Properties

Label 820.2.x.a.793.15
Level $820$
Weight $2$
Character 820.793
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 793.15
Character \(\chi\) \(=\) 820.793
Dual form 820.2.x.a.577.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.585707 - 1.41402i) q^{3} +(-1.11869 - 1.93611i) q^{5} +(1.32779 + 0.549988i) q^{7} +(0.464917 + 0.464917i) q^{9} +(5.38595 - 2.23093i) q^{11} +(1.03084 - 2.48866i) q^{13} +(-3.39293 + 0.447852i) q^{15} +(1.27250 + 3.07210i) q^{17} +(-5.44669 - 2.25609i) q^{19} +(1.55539 - 1.55539i) q^{21} +(-0.656229 + 0.656229i) q^{23} +(-2.49708 + 4.33181i) q^{25} +(5.17177 - 2.14222i) q^{27} +(-1.75067 + 0.725150i) q^{29} -4.97291i q^{31} -8.92252i q^{33} +(-0.420540 - 3.18602i) q^{35} +(5.97617 - 5.97617i) q^{37} +(-2.91525 - 2.91525i) q^{39} +(-6.38615 - 0.465961i) q^{41} +8.73974i q^{43} +(0.380036 - 1.42023i) q^{45} +(-5.18025 - 12.5062i) q^{47} +(-3.48921 - 3.48921i) q^{49} +5.08932 q^{51} +(3.13796 + 1.29979i) q^{53} +(-10.3445 - 7.93210i) q^{55} +(-6.38032 + 6.38032i) q^{57} +10.4117i q^{59} +(-1.06609 - 1.06609i) q^{61} +(0.361612 + 0.873010i) q^{63} +(-5.97152 + 0.788214i) q^{65} +(0.282897 + 0.682973i) q^{67} +(0.543564 + 1.31228i) q^{69} +(5.84810 + 14.1186i) q^{71} -7.69510i q^{73} +(4.66272 + 6.06809i) q^{75} +8.37839 q^{77} +(1.10679 + 2.67203i) q^{79} -6.59523i q^{81} +(0.371199 + 0.371199i) q^{83} +(4.52440 - 5.90043i) q^{85} +2.90020i q^{87} +(-15.0374 + 6.22868i) q^{89} +(2.73747 - 2.73747i) q^{91} +(-7.03179 - 2.91266i) q^{93} +(1.72509 + 13.0693i) q^{95} +(3.44613 - 1.42744i) q^{97} +(3.54122 + 1.46682i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.585707 1.41402i 0.338158 0.816386i −0.659735 0.751499i \(-0.729331\pi\)
0.997893 0.0648869i \(-0.0206687\pi\)
\(4\) 0 0
\(5\) −1.11869 1.93611i −0.500292 0.865857i
\(6\) 0 0
\(7\) 1.32779 + 0.549988i 0.501857 + 0.207876i 0.619227 0.785212i \(-0.287446\pi\)
−0.117370 + 0.993088i \(0.537446\pi\)
\(8\) 0 0
\(9\) 0.464917 + 0.464917i 0.154972 + 0.154972i
\(10\) 0 0
\(11\) 5.38595 2.23093i 1.62393 0.672652i 0.629393 0.777087i \(-0.283303\pi\)
0.994532 + 0.104435i \(0.0333034\pi\)
\(12\) 0 0
\(13\) 1.03084 2.48866i 0.285903 0.690230i −0.714049 0.700096i \(-0.753140\pi\)
0.999951 + 0.00986577i \(0.00314042\pi\)
\(14\) 0 0
\(15\) −3.39293 + 0.447852i −0.876051 + 0.115635i
\(16\) 0 0
\(17\) 1.27250 + 3.07210i 0.308627 + 0.745093i 0.999750 + 0.0223550i \(0.00711642\pi\)
−0.691123 + 0.722737i \(0.742884\pi\)
\(18\) 0 0
\(19\) −5.44669 2.25609i −1.24956 0.517583i −0.342867 0.939384i \(-0.611398\pi\)
−0.906688 + 0.421801i \(0.861398\pi\)
\(20\) 0 0
\(21\) 1.55539 1.55539i 0.339414 0.339414i
\(22\) 0 0
\(23\) −0.656229 + 0.656229i −0.136833 + 0.136833i −0.772206 0.635373i \(-0.780847\pi\)
0.635373 + 0.772206i \(0.280847\pi\)
\(24\) 0 0
\(25\) −2.49708 + 4.33181i −0.499416 + 0.866362i
\(26\) 0 0
\(27\) 5.17177 2.14222i 0.995308 0.412270i
\(28\) 0 0
\(29\) −1.75067 + 0.725150i −0.325090 + 0.134657i −0.539259 0.842140i \(-0.681296\pi\)
0.214169 + 0.976797i \(0.431296\pi\)
\(30\) 0 0
\(31\) 4.97291i 0.893160i −0.894744 0.446580i \(-0.852642\pi\)
0.894744 0.446580i \(-0.147358\pi\)
\(32\) 0 0
\(33\) 8.92252i 1.55321i
\(34\) 0 0
\(35\) −0.420540 3.18602i −0.0710842 0.538535i
\(36\) 0 0
\(37\) 5.97617 5.97617i 0.982476 0.982476i −0.0173729 0.999849i \(-0.505530\pi\)
0.999849 + 0.0173729i \(0.00553025\pi\)
\(38\) 0 0
\(39\) −2.91525 2.91525i −0.466814 0.466814i
\(40\) 0 0
\(41\) −6.38615 0.465961i −0.997349 0.0727710i
\(42\) 0 0
\(43\) 8.73974i 1.33280i 0.745596 + 0.666399i \(0.232165\pi\)
−0.745596 + 0.666399i \(0.767835\pi\)
\(44\) 0 0
\(45\) 0.380036 1.42023i 0.0566524 0.211715i
\(46\) 0 0
\(47\) −5.18025 12.5062i −0.755617 1.82422i −0.524803 0.851223i \(-0.675861\pi\)
−0.230814 0.972998i \(-0.574139\pi\)
\(48\) 0 0
\(49\) −3.48921 3.48921i −0.498459 0.498459i
\(50\) 0 0
\(51\) 5.08932 0.712648
\(52\) 0 0
\(53\) 3.13796 + 1.29979i 0.431032 + 0.178539i 0.587642 0.809121i \(-0.300056\pi\)
−0.156610 + 0.987661i \(0.550056\pi\)
\(54\) 0 0
\(55\) −10.3445 7.93210i −1.39486 1.06956i
\(56\) 0 0
\(57\) −6.38032 + 6.38032i −0.845094 + 0.845094i
\(58\) 0 0
\(59\) 10.4117i 1.35549i 0.735296 + 0.677746i \(0.237043\pi\)
−0.735296 + 0.677746i \(0.762957\pi\)
\(60\) 0 0
\(61\) −1.06609 1.06609i −0.136499 0.136499i 0.635556 0.772055i \(-0.280771\pi\)
−0.772055 + 0.635556i \(0.780771\pi\)
\(62\) 0 0
\(63\) 0.361612 + 0.873010i 0.0455589 + 0.109989i
\(64\) 0 0
\(65\) −5.97152 + 0.788214i −0.740676 + 0.0977659i
\(66\) 0 0
\(67\) 0.282897 + 0.682973i 0.0345613 + 0.0834384i 0.940218 0.340574i \(-0.110621\pi\)
−0.905656 + 0.424012i \(0.860621\pi\)
\(68\) 0 0
\(69\) 0.543564 + 1.31228i 0.0654374 + 0.157980i
\(70\) 0 0
\(71\) 5.84810 + 14.1186i 0.694042 + 1.67557i 0.736473 + 0.676467i \(0.236490\pi\)
−0.0424309 + 0.999099i \(0.513510\pi\)
\(72\) 0 0
\(73\) 7.69510i 0.900643i −0.892866 0.450322i \(-0.851309\pi\)
0.892866 0.450322i \(-0.148691\pi\)
\(74\) 0 0
\(75\) 4.66272 + 6.06809i 0.538404 + 0.700683i
\(76\) 0 0
\(77\) 8.37839 0.954806
\(78\) 0 0
\(79\) 1.10679 + 2.67203i 0.124524 + 0.300627i 0.973831 0.227271i \(-0.0729804\pi\)
−0.849308 + 0.527898i \(0.822980\pi\)
\(80\) 0 0
\(81\) 6.59523i 0.732803i
\(82\) 0 0
