Properties

Label 820.2.x.a.577.4
Level $820$
Weight $2$
Character 820.577
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 577.4
Character \(\chi\) \(=\) 820.577
Dual form 820.2.x.a.793.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.953612 - 2.30222i) q^{3} +(-2.02890 + 0.939983i) q^{5} +(-4.39370 + 1.81993i) q^{7} +(-2.26953 + 2.26953i) q^{9} +(3.08755 + 1.27890i) q^{11} +(-0.711343 - 1.71733i) q^{13} +(4.09883 + 3.77460i) q^{15} +(1.70342 - 4.11242i) q^{17} +(0.225557 - 0.0934287i) q^{19} +(8.37976 + 8.37976i) q^{21} +(3.37958 + 3.37958i) q^{23} +(3.23286 - 3.81426i) q^{25} +(0.482549 + 0.199878i) q^{27} +(4.05714 + 1.68052i) q^{29} +9.60705i q^{31} -8.32780i q^{33} +(7.20366 - 7.82245i) q^{35} +(8.12274 + 8.12274i) q^{37} +(-3.27534 + 3.27534i) q^{39} +(-4.10553 - 4.91372i) q^{41} +1.26633i q^{43} +(2.47133 - 6.73797i) q^{45} +(3.13238 - 7.56224i) q^{47} +(11.0427 - 11.0427i) q^{49} -11.0921 q^{51} +(-5.64909 + 2.33993i) q^{53} +(-7.46647 + 0.307474i) q^{55} +(-0.430187 - 0.430187i) q^{57} +11.0740i q^{59} +(8.54979 - 8.54979i) q^{61} +(5.84124 - 14.1020i) q^{63} +(3.05751 + 2.81565i) q^{65} +(-0.281260 + 0.679022i) q^{67} +(4.55774 - 11.0034i) q^{69} +(-0.438426 + 1.05846i) q^{71} -2.84077i q^{73} +(-11.8642 - 3.80545i) q^{75} -15.8933 q^{77} +(-2.27767 + 5.49878i) q^{79} +8.32726i q^{81} +(-8.13593 + 8.13593i) q^{83} +(0.409536 + 9.94486i) q^{85} -10.9430i q^{87} +(14.3912 + 5.96104i) q^{89} +(6.25085 + 6.25085i) q^{91} +(22.1176 - 9.16139i) q^{93} +(-0.369811 + 0.401577i) q^{95} +(-4.89398 - 2.02715i) q^{97} +(-9.90980 + 4.10477i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.953612 2.30222i −0.550568 1.32919i −0.917053 0.398765i \(-0.869439\pi\)
0.366485 0.930424i \(-0.380561\pi\)
\(4\) 0 0
\(5\) −2.02890 + 0.939983i −0.907351 + 0.420373i
\(6\) 0 0
\(7\) −4.39370 + 1.81993i −1.66066 + 0.687868i −0.998128 0.0611643i \(-0.980519\pi\)
−0.662533 + 0.749033i \(0.730519\pi\)
\(8\) 0 0
\(9\) −2.26953 + 2.26953i −0.756510 + 0.756510i
\(10\) 0 0
\(11\) 3.08755 + 1.27890i 0.930931 + 0.385604i 0.796031 0.605255i \(-0.206929\pi\)
0.134899 + 0.990859i \(0.456929\pi\)
\(12\) 0 0
\(13\) −0.711343 1.71733i −0.197291 0.476303i 0.794012 0.607902i \(-0.207989\pi\)
−0.991303 + 0.131599i \(0.957989\pi\)
\(14\) 0 0
\(15\) 4.09883 + 3.77460i 1.05831 + 0.974597i
\(16\) 0 0
\(17\) 1.70342 4.11242i 0.413140 0.997408i −0.571150 0.820846i \(-0.693502\pi\)
0.984290 0.176562i \(-0.0564975\pi\)
\(18\) 0 0
\(19\) 0.225557 0.0934287i 0.0517463 0.0214340i −0.356660 0.934234i \(-0.616085\pi\)
0.408406 + 0.912800i \(0.366085\pi\)
\(20\) 0 0
\(21\) 8.37976 + 8.37976i 1.82861 + 1.82861i
\(22\) 0 0
\(23\) 3.37958 + 3.37958i 0.704692 + 0.704692i 0.965414 0.260722i \(-0.0839605\pi\)
−0.260722 + 0.965414i \(0.583961\pi\)
\(24\) 0 0
\(25\) 3.23286 3.81426i 0.646573 0.762852i
\(26\) 0 0
\(27\) 0.482549 + 0.199878i 0.0928666 + 0.0384666i
\(28\) 0 0
\(29\) 4.05714 + 1.68052i 0.753391 + 0.312065i 0.726124 0.687563i \(-0.241320\pi\)
0.0272669 + 0.999628i \(0.491320\pi\)
\(30\) 0 0
\(31\) 9.60705i 1.72548i 0.505651 + 0.862738i \(0.331252\pi\)
−0.505651 + 0.862738i \(0.668748\pi\)
\(32\) 0 0
\(33\) 8.32780i 1.44968i
\(34\) 0 0
\(35\) 7.20366 7.82245i 1.21764 1.32224i
\(36\) 0 0
\(37\) 8.12274 + 8.12274i 1.33537 + 1.33537i 0.900487 + 0.434882i \(0.143210\pi\)
0.434882 + 0.900487i \(0.356790\pi\)
\(38\) 0 0
\(39\) −3.27534 + 3.27534i −0.524474 + 0.524474i
\(40\) 0 0
\(41\) −4.10553 4.91372i −0.641176 0.767394i
\(42\) 0 0
\(43\) 1.26633i 0.193113i 0.995327 + 0.0965566i \(0.0307829\pi\)
