\)
−0.671486 + 0.741017i \(0.734344\pi\)
\(294\) 0 0
\(295\) 11.6475 20.1583i 0.678142 1.17366i
\(296\) 0 0
\(297\) 23.0758 + 23.0758i 1.33899 + 1.33899i
\(298\) 0 0
\(299\) −0.956667 2.30960i −0.0553255 0.133568i
\(300\) 0 0
\(301\) −4.80675 + 11.6045i −0.277056 + 0.668873i
\(302\) 0 0
\(303\) −0.523177 + 0.523177i −0.0300557 + 0.0300557i
\(304\) 0 0
\(305\) −0.871453 3.25670i −0.0498993 0.186478i
\(306\) 0 0
\(307\) 20.0709i 1.14551i −0.819728 0.572753i \(-0.805875\pi\)
0.819728 0.572753i \(-0.194125\pi\)
\(308\) 0 0
\(309\) −6.05965 + 14.6293i −0.344722 + 0.832231i
\(310\) 0 0
\(311\) 9.94449 + 4.11914i 0.563900 + 0.233575i 0.646377 0.763018i \(-0.276283\pi\)
−0.0824773 + 0.996593i \(0.526283\pi\)
\(312\) 0 0
\(313\) 1.86232 + 4.49605i 0.105265 + 0.254132i 0.967732 0.251981i \(-0.0810820\pi\)
−0.862467 + 0.506113i \(0.831082\pi\)
\(314\) 0 0
\(315\) 2.09478 + 0.276501i 0.118027 + 0.0155791i
\(316\) 0 0
\(317\) 5.71595 13.7995i 0.321040 0.775058i −0.678155 0.734919i \(-0.737220\pi\)
0.999194 0.0401387i \(-0.0127800\pi\)
\(318\) 0 0
\(319\) 7.81124 7.81124i 0.437345 0.437345i
\(320\) 0 0
\(321\) 18.4912 7.65929i 1.03208 0.427500i
\(322\) 0 0
\(323\) −19.6036 −1.09077
\(324\) 0 0
\(325\) −1.74899 13.3545i −0.0970166 0.740774i
\(326\) 0 0
\(327\) 16.6711 16.6711i 0.921913 0.921913i
\(328\) 0 0
\(329\) 19.4547i 1.07257i
\(330\) 0 0
\(331\) 1.90951 + 4.60997i 0.104956 + 0.253387i 0.967630 0.252375i \(-0.0812115\pi\)
−0.862673 + 0.505762i \(0.831212\pi\)
\(332\) 0 0
\(333\) 5.55684i 0.304513i
\(334\) 0 0
\(335\) −1.63879 0.216313i −0.0895365 0.0118184i
\(336\) 0 0
\(337\) −24.1931 −1.31788 −0.658941 0.752194i \(-0.728996\pi\)
−0.658941 + 0.752194i \(0.728996\pi\)
\(338\) 0 0
\(339\) −1.36975 3.30687i −0.0743947 0.179605i
\(340\) 0 0
\(341\) −11.0942 26.7838i −0.600786 1.45043i
\(342\) 0 0
\(343\) −15.8465 + 6.56383i −0.855629 + 0.354413i
\(344\) 0 0
\(345\) 0.415628 3.14880i 0.0223767 0.169526i
\(346\) 0 0
\(347\) 5.77758 2.39315i 0.310157 0.128471i −0.222175 0.975007i \(-0.571316\pi\)
0.532332 + 0.846536i \(0.321316\pi\)
\(348\) 0 0
\(349\) 10.7368 + 10.7368i 0.574726 + 0.574726i 0.933445 0.358719i \(-0.116786\pi\)
−0.358719 + 0.933445i \(0.616786\pi\)
\(350\) 0 0
\(351\) 15.0791i 0.804861i
\(352\) 0 0
\(353\) 14.8910 + 14.8910i 0.792566 + 0.792566i 0.981911 0.189344i \(-0.0606362\pi\)
−0.189344 + 0.981911i \(0.560636\pi\)
\(354\) 0 0
\(355\) −4.47166 + 33.8774i −0.237331 + 1.79802i
\(356\) 0 0
\(357\) −2.79907 + 6.75754i −0.148142 + 0.357647i
\(358\) 0 0
\(359\) 18.7718 0.990736 0.495368 0.868683i \(-0.335033\pi\)
0.495368 + 0.868683i \(0.335033\pi\)
\(360\) 0 0
\(361\) 11.1414 + 11.1414i 0.586390 + 0.586390i
\(362\) 0 0
\(363\) −32.5020 + 13.4628i −1.70591 + 0.706613i
\(364\) 0 0
\(365\) −14.8986 8.60841i −0.779828 0.450585i
\(366\) 0 0
\(367\) 13.7074 0.715520 0.357760 0.933814i \(-0.383541\pi\)
0.357760 + 0.933814i \(0.383541\pi\)
\(368\) 0 0
\(369\) 2.75239 + 3.18566i 0.143284 + 0.165839i
\(370\) 0 0
\(371\) 3.45168 + 3.45168i 0.179203 + 0.179203i
\(372\) 0 0
\(373\) −3.32790 3.32790i −0.172312 0.172312i 0.615682 0.787994i \(-0.288880\pi\)
−0.787994 + 0.615682i \(0.788880\pi\)
\(374\) 0 0
\(375\) 6.56439 15.8026i 0.338984 0.816043i
\(376\) 0 0
\(377\) −5.10433 −0.262886
\(378\) 0 0
\(379\) 7.57513i 0.389108i 0.980892 + 0.194554i \(0.0623260\pi\)
−0.980892 + 0.194554i \(0.937674\pi\)
\(380\) 0 0
\(381\) 19.2181 7.96041i 0.984574 0.407824i
\(382\) 0 0
\(383\) 1.79142 + 4.32487i 0.0915372 + 0.220990i 0.963017 0.269441i \(-0.0868391\pi\)