\(83\) 0.371199 + 0.371199i 0.0407444 + 0.0407444i 0.727185 0.686441i \(-0.240828\pi\)
−0.686441 + 0.727185i \(0.740828\pi\)
\(84\) 0 0
\(85\) 4.52440 5.90043i 0.490740 0.639991i
\(86\) 0 0
\(87\) 2.90020i 0.310934i
\(88\) 0 0
\(89\) −15.0374 + 6.22868i −1.59396 + 0.660239i −0.990545 0.137189i \(-0.956193\pi\)
−0.603414 + 0.797428i \(0.706193\pi\)
\(90\) 0 0
\(91\) 2.73747 2.73747i 0.286965 0.286965i
\(92\) 0 0
\(93\) −7.03179 2.91266i −0.729163 0.302029i
\(94\) 0 0
\(95\) 1.72509 + 13.0693i 0.176990 + 1.34088i
\(96\) 0 0
\(97\) 3.44613 1.42744i 0.349902 0.144934i −0.200809 0.979631i \(-0.564357\pi\)
0.550710 + 0.834696i \(0.314357\pi\)
\(98\) 0 0
\(99\) 3.54122 + 1.46682i 0.355906 + 0.147421i
\(100\) 0 0
\(101\) 0.184996 0.446620i 0.0184078 0.0444404i −0.914408 0.404793i \(-0.867344\pi\)
0.932816 + 0.360353i \(0.117344\pi\)
\(102\) 0 0
\(103\) 10.3459 1.01941 0.509705 0.860349i \(-0.329755\pi\)
0.509705 + 0.860349i \(0.329755\pi\)
\(104\) 0 0
\(105\) −4.75141 1.27142i −0.463690 0.124078i
\(106\) 0 0
\(107\) 9.24683 + 9.24683i 0.893925 + 0.893925i 0.994890 0.100965i \(-0.0321929\pi\)
−0.100965 + 0.994890i \(0.532193\pi\)
\(108\) 0 0
\(109\) 5.89492 14.2316i 0.564631 1.36314i −0.341396 0.939919i \(-0.610900\pi\)
0.906027 0.423220i \(-0.139100\pi\)
\(110\) 0 0
\(111\) −4.95015 11.9507i −0.469847 1.13431i
\(112\) 0 0
\(113\) −1.65366 + 1.65366i −0.155563 + 0.155563i −0.780597 0.625034i \(-0.785085\pi\)
0.625034 + 0.780597i \(0.285085\pi\)
\(114\) 0 0
\(115\) 2.00465 + 0.536420i 0.186935 + 0.0500214i
\(116\) 0 0
\(117\) 1.63627 0.677767i 0.151274 0.0626596i
\(118\) 0 0
\(119\) 4.77895i 0.438086i
\(120\) 0 0
\(121\) 16.2532 16.2532i 1.47757 1.47757i
\(122\) 0 0
\(123\) −4.39929 + 8.75723i −0.396671 + 0.789613i
\(124\) 0 0
\(125\) 11.1803 0.0113103i 0.999999 0.00101163i
\(126\) 0 0
\(127\) 9.61037 + 9.61037i 0.852782 + 0.852782i 0.990475 0.137693i \(-0.0439686\pi\)
−0.137693 + 0.990475i \(0.543969\pi\)
\(128\) 0 0
\(129\) 12.3582 + 5.11892i 1.08808 + 0.450696i
\(130\) 0 0
\(131\) −11.0900 + 11.0900i −0.968939 + 0.968939i −0.999532 0.0305931i \(-0.990260\pi\)
0.0305931 + 0.999532i \(0.490260\pi\)
\(132\) 0 0
\(133\) −5.99122 5.99122i −0.519505 0.519505i
\(134\) 0 0
\(135\) −9.93317 7.61667i −0.854911 0.655539i
\(136\) 0 0
\(137\) 4.08455 + 9.86097i 0.348966 + 0.842480i 0.996743 + 0.0806488i \(0.0256992\pi\)
−0.647776 + 0.761831i \(0.724301\pi\)
\(138\) 0 0
\(139\) 16.9717i 1.43952i 0.694224 + 0.719759i \(0.255748\pi\)
−0.694224 + 0.719759i \(0.744252\pi\)
\(140\) 0 0
\(141\) −20.7182 −1.74479
\(142\) 0 0
\(143\) 15.7035i 1.31320i
\(144\) 0 0
\(145\) 3.36242 + 2.57827i 0.279234 + 0.214114i
\(146\) 0 0
\(147\) −6.97747 + 2.89016i −0.575492 + 0.238377i
\(148\) 0 0
\(149\) −10.7689 4.46062i −0.882222 0.365428i −0.104864 0.994487i \(-0.533441\pi\)
−0.777358 + 0.629058i \(0.783441\pi\)
\(150\) 0 0
\(151\) −7.32348 + 3.03348i −0.595976 + 0.246861i −0.660219 0.751073i \(-0.729537\pi\)
0.0642431 + 0.997934i \(0.479537\pi\)
\(152\) 0 0
\(153\) −0.836660 + 2.01988i −0.0676400 + 0.163297i
\(154\) 0 0
\(155\) −9.62811 + 5.56312i −0.773349 + 0.446841i
\(156\) 0 0
\(157\) −9.09755 + 21.9634i −0.726064 + 1.75287i −0.0707784 + 0.997492i \(0.522548\pi\)
−0.655286 + 0.755381i \(0.727452\pi\)
\(158\) 0 0
\(159\) 3.67585 3.67585i 0.291514 0.291514i
\(160\) 0 0
\(161\) −1.23225 + 0.510416i −0.0971151 + 0.0402264i
\(162\) 0 0
\(163\) 15.3240 15.3240i 1.20027 1.20027i 0.226182 0.974085i \(-0.427376\pi\)
0.974085 0.226182i \(-0.0726245\pi\)
\(164\) 0 0
\(165\) −17.2750 + 9.98151i −1.34486 + 0.777059i
\(166\) 0 0
\(167\) 11.9269 + 4.94027i 0.922929 + 0.382290i 0.792991 0.609233i \(-0.208522\pi\)
0.129937 + 0.991522i \(0.458522\pi\)
\(168\) 0 0
\(169\) 4.06158 + 4.06158i 0.312429 + 0.312429i
\(170\) 0 0
\(171\) −1.48336 3.58115i −0.113435 0.273857i
\(172\) 0 0
\(173\) 12.8991 0.980699 0.490349 0.871526i \(-0.336869\pi\)
0.490349 + 0.871526i \(0.336869\pi\)
\(174\) 0 0
\(175\) −5.69804 + 4.37837i −0.430731 + 0.330973i
\(176\) 0 0
\(177\) 14.7224 + 6.09822i 1.10660 + 0.458370i
\(178\) 0 0
\(179\) 4.82469 11.6478i 0.360615 0.870601i −0.634596 0.772844i \(-0.718833\pi\)
0.995210 0.0977565i \(-0.0311666\pi\)
\(180\) 0 0
\(181\) 2.55409 6.16613i 0.189844 0.458325i −0.800085 0.599886i \(-0.795212\pi\)
0.989929 + 0.141562i \(0.0452124\pi\)
\(182\) 0 0
\(183\) −2.13189 + 0.883060i −0.157594 + 0.0652776i
\(184\) 0 0
\(185\) −18.2560 4.88509i −1.34221 0.359159i
\(186\) 0 0
\(187\) 13.7073 + 13.7073i 1.00238 + 1.00238i
\(188\) 0 0
\(189\) 8.04521 0.585203
\(190\) 0 0
\(191\) 5.94607 + 2.46294i 0.430242 + 0.178212i 0.587286 0.809379i \(-0.300196\pi\)
−0.157044 + 0.987592i \(0.550196\pi\)
\(192\) 0 0
\(193\) 1.12671 2.72011i 0.0811020 0.195798i −0.878127 0.478428i \(-0.841207\pi\)
0.959229 + 0.282630i \(0.0912069\pi\)
\(194\) 0 0
\(195\) −2.38301 + 8.90551i −0.170651 + 0.637737i
\(196\) 0 0
\(197\) −0.561451 −0.0400018 −0.0200009 0.999800i \(-0.506367\pi\)
−0.0200009 + 0.999800i \(0.506367\pi\)
\(198\) 0 0
\(199\) −5.88064 + 14.1971i −0.416868 + 1.00641i 0.566382 + 0.824143i \(0.308343\pi\)
−0.983250 + 0.182265i \(0.941657\pi\)
\(200\) 0 0
\(201\) 1.13143 0.0798051
\(202\) 0 0
\(203\) −2.72334 −0.191141
\(204\) 0 0
\(205\) 6.24195 + 12.8856i 0.435956 + 0.899968i
\(206\) 0 0
\(207\) −0.610184 −0.0424107