−0.995327 + 0.0965566i \(0.969217\pi\)
\(44\) 0 0
\(45\) 2.47133 6.73797i 0.368404 1.00444i
\(46\) 0 0
\(47\) 3.13238 7.56224i 0.456905 1.10307i −0.512739 0.858545i \(-0.671369\pi\)
0.969644 0.244522i \(-0.0786310\pi\)
\(48\) 0 0
\(49\) 11.0427 11.0427i 1.57753 1.57753i
\(50\) 0 0
\(51\) −11.0921 −1.55320
\(52\) 0 0
\(53\) −5.64909 + 2.33993i −0.775963 + 0.321414i −0.735285 0.677758i \(-0.762952\pi\)
−0.0406777 + 0.999172i \(0.512952\pi\)
\(54\) 0 0
\(55\) −7.46647 + 0.307474i −1.00678 + 0.0414598i
\(56\) 0 0
\(57\) −0.430187 0.430187i −0.0569797 0.0569797i
\(58\) 0 0
\(59\) 11.0740i 1.44171i 0.693085 + 0.720855i \(0.256251\pi\)
−0.693085 + 0.720855i \(0.743749\pi\)
\(60\) 0 0
\(61\) 8.54979 8.54979i 1.09469 1.09469i 0.0996673 0.995021i \(-0.468222\pi\)
0.995021 0.0996673i \(-0.0317778\pi\)
\(62\) 0 0
\(63\) 5.84124 14.1020i 0.735928 1.77669i
\(64\) 0 0
\(65\) 3.05751 + 2.81565i 0.379237 + 0.349238i
\(66\) 0 0
\(67\) −0.281260 + 0.679022i −0.0343614 + 0.0829557i −0.940129 0.340820i \(-0.889295\pi\)
0.905767 + 0.423775i \(0.139295\pi\)
\(68\) 0 0
\(69\) 4.55774 11.0034i 0.548688 1.32465i
\(70\) 0 0
\(71\) −0.438426 + 1.05846i −0.0520316 + 0.125616i −0.947758 0.318990i \(-0.896656\pi\)
0.895726 + 0.444606i \(0.146656\pi\)
\(72\) 0 0
\(73\) 2.84077i 0.332487i −0.986085 0.166243i \(-0.946836\pi\)
0.986085 0.166243i \(-0.0531637\pi\)
\(74\) 0 0
\(75\) −11.8642 3.80545i −1.36996 0.439415i
\(76\) 0 0
\(77\) −15.8933 −1.81121
\(78\) 0 0
\(79\) −2.27767 + 5.49878i −0.256258 + 0.618661i −0.998685 0.0512659i \(-0.983674\pi\)
0.742427 + 0.669927i \(0.233674\pi\)
\(80\) 0 0
\(81\) 8.32726i 0.925251i
\(82\) 0 0
\(83\) −8.13593 + 8.13593i −0.893034 + 0.893034i −0.994808 0.101774i \(-0.967548\pi\)
0.101774 + 0.994808i \(0.467548\pi\)
\(84\) 0 0
\(85\) 0.409536 + 9.94486i 0.0444204 + 1.07867i
\(86\) 0 0
\(87\) 10.9430i 1.17321i
\(88\) 0 0
\(89\) 14.3912 + 5.96104i 1.52547 + 0.631869i 0.978678 0.205402i \(-0.0658502\pi\)
0.546788 + 0.837271i \(0.315850\pi\)
\(90\) 0 0
\(91\) 6.25085 + 6.25085i 0.655267 + 0.655267i
\(92\) 0 0
\(93\) 22.1176 9.16139i 2.29348 0.949992i
\(94\) 0 0
\(95\) −0.369811 + 0.401577i −0.0379418 + 0.0412009i
\(96\) 0 0
\(97\) −4.89398 2.02715i −0.496908 0.205826i 0.120132 0.992758i \(-0.461668\pi\)
−0.617040 + 0.786932i \(0.711668\pi\)
\(98\) 0 0
\(99\) −9.90980 + 4.10477i −0.995972 + 0.412545i
\(100\) 0 0
\(101\) 3.86628 + 9.33402i 0.384709 + 0.928770i 0.991041 + 0.133558i \(0.0426403\pi\)
−0.606332 + 0.795212i \(0.707360\pi\)
\(102\) 0 0
\(103\) 7.95360 0.783692 0.391846 0.920031i \(-0.371837\pi\)
0.391846 + 0.920031i \(0.371837\pi\)
\(104\) 0 0
\(105\) −24.8785 9.12486i −2.42789 0.890495i
\(106\) 0 0
\(107\) −2.82796 + 2.82796i −0.273389 + 0.273389i −0.830463 0.557074i \(-0.811924\pi\)
0.557074 + 0.830463i \(0.311924\pi\)
\(108\) 0 0
\(109\) −0.490710 1.18468i −0.0470014 0.113472i 0.898635 0.438697i \(-0.144560\pi\)
−0.945637 + 0.325225i \(0.894560\pi\)
\(110\) 0 0
\(111\) 10.9544 26.4463i 1.03975 2.51017i
\(112\) 0 0
\(113\) 5.14733 + 5.14733i 0.484220 + 0.484220i 0.906476 0.422257i \(-0.138762\pi\)
−0.422257 + 0.906476i \(0.638762\pi\)
\(114\) 0 0
\(115\) −10.0336 3.68009i −0.935637 0.343170i
\(116\) 0 0
\(117\) 5.51196 + 2.28313i 0.509581 + 0.211075i
\(118\) 0 0
\(119\) 21.1688i 1.94054i
\(120\) 0 0
\(121\) 0.119181 + 0.119181i 0.0108347 + 0.0108347i
\(122\) 0 0
\(123\) −7.39740 + 14.1376i −0.667001 + 1.27475i
\(124\) 0 0
\(125\) −2.97382 + 10.7776i −0.265986 + 0.963977i
\(126\) 0 0
\(127\) 7.67074 7.67074i 0.680668 0.680668i −0.279483 0.960151i \(-0.590163\pi\)