−0.871480 + 0.490432i \(0.836839\pi\)
\(384\) 0 0
\(385\) −9.37279 + 16.2215i −0.477682 + 0.826725i
\(386\) 0 0
\(387\) −4.06325 4.06325i −0.206547 0.206547i
\(388\) 0 0
\(389\) −24.9178 + 24.9178i −1.26338 + 1.26338i −0.313939 + 0.949443i \(0.601649\pi\)
−0.949443 + 0.313939i \(0.898351\pi\)
\(390\) 0 0
\(391\) −2.85105 1.18094i −0.144184 0.0597230i
\(392\) 0 0
\(393\) 22.1770 9.18602i 1.11868 0.463373i
\(394\) 0 0
\(395\) 0.846290 6.41150i 0.0425815 0.322598i
\(396\) 0 0
\(397\) 19.1455 + 7.93034i 0.960887 + 0.398012i 0.807312 0.590125i \(-0.200921\pi\)
0.153575 + 0.988137i \(0.450921\pi\)
\(398\) 0 0
\(399\) 11.9808 4.96262i 0.599791 0.248442i
\(400\) 0 0
\(401\) 5.12785 + 5.12785i 0.256072 + 0.256072i 0.823455 0.567382i \(-0.192044\pi\)
−0.567382 + 0.823455i \(0.692044\pi\)
\(402\) 0 0
\(403\) −5.12626 + 12.3759i −0.255357 + 0.616486i
\(404\) 0 0
\(405\) 7.37800 12.7691i 0.366616 0.634503i
\(406\) 0 0
\(407\) 45.5198 + 18.8549i 2.25633 + 0.934603i
\(408\) 0 0
\(409\) 3.74666 0.185261 0.0926303 0.995701i \(-0.470473\pi\)
0.0926303 + 0.995701i \(0.470473\pi\)
\(410\) 0 0
\(411\) 16.3360 0.805794
\(412\) 0 0
\(413\) 13.8246 + 5.72633i 0.680263 + 0.281774i
\(414\) 0 0
\(415\) 1.13394 0.303428i 0.0556629 0.0148947i
\(416\) 0 0
\(417\) −9.94042 + 23.9983i −0.486785 + 1.17520i
\(418\) 0 0
\(419\) −26.1687 26.1687i −1.27842 1.27842i −0.941550 0.336873i \(-0.890631\pi\)
−0.336873 0.941550i \(-0.609369\pi\)
\(420\) 0 0
\(421\) −27.3502 + 11.3288i −1.33297 + 0.552133i −0.931500 0.363741i \(-0.881499\pi\)
−0.401467 + 0.915874i \(0.631499\pi\)
\(422\) 0 0
\(423\) −8.22274 3.40597i −0.399803 0.165604i
\(424\) 0 0
\(425\) −13.1835 10.1302i −0.639494 0.491387i
\(426\) 0 0
\(427\) 2.00188 0.829207i 0.0968779 0.0401281i
\(428\) 0 0
\(429\) 22.2051 + 9.19767i 1.07207 + 0.444068i
\(430\) 0 0
\(431\) 6.13925 6.13925i 0.295717 0.295717i −0.543617 0.839334i \(-0.682945\pi\)
0.839334 + 0.543617i \(0.182945\pi\)
\(432\) 0 0
\(433\) −25.5931 25.5931i −1.22993 1.22993i −0.963991 0.265937i \(-0.914319\pi\)
−0.265937 0.963991i \(-0.585681\pi\)
\(434\) 0 0
\(435\) −5.61513 3.24442i −0.269225 0.155558i
\(436\) 0 0
\(437\) 2.09376 + 5.05479i 0.100158 + 0.241803i
\(438\) 0 0
\(439\) −5.83888 + 2.41854i −0.278674 + 0.115431i −0.517643 0.855596i \(-0.673191\pi\)
0.238969 + 0.971027i \(0.423191\pi\)
\(440\) 0 0
\(441\) 3.24439i 0.154495i
\(442\) 0 0
\(443\) −7.14463 −0.339452 −0.169726 0.985491i \(-0.554288\pi\)
−0.169726 + 0.985491i \(0.554288\pi\)
\(444\) 0 0
\(445\) 36.0820 + 4.76267i 1.71045 + 0.225772i
\(446\) 0 0
\(447\) −12.6148 12.6148i −0.596661 0.596661i
\(448\) 0 0
\(449\) −5.03157 5.03157i −0.237454 0.237454i 0.578341 0.815795i \(-0.303700\pi\)
−0.815795 + 0.578341i \(0.803700\pi\)
\(450\) 0 0
\(451\) −35.4350 + 11.7374i −1.66857 + 0.552694i
\(452\) 0 0
\(453\) 12.1323 0.570025
\(454\) 0 0
\(455\) 8.36242 2.23768i 0.392036 0.104904i
\(456\) 0 0
\(457\) 20.0430 8.30209i 0.937572 0.388355i 0.139026 0.990289i \(-0.455603\pi\)
0.798546 + 0.601934i \(0.205603\pi\)
\(458\) 0 0
\(459\) −13.1622 13.1622i −0.614359 0.614359i
\(460\) 0 0
\(461\) 4.14903 0.193240 0.0966198 0.995321i \(-0.469197\pi\)
0.0966198 + 0.995321i \(0.469197\pi\)
\(462\) 0 0
\(463\) 5.03680 12.1599i 0.234080 0.565119i −0.762570 0.646906i \(-0.776063\pi\)
0.996650 + 0.0817870i \(0.0260627\pi\)
\(464\) 0 0
\(465\) −13.5056 + 10.3560i −0.626308 + 0.480248i
\(466\) 0 0
\(467\) −2.08551 2.08551i −0.0965060 0.0965060i 0.657205 0.753711i \(-0.271738\pi\)