\(208\) 0 0
\(209\) −34.3688 −2.37734
\(210\) 0 0
\(211\) 0.973221 2.34956i 0.0669993 0.161751i −0.886833 0.462090i \(-0.847100\pi\)
0.953833 + 0.300339i \(0.0970998\pi\)
\(212\) 0 0
\(213\) 23.3892 1.60260
\(214\) 0 0
\(215\) 16.9211 9.77703i 1.15401 0.666788i
\(216\) 0 0
\(217\) 2.73504 6.60297i 0.185666 0.448239i
\(218\) 0 0
\(219\) −10.8810 4.50707i −0.735272 0.304560i
\(220\) 0 0
\(221\) 8.95715 0.602523
\(222\) 0 0
\(223\) 1.88894 + 1.88894i 0.126493 + 0.126493i 0.767519 0.641026i \(-0.221491\pi\)
−0.641026 + 0.767519i \(0.721491\pi\)
\(224\) 0 0
\(225\) −3.17487 + 0.852998i −0.211658 + 0.0568665i
\(226\) 0 0
\(227\) −14.2543 + 5.90434i −0.946094 + 0.391885i −0.801761 0.597644i \(-0.796103\pi\)
−0.144332 + 0.989529i \(0.546103\pi\)
\(228\) 0 0
\(229\) 5.28313 12.7546i 0.349119 0.842848i −0.647605 0.761976i \(-0.724229\pi\)
0.996724 0.0808722i \(-0.0257706\pi\)
\(230\) 0 0
\(231\) 4.90728 11.8472i 0.322875 0.779490i
\(232\) 0 0
\(233\) 22.6023 + 9.36219i 1.48073 + 0.613337i 0.969276 0.245975i \(-0.0791081\pi\)
0.511451 + 0.859312i \(0.329108\pi\)
\(234\) 0 0
\(235\) −18.4184 + 24.0201i −1.20149 + 1.56690i
\(236\) 0 0
\(237\) 4.42656 0.287536
\(238\) 0 0
\(239\) 0.255794 + 0.617540i 0.0165459 + 0.0399454i 0.931937 0.362621i \(-0.118118\pi\)
−0.915391 + 0.402567i \(0.868118\pi\)
\(240\) 0 0
\(241\) −13.3944 13.3944i −0.862807 0.862807i 0.128856 0.991663i \(-0.458869\pi\)
−0.991663 + 0.128856i \(0.958869\pi\)
\(242\) 0 0
\(243\) 6.18952 + 2.56378i 0.397058 + 0.164467i
\(244\) 0 0
\(245\) −2.85218 + 10.6588i −0.182219 + 0.680969i
\(246\) 0 0
\(247\) −11.2293 + 11.2293i −0.714503 + 0.714503i
\(248\) 0 0
\(249\) 0.742297 0.307469i 0.0470411 0.0194851i
\(250\) 0 0
\(251\) −9.79463 + 9.79463i −0.618232 + 0.618232i −0.945078 0.326846i \(-0.894014\pi\)
0.326846 + 0.945078i \(0.394014\pi\)
\(252\) 0 0
\(253\) −2.07041 + 4.99842i −0.130166 + 0.314248i
\(254\) 0 0
\(255\) −5.69336 9.85351i −0.356532 0.617051i
\(256\) 0 0
\(257\) −0.627750 + 1.51552i −0.0391580 + 0.0945358i −0.942249 0.334914i \(-0.891293\pi\)
0.903091 + 0.429450i \(0.141293\pi\)
\(258\) 0 0
\(259\) 11.2219 4.64827i 0.697296 0.288829i
\(260\) 0 0
\(261\) −1.15105 0.476780i −0.0712481 0.0295119i
\(262\) 0 0
\(263\) −26.0735 + 10.8000i −1.60776 + 0.665955i −0.992486 0.122359i \(-0.960954\pi\)
−0.615272 + 0.788315i \(0.710954\pi\)
\(264\) 0 0
\(265\) −0.993862 7.52951i −0.0610525 0.462534i
\(266\) 0 0
\(267\) 24.9113i 1.52455i
\(268\) 0 0
\(269\) 13.9422 0.850074 0.425037 0.905176i \(-0.360261\pi\)
0.425037 + 0.905176i \(0.360261\pi\)
\(270\) 0 0
\(271\) 10.6195i 0.645092i 0.946554 + 0.322546i \(0.104539\pi\)
−0.946554 + 0.322546i \(0.895461\pi\)
\(272\) 0 0
\(273\) −2.26748 5.47419i −0.137234 0.331313i
\(274\) 0 0
\(275\) −3.78516 + 28.9017i −0.228254 + 1.74284i
\(276\) 0 0
\(277\) −1.89578 1.89578i −0.113907 0.113907i 0.647856 0.761763i \(-0.275666\pi\)
−0.761763 + 0.647856i \(0.775666\pi\)
\(278\) 0 0
\(279\) 2.31199 2.31199i 0.138415 0.138415i
\(280\) 0 0
\(281\) −22.4999 9.31976i −1.34223 0.555970i −0.408112 0.912932i \(-0.633813\pi\)
−0.934119 + 0.356961i \(0.883813\pi\)
\(282\) 0 0
\(283\) 8.18447 + 8.18447i 0.486516 + 0.486516i 0.907205 0.420689i \(-0.138212\pi\)
−0.420689 + 0.907205i \(0.638212\pi\)
\(284\) 0 0
\(285\) 19.4906 + 5.21545i 1.15452 + 0.308937i
\(286\) 0 0
\(287\) −8.22318 4.13100i −0.485399 0.243845i
\(288\) 0 0
\(289\) 4.20231 4.20231i 0.247195 0.247195i
\(290\) 0 0
\(291\) 5.70896i 0.334665i
\(292\) 0 0
\(293\) −13.5257 + 5.60255i −0.790182 + 0.327304i −0.741017 0.671486i \(-0.765656\pi\)
−0.0491655 + 0.998791i \(0.515656\pi\)
\(294\) 0 0
\(295\) 20.1583 11.6475i 1.17366 0.678142i
\(296\) 0 0
\(297\) 23.0758 23.0758i 1.33899 1.33899i
\(298\) 0 0
\(299\) 0.956667 + 2.30960i 0.0553255 + 0.133568i
\(300\) 0 0
\(301\) −4.80675 + 11.6045i −0.277056 + 0.668873i
\(302\) 0 0
\(303\) −0.523177 0.523177i −0.0300557 0.0300557i
\(304\) 0 0
\(305\) −0.871453 + 3.25670i −0.0498993 + 0.186478i
\(306\) 0 0
\(307\) −20.0709 −1.14551 −0.572753 0.819728i \(-0.694125\pi\)
−0.572753 + 0.819728i \(0.694125\pi\)
\(308\) 0 0
\(309\) 6.05965 14.6293i 0.344722 0.832231i
\(310\) 0 0
\(311\) 9.94449 + 4.11914i 0.563900 + 0.233575i 0.646377 0.763018i \(-0.276283\pi\)
−0.0824773 + 0.996593i \(0.526283\pi\)
\(312\) 0 0
\(313\) −4.49605 + 1.86232i −0.254132 + 0.105265i −0.506113 0.862467i \(-0.668918\pi\)
0.251981 + 0.967732i \(0.418918\pi\)
\(314\) 0 0
\(315\) 1.28572 1.67675i 0.0724419 0.0944740i
\(316\) 0 0
\(317\) −13.7995 5.71595i −0.775058 0.321040i −0.0401387 0.999194i \(-0.512780\pi\)
−0.734919 + 0.678155i \(0.762780\pi\)
\(318\) 0 0
\(319\) −7.81124 + 7.81124i −0.437345 + 0.437345i
\(320\) 0 0
\(321\) 18.4912 7.65929i 1.03208 0.427500i
\(322\) 0 0
\(323\) 19.6036i 1.09077i
\(324\) 0 0
\(325\) 8.20633 + 10.6798i 0.455205 + 0.592407i
\(326\) 0 0
\(327\) −16.6711 16.6711i −0.921913 0.921913i
\(328\) 0 0
\(329\) 19.4547i 1.07257i
\(330\) 0 0
\(331\) 1.90951 + 4.60997i 0.104956 + 0.253387i 0.967630 0.252375i \(-0.0812115\pi\)
−0.862673 + 0.505762i \(0.831212\pi\)
\(332\) 0 0
\(333\) 5.55684 0.304513
\(334\) 0 0
\(335\) 1.00584 1.31175i 0.0549550 0.0716687i
\(336\) 0 0
\(337\) 24.1931i 1.31788i 0.752194 + 0.658941i \(0.228996\pi\)
−0.752194 + 0.658941i \(0.771004\pi\)