0.960151 + 0.279483i \(0.0901629\pi\)
\(128\) 0 0
\(129\) 2.91537 1.20759i 0.256684 0.106322i
\(130\) 0 0
\(131\) 12.2673 + 12.2673i 1.07180 + 1.07180i 0.997215 + 0.0745802i \(0.0237617\pi\)
0.0745802 + 0.997215i \(0.476238\pi\)
\(132\) 0 0
\(133\) −0.820995 + 0.820995i −0.0711893 + 0.0711893i
\(134\) 0 0
\(135\) −1.16693 + 0.0480548i −0.100433 + 0.00413590i
\(136\) 0 0
\(137\) −5.26448 + 12.7096i −0.449775 + 1.08585i 0.522631 + 0.852559i \(0.324951\pi\)
−0.972406 + 0.233294i \(0.925049\pi\)
\(138\) 0 0
\(139\) 4.87550i 0.413534i −0.978390 0.206767i \(-0.933706\pi\)
0.978390 0.206767i \(-0.0662943\pi\)
\(140\) 0 0
\(141\) −20.3970 −1.71774
\(142\) 0 0
\(143\) 6.21209i 0.519481i
\(144\) 0 0
\(145\) −9.81118 + 0.404031i −0.814774 + 0.0335530i
\(146\) 0 0
\(147\) −35.9531 14.8923i −2.96536 1.22829i
\(148\) 0 0
\(149\) −17.3040 + 7.16754i −1.41760 + 0.587188i −0.954256 0.298992i \(-0.903350\pi\)
−0.463341 + 0.886180i \(0.653350\pi\)
\(150\) 0 0
\(151\) 4.79800 + 1.98740i 0.390456 + 0.161732i 0.569270 0.822151i \(-0.307226\pi\)
−0.178814 + 0.983883i \(0.557226\pi\)
\(152\) 0 0
\(153\) 5.46730 + 13.1992i 0.442005 + 1.06709i
\(154\) 0 0
\(155\) −9.03046 19.4917i −0.725344 1.56561i
\(156\) 0 0
\(157\) −0.446451 1.07783i −0.0356306 0.0860200i 0.905063 0.425279i \(-0.139824\pi\)
−0.940693 + 0.339259i \(0.889824\pi\)
\(158\) 0 0
\(159\) 10.7741 + 10.7741i 0.854440 + 0.854440i
\(160\) 0 0
\(161\) −20.9995 8.69826i −1.65499 0.685519i
\(162\) 0 0
\(163\) 11.5006 + 11.5006i 0.900793 + 0.900793i 0.995505 0.0947116i \(-0.0301929\pi\)
−0.0947116 + 0.995505i \(0.530193\pi\)
\(164\) 0 0
\(165\) 7.82799 + 16.8963i 0.609408 + 1.31537i
\(166\) 0 0
\(167\) −14.0189 + 5.80682i −1.08482 + 0.449345i −0.852196 0.523222i \(-0.824730\pi\)
−0.232620 + 0.972568i \(0.574730\pi\)
\(168\) 0 0
\(169\) 6.74916 6.74916i 0.519166 0.519166i
\(170\) 0 0
\(171\) −0.299869 + 0.723948i −0.0229316 + 0.0553617i
\(172\) 0 0
\(173\) 5.40142 0.410662 0.205331 0.978693i \(-0.434173\pi\)
0.205331 + 0.978693i \(0.434173\pi\)
\(174\) 0 0
\(175\) −7.26254 + 22.6423i −0.548996 + 1.71160i
\(176\) 0 0
\(177\) 25.4948 10.5603i 1.91631 0.793760i
\(178\) 0 0
\(179\) −3.76050 9.07864i −0.281073 0.678569i 0.718789 0.695229i \(-0.244697\pi\)
−0.999861 + 0.0166593i \(0.994697\pi\)
\(180\) 0 0
\(181\) 4.83941 + 11.6834i 0.359711 + 0.868418i 0.995340 + 0.0964240i \(0.0307405\pi\)
−0.635630 + 0.771994i \(0.719260\pi\)
\(182\) 0 0
\(183\) −27.8367 11.5303i −2.05775 0.852347i
\(184\) 0 0
\(185\) −24.1154 8.84498i −1.77300 0.650296i
\(186\) 0 0
\(187\) 10.5188 10.5188i 0.769209 0.769209i
\(188\) 0 0
\(189\) −2.48394 −0.180680
\(190\) 0 0
\(191\) 1.74315 0.722037i 0.126130 0.0522448i −0.318726 0.947847i \(-0.603255\pi\)
0.444856 + 0.895602i \(0.353255\pi\)
\(192\) 0 0
\(193\) 5.26274 + 12.7054i 0.378820 + 0.914553i 0.992188 + 0.124755i \(0.0398145\pi\)
−0.613367 + 0.789798i \(0.710186\pi\)
\(194\) 0 0
\(195\) 3.56657 9.72410i 0.255408 0.696357i
\(196\) 0 0
\(197\) 5.84936 0.416750 0.208375 0.978049i \(-0.433183\pi\)
0.208375 + 0.978049i \(0.433183\pi\)
\(198\) 0 0
\(199\) −5.41583 13.0750i −0.383918 0.926860i −0.991200 0.132374i \(-0.957740\pi\)
0.607282 0.794487i \(-0.292260\pi\)
\(200\) 0 0
\(201\) 1.83147 0.129182
\(202\) 0 0
\(203\) −20.8843 −1.46579
\(204\) 0 0
\(205\) 12.9485 + 6.11032i 0.904363 + 0.426763i
\(206\) 0 0
\(207\) −15.3401 −1.06621
\(208\) 0 0
\(209\) 0.815904 0.0564373
\(210\) 0 0
\(211\) −4.23485 10.2238i −0.291539 0.703837i 0.708459 0.705752i \(-0.249391\pi\)