−0.753711 + 0.657205i \(0.771738\pi\)
\(468\) 0 0
\(469\) 1.06243i 0.0490586i
\(470\) 0 0
\(471\) 25.7283 + 25.7283i 1.18550 + 1.18550i
\(472\) 0 0
\(473\) 47.0718 19.4978i 2.16436 0.896508i
\(474\) 0 0
\(475\) 3.82784 + 29.2277i 0.175633 + 1.34106i
\(476\) 0 0
\(477\) −2.06318 + 0.854599i −0.0944667 + 0.0391294i
\(478\) 0 0
\(479\) 1.23851 + 2.99002i 0.0565889 + 0.136618i 0.949645 0.313327i \(-0.101444\pi\)
−0.893056 + 0.449945i \(0.851444\pi\)
\(480\) 0 0
\(481\) −8.71220 21.0331i −0.397242 0.959028i
\(482\) 0 0
\(483\) 2.04138 0.0928862
\(484\) 0 0
\(485\) −1.09147 + 8.26896i −0.0495609 + 0.375474i
\(486\) 0 0
\(487\) 2.77307i 0.125660i 0.998024 + 0.0628299i \(0.0200126\pi\)
−0.998024 + 0.0628299i \(0.979987\pi\)
\(488\) 0 0
\(489\) 12.6931 + 30.6438i 0.574001 + 1.38576i
\(490\) 0 0
\(491\) 16.1389i 0.728337i −0.931333 0.364168i \(-0.881353\pi\)
0.931333 0.364168i \(-0.118647\pi\)
\(492\) 0 0
\(493\) −4.45546 + 4.45546i −0.200664 + 0.200664i
\(494\) 0 0
\(495\) −5.21529 6.80144i −0.234410 0.305702i
\(496\) 0 0
\(497\) −21.9629 −0.985169
\(498\) 0 0
\(499\) 16.2476 6.72999i 0.727344 0.301276i 0.0118841 0.999929i \(-0.496217\pi\)
0.715460 + 0.698654i \(0.246217\pi\)
\(500\) 0 0
\(501\) 13.9713 13.9713i 0.624191 0.624191i
\(502\) 0 0
\(503\) 4.44424 10.7293i 0.198159 0.478398i −0.793298 0.608834i \(-0.791638\pi\)
0.991457 + 0.130436i \(0.0416376\pi\)
\(504\) 0 0
\(505\) 0.857802 0.657755i 0.0381717 0.0292697i
\(506\) 0 0
\(507\) 3.36426 + 8.12205i 0.149412 + 0.360713i
\(508\) 0 0
\(509\) −8.20280 3.39771i −0.363583 0.150601i 0.193410 0.981118i \(-0.438045\pi\)
−0.556993 + 0.830517i \(0.688045\pi\)
\(510\) 0 0
\(511\) 4.23221 10.2175i 0.187222 0.451994i
\(512\) 0 0
\(513\) 33.0021i 1.45708i
\(514\) 0 0
\(515\) 11.5738 20.0308i 0.510003 0.882663i
\(516\) 0 0
\(517\) 55.8011 55.8011i 2.45413 2.45413i
\(518\) 0 0
\(519\) −7.55508 + 18.2396i −0.331631 + 0.800628i
\(520\) 0 0
\(521\) 6.75827 + 16.3159i 0.296085 + 0.714813i 0.999990 + 0.00451847i \(0.00143828\pi\)
−0.703905 + 0.710295i \(0.748562\pi\)
\(522\) 0 0
\(523\) −29.5055 29.5055i −1.29019 1.29019i −0.934671 0.355515i \(-0.884305\pi\)
−0.355515 0.934671i \(-0.615695\pi\)
\(524\) 0 0
\(525\) 10.6216 + 2.85372i 0.463564 + 0.124547i
\(526\) 0 0
\(527\) 6.32804 + 15.2772i 0.275654 + 0.665487i
\(528\) 0 0
\(529\) 22.1387i 0.962553i
\(530\) 0 0
\(531\) −4.84059 + 4.84059i −0.210064 + 0.210064i
\(532\) 0 0
\(533\) 15.4126 + 7.74270i 0.667595 + 0.335374i
\(534\) 0 0
\(535\) −28.2472 + 7.55862i −1.22123 + 0.326788i
\(536\) 0 0
\(537\) 13.6444 13.6444i 0.588801 0.588801i
\(538\) 0 0
\(539\) 26.5769 + 11.0085i 1.14475 + 0.474171i
\(540\) 0 0
\(541\) −12.7554 + 12.7554i −0.548396 + 0.548396i −0.925977 0.377581i \(-0.876756\pi\)
0.377581 + 0.925977i \(0.376756\pi\)
\(542\) 0 0
\(543\) −7.22308 + 7.22308i −0.309972 + 0.309972i
\(544\) 0 0
\(545\) −27.3339 + 20.9594i −1.17086 + 0.897803i
\(546\) 0 0
\(547\) −28.2153 + 11.6872i −1.20640 + 0.499707i −0.893061 0.449935i \(-0.851447\pi\)
−0.313338 + 0.949642i \(0.601447\pi\)
\(548\) 0 0
\(549\) 0.991288i 0.0423072i
\(550\) 0 0
\(551\) 11.1713 0.475915
\(552\) 0 0
\(553\) 4.15661 0.176757
\(554\) 0 0
\(555\) 3.78505 28.6756i 0.160667 1.21721i
\(556\) 0 0
\(557\) 12.3702 + 29.8644i 0.524143 + 1.26539i 0.935309 + 0.353833i \(0.115122\pi\)
−0.411165 + 0.911561i \(0.634878\pi\)
\(558\) 0 0
\(559\) −21.7502 9.00925i −0.919937 0.381050i
\(560\) 0 0
\(561\) 27.4108 11.3539i 1.15729 0.479364i
\(562\) 0 0