\(338\) 0 0
\(339\) 1.36975 + 3.30687i 0.0743947 + 0.179605i
\(340\) 0 0
\(341\) −11.0942 26.7838i −0.600786 1.45043i
\(342\) 0 0
\(343\) −6.56383 15.8465i −0.354413 0.855629i
\(344\) 0 0
\(345\) 1.93265 2.52043i 0.104050 0.135696i
\(346\) 0 0
\(347\) −2.39315 5.77758i −0.128471 0.310157i 0.846536 0.532332i \(-0.178684\pi\)
−0.975007 + 0.222175i \(0.928684\pi\)
\(348\) 0 0
\(349\) −10.7368 10.7368i −0.574726 0.574726i 0.358719 0.933445i \(-0.383214\pi\)
−0.933445 + 0.358719i \(0.883214\pi\)
\(350\) 0 0
\(351\) 15.0791i 0.804861i
\(352\) 0 0
\(353\) −14.8910 + 14.8910i −0.792566 + 0.792566i −0.981911 0.189344i \(-0.939364\pi\)
0.189344 + 0.981911i \(0.439364\pi\)
\(354\) 0 0
\(355\) 20.7930 27.1169i 1.10358 1.43921i
\(356\) 0 0
\(357\) 6.75754 + 2.79907i 0.357647 + 0.148142i
\(358\) 0 0
\(359\) −18.7718 −0.990736 −0.495368 0.868683i \(-0.664967\pi\)
−0.495368 + 0.868683i \(0.664967\pi\)
\(360\) 0 0
\(361\) 11.1414 + 11.1414i 0.586390 + 0.586390i
\(362\) 0 0
\(363\) −13.4628 32.5020i −0.706613 1.70591i
\(364\) 0 0
\(365\) −14.8986 + 8.60841i −0.779828 + 0.450585i
\(366\) 0 0
\(367\) 13.7074i 0.715520i −0.933814 0.357760i \(-0.883541\pi\)
0.933814 0.357760i \(-0.116459\pi\)
\(368\) 0 0
\(369\) −2.75239 3.18566i −0.143284 0.165839i
\(370\) 0 0
\(371\) 3.45168 + 3.45168i 0.179203 + 0.179203i
\(372\) 0 0
\(373\) 3.32790 3.32790i 0.172312 0.172312i −0.615682 0.787994i \(-0.711120\pi\)
0.787994 + 0.615682i \(0.211120\pi\)
\(374\) 0 0
\(375\) 6.53240 15.8159i 0.337332 0.816727i
\(376\) 0 0
\(377\) 5.10433i 0.262886i
\(378\) 0 0
\(379\) 7.57513i 0.389108i −0.980892 0.194554i \(-0.937674\pi\)
0.980892 0.194554i \(-0.0623260\pi\)
\(380\) 0 0
\(381\) 19.2181 7.96041i 0.984574 0.407824i
\(382\) 0 0
\(383\) −4.32487 + 1.79142i −0.220990 + 0.0915372i −0.490432 0.871480i \(-0.663161\pi\)
0.269441 + 0.963017i \(0.413161\pi\)
\(384\) 0 0
\(385\) −9.37279 16.2215i −0.477682 0.826725i
\(386\) 0 0
\(387\) −4.06325 + 4.06325i −0.206547 + 0.206547i
\(388\) 0 0
\(389\) 24.9178 24.9178i 1.26338 1.26338i 0.313939 0.949443i \(-0.398351\pi\)
0.949443 0.313939i \(-0.101649\pi\)
\(390\) 0 0
\(391\) −2.85105 1.18094i −0.144184 0.0597230i
\(392\) 0 0
\(393\) 9.18602 + 22.1770i 0.463373 + 1.11868i
\(394\) 0 0
\(395\) 3.93520 5.13203i 0.198001 0.258221i
\(396\) 0 0
\(397\) 7.93034 19.1455i 0.398012 0.960887i −0.590125 0.807312i \(-0.700921\pi\)
0.988137 0.153575i \(-0.0490785\pi\)
\(398\) 0 0
\(399\) −11.9808 + 4.96262i −0.599791 + 0.248442i
\(400\) 0 0
\(401\) 5.12785 + 5.12785i 0.256072 + 0.256072i 0.823455 0.567382i \(-0.192044\pi\)
−0.567382 + 0.823455i \(0.692044\pi\)
\(402\) 0 0
\(403\) −12.3759 5.12626i −0.616486 0.255357i
\(404\) 0 0
\(405\) −12.7691 + 7.37800i −0.634503 + 0.366616i
\(406\) 0 0
\(407\) 18.8549 45.5198i 0.934603 2.25633i
\(408\) 0 0
\(409\) −3.74666 −0.185261 −0.0926303 0.995701i \(-0.529527\pi\)
−0.0926303 + 0.995701i \(0.529527\pi\)
\(410\) 0 0
\(411\) 16.3360 0.805794
\(412\) 0 0
\(413\) −5.72633 + 13.8246i −0.281774 + 0.680263i
\(414\) 0 0
\(415\) 0.303428 1.13394i 0.0148947 0.0556629i
\(416\) 0 0
\(417\) 23.9983 + 9.94042i 1.17520 + 0.486785i
\(418\) 0 0
\(419\) 26.1687 + 26.1687i 1.27842 + 1.27842i 0.941550 + 0.336873i \(0.109369\pi\)
0.336873 + 0.941550i \(0.390631\pi\)
\(420\) 0 0
\(421\) −27.3502 + 11.3288i −1.33297 + 0.552133i −0.931500 0.363741i \(-0.881499\pi\)
−0.401467 + 0.915874i \(0.631499\pi\)
\(422\) 0 0
\(423\) 3.40597 8.22274i 0.165604 0.399803i
\(424\) 0 0
\(425\) −16.4853 2.15902i −0.799654 0.104728i
\(426\) 0 0
\(427\) −0.829207 2.00188i −0.0401281 0.0968779i
\(428\) 0 0
\(429\) −22.2051 9.19767i −1.07207 0.444068i
\(430\) 0 0
\(431\) 6.13925 6.13925i 0.295717 0.295717i −0.543617 0.839334i \(-0.682945\pi\)
0.839334 + 0.543617i \(0.182945\pi\)
\(432\) 0 0
\(433\) 25.5931 25.5931i 1.22993 1.22993i 0.265937 0.963991i \(-0.414319\pi\)
0.963991 0.265937i \(-0.0856812\pi\)
\(434\) 0 0
\(435\) 5.61513 3.24442i 0.269225 0.155558i
\(436\) 0 0
\(437\) 5.05479 2.09376i 0.241803 0.100158i
\(438\) 0 0
\(439\) 5.83888 2.41854i 0.278674 0.115431i −0.238969 0.971027i \(-0.576809\pi\)
0.517643 + 0.855596i \(0.326809\pi\)
\(440\) 0 0
\(441\) 3.24439i 0.154495i
\(442\) 0 0
\(443\) 7.14463i 0.339452i −0.985491 0.169726i \(-0.945712\pi\)
0.985491 0.169726i \(-0.0542882\pi\)
\(444\) 0 0
\(445\) 28.8816 + 22.1461i 1.36912 + 1.04983i
\(446\) 0 0
\(447\) −12.6148 + 12.6148i −0.596661 + 0.596661i
\(448\) 0 0
\(449\) 5.03157 + 5.03157i 0.237454 + 0.237454i 0.815795 0.578341i \(-0.196300\pi\)
−0.578341 + 0.815795i \(0.696300\pi\)
\(450\) 0 0
\(451\) −35.4350 + 11.7374i −1.66857 + 0.552694i
\(452\) 0 0
\(453\) 12.1323i 0.570025i
\(454\) 0 0
\(455\) −8.36242 2.23768i −0.392036 0.104904i
\(456\) 0 0
\(457\) −8.30209 20.0430i −0.388355 0.937572i −0.990289 0.139026i \(-0.955603\pi\)
0.601934 0.798546i \(-0.294397\pi\)
\(458\) 0 0
\(459\) 13.1622 + 13.1622i 0.614359 + 0.614359i
\(460\) 0 0
\(461\) 4.14903 0.193240 0.0966198 0.995321i \(-0.469197\pi\)
0.0966198 + 0.995321i \(0.469197\pi\)
\(462\) 0 0
\(463\) 12.1599 + 5.03680i 0.565119 + 0.234080i 0.646906 0.762570i \(-0.276063\pi\)
−0.0817870 + 0.996650i \(0.526063\pi\)
\(464\) 0 0
\(465\) 2.22712 + 16.8727i 0.103280 + 0.782454i
\(466\) 0 0