−0.999998 + 0.00191443i \(0.999391\pi\)
\(212\) 0 0
\(213\) 2.85489 0.195614
\(214\) 0 0
\(215\) −1.19033 2.56925i −0.0811796 0.175222i
\(216\) 0 0
\(217\) −17.4841 42.2104i −1.18690 2.86543i
\(218\) 0 0
\(219\) −6.54008 + 2.70899i −0.441937 + 0.183056i
\(220\) 0 0
\(221\) −8.27411 −0.556577
\(222\) 0 0
\(223\) 5.58256 5.58256i 0.373836 0.373836i −0.495036 0.868872i \(-0.664845\pi\)
0.868872 + 0.495036i \(0.164845\pi\)
\(224\) 0 0
\(225\) 1.31950 + 15.9937i 0.0879665 + 1.06624i
\(226\) 0 0
\(227\) −0.952759 0.394646i −0.0632368 0.0261935i 0.350841 0.936435i \(-0.385896\pi\)
−0.414078 + 0.910242i \(0.635896\pi\)
\(228\) 0 0
\(229\) −3.96815 9.57997i −0.262223 0.633062i 0.736853 0.676053i \(-0.236311\pi\)
−0.999075 + 0.0429914i \(0.986311\pi\)
\(230\) 0 0
\(231\) 15.1560 + 36.5898i 0.997191 + 2.40743i
\(232\) 0 0
\(233\) 12.3820 5.12878i 0.811170 0.335998i 0.0617495 0.998092i \(-0.480332\pi\)
0.749421 + 0.662094i \(0.230332\pi\)
\(234\) 0 0
\(235\) 0.753088 + 18.2874i 0.0491261 + 1.19294i
\(236\) 0 0
\(237\) 14.8314 0.963404
\(238\) 0 0
\(239\) −4.12752 + 9.96472i −0.266987 + 0.644564i −0.999339 0.0363628i \(-0.988423\pi\)
0.732352 + 0.680927i \(0.238423\pi\)
\(240\) 0 0
\(241\) 16.0789 16.0789i 1.03573 1.03573i 0.0363924 0.999338i \(-0.488413\pi\)
0.999338 0.0363924i \(-0.0115866\pi\)
\(242\) 0 0
\(243\) 20.6189 8.54061i 1.32270 0.547880i
\(244\) 0 0
\(245\) −12.0245 + 32.7844i −0.768220 + 2.09452i
\(246\) 0 0
\(247\) −0.320897 0.320897i −0.0204182 0.0204182i
\(248\) 0 0
\(249\) 26.4892 + 10.9722i 1.67869 + 0.695335i
\(250\) 0 0
\(251\) −5.71142 5.71142i −0.360502 0.360502i 0.503496 0.863998i \(-0.332047\pi\)
−0.863998 + 0.503496i \(0.832047\pi\)
\(252\) 0 0
\(253\) 6.11246 + 14.7568i 0.384287 + 0.927752i
\(254\) 0 0
\(255\) 22.5047 10.4264i 1.40930 0.652925i
\(256\) 0 0
\(257\) −6.60442 15.9445i −0.411972 0.994589i −0.984608 0.174779i \(-0.944079\pi\)
0.572635 0.819810i \(-0.305921\pi\)
\(258\) 0 0
\(259\) −50.4716 20.9060i −3.13615 1.29904i
\(260\) 0 0
\(261\) −13.0218 + 5.39380i −0.806029 + 0.333868i
\(262\) 0 0
\(263\) 4.57025 + 1.89306i 0.281813 + 0.116731i 0.519113 0.854706i \(-0.326262\pi\)
−0.237300 + 0.971436i \(0.576262\pi\)
\(264\) 0 0
\(265\) 9.26195 10.0575i 0.568957 0.617830i
\(266\) 0 0
\(267\) 38.8163i 2.37552i
\(268\) 0 0
\(269\) −29.2245 −1.78185 −0.890926 0.454149i \(-0.849943\pi\)
−0.890926 + 0.454149i \(0.849943\pi\)
\(270\) 0 0
\(271\) 8.57120i 0.520663i −0.965519 0.260332i \(-0.916168\pi\)
0.965519 0.260332i \(-0.0838319\pi\)
\(272\) 0 0
\(273\) 8.42996 20.3517i 0.510205 1.23174i
\(274\) 0 0
\(275\) 14.8597 7.64219i 0.896074 0.460841i
\(276\) 0 0
\(277\) 22.5943 22.5943i 1.35756 1.35756i 0.480645 0.876916i \(-0.340403\pi\)
0.876916 0.480645i \(-0.159597\pi\)
\(278\) 0 0
\(279\) −21.8035 21.8035i −1.30534 1.30534i
\(280\) 0 0
\(281\) 12.5253 5.18815i 0.747197 0.309499i 0.0236000 0.999721i \(-0.492487\pi\)
0.723598 + 0.690222i \(0.242487\pi\)
\(282\) 0 0
\(283\) −20.4032 + 20.4032i −1.21285 + 1.21285i −0.242760 + 0.970086i \(0.578053\pi\)
−0.970086 + 0.242760i \(0.921947\pi\)
\(284\) 0 0
\(285\) 1.27718 + 0.468438i 0.0756534 + 0.0277479i
\(286\) 0 0
\(287\) 26.9811 + 14.1176i 1.59264 + 0.833337i
\(288\) 0 0
\(289\) −1.98952 1.98952i −0.117031 0.117031i
\(290\) 0 0
\(291\) 13.2001i 0.773806i
\(292\) 0 0
\(293\) 0.645681 + 0.267450i 0.0377211 + 0.0156246i 0.401464 0.915875i \(-0.368501\pi\)
−0.363743 + 0.931499i \(0.618501\pi\)
\(294\) 0 0
\(295\) −10.4094 22.4680i −0.606056 1.30814i
\(296\) 0 0
\(297\) 1.23427 + 1.23427i 0.0716195 + 0.0716195i