\(563\) 22.8528 + 9.46592i 0.963129 + 0.398941i 0.808150 0.588977i \(-0.200469\pi\)
0.154979 + 0.987918i \(0.450469\pi\)
\(564\) 0 0
\(565\) 1.35175 + 5.05161i 0.0568685 + 0.212523i
\(566\) 0 0
\(567\) 8.75707 + 3.62730i 0.367762 + 0.152332i
\(568\) 0 0
\(569\) 29.4293 29.4293i 1.23374 1.23374i 0.271225 0.962516i \(-0.412571\pi\)
0.962516 0.271225i \(-0.0874287\pi\)
\(570\) 0 0
\(571\) 16.2622 6.73603i 0.680552 0.281894i −0.0155054 0.999880i \(-0.504936\pi\)
0.696058 + 0.717986i \(0.254936\pi\)
\(572\) 0 0
\(573\) −6.96530 6.96530i −0.290980 0.290980i
\(574\) 0 0
\(575\) −1.20401 + 4.48132i −0.0502105 + 0.186884i
\(576\) 0 0
\(577\) −7.22036 + 17.4315i −0.300588 + 0.725683i 0.699353 + 0.714777i \(0.253472\pi\)
−0.999941 + 0.0109063i \(0.996528\pi\)
\(578\) 0 0
\(579\) 3.18637 + 3.18637i 0.132421 + 0.132421i
\(580\) 0 0
\(581\) 0.288719 + 0.697028i 0.0119781 + 0.0289176i
\(582\) 0 0
\(583\) 19.8007i 0.820059i
\(584\) 0 0
\(585\) −0.518244 + 3.92622i −0.0214268 + 0.162329i
\(586\) 0 0
\(587\) −9.01668 + 21.7682i −0.372158 + 0.898470i 0.621226 + 0.783632i \(0.286635\pi\)
−0.993384 + 0.114838i \(0.963365\pi\)
\(588\) 0 0
\(589\) 11.2193 27.0859i 0.462284 1.11605i
\(590\) 0 0
\(591\) −0.328846 + 0.793904i −0.0135269 + 0.0326569i
\(592\) 0 0
\(593\) −0.251436 0.607020i −0.0103252 0.0249273i 0.918633 0.395112i \(-0.129294\pi\)
−0.928958 + 0.370185i \(0.879294\pi\)
\(594\) 0 0
\(595\) 5.34615 9.25260i 0.219171 0.379320i
\(596\) 0 0
\(597\) −16.6307 + 16.6307i −0.680649 + 0.680649i
\(598\) 0 0
\(599\) 37.9198 1.54936 0.774680 0.632354i \(-0.217911\pi\)
0.774680 + 0.632354i \(0.217911\pi\)
\(600\) 0 0
\(601\) −29.6032 12.2620i −1.20754 0.500179i −0.314112 0.949386i \(-0.601707\pi\)
−0.893428 + 0.449207i \(0.851707\pi\)
\(602\) 0 0
\(603\) 0.449049 + 0.186002i 0.0182867 + 0.00757459i
\(604\) 0 0
\(605\) 49.6504 13.2858i 2.01857 0.540146i
\(606\) 0 0
\(607\) 4.70631i 0.191023i −0.995428 0.0955117i \(-0.969551\pi\)
0.995428 0.0955117i \(-0.0304487\pi\)
\(608\) 0 0
\(609\) 1.59508 3.85086i 0.0646358 0.156045i
\(610\) 0 0
\(611\) −36.4638 −1.47517
\(612\) 0 0
\(613\) 10.5384i 0.425644i 0.977091 + 0.212822i \(0.0682654\pi\)
−0.977091 + 0.212822i \(0.931735\pi\)
\(614\) 0 0
\(615\) 12.0336 + 18.3141i 0.485241 + 0.738497i
\(616\) 0 0
\(617\) 16.4990i 0.664224i −0.943240 0.332112i \(-0.892239\pi\)
0.943240 0.332112i \(-0.107761\pi\)
\(618\) 0 0
\(619\) 19.9470 0.801739 0.400869 0.916135i \(-0.368708\pi\)
0.400869 + 0.916135i \(0.368708\pi\)
\(620\) 0 0
\(621\) −1.98808 + 4.79965i −0.0797790 + 0.192603i
\(622\) 0 0
\(623\) 23.3922i 0.937187i
\(624\) 0 0
\(625\) −12.5292 + 21.6338i −0.501168 + 0.865350i
\(626\) 0 0
\(627\) −48.5982 20.1300i −1.94082 0.803916i
\(628\) 0 0
\(629\) −25.9641 10.7547i −1.03525 0.428817i
\(630\) 0 0
\(631\) 32.5474 1.29569 0.647846 0.761771i \(-0.275670\pi\)
0.647846 + 0.761771i \(0.275670\pi\)
\(632\) 0 0
\(633\) −2.75231 + 2.75231i −0.109395 + 0.109395i
\(634\) 0 0
\(635\) −29.3578 + 7.85578i −1.16503 + 0.311747i
\(636\) 0 0
\(637\) −5.08666 12.2803i −0.201541 0.486562i
\(638\) 0 0
\(639\) 3.84508 9.28284i 0.152109 0.367224i
\(640\) 0 0
\(641\) −11.7933 + 28.4715i −0.465806 + 1.12456i 0.500170 + 0.865927i \(0.333271\pi\)
−0.965977 + 0.258629i \(0.916729\pi\)
\(642\) 0 0
\(643\) −6.63131 + 16.0094i −0.261513 + 0.631349i −0.999033 0.0439769i \(-0.985997\pi\)
0.737519 + 0.675326i \(0.235997\pi\)
\(644\) 0 0
\(645\) −18.2004 23.7357i −0.716639 0.934594i
\(646\) 0 0
\(647\) 28.6753i 1.12734i −0.826000 0.563671i \(-0.809389\pi\)