\(467\) −2.08551 + 2.08551i −0.0965060 + 0.0965060i −0.753711 0.657205i \(-0.771738\pi\)
0.657205 + 0.753711i \(0.271738\pi\)
\(468\) 0 0
\(469\) 1.06243i 0.0490586i
\(470\) 0 0
\(471\) 25.7283 + 25.7283i 1.18550 + 1.18550i
\(472\) 0 0
\(473\) 19.4978 + 47.0718i 0.896508 + 2.16436i
\(474\) 0 0
\(475\) 23.3738 17.9604i 1.07246 0.824079i
\(476\) 0 0
\(477\) 0.854599 + 2.06318i 0.0391294 + 0.0944667i
\(478\) 0 0
\(479\) −1.23851 2.99002i −0.0565889 0.136618i 0.893056 0.449945i \(-0.148556\pi\)
−0.949645 + 0.313327i \(0.898556\pi\)
\(480\) 0 0
\(481\) −8.71220 21.0331i −0.397242 0.959028i
\(482\) 0 0
\(483\) 2.04138i 0.0928862i
\(484\) 0 0
\(485\) −6.61882 5.07526i −0.300545 0.230455i
\(486\) 0 0
\(487\) 2.77307 0.125660 0.0628299 0.998024i \(-0.479987\pi\)
0.0628299 + 0.998024i \(0.479987\pi\)
\(488\) 0 0
\(489\) −12.6931 30.6438i −0.574001 1.38576i
\(490\) 0 0
\(491\) 16.1389i 0.728337i −0.931333 0.364168i \(-0.881353\pi\)
0.931333 0.364168i \(-0.118647\pi\)
\(492\) 0 0
\(493\) −4.45546 4.45546i −0.200664 0.200664i
\(494\) 0 0
\(495\) −1.12158 8.49711i −0.0504113 0.381917i
\(496\) 0 0
\(497\) 21.9629i 0.985169i
\(498\) 0 0
\(499\) −16.2476 + 6.72999i −0.727344 + 0.301276i −0.715460 0.698654i \(-0.753783\pi\)
−0.0118841 + 0.999929i \(0.503783\pi\)
\(500\) 0 0
\(501\) 13.9713 13.9713i 0.624191 0.624191i
\(502\) 0 0
\(503\) 10.7293 + 4.44424i 0.478398 + 0.198159i 0.608834 0.793298i \(-0.291638\pi\)
−0.130436 + 0.991457i \(0.541638\pi\)
\(504\) 0 0
\(505\) −1.07166 + 0.141454i −0.0476883 + 0.00629464i
\(506\) 0 0
\(507\) 8.12205 3.36426i 0.360713 0.149412i
\(508\) 0 0
\(509\) 8.20280 + 3.39771i 0.363583 + 0.150601i 0.556993 0.830517i \(-0.311955\pi\)
−0.193410 + 0.981118i \(0.561955\pi\)
\(510\) 0 0
\(511\) 4.23221 10.2175i 0.187222 0.451994i
\(512\) 0 0
\(513\) −33.0021 −1.45708
\(514\) 0 0
\(515\) −11.5738 20.0308i −0.510003 0.882663i
\(516\) 0 0
\(517\) −55.8011 55.8011i −2.45413 2.45413i
\(518\) 0 0
\(519\) 7.55508 18.2396i 0.331631 0.800628i
\(520\) 0 0
\(521\) 6.75827 + 16.3159i 0.296085 + 0.714813i 0.999990 + 0.00451847i \(0.00143828\pi\)
−0.703905 + 0.710295i \(0.748562\pi\)
\(522\) 0 0
\(523\) 29.5055 29.5055i 1.29019 1.29019i 0.355515 0.934671i \(-0.384305\pi\)
0.934671 0.355515i \(-0.115695\pi\)
\(524\) 0 0
\(525\) 2.85372 + 10.6216i 0.124547 + 0.463564i
\(526\) 0 0
\(527\) 15.2772 6.32804i 0.665487 0.275654i
\(528\) 0 0
\(529\) 22.1387i 0.962553i
\(530\) 0 0
\(531\) −4.84059 + 4.84059i −0.210064 + 0.210064i
\(532\) 0 0
\(533\) −7.74270 + 15.4126i −0.335374 + 0.667595i
\(534\) 0 0
\(535\) 7.55862 28.2472i 0.326788 1.22123i
\(536\) 0 0
\(537\) −13.6444 13.6444i −0.588801 0.588801i
\(538\) 0 0
\(539\) −26.5769 11.0085i −1.14475 0.474171i
\(540\) 0 0
\(541\) −12.7554 + 12.7554i −0.548396 + 0.548396i −0.925977 0.377581i \(-0.876756\pi\)
0.377581 + 0.925977i \(0.376756\pi\)
\(542\) 0 0
\(543\) −7.22308 7.22308i −0.309972 0.309972i
\(544\) 0 0
\(545\) −34.1486 + 4.50746i −1.46276 + 0.193078i
\(546\) 0 0
\(547\) 11.6872 + 28.2153i 0.499707 + 1.20640i 0.949642 + 0.313338i \(0.101447\pi\)
−0.449935 + 0.893061i \(0.648553\pi\)
\(548\) 0 0
\(549\) 0.991288i 0.0423072i
\(550\) 0 0
\(551\) 11.1713 0.475915
\(552\) 0 0
\(553\) 4.15661i 0.176757i
\(554\) 0 0
\(555\) −17.6003 + 22.9532i −0.747090 + 0.974307i
\(556\) 0 0
\(557\) 29.8644 12.3702i 1.26539 0.524143i 0.353833 0.935309i \(-0.384878\pi\)
0.911561 + 0.411165i \(0.134878\pi\)
\(558\) 0 0
\(559\) 21.7502 + 9.00925i 0.919937 + 0.381050i
\(560\) 0 0
\(561\) 27.4108 11.3539i 1.15729 0.479364i
\(562\) 0 0
\(563\) −9.46592 + 22.8528i −0.398941 + 0.963129i 0.588977 + 0.808150i \(0.299531\pi\)
−0.987918 + 0.154979i \(0.950469\pi\)
\(564\) 0 0
\(565\) 5.05161 + 1.35175i 0.212523 + 0.0568685i
\(566\) 0 0
\(567\) 3.62730 8.75707i 0.152332 0.367762i
\(568\) 0 0
\(569\) −29.4293 + 29.4293i −1.23374 + 1.23374i −0.271225 + 0.962516i \(0.587429\pi\)
−0.962516 + 0.271225i \(0.912571\pi\)
\(570\) 0 0
\(571\) 16.2622 6.73603i 0.680552 0.281894i −0.0155054 0.999880i \(-0.504936\pi\)
0.696058 + 0.717986i \(0.254936\pi\)
\(572\) 0 0
\(573\) 6.96530 6.96530i 0.290980 0.290980i
\(574\) 0 0
\(575\) −1.20401 4.48132i −0.0502105 0.186884i
\(576\) 0 0
\(577\) 17.4315 + 7.22036i 0.725683 + 0.300588i 0.714777 0.699353i \(-0.246528\pi\)
0.0109063 + 0.999941i \(0.496528\pi\)
\(578\) 0 0
\(579\) −3.18637 3.18637i −0.132421 0.132421i
\(580\) 0 0
\(581\) 0.288719 + 0.697028i 0.0119781 + 0.0289176i
\(582\) 0 0
\(583\) 19.8007 0.820059
\(584\) 0 0
\(585\) −3.14271 2.40980i −0.129935 0.0996332i
\(586\) 0 0
\(587\) 21.7682 + 9.01668i 0.898470 + 0.372158i 0.783632 0.621226i \(-0.213365\pi\)
0.114838 + 0.993384i \(0.463365\pi\)
\(588\) 0 0
\(589\) −11.2193 + 27.0859i −0.462284 + 1.11605i
\(590\) 0 0
\(591\) −0.328846 + 0.793904i −0.0135269 + 0.0326569i
\(592\) 0 0
\(593\) 0.607020 0.251436i 0.0249273 0.0103252i −0.370185 0.928958i \(-0.620706\pi\)
0.395112 + 0.918633i \(0.370706\pi\)
\(594\) 0 0
\(595\) 9.25260 5.34615i 0.379320 0.219171i
\(596\) 0 0
\(597\) 16.6307 + 16.6307i 0.680649 + 0.680649i
\(598\) 0 0
\(599\) −37.9198 −1.54936 −0.774680 0.632354i \(-0.782089\pi\)
−0.774680 + 0.632354i \(0.782089\pi\)
\(600\) 0 0
\(601\) −29.6032 12.2620i −1.20754 0.500179i −0.314112 0.949386i \(-0.601707\pi\)
−0.893428 + 0.449207i \(0.851707\pi\)
\(602\) 0 0