\(298\) 0 0
\(299\) 3.39983 8.20792i 0.196617 0.474676i
\(300\) 0 0
\(301\) −2.30463 5.56386i −0.132836 0.320696i
\(302\) 0 0
\(303\) 17.8021 17.8021i 1.02270 1.02270i
\(304\) 0 0
\(305\) −9.31000 + 25.3833i −0.533089 + 1.45344i
\(306\) 0 0
\(307\) −2.63739 −0.150524 −0.0752618 0.997164i \(-0.523979\pi\)
−0.0752618 + 0.997164i \(0.523979\pi\)
\(308\) 0 0
\(309\) −7.58465 18.3110i −0.431475 1.04167i
\(310\) 0 0
\(311\) 20.1237 8.33552i 1.14111 0.472664i 0.269568 0.962981i \(-0.413119\pi\)
0.871544 + 0.490317i \(0.163119\pi\)
\(312\) 0 0
\(313\) 24.5247 + 10.1585i 1.38622 + 0.574191i 0.946137 0.323767i \(-0.104949\pi\)
0.440082 + 0.897957i \(0.354949\pi\)
\(314\) 0 0
\(315\) 1.40435 + 34.1022i 0.0791263 + 1.92144i
\(316\) 0 0
\(317\) −13.4580 + 5.57451i −0.755879 + 0.313095i −0.727138 0.686491i \(-0.759150\pi\)
−0.0287414 + 0.999587i \(0.509150\pi\)
\(318\) 0 0
\(319\) 10.3774 + 10.3774i 0.581022 + 0.581022i
\(320\) 0 0
\(321\) 9.20735 + 3.81381i 0.513904 + 0.212866i
\(322\) 0 0
\(323\) 1.08673i 0.0604674i
\(324\) 0 0
\(325\) −8.85004 2.83866i −0.490912 0.157461i
\(326\) 0 0
\(327\) −2.25944 + 2.25944i −0.124948 + 0.124948i
\(328\) 0 0
\(329\) 38.9269i 2.14611i
\(330\) 0 0
\(331\) 7.96851 19.2377i 0.437989 1.05740i −0.538654 0.842527i \(-0.681067\pi\)
0.976642 0.214871i \(-0.0689331\pi\)
\(332\) 0 0
\(333\) −36.8696 −2.02044
\(334\) 0 0
\(335\) −0.0676206 1.64205i −0.00369451 0.0897146i
\(336\) 0 0
\(337\) 31.4036i 1.71066i 0.518081 + 0.855331i \(0.326647\pi\)
−0.518081 + 0.855331i \(0.673353\pi\)
\(338\) 0 0
\(339\) 6.94174 16.7588i 0.377023 0.910215i
\(340\) 0 0
\(341\) −12.2865 + 29.6622i −0.665351 + 1.60630i
\(342\) 0 0
\(343\) −15.6818 + 37.8592i −0.846736 + 2.04420i
\(344\) 0 0
\(345\) 1.09577 + 26.6089i 0.0589944 + 1.43258i
\(346\) 0 0
\(347\) 6.36649 15.3701i 0.341771 0.825108i −0.655766 0.754964i \(-0.727654\pi\)
0.997537 0.0701440i \(-0.0223459\pi\)
\(348\) 0 0
\(349\) −15.0669 + 15.0669i −0.806514 + 0.806514i −0.984104 0.177591i \(-0.943170\pi\)
0.177591 + 0.984104i \(0.443170\pi\)
\(350\) 0 0
\(351\) 0.970880i 0.0518217i
\(352\) 0 0
\(353\) −10.7011 10.7011i −0.569560 0.569560i 0.362445 0.932005i \(-0.381942\pi\)
−0.932005 + 0.362445i \(0.881942\pi\)
\(354\) 0 0
\(355\) −0.105407 2.55961i −0.00559440 0.135850i
\(356\) 0 0
\(357\) 48.7353 20.1868i 2.57935 1.06840i
\(358\) 0 0
\(359\) −9.40023 −0.496125 −0.248063 0.968744i \(-0.579794\pi\)
−0.248063 + 0.968744i \(0.579794\pi\)
\(360\) 0 0
\(361\) −13.3929 + 13.3929i −0.704889 + 0.704889i
\(362\) 0 0
\(363\) 0.160729 0.388034i 0.00843608 0.0203665i
\(364\) 0 0
\(365\) 2.67027 + 5.76363i 0.139768 + 0.301682i
\(366\) 0 0
\(367\) 10.9077i 0.569377i 0.958620 + 0.284688i \(0.0918901\pi\)
−0.958620 + 0.284688i \(0.908110\pi\)
\(368\) 0 0
\(369\) 20.4695 + 1.83422i 1.06560 + 0.0954856i
\(370\) 0 0
\(371\) 20.5619 20.5619i 1.06752 1.06752i
\(372\) 0 0
\(373\) −13.7142 13.7142i −0.710097 0.710097i 0.256459 0.966555i \(-0.417444\pi\)
−0.966555 + 0.256459i \(0.917444\pi\)
\(374\) 0 0
\(375\) 27.6483 3.43125i 1.42775 0.177189i
\(376\) 0 0
\(377\) 8.16289i 0.420410i
\(378\) 0 0
\(379\) 21.9556i 1.12778i 0.825849 + 0.563891i \(0.190696\pi\)
−0.825849 + 0.563891i \(0.809304\pi\)
\(380\) 0 0
\(381\) −24.9747 10.3448i −1.27949 0.529982i
\(382\) 0 0
\(383\) 20.0142 + 8.29014i 1.02268 + 0.423606i 0.830064 0.557669i \(-0.188304\pi\)
0.192612 + 0.981275i \(0.438304\pi\)
\(384\) 0 0
\(385\) 32.2458 14.9394i 1.64340 0.761382i
\(386\) 0 0
\(387\) −2.87397 2.87397i −0.146092 0.146092i
\(388\) 0 0