0.826000 0.563671i \(-0.190611\pi\)
\(648\) 0 0
\(649\) −23.2279 56.0771i −0.911774 2.20122i
\(650\) 0 0
\(651\) −7.73480 7.73480i −0.303151 0.303151i
\(652\) 0 0
\(653\) −10.0663 + 24.3022i −0.393925 + 0.951018i 0.595152 + 0.803614i \(0.297092\pi\)
−0.989076 + 0.147405i \(0.952908\pi\)
\(654\) 0 0
\(655\) −33.8778 + 9.06528i −1.32371 + 0.354210i
\(656\) 0 0
\(657\) 3.57758 + 3.57758i 0.139575 + 0.139575i
\(658\) 0 0
\(659\) −28.2022 + 11.6817i −1.09860 + 0.455056i −0.856998 0.515320i \(-0.827673\pi\)
−0.241603 + 0.970375i \(0.577673\pi\)
\(660\) 0 0
\(661\) −22.2897 + 22.2897i −0.866970 + 0.866970i −0.992136 0.125166i \(-0.960054\pi\)
0.125166 + 0.992136i \(0.460054\pi\)
\(662\) 0 0
\(663\) −12.6656 5.24626i −0.491891 0.203748i
\(664\) 0 0
\(665\) −18.3020 + 4.89739i −0.709721 + 0.189913i
\(666\) 0 0
\(667\) 1.62470 + 0.672974i 0.0629087 + 0.0260577i
\(668\) 0 0
\(669\) −3.77736 + 1.56463i −0.146041 + 0.0604923i
\(670\) 0 0
\(671\) −8.12030 3.36354i −0.313481 0.129848i
\(672\) 0 0
\(673\) −10.1479 24.4991i −0.391172 0.944372i −0.989685 0.143260i \(-0.954242\pi\)
0.598513 0.801113i \(-0.295758\pi\)
\(674\) 0 0
\(675\) −17.0539 + 22.1940i −0.656403 + 0.854248i
\(676\) 0 0
\(677\) −21.2779 −0.817775 −0.408888 0.912585i \(-0.634083\pi\)
−0.408888 + 0.912585i \(0.634083\pi\)
\(678\) 0 0
\(679\) −5.36081 −0.205729
\(680\) 0 0
\(681\) 23.6141i 0.904896i
\(682\) 0 0
\(683\) 19.8590 8.22586i 0.759883 0.314754i 0.0311160 0.999516i \(-0.490094\pi\)
0.728767 + 0.684762i \(0.240094\pi\)
\(684\) 0 0
\(685\) −23.6613 3.12319i −0.904052 0.119331i
\(686\) 0 0
\(687\) 14.9409 14.9409i 0.570032 0.570032i
\(688\) 0 0
\(689\) −6.46946 + 6.46946i −0.246467 + 0.246467i
\(690\) 0 0
\(691\) 24.9826 + 10.3481i 0.950385 + 0.393662i 0.803375 0.595473i \(-0.203035\pi\)
0.147009 + 0.989135i \(0.453035\pi\)
\(692\) 0 0
\(693\) 3.89525 3.89525i 0.147968 0.147968i
\(694\) 0 0
\(695\) 18.9860 32.8591i 0.720180 1.24642i
\(696\) 0 0
\(697\) 20.2118 6.69492i 0.765576 0.253588i
\(698\) 0 0
\(699\) −26.4767 + 26.4767i −1.00144 + 1.00144i
\(700\) 0 0
\(701\) 19.4459i 0.734460i −0.930130 0.367230i \(-0.880306\pi\)
0.930130 0.367230i \(-0.119694\pi\)
\(702\) 0 0
\(703\) 19.0675 + 46.0331i 0.719146 + 1.73617i
\(704\) 0 0
\(705\) −40.1128 23.1772i −1.51073 0.872902i
\(706\) 0 0
\(707\) 0.491271 + 0.491271i 0.0184762 + 0.0184762i
\(708\) 0 0
\(709\) 10.9281 + 26.3827i 0.410412 + 0.990821i 0.985027 + 0.172398i \(0.0551515\pi\)
−0.574616 + 0.818423i \(0.694848\pi\)
\(710\) 0 0
\(711\) −0.727705 + 1.75684i −0.0272911 + 0.0658865i
\(712\) 0 0
\(713\) 3.26337 3.26337i 0.122214 0.122214i
\(714\) 0 0
\(715\) −30.4038 17.5673i −1.13704 0.656981i
\(716\) 0 0
\(717\) 1.02304i 0.0382060i
\(718\) 0 0
\(719\) −7.05679 + 17.0366i −0.263174 + 0.635358i −0.999131 0.0416695i \(-0.986732\pi\)
0.735957 + 0.677028i \(0.236732\pi\)
\(720\) 0 0
\(721\) 13.7371 + 5.69011i 0.511598 + 0.211911i
\(722\) 0 0
\(723\) 11.0947 + 26.7851i 0.412618 + 0.996148i
\(724\) 0 0
\(725\) 7.51276 + 5.77280i 0.279017 + 0.214396i
\(726\) 0 0
\(727\) 19.1883 46.3246i 0.711654 1.71809i 0.0158289 0.999875i \(-0.494961\pi\)
0.695825 0.718211i \(-0.255039\pi\)
\(728\) 0 0
\(729\) −21.2411 + 21.2411i −0.786707 + 0.786707i
\(730\) 0 0
\(731\) −26.8493 + 11.1213i −0.993057 + 0.411338i
\(732\) 0 0
\(733\) −9.28292 −0.342872 −0.171436 0.985195i \(-0.554841\pi\)
−0.171436 + 0.985195i \(0.554841\pi\)
\(734\) 0 0
\(735\) 2.20992 16.7424i 0.0815141 0.617552i
\(736\) 0 0
\(737\) −3.04733 + 3.04733i −0.112250 + 0.112250i