\(603\) −0.186002 + 0.449049i −0.00757459 + 0.0182867i
\(604\) 0 0
\(605\) −49.6504 13.2858i −2.01857 0.540146i
\(606\) 0 0
\(607\) −4.70631 −0.191023 −0.0955117 0.995428i \(-0.530449\pi\)
−0.0955117 + 0.995428i \(0.530449\pi\)
\(608\) 0 0
\(609\) −1.59508 + 3.85086i −0.0646358 + 0.156045i
\(610\) 0 0
\(611\) −36.4638 −1.47517
\(612\) 0 0
\(613\) −10.5384 −0.425644 −0.212822 0.977091i \(-0.568265\pi\)
−0.212822 + 0.977091i \(0.568265\pi\)
\(614\) 0 0
\(615\) 21.8764 1.27907i 0.882143 0.0515772i
\(616\) 0 0
\(617\) −16.4990 −0.664224 −0.332112 0.943240i \(-0.607761\pi\)
−0.332112 + 0.943240i \(0.607761\pi\)
\(618\) 0 0
\(619\) −19.9470 −0.801739 −0.400869 0.916135i \(-0.631292\pi\)
−0.400869 + 0.916135i \(0.631292\pi\)
\(620\) 0 0
\(621\) −1.98808 + 4.79965i −0.0797790 + 0.192603i
\(622\) 0 0
\(623\) −23.3922 −0.937187
\(624\) 0 0
\(625\) −12.5292 21.6338i −0.501168 0.865350i
\(626\) 0 0
\(627\) −20.1300 + 48.5982i −0.803916 + 1.94082i
\(628\) 0 0
\(629\) 25.9641 + 10.7547i 1.03525 + 0.428817i
\(630\) 0 0
\(631\) 32.5474 1.29569 0.647846 0.761771i \(-0.275670\pi\)
0.647846 + 0.761771i \(0.275670\pi\)
\(632\) 0 0
\(633\) −2.75231 2.75231i −0.109395 0.109395i
\(634\) 0 0
\(635\) 7.85578 29.3578i 0.311747 1.16503i
\(636\) 0 0
\(637\) −12.2803 + 5.08666i −0.486562 + 0.201541i
\(638\) 0 0
\(639\) −3.84508 + 9.28284i −0.152109 + 0.367224i
\(640\) 0 0
\(641\) −11.7933 + 28.4715i −0.465806 + 1.12456i 0.500170 + 0.865927i \(0.333271\pi\)
−0.965977 + 0.258629i \(0.916729\pi\)
\(642\) 0 0
\(643\) −16.0094 6.63131i −0.631349 0.261513i 0.0439769 0.999033i \(-0.485997\pi\)
−0.675326 + 0.737519i \(0.735997\pi\)
\(644\) 0 0
\(645\) −3.91411 29.6533i −0.154118 1.16760i
\(646\) 0 0
\(647\) −28.6753 −1.12734 −0.563671 0.826000i \(-0.690611\pi\)
−0.563671 + 0.826000i \(0.690611\pi\)
\(648\) 0 0
\(649\) 23.2279 + 56.0771i 0.911774 + 2.20122i
\(650\) 0 0
\(651\) −7.73480 7.73480i −0.303151 0.303151i
\(652\) 0 0
\(653\) −24.3022 10.0663i −0.951018 0.393925i −0.147405 0.989076i \(-0.547092\pi\)
−0.803614 + 0.595152i \(0.797092\pi\)
\(654\) 0 0
\(655\) 33.8778 + 9.06528i 1.32371 + 0.354210i
\(656\) 0 0
\(657\) 3.57758 3.57758i 0.139575 0.139575i
\(658\) 0 0
\(659\) 28.2022 11.6817i 1.09860 0.455056i 0.241603 0.970375i \(-0.422327\pi\)
0.856998 + 0.515320i \(0.172327\pi\)
\(660\) 0 0
\(661\) −22.2897 + 22.2897i −0.866970 + 0.866970i −0.992136 0.125166i \(-0.960054\pi\)
0.125166 + 0.992136i \(0.460054\pi\)
\(662\) 0 0
\(663\) 5.24626 12.6656i 0.203748 0.491891i
\(664\) 0 0
\(665\) −4.89739 + 18.3020i −0.189913 + 0.709721i
\(666\) 0 0
\(667\) 0.672974 1.62470i 0.0260577 0.0629087i
\(668\) 0 0
\(669\) 3.77736 1.56463i 0.146041 0.0604923i
\(670\) 0 0
\(671\) −8.12030 3.36354i −0.313481 0.129848i
\(672\) 0 0
\(673\) 24.4991 10.1479i 0.944372 0.391172i 0.143260 0.989685i \(-0.454242\pi\)
0.801113 + 0.598513i \(0.204242\pi\)
\(674\) 0 0
\(675\) −3.63464 + 27.7524i −0.139897 + 1.06819i
\(676\) 0 0
\(677\) 21.2779i 0.817775i 0.912585 + 0.408888i \(0.134083\pi\)
−0.912585 + 0.408888i \(0.865917\pi\)
\(678\) 0 0
\(679\) 5.36081 0.205729
\(680\) 0 0
\(681\) 23.6141i 0.904896i
\(682\) 0 0
\(683\) 8.22586 + 19.8590i 0.314754 + 0.759883i 0.999516 + 0.0311160i \(0.00990614\pi\)
−0.684762 + 0.728767i \(0.740094\pi\)
\(684\) 0 0
\(685\) 14.5226 18.9395i 0.554881 0.723641i
\(686\) 0 0
\(687\) −14.9409 14.9409i −0.570032 0.570032i
\(688\) 0 0
\(689\) 6.46946 6.46946i 0.246467 0.246467i
\(690\) 0 0
\(691\) 24.9826 + 10.3481i 0.950385 + 0.393662i 0.803375 0.595473i \(-0.203035\pi\)
0.147009 + 0.989135i \(0.453035\pi\)
\(692\) 0 0
\(693\) 3.89525 + 3.89525i 0.147968 + 0.147968i
\(694\) 0 0
\(695\) 32.8591 18.9860i 1.24642 0.720180i
\(696\) 0 0
\(697\) −6.69492 20.2118i −0.253588 0.765576i
\(698\) 0 0
\(699\) 26.4767 26.4767i 1.00144 1.00144i
\(700\) 0 0
\(701\) 19.4459i 0.734460i −0.930130 0.367230i \(-0.880306\pi\)
0.930130 0.367230i \(-0.119694\pi\)
\(702\) 0 0
\(703\) −46.0331 + 19.0675i −1.73617 + 0.719146i
\(704\) 0 0
\(705\) 23.1772 + 40.1128i 0.872902 + 1.51073i
\(706\) 0 0
\(707\) 0.491271 0.491271i 0.0184762 0.0184762i
\(708\) 0 0
\(709\) −10.9281 26.3827i −0.410412 0.990821i −0.985027 0.172398i \(-0.944848\pi\)
0.574616 0.818423i \(-0.305152\pi\)
\(710\) 0 0
\(711\) −0.727705 + 1.75684i −0.0272911 + 0.0658865i
\(712\) 0 0
\(713\) 3.26337 + 3.26337i 0.122214 + 0.122214i
\(714\) 0 0
\(715\) −30.4038 + 17.5673i −1.13704 + 0.656981i
\(716\) 0 0
\(717\) 1.02304 0.0382060
\(718\) 0 0
\(719\) 7.05679 17.0366i 0.263174 0.635358i −0.735957 0.677028i \(-0.763268\pi\)
0.999131 + 0.0416695i \(0.0132677\pi\)
\(720\) 0 0
\(721\) 13.7371 + 5.69011i 0.511598 + 0.211911i
\(722\) 0 0
\(723\) −26.7851 + 11.0947i −0.996148 + 0.412618i
\(724\) 0 0
\(725\) 1.23034 9.39431i 0.0456937 0.348896i
\(726\) 0 0
\(727\) −46.3246 19.1883i −1.71809 0.711654i −0.999875 0.0158289i \(-0.994961\pi\)
−0.718211 0.695825i \(-0.755039\pi\)
\(728\) 0 0
\(729\) 21.2411 21.2411i 0.786707 0.786707i
\(730\) 0 0
\(731\) −26.8493 + 11.1213i −0.993057 + 0.411338i
\(732\) 0 0
\(733\) 9.28292i 0.342872i −0.985195 0.171436i \(-0.945159\pi\)
0.985195 0.171436i \(-0.0548407\pi\)
\(734\) 0 0
\(735\) 13.4013 + 10.2760i 0.494314 + 0.379036i
\(736\) 0 0
\(737\) 3.04733 + 3.04733i 0.112250 + 0.112250i
\(738\) 0 0