\(389\) 7.74110 + 7.74110i 0.392490 + 0.392490i 0.875574 0.483084i \(-0.160484\pi\)
−0.483084 + 0.875574i \(0.660484\pi\)
\(390\) 0 0
\(391\) 19.6551 8.14141i 0.994002 0.411729i
\(392\) 0 0
\(393\) 16.5438 39.9401i 0.834522 2.01471i
\(394\) 0 0
\(395\) −0.547597 13.2974i −0.0275526 0.669066i
\(396\) 0 0
\(397\) 14.6728 + 35.4233i 0.736408 + 1.77785i 0.619937 + 0.784652i \(0.287158\pi\)
0.116471 + 0.993194i \(0.462842\pi\)
\(398\) 0 0
\(399\) 2.67302 + 1.10720i 0.133819 + 0.0554294i
\(400\) 0 0
\(401\) 0.208693 0.208693i 0.0104216 0.0104216i −0.701877 0.712298i \(-0.747654\pi\)
0.712298 + 0.701877i \(0.247654\pi\)
\(402\) 0 0
\(403\) 16.4985 6.83391i 0.821849 0.340421i
\(404\) 0 0
\(405\) −7.82748 16.8952i −0.388951 0.839528i
\(406\) 0 0
\(407\) 14.6911 + 35.4675i 0.728213 + 1.75806i
\(408\) 0 0
\(409\) 4.00115 0.197844 0.0989221 0.995095i \(-0.468461\pi\)
0.0989221 + 0.995095i \(0.468461\pi\)
\(410\) 0 0
\(411\) 34.2806 1.69094
\(412\) 0 0
\(413\) −20.1539 48.6557i −0.991707 2.39419i
\(414\) 0 0
\(415\) 8.85934 24.1546i 0.434888 1.18570i
\(416\) 0 0
\(417\) −11.2245 + 4.64933i −0.549665 + 0.227679i
\(418\) 0 0
\(419\) −26.6694 + 26.6694i −1.30288 + 1.30288i −0.376445 + 0.926439i \(0.622853\pi\)
−0.926439 + 0.376445i \(0.877147\pi\)
\(420\) 0 0
\(421\) 3.13599 + 1.29897i 0.152839 + 0.0633078i 0.457791 0.889060i \(-0.348641\pi\)
−0.304953 + 0.952367i \(0.598641\pi\)
\(422\) 0 0
\(423\) 10.0537 + 24.2718i 0.488828 + 1.18013i
\(424\) 0 0
\(425\) −10.1789 19.7922i −0.493750 0.960061i
\(426\) 0 0
\(427\) −22.0052 + 53.1252i −1.06490 + 2.57091i
\(428\) 0 0
\(429\) −14.3016 + 5.92392i −0.690489 + 0.286010i
\(430\) 0 0
\(431\) −2.36464 2.36464i −0.113901 0.113901i 0.647859 0.761760i \(-0.275664\pi\)
−0.761760 + 0.647859i \(0.775664\pi\)
\(432\) 0 0
\(433\) 4.26329 + 4.26329i 0.204881 + 0.204881i 0.802087 0.597207i \(-0.203723\pi\)
−0.597207 + 0.802087i \(0.703723\pi\)
\(434\) 0 0
\(435\) 10.2862 + 22.2022i 0.493187 + 1.06452i
\(436\) 0 0
\(437\) 1.07804 + 0.446538i 0.0515696 + 0.0213608i
\(438\) 0 0
\(439\) −3.49173 1.44632i −0.166651 0.0690291i 0.297798 0.954629i \(-0.403748\pi\)
−0.464449 + 0.885600i \(0.653748\pi\)
\(440\) 0 0
\(441\) 50.1234i 2.38683i
\(442\) 0 0
\(443\) 7.32910i 0.348216i 0.984727 + 0.174108i \(0.0557042\pi\)
−0.984727 + 0.174108i \(0.944296\pi\)
\(444\) 0 0
\(445\) −34.8016 + 1.43315i −1.64975 + 0.0679380i
\(446\) 0 0
\(447\) 33.0025 + 33.0025i 1.56097 + 1.56097i
\(448\) 0 0
\(449\) 19.9406 19.9406i 0.941055 0.941055i −0.0573016 0.998357i \(-0.518250\pi\)
0.998357 + 0.0573016i \(0.0182497\pi\)
\(450\) 0 0
\(451\) −6.39184 20.4219i −0.300980 0.961631i
\(452\) 0 0
\(453\) 12.9413i 0.608034i
\(454\) 0 0
\(455\) −18.5580 6.80666i −0.870015 0.319101i
\(456\) 0 0
\(457\) 3.75901 9.07504i 0.175839 0.424513i −0.811247 0.584703i \(-0.801211\pi\)
0.987086 + 0.160191i \(0.0512109\pi\)
\(458\) 0 0
\(459\) 1.64397 1.64397i 0.0767337 0.0767337i
\(460\) 0 0
\(461\) −12.3439 −0.574912 −0.287456 0.957794i \(-0.592809\pi\)
−0.287456 + 0.957794i \(0.592809\pi\)
\(462\) 0 0
\(463\) 17.5147 7.25484i 0.813979 0.337161i 0.0634385 0.997986i \(-0.479793\pi\)
0.750540 + 0.660825i \(0.229793\pi\)
\(464\) 0 0
\(465\) −36.2627 + 39.3777i −1.68164 + 1.82610i
\(466\) 0 0
\(467\) −15.0928 15.0928i −0.698412 0.698412i 0.265656 0.964068i \(-0.414411\pi\)
−0.964068 + 0.265656i \(0.914411\pi\)
\(468\) 0 0
\(469\) 3.49529i 0.161397i
\(470\) 0 0
\(471\) −2.05566 + 2.05566i −0.0947197 + 0.0947197i
\(472\) 0 0
\(473\) −1.61951 + 3.90985i −0.0744653 + 0.179775i
\(474\) 0 0
\(475\) 0.372833 1.16238i 0.0171068 0.0533334i