\(738\) 0 0
\(739\) 35.4342i 1.30347i −0.758447 0.651734i \(-0.774042\pi\)
0.758447 0.651734i \(-0.225958\pi\)
\(740\) 0 0
\(741\) 9.30139 + 22.4555i 0.341695 + 0.824925i
\(742\) 0 0
\(743\) 23.3023i 0.854879i 0.904044 + 0.427440i \(0.140584\pi\)
−0.904044 + 0.427440i \(0.859416\pi\)
\(744\) 0 0
\(745\) 15.8598 + 20.6833i 0.581057 + 0.757777i
\(746\) 0 0
\(747\) −0.345153 −0.0126285
\(748\) 0 0
\(749\) −7.19219 17.3635i −0.262797 0.634448i
\(750\) 0 0
\(751\) 6.44172 + 15.5517i 0.235062 + 0.567489i 0.996759 0.0804437i \(-0.0256337\pi\)
−0.761697 + 0.647933i \(0.775634\pi\)
\(752\) 0 0
\(753\) 19.5866 8.11304i 0.713775 0.295655i
\(754\) 0 0
\(755\) −17.5726 2.31951i −0.639533 0.0844155i
\(756\) 0 0
\(757\) 25.4135 10.5266i 0.923671 0.382597i 0.130397 0.991462i \(-0.458375\pi\)
0.793274 + 0.608865i \(0.208375\pi\)
\(758\) 0 0
\(759\) −5.85522 5.85522i −0.212531 0.212531i
\(760\) 0 0
\(761\) 39.0404i 1.41521i 0.706607 + 0.707607i \(0.250225\pi\)
−0.706607 + 0.707607i \(0.749775\pi\)
\(762\) 0 0
\(763\) −15.6544 15.6544i −0.566728 0.566728i
\(764\) 0 0
\(765\) 2.97475 + 3.87948i 0.107552 + 0.140263i
\(766\) 0 0
\(767\) −10.7328 + 25.9113i −0.387539 + 0.935602i
\(768\) 0 0
\(769\) 17.2515 0.622106 0.311053 0.950393i \(-0.399318\pi\)
0.311053 + 0.950393i \(0.399318\pi\)
\(770\) 0 0
\(771\) 1.77530 + 1.77530i 0.0639360 + 0.0639360i
\(772\) 0 0
\(773\) 28.3328 11.7358i 1.01906 0.422109i 0.190308 0.981724i \(-0.439051\pi\)
0.828752 + 0.559616i \(0.189051\pi\)
\(774\) 0 0
\(775\) 21.5417 12.4177i 0.773800 0.446058i
\(776\) 0 0
\(777\) 18.5905 0.666932
\(778\) 0 0
\(779\) −33.7321 16.9457i −1.20858 0.607142i
\(780\) 0 0
\(781\) 62.9952 + 62.9952i 2.25415 + 2.25415i
\(782\) 0 0
\(783\) 7.50061 + 7.50061i 0.268050 + 0.268050i
\(784\) 0 0
\(785\) −32.3464 42.1841i −1.15449 1.50562i
\(786\) 0 0
\(787\) −2.33956 −0.0833964 −0.0416982 0.999130i \(-0.513277\pi\)
−0.0416982 + 0.999130i \(0.513277\pi\)
\(788\) 0 0
\(789\) 43.1940i 1.53775i
\(790\) 0 0
\(791\) −3.10521 + 1.28622i −0.110408 + 0.0457327i
\(792\) 0 0
\(793\) 1.55417 + 3.75211i 0.0551904 + 0.133241i
\(794\) 0 0
\(795\) −11.2290 + 3.00474i −0.398252 + 0.106567i
\(796\) 0 0
\(797\) −20.0151 20.0151i −0.708971 0.708971i 0.257348 0.966319i \(-0.417151\pi\)
−0.966319 + 0.257348i \(0.917151\pi\)
\(798\) 0 0
\(799\) −31.8284 + 31.8284i −1.12601 + 1.12601i
\(800\) 0 0
\(801\) −9.88695 4.09531i −0.349338 0.144701i
\(802\) 0 0
\(803\) −41.4454 + 17.1673i −1.46258 + 0.605819i
\(804\) 0 0
\(805\) −2.95678 0.390281i −0.104213 0.0137556i
\(806\) 0 0
\(807\) 19.7146 + 8.16607i 0.693988 + 0.287459i
\(808\) 0 0
\(809\) 5.52468 2.28840i 0.194237 0.0804558i −0.283444 0.958989i \(-0.591477\pi\)
0.477682 + 0.878533i \(0.341477\pi\)
\(810\) 0 0
\(811\) −20.8391 20.8391i −0.731761 0.731761i 0.239207 0.970969i \(-0.423112\pi\)
−0.970969 + 0.239207i \(0.923112\pi\)
\(812\) 0 0
\(813\) 6.21994 15.0163i 0.218143 0.526643i
\(814\) 0 0
\(815\) −12.5262 46.8117i −0.438775 1.63974i
\(816\) 0 0
\(817\) 47.6026 + 19.7176i 1.66540 + 0.689833i
\(818\) 0 0
\(819\) −2.54539 −0.0889431
\(820\) 0 0
\(821\) 1.58381 0.0552754 0.0276377 0.999618i \(-0.491202\pi\)
0.0276377 + 0.999618i \(0.491202\pi\)
\(822\) 0 0
\(823\) −25.4567 10.5445i −0.887364 0.367558i −0.108016 0.994149i \(-0.534450\pi\)
−0.779348 + 0.626591i \(0.784450\pi\)
\(824\) 0 0
\(825\) −22.2802 38.6507i −0.775698 1.34564i
\(826\) 0 0
\(827\) −13.8647 + 33.4723i −0.482123 + 1.16395i 0.476476 + 0.879187i \(0.341914\pi\)
−0.958599 + 0.284760i \(0.908086\pi\)