\(739\) 35.4342i 1.30347i 0.758447 + 0.651734i \(0.225958\pi\)
−0.758447 + 0.651734i \(0.774042\pi\)
\(740\) 0 0
\(741\) 9.30139 + 22.4555i 0.341695 + 0.824925i
\(742\) 0 0
\(743\) −23.3023 −0.854879 −0.427440 0.904044i \(-0.640584\pi\)
−0.427440 + 0.904044i \(0.640584\pi\)
\(744\) 0 0
\(745\) 3.41075 + 25.8398i 0.124960 + 0.946699i
\(746\) 0 0
\(747\) 0.345153i 0.0126285i
\(748\) 0 0
\(749\) 7.19219 + 17.3635i 0.262797 + 0.634448i
\(750\) 0 0
\(751\) 6.44172 + 15.5517i 0.235062 + 0.567489i 0.996759 0.0804437i \(-0.0256337\pi\)
−0.761697 + 0.647933i \(0.775634\pi\)
\(752\) 0 0
\(753\) 8.11304 + 19.5866i 0.295655 + 0.713775i
\(754\) 0 0
\(755\) 14.0659 + 10.7856i 0.511909 + 0.392527i
\(756\) 0 0
\(757\) −10.5266 25.4135i −0.382597 0.923671i −0.991462 0.130397i \(-0.958375\pi\)
0.608865 0.793274i \(-0.291625\pi\)
\(758\) 0 0
\(759\) 5.85522 + 5.85522i 0.212531 + 0.212531i
\(760\) 0 0
\(761\) 39.0404i 1.41521i 0.706607 + 0.707607i \(0.250225\pi\)
−0.706607 + 0.707607i \(0.749775\pi\)
\(762\) 0 0
\(763\) 15.6544 15.6544i 0.566728 0.566728i
\(764\) 0 0
\(765\) 4.84667 0.639739i 0.175232 0.0231298i
\(766\) 0 0
\(767\) 25.9113 + 10.7328i 0.935602 + 0.387539i
\(768\) 0 0
\(769\) −17.2515 −0.622106 −0.311053 0.950393i \(-0.600682\pi\)
−0.311053 + 0.950393i \(0.600682\pi\)
\(770\) 0 0
\(771\) 1.77530 + 1.77530i 0.0639360 + 0.0639360i
\(772\) 0 0
\(773\) 11.7358 + 28.3328i 0.422109 + 1.01906i 0.981724 + 0.190308i \(0.0609488\pi\)
−0.559616 + 0.828752i \(0.689051\pi\)
\(774\) 0 0
\(775\) 21.5417 + 12.4177i 0.773800 + 0.446058i
\(776\) 0 0
\(777\) 18.5905i 0.666932i
\(778\) 0 0
\(779\) 33.7321 + 16.9457i 1.20858 + 0.607142i
\(780\) 0 0
\(781\) 62.9952 + 62.9952i 2.25415 + 2.25415i
\(782\) 0 0
\(783\) −7.50061 + 7.50061i −0.268050 + 0.268050i
\(784\) 0 0
\(785\) 52.7011 6.95631i 1.88098 0.248281i
\(786\) 0 0
\(787\) 2.33956i 0.0833964i 0.999130 + 0.0416982i \(0.0132768\pi\)
−0.999130 + 0.0416982i \(0.986723\pi\)
\(788\) 0 0
\(789\) 43.1940i 1.53775i
\(790\) 0 0
\(791\) −3.10521 + 1.28622i −0.110408 + 0.0457327i
\(792\) 0 0
\(793\) −3.75211 + 1.55417i −0.133241 + 0.0551904i
\(794\) 0 0
\(795\) −11.2290 3.00474i −0.398252 0.106567i
\(796\) 0 0
\(797\) −20.0151 + 20.0151i −0.708971 + 0.708971i −0.966319 0.257348i \(-0.917151\pi\)
0.257348 + 0.966319i \(0.417151\pi\)
\(798\) 0 0
\(799\) 31.8284 31.8284i 1.12601 1.12601i
\(800\) 0 0
\(801\) −9.88695 4.09531i −0.349338 0.144701i
\(802\) 0 0
\(803\) −17.1673 41.4454i −0.605819 1.46258i
\(804\) 0 0
\(805\) 2.36673 + 1.81479i 0.0834162 + 0.0639628i
\(806\) 0 0
\(807\) 8.16607 19.7146i 0.287459 0.693988i
\(808\) 0 0
\(809\) −5.52468 + 2.28840i −0.194237 + 0.0804558i −0.477682 0.878533i \(-0.658523\pi\)
0.283444 + 0.958989i \(0.408523\pi\)
\(810\) 0 0
\(811\) −20.8391 20.8391i −0.731761 0.731761i 0.239207 0.970969i \(-0.423112\pi\)
−0.970969 + 0.239207i \(0.923112\pi\)
\(812\) 0 0
\(813\) 15.0163 + 6.21994i 0.526643 + 0.218143i
\(814\) 0 0
\(815\) −46.8117 12.5262i −1.63974 0.438775i
\(816\) 0 0
\(817\) 19.7176 47.6026i 0.689833 1.66540i
\(818\) 0 0
\(819\) 2.54539 0.0889431
\(820\) 0 0
\(821\) 1.58381 0.0552754 0.0276377 0.999618i \(-0.491202\pi\)
0.0276377 + 0.999618i \(0.491202\pi\)
\(822\) 0 0
\(823\) 10.5445 25.4567i 0.367558 0.887364i −0.626591 0.779348i \(-0.715550\pi\)
0.994149 0.108016i \(-0.0344497\pi\)
\(824\) 0 0
\(825\) 38.6507 + 22.2802i 1.34564 + 0.775698i
\(826\) 0 0
\(827\) 33.4723 + 13.8647i 1.16395 + 0.482123i 0.879187 0.476476i \(-0.158086\pi\)
0.284760 + 0.958599i \(0.408086\pi\)
\(828\) 0 0
\(829\) −16.2629 16.2629i −0.564834 0.564834i 0.365842 0.930677i \(-0.380781\pi\)
−0.930677 + 0.365842i \(0.880781\pi\)
\(830\) 0 0
\(831\) −3.79105 + 1.57031i −0.131510 + 0.0544733i
\(832\) 0 0
\(833\) 6.27916 15.1592i 0.217560 0.525236i
\(834\) 0 0
\(835\) −3.77750 28.6184i −0.130726 0.990380i
\(836\) 0 0
\(837\) −10.6530 25.7187i −0.368223 0.888969i
\(838\) 0 0
\(839\) 44.0247 + 18.2356i 1.51990 + 0.629564i 0.977572 0.210601i \(-0.0675420\pi\)
0.542331 + 0.840165i \(0.317542\pi\)
\(840\) 0 0
\(841\) −17.9671 + 17.9671i −0.619555 + 0.619555i
\(842\) 0 0
\(843\) −26.3567 + 26.3567i −0.907772 + 0.907772i
\(844\) 0 0
\(845\) 3.32005 12.4073i 0.114213 0.426825i
\(846\) 0 0
\(847\) 30.5199 12.6418i 1.04868 0.434376i
\(848\) 0 0
\(849\) 16.3667 6.77932i 0.561704 0.232666i
\(850\) 0 0
\(851\) 7.84348i 0.268871i
\(852\) 0 0
\(853\) 13.8733i 0.475014i −0.971386 0.237507i \(-0.923670\pi\)
0.971386 0.237507i \(-0.0763303\pi\)
\(854\) 0 0
\(855\) −5.27410 + 6.87814i −0.180370 + 0.235228i
\(856\) 0 0
\(857\) −21.4899 + 21.4899i −0.734080 + 0.734080i −0.971425 0.237346i \(-0.923723\pi\)
0.237346 + 0.971425i \(0.423723\pi\)
\(858\) 0 0
\(859\) 1.68959 + 1.68959i 0.0576479 + 0.0576479i 0.735343 0.677695i \(-0.237021\pi\)
−0.677695 + 0.735343i \(0.737021\pi\)
\(860\) 0 0
\(861\) −10.6577 + 9.20819i −0.363213 + 0.313814i
\(862\) 0 0
\(863\) 0.485392i 0.0165229i 0.999966 + 0.00826147i \(0.00262974\pi\)
−0.999966 + 0.00826147i \(0.997370\pi\)
\(864\) 0 0
\(865\) −14.4300 24.9741i −0.490636 0.849145i
\(866\) 0 0
\(867\) −3.48084 8.40348i −0.118215 0.285397i
\(868\) 0 0
\(869\) 11.9222 + 11.9222i 0.404434 + 0.404434i
\(870\) 0 0
\(871\) 1.99131 0.0674729
\(872\) 0 0
\(873\) 2.26580 + 0.938526i 0.0766858 + 0.0317643i