\(476\) 0 0
\(477\) 7.51025 18.1313i 0.343871 0.830177i
\(478\) 0 0
\(479\) −1.81043 + 4.37077i −0.0827208 + 0.199706i −0.959828 0.280589i \(-0.909470\pi\)
0.877107 + 0.480295i \(0.159470\pi\)
\(480\) 0 0
\(481\) 8.17140 19.7275i 0.372584 0.899497i
\(482\) 0 0
\(483\) 56.6402i 2.57722i
\(484\) 0 0
\(485\) 11.8349 0.487368i 0.537394 0.0221303i
\(486\) 0 0
\(487\) −19.5733 −0.886949 −0.443475 0.896287i \(-0.646254\pi\)
−0.443475 + 0.896287i \(0.646254\pi\)
\(488\) 0 0
\(489\) 15.5098 37.4439i 0.701376 1.69327i
\(490\) 0 0
\(491\) 10.9209i 0.492852i 0.969162 + 0.246426i \(0.0792562\pi\)
−0.969162 + 0.246426i \(0.920744\pi\)
\(492\) 0 0
\(493\) 13.8220 13.8220i 0.622512 0.622512i
\(494\) 0 0
\(495\) 16.2476 17.6432i 0.730274 0.793003i
\(496\) 0 0
\(497\) 5.44843i 0.244396i
\(498\) 0 0
\(499\) 5.39314 + 2.23391i 0.241430 + 0.100004i 0.500118 0.865957i \(-0.333290\pi\)
−0.258688 + 0.965961i \(0.583290\pi\)
\(500\) 0 0
\(501\) 26.7372 + 26.7372i 1.19453 + 1.19453i
\(502\) 0 0
\(503\) −17.7060 + 7.33405i −0.789470 + 0.327009i −0.740730 0.671802i \(-0.765520\pi\)
−0.0487394 + 0.998812i \(0.515520\pi\)
\(504\) 0 0
\(505\) −16.6181 15.3035i −0.739496 0.680999i
\(506\) 0 0
\(507\) −21.9741 9.10199i −0.975906 0.404233i
\(508\) 0 0
\(509\) −21.3754 + 8.85398i −0.947448 + 0.392446i −0.802271 0.596960i \(-0.796375\pi\)
−0.145177 + 0.989406i \(0.546375\pi\)
\(510\) 0 0
\(511\) 5.16999 + 12.4815i 0.228707 + 0.552147i
\(512\) 0 0
\(513\) 0.127517 0.00563000
\(514\) 0 0
\(515\) −16.1371 + 7.47625i −0.711084 + 0.329443i
\(516\) 0 0
\(517\) 19.3428 19.3428i 0.850694 0.850694i
\(518\) 0 0
\(519\) −5.15086 12.4353i −0.226098 0.545848i
\(520\) 0 0
\(521\) 12.1538 29.3420i 0.532469 1.28549i −0.397414 0.917640i \(-0.630092\pi\)
0.929883 0.367855i \(-0.119908\pi\)
\(522\) 0 0
\(523\) 9.73398 + 9.73398i 0.425637 + 0.425637i 0.887139 0.461502i \(-0.152689\pi\)
−0.461502 + 0.887139i \(0.652689\pi\)
\(524\) 0 0
\(525\) 59.0532 4.87196i 2.57729 0.212630i
\(526\) 0 0
\(527\) 39.5082 + 16.3648i 1.72100 + 0.712863i
\(528\) 0 0
\(529\) 0.156816i 0.00681808i
\(530\) 0 0
\(531\) −25.1328 25.1328i −1.09067 1.09067i
\(532\) 0 0
\(533\) −5.51806 + 10.5459i −0.239014 + 0.456794i
\(534\) 0 0
\(535\) 3.07941 8.39587i 0.133134 0.362985i
\(536\) 0 0
\(537\) −17.3150 + 17.3150i −0.747197 + 0.747197i
\(538\) 0 0
\(539\) 48.2173 19.9723i 2.07687 0.860266i
\(540\) 0 0
\(541\) −20.2942 20.2942i −0.872515 0.872515i 0.120231 0.992746i \(-0.461636\pi\)
−0.992746 + 0.120231i \(0.961636\pi\)
\(542\) 0 0
\(543\) 22.2828 22.2828i 0.956246 0.956246i
\(544\) 0 0
\(545\) 2.10918 + 1.94233i 0.0903472 + 0.0832004i
\(546\) 0 0
\(547\) 7.25087 17.5051i 0.310025 0.748466i −0.689679 0.724115i \(-0.742248\pi\)
0.999703 0.0243503i \(-0.00775171\pi\)
\(548\) 0 0
\(549\) 38.8080i 1.65629i
\(550\) 0 0
\(551\) 1.07212 0.0456740
\(552\) 0 0
\(553\) 28.3051i 1.20366i
\(554\) 0 0
\(555\) 2.63366 + 63.9538i 0.111793 + 2.71469i
\(556\) 0 0
\(557\) −6.10597 2.52918i −0.258718 0.107165i 0.249554 0.968361i \(-0.419716\pi\)
−0.508273 + 0.861196i \(0.669716\pi\)
\(558\) 0 0
\(559\) 2.17471 0.900794i 0.0919804 0.0380995i
\(560\) 0 0
\(561\) −34.2474 14.1857i −1.44593 0.598922i
\(562\) 0 0
\(563\) −0.674938 1.62944i −0.0284452 0.0686729i 0.909019 0.416755i \(-0.136833\pi\)
−0.937464 + 0.348083i \(0.886833\pi\)
\(564\) 0 0
\(565\) −15.2818 5.60501i −0.642910 0.235804i
\(566\) 0 0
\(567\) −15.1550 36.5875i −0.636451 1.53653i
\(568\) 0 0
\(569\) −8.06645 8.06645i −0.338163 0.338163i 0.517513 0.855676i \(-0.326858\pi\)