\(828\) 0 0
\(829\) 16.2629 + 16.2629i 0.564834 + 0.564834i 0.930677 0.365842i \(-0.119219\pi\)
−0.365842 + 0.930677i \(0.619219\pi\)
\(830\) 0 0
\(831\) −3.79105 + 1.57031i −0.131510 + 0.0544733i
\(832\) 0 0
\(833\) −15.1592 6.27916i −0.525236 0.217560i
\(834\) 0 0
\(835\) −22.9074 + 17.5652i −0.792742 + 0.607868i
\(836\) 0 0
\(837\) 25.7187 10.6530i 0.888969 0.368223i
\(838\) 0 0
\(839\) −44.0247 18.2356i −1.51990 0.629564i −0.542331 0.840165i \(-0.682458\pi\)
−0.977572 + 0.210601i \(0.932458\pi\)
\(840\) 0 0
\(841\) −17.9671 + 17.9671i −0.619555 + 0.619555i
\(842\) 0 0
\(843\) 26.3567 + 26.3567i 0.907772 + 0.907772i
\(844\) 0 0
\(845\) −3.32005 12.4073i −0.114213 0.426825i
\(846\) 0 0
\(847\) 12.6418 + 30.5199i 0.434376 + 1.04868i
\(848\) 0 0
\(849\) −16.3667 + 6.77932i −0.561704 + 0.232666i
\(850\) 0 0
\(851\) 7.84348i 0.268871i
\(852\) 0 0
\(853\) −13.8733 −0.475014 −0.237507 0.971386i \(-0.576330\pi\)
−0.237507 + 0.971386i \(0.576330\pi\)
\(854\) 0 0
\(855\) 1.13423 8.59293i 0.0387898 0.293872i
\(856\) 0 0
\(857\) −21.4899 21.4899i −0.734080 0.734080i 0.237346 0.971425i \(-0.423723\pi\)
−0.971425 + 0.237346i \(0.923723\pi\)
\(858\) 0 0
\(859\) −1.68959 1.68959i −0.0576479 0.0576479i 0.677695 0.735343i \(-0.262979\pi\)
−0.735343 + 0.677695i \(0.762979\pi\)
\(860\) 0 0
\(861\) −10.6577 + 9.20819i −0.363213 + 0.313814i
\(862\) 0 0
\(863\) 0.485392 0.0165229 0.00826147 0.999966i \(-0.497370\pi\)
0.00826147 + 0.999966i \(0.497370\pi\)
\(864\) 0 0
\(865\) 14.4300 24.9741i 0.490636 0.849145i
\(866\) 0 0
\(867\) 8.40348 3.48084i 0.285397 0.118215i
\(868\) 0 0
\(869\) −11.9222 11.9222i −0.404434 0.404434i
\(870\) 0 0
\(871\) 1.99131 0.0674729
\(872\) 0 0
\(873\) 0.938526 2.26580i 0.0317643 0.0766858i
\(874\) 0 0
\(875\) −14.8389 6.16407i −0.501646 0.208384i
\(876\) 0 0
\(877\) −27.6825 27.6825i −0.934770 0.934770i 0.0632291 0.997999i \(-0.479860\pi\)
−0.997999 + 0.0632291i \(0.979860\pi\)
\(878\) 0 0
\(879\) 22.4071i 0.755774i
\(880\) 0 0
\(881\) 6.18484 + 6.18484i 0.208372 + 0.208372i 0.803575 0.595203i \(-0.202928\pi\)
−0.595203 + 0.803575i \(0.702928\pi\)
\(882\) 0 0
\(883\) −44.1642 + 18.2934i −1.48625 + 0.615623i −0.970496 0.241117i \(-0.922486\pi\)
−0.515749 + 0.856740i \(0.672486\pi\)
\(884\) 0 0
\(885\) −28.2766 + 21.6823i −0.950508 + 0.728841i
\(886\) 0 0
\(887\) 31.0997 12.8819i 1.04423 0.432533i 0.206399 0.978468i \(-0.433825\pi\)
0.837828 + 0.545935i \(0.183825\pi\)
\(888\) 0 0
\(889\) −7.47495 18.0461i −0.250702 0.605248i
\(890\) 0 0
\(891\) −14.7135 35.5216i −0.492921 1.19002i
\(892\) 0 0
\(893\) 79.8046 2.67056
\(894\) 0 0
\(895\) −22.3715 + 17.1542i −0.747795 + 0.573403i
\(896\) 0 0
\(897\) 3.82615i 0.127751i
\(898\) 0 0
\(899\) −3.60610 8.70590i −0.120270 0.290358i
\(900\) 0 0
\(901\) 11.2941i 0.376261i
\(902\) 0 0
\(903\) 13.5937 13.5937i 0.452370 0.452370i
\(904\) 0 0
\(905\) 11.8430 9.08110i 0.393674 0.301866i
\(906\) 0 0
\(907\) −24.6015 −0.816880 −0.408440 0.912785i \(-0.633927\pi\)
−0.408440 + 0.912785i \(0.633927\pi\)
\(908\) 0 0
\(909\) −0.293649 + 0.121633i −0.00973972 + 0.00403432i
\(910\) 0 0
\(911\) −2.49076 + 2.49076i −0.0825224 + 0.0825224i −0.747163 0.664641i \(-0.768585\pi\)
0.664641 + 0.747163i \(0.268585\pi\)
\(912\) 0 0
\(913\) 1.17114 2.82738i 0.0387590 0.0935726i
\(914\) 0 0
\(915\) −0.675218 + 5.11546i −0.0223220 + 0.169112i
\(916\) 0 0
\(917\) −8.62582 20.8246i −0.284850 0.687688i
\(918\) 0 0
\(919\) 11.1991 + 4.63883i 0.369425 + 0.153021i 0.559669 0.828716i \(-0.310928\pi\)