\(874\) 0 0
\(875\) 14.8513 + 6.13403i 0.502067 + 0.207368i
\(876\) 0 0
\(877\) −27.6825 + 27.6825i −0.934770 + 0.934770i −0.997999 0.0632291i \(-0.979860\pi\)
0.0632291 + 0.997999i \(0.479860\pi\)
\(878\) 0 0
\(879\) 22.4071i 0.755774i
\(880\) 0 0
\(881\) 6.18484 + 6.18484i 0.208372 + 0.208372i 0.803575 0.595203i \(-0.202928\pi\)
−0.595203 + 0.803575i \(0.702928\pi\)
\(882\) 0 0
\(883\) −18.2934 44.1642i −0.615623 1.48625i −0.856740 0.515749i \(-0.827514\pi\)
0.241117 0.970496i \(-0.422486\pi\)
\(884\) 0 0
\(885\) −4.66291 35.3263i −0.156742 1.18748i
\(886\) 0 0
\(887\) −12.8819 31.0997i −0.432533 1.04423i −0.978468 0.206399i \(-0.933825\pi\)
0.545935 0.837828i \(-0.316175\pi\)
\(888\) 0 0
\(889\) 7.47495 + 18.0461i 0.250702 + 0.605248i
\(890\) 0 0
\(891\) −14.7135 35.5216i −0.492921 1.19002i
\(892\) 0 0
\(893\) 79.8046i 2.67056i
\(894\) 0 0
\(895\) −27.9489 + 3.68913i −0.934228 + 0.123314i
\(896\) 0 0
\(897\) 3.82615 0.127751
\(898\) 0 0
\(899\) 3.60610 + 8.70590i 0.120270 + 0.290358i
\(900\) 0 0
\(901\) 11.2941i 0.376261i
\(902\) 0 0
\(903\) 13.5937 + 13.5937i 0.452370 + 0.452370i
\(904\) 0 0
\(905\) −14.7956 + 1.95295i −0.491821 + 0.0649182i
\(906\) 0 0
\(907\) 24.6015i 0.816880i 0.912785 + 0.408440i \(0.133927\pi\)
−0.912785 + 0.408440i \(0.866073\pi\)
\(908\) 0 0
\(909\) 0.293649 0.121633i 0.00973972 0.00403432i
\(910\) 0 0
\(911\) −2.49076 + 2.49076i −0.0825224 + 0.0825224i −0.747163 0.664641i \(-0.768585\pi\)
0.664641 + 0.747163i \(0.268585\pi\)
\(912\) 0 0
\(913\) 2.82738 + 1.17114i 0.0935726 + 0.0387590i
\(914\) 0 0
\(915\) 4.09463 + 3.13972i 0.135364 + 0.103796i
\(916\) 0 0
\(917\) −20.8246 + 8.62582i −0.687688 + 0.284850i
\(918\) 0 0
\(919\) −11.1991 4.63883i −0.369425 0.153021i 0.190245 0.981737i \(-0.439072\pi\)
−0.559669 + 0.828716i \(0.689072\pi\)
\(920\) 0 0
\(921\) −11.7557 + 28.3807i −0.387362 + 0.935175i
\(922\) 0 0
\(923\) 41.1648 1.35496
\(924\) 0 0
\(925\) 10.9647 + 40.8106i 0.360516 + 1.34184i
\(926\) 0 0
\(927\) 4.80997 + 4.80997i 0.157980 + 0.157980i
\(928\) 0 0
\(929\) 11.0654 26.7142i 0.363043 0.876463i −0.631809 0.775124i \(-0.717687\pi\)
0.994852 0.101339i \(-0.0323127\pi\)
\(930\) 0 0
\(931\) 11.1327 + 26.8766i 0.364858 + 0.880846i
\(932\) 0 0
\(933\) 11.6491 11.6491i 0.381375 0.381375i
\(934\) 0 0
\(935\) 11.2047 41.8730i 0.366433 1.36939i
\(936\) 0 0
\(937\) 13.8347 5.73053i 0.451960 0.187208i −0.145079 0.989420i \(-0.546344\pi\)
0.597039 + 0.802212i \(0.296344\pi\)
\(938\) 0 0
\(939\) 7.44829i 0.243066i
\(940\) 0 0
\(941\) −32.4676 + 32.4676i −1.05841 + 1.05841i −0.0602288 + 0.998185i \(0.519183\pi\)
−0.998185 + 0.0602288i \(0.980817\pi\)
\(942\) 0 0
\(943\) 4.49656 3.88500i 0.146428 0.126513i
\(944\) 0 0
\(945\) −9.00007 15.5765i −0.292772 0.506702i
\(946\) 0 0
\(947\) 1.08203 + 1.08203i 0.0351612 + 0.0351612i 0.724469 0.689308i \(-0.242085\pi\)
−0.689308 + 0.724469i \(0.742085\pi\)
\(948\) 0 0
\(949\) −19.1505 7.93239i −0.621651 0.257496i
\(950\) 0 0
\(951\) −16.1649 + 16.1649i −0.524184 + 0.524184i
\(952\) 0 0
\(953\) −19.2185 19.2185i −0.622550 0.622550i 0.323633 0.946183i \(-0.395096\pi\)
−0.946183 + 0.323633i \(0.895096\pi\)
\(954\) 0 0
\(955\) −1.88325 14.2675i −0.0609406 0.461686i
\(956\) 0 0
\(957\) 6.47016 + 15.6204i 0.209151 + 0.504934i
\(958\) 0 0
\(959\) 15.3397i 0.495346i
\(960\) 0 0
\(961\) 6.27021 0.202265
\(962\) 0 0
\(963\) 8.59802i 0.277067i
\(964\) 0 0
\(965\) −6.52687 + 0.861518i −0.210107 + 0.0277332i
\(966\) 0 0
\(967\) −52.8978 + 21.9110i −1.70108 + 0.704610i −0.999964 0.00843938i \(-0.997314\pi\)
−0.701114 + 0.713049i \(0.747314\pi\)
\(968\) 0 0
\(969\) −27.7199 11.4820i −0.890493 0.368854i
\(970\) 0 0
\(971\) 27.4755 11.3807i 0.881730 0.365225i 0.104563 0.994518i \(-0.466656\pi\)
0.777168 + 0.629294i \(0.216656\pi\)
\(972\) 0 0
\(973\) −9.33422 + 22.5348i −0.299241 + 0.722432i
\(974\) 0 0
\(975\) 19.9079 5.34871i 0.637564 0.171296i
\(976\) 0 0
\(977\) 22.6795 54.7532i 0.725582 1.75171i 0.0687971 0.997631i \(-0.478084\pi\)
0.656785 0.754078i \(-0.271916\pi\)
\(978\) 0 0
\(979\) −67.0948 + 67.0948i −2.14436 + 2.14436i
\(980\) 0 0
\(981\) 9.35715 3.87586i 0.298751 0.123747i
\(982\) 0 0
\(983\) −9.04938 + 9.04938i −0.288630 + 0.288630i −0.836539 0.547908i \(-0.815424\pi\)
0.547908 + 0.836539i \(0.315424\pi\)
\(984\) 0 0
\(985\) 0.628088 + 1.08703i 0.0200126 + 0.0346358i
\(986\) 0 0
\(987\) −27.5094 11.3948i −0.875633 0.362699i
\(988\) 0 0
\(989\) −5.73527 5.73527i −0.182371 0.182371i
\(990\) 0 0
\(991\) −19.5253 47.1382i −0.620241 1.49739i −0.851421 0.524483i \(-0.824258\pi\)
0.231180 0.972911i \(-0.425742\pi\)
\(992\) 0 0
\(993\) 7.63701 0.242353
\(994\) 0 0
\(995\) 34.0659 4.49654i 1.07996 0.142550i
\(996\) 0 0
\(997\) 16.8034 + 6.96020i 0.532170 + 0.220432i 0.632553 0.774517i \(-0.282007\pi\)
−0.100384 + 0.994949i \(0.532007\pi\)
\(998\) 0 0
\(999\) 18.1051 43.7096i 0.572821 1.38291i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.793.15 yes 84
5.2 odd 4 820.2.y.a.137.7 yes 84
41.3 odd 8 820.2.y.a.413.7 yes 84
205.167 even 8 inner 820.2.x.a.577.15 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.15 84 205.167 even 8 inner
820.2.x.a.793.15 yes 84 1.1 even 1 trivial
820.2.y.a.137.7 yes 84 5.2 odd 4
820.2.y.a.413.7 yes 84 41.3 odd 8