−0.190245 + 0.981737i \(0.560928\pi\)
\(920\) 0 0
\(921\) −11.7557 + 28.3807i −0.387362 + 0.935175i
\(922\) 0 0
\(923\) 41.1648i 1.35496i
\(924\) 0 0
\(925\) −10.9647 + 40.8106i −0.360516 + 1.34184i
\(926\) 0 0
\(927\) −4.80997 + 4.80997i −0.157980 + 0.157980i
\(928\) 0 0
\(929\) −11.0654 + 26.7142i −0.363043 + 0.876463i 0.631809 + 0.775124i \(0.282313\pi\)
−0.994852 + 0.101339i \(0.967687\pi\)
\(930\) 0 0
\(931\) 11.1327 + 26.8766i 0.364858 + 0.880846i
\(932\) 0 0
\(933\) −11.6491 11.6491i −0.381375 0.381375i
\(934\) 0 0
\(935\) −41.8730 + 11.2047i −1.36939 + 0.366433i
\(936\) 0 0
\(937\) 5.73053 + 13.8347i 0.187208 + 0.451960i 0.989420 0.145079i \(-0.0463436\pi\)
−0.802212 + 0.597039i \(0.796344\pi\)
\(938\) 0 0
\(939\) 7.44829i 0.243066i
\(940\) 0 0
\(941\) −32.4676 + 32.4676i −1.05841 + 1.05841i −0.0602288 + 0.998185i \(0.519183\pi\)
−0.998185 + 0.0602288i \(0.980817\pi\)
\(942\) 0 0
\(943\) −3.88500 4.49656i −0.126513 0.146428i
\(944\) 0 0
\(945\) −15.5765 9.00007i −0.506702 0.292772i
\(946\) 0 0
\(947\) −1.08203 + 1.08203i −0.0351612 + 0.0351612i −0.724469 0.689308i \(-0.757915\pi\)
0.689308 + 0.724469i \(0.257915\pi\)
\(948\) 0 0
\(949\) 19.1505 + 7.93239i 0.621651 + 0.257496i
\(950\) 0 0
\(951\) −16.1649 + 16.1649i −0.524184 + 0.524184i
\(952\) 0 0
\(953\) −19.2185 + 19.2185i −0.622550 + 0.622550i −0.946183 0.323633i \(-0.895096\pi\)
0.323633 + 0.946183i \(0.395096\pi\)
\(954\) 0 0
\(955\) 8.75701 + 11.4203i 0.283370 + 0.369553i
\(956\) 0 0
\(957\) −15.6204 + 6.47016i −0.504934 + 0.209151i
\(958\) 0 0
\(959\) 15.3397i 0.495346i
\(960\) 0 0
\(961\) 6.27021 0.202265
\(962\) 0 0
\(963\) 8.59802 0.277067
\(964\) 0 0
\(965\) −4.00601 5.22438i −0.128958 0.168179i
\(966\) 0 0
\(967\) −21.9110 52.8978i −0.704610 1.70108i −0.713049 0.701114i \(-0.752686\pi\)
0.00843938 0.999964i \(-0.497314\pi\)
\(968\) 0 0
\(969\) 27.7199 + 11.4820i 0.890493 + 0.368854i
\(970\) 0 0
\(971\) 27.4755 11.3807i 0.881730 0.365225i 0.104563 0.994518i \(-0.466656\pi\)
0.777168 + 0.629294i \(0.216656\pi\)
\(972\) 0 0
\(973\) 22.5348 + 9.33422i 0.722432 + 0.299241i
\(974\) 0 0
\(975\) −5.34871 + 19.9079i −0.171296 + 0.637564i
\(976\) 0 0
\(977\) 54.7532 + 22.6795i 1.75171 + 0.725582i 0.997631 + 0.0687971i \(0.0219161\pi\)
0.754078 + 0.656785i \(0.228084\pi\)
\(978\) 0 0
\(979\) 67.0948 67.0948i 2.14436 2.14436i
\(980\) 0 0
\(981\) 9.35715 3.87586i 0.298751 0.123747i
\(982\) 0 0
\(983\) 9.04938 + 9.04938i 0.288630 + 0.288630i 0.836539 0.547908i \(-0.184576\pi\)
−0.547908 + 0.836539i \(0.684576\pi\)
\(984\) 0 0
\(985\) 0.628088 1.08703i 0.0200126 0.0346358i
\(986\) 0 0
\(987\) 11.3948 27.5094i 0.362699 0.875633i
\(988\) 0 0
\(989\) 5.73527 + 5.73527i 0.182371 + 0.182371i
\(990\) 0 0
\(991\) −19.5253 47.1382i −0.620241 1.49739i −0.851421 0.524483i \(-0.824258\pi\)
0.231180 0.972911i \(-0.425742\pi\)
\(992\) 0 0
\(993\) 7.63701i 0.242353i
\(994\) 0 0
\(995\) 27.2677 20.9087i 0.864445 0.662849i
\(996\) 0 0
\(997\) −6.96020 + 16.8034i −0.220432 + 0.532170i −0.994949 0.100384i \(-0.967993\pi\)
0.774517 + 0.632553i \(0.217993\pi\)
\(998\) 0 0
\(999\) −18.1051 + 43.7096i −0.572821 + 1.38291i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.137.7 yes 84
5.3 odd 4 820.2.x.a.793.15 yes 84
41.3 odd 8 820.2.x.a.577.15 84
205.3 even 8 inner 820.2.y.a.413.7 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.15 84 41.3 odd 8
820.2.x.a.793.15 yes 84 5.3 odd 4
820.2.y.a.137.7 yes 84 1.1 even 1 trivial
820.2.y.a.413.7 yes 84 205.3 even 8 inner