−0.855676 + 0.517513i \(0.826858\pi\)
\(570\) 0 0
\(571\) 10.8371 + 4.48887i 0.453518 + 0.187853i 0.597737 0.801692i \(-0.296067\pi\)
−0.144218 + 0.989546i \(0.546067\pi\)
\(572\) 0 0
\(573\) −3.32458 3.32458i −0.138886 0.138886i
\(574\) 0 0
\(575\) 23.8164 1.96488i 0.993211 0.0819411i
\(576\) 0 0
\(577\) −21.8377 + 9.04546i −0.909114 + 0.376567i −0.787717 0.616037i \(-0.788737\pi\)
−0.121397 + 0.992604i \(0.538737\pi\)
\(578\) 0 0
\(579\) 24.2320 24.2320i 1.00705 1.00705i
\(580\) 0 0
\(581\) 20.9400 50.5536i 0.868737 2.09732i
\(582\) 0 0
\(583\) −20.4344 −0.846306
\(584\) 0 0
\(585\) −13.3293 + 0.548910i −0.551099 + 0.0226946i
\(586\) 0 0
\(587\) −8.18754 + 3.39139i −0.337936 + 0.139978i −0.545197 0.838308i \(-0.683545\pi\)
0.207261 + 0.978286i \(0.433545\pi\)
\(588\) 0 0
\(589\) 0.897574 + 2.16694i 0.0369839 + 0.0892870i
\(590\) 0 0
\(591\) −5.57802 13.4665i −0.229449 0.553939i
\(592\) 0 0
\(593\) 11.4114 + 4.72677i 0.468611 + 0.194105i 0.604478 0.796622i \(-0.293382\pi\)
−0.135866 + 0.990727i \(0.543382\pi\)
\(594\) 0 0
\(595\) −19.8983 42.9494i −0.815751 1.76075i
\(596\) 0 0
\(597\) −24.9369 + 24.9369i −1.02060 + 1.02060i
\(598\) 0 0
\(599\) 26.7136 1.09149 0.545743 0.837952i \(-0.316247\pi\)
0.545743 + 0.837952i \(0.316247\pi\)
\(600\) 0 0
\(601\) 41.2837 17.1003i 1.68400 0.697535i 0.684493 0.729019i \(-0.260024\pi\)
0.999504 + 0.0314847i \(0.0100236\pi\)
\(602\) 0 0
\(603\) −0.902733 2.17939i −0.0367621 0.0887516i
\(604\) 0 0
\(605\) −0.353835 0.129778i −0.0143854 0.00527624i
\(606\) 0 0
\(607\) −38.1886 −1.55003 −0.775013 0.631945i \(-0.782257\pi\)
−0.775013 + 0.631945i \(0.782257\pi\)
\(608\) 0 0
\(609\) 19.9155 + 48.0802i 0.807015 + 1.94831i
\(610\) 0 0
\(611\) −15.2151 −0.615537
\(612\) 0 0
\(613\) 41.6975 1.68415 0.842073 0.539363i \(-0.181335\pi\)
0.842073 + 0.539363i \(0.181335\pi\)
\(614\) 0 0
\(615\) 1.71945 35.6372i 0.0693351 1.43703i
\(616\) 0 0
\(617\) 2.37669 0.0956817 0.0478409 0.998855i \(-0.484766\pi\)
0.0478409 + 0.998855i \(0.484766\pi\)
\(618\) 0 0
\(619\) 31.9132 1.28270 0.641350 0.767248i \(-0.278375\pi\)
0.641350 + 0.767248i \(0.278375\pi\)
\(620\) 0 0
\(621\) 0.955309 + 2.30632i 0.0383352 + 0.0925494i
\(622\) 0 0
\(623\) −74.0793 −2.96792
\(624\) 0 0
\(625\) −4.09718 24.6620i −0.163887 0.986479i
\(626\) 0 0
\(627\) −0.778056 1.87839i −0.0310726 0.0750158i
\(628\) 0 0
\(629\) 47.2405 19.5677i 1.88360 0.780213i
\(630\) 0 0
\(631\) −22.1295 −0.880963 −0.440482 0.897762i \(-0.645192\pi\)
−0.440482 + 0.897762i \(0.645192\pi\)
\(632\) 0 0
\(633\) −19.4991 + 19.4991i −0.775021 + 0.775021i
\(634\) 0 0
\(635\) −8.35280 + 22.7735i −0.331471 + 0.903740i
\(636\) 0 0
\(637\) −26.8191 11.1088i −1.06261 0.440148i
\(638\) 0 0
\(639\) −1.40717 3.39722i −0.0556670 0.134392i
\(640\) 0 0
\(641\) −1.62824 3.93092i −0.0643117 0.155262i 0.888456 0.458961i \(-0.151778\pi\)
−0.952768 + 0.303699i \(0.901778\pi\)
\(642\) 0 0
\(643\) 43.8558 18.1657i 1.72951 0.716385i 0.730050 0.683394i \(-0.239497\pi\)
0.999456 0.0329904i \(-0.0105031\pi\)
\(644\) 0 0
\(645\) −4.77988 + 5.19047i −0.188208 + 0.204374i
\(646\) 0 0
\(647\) 17.5227 0.688890 0.344445 0.938806i \(-0.388067\pi\)
0.344445 + 0.938806i \(0.388067\pi\)
\(648\) 0 0
\(649\) −14.1626 + 34.1915i −0.555930 + 1.34213i
\(650\) 0 0
\(651\) −80.5047 + 80.5047i −3.15523 + 3.15523i
\(652\) 0 0
\(653\) −27.5402 + 11.4075i −1.07773 + 0.446411i −0.849713 0.527246i \(-0.823225\pi\)
−0.228019 + 0.973657i \(0.573225\pi\)
\(654\) 0 0
\(655\) −36.4200 13.3580i −1.42305 0.521941i
\(656\) 0 0
\(657\) 6.44721 + 6.44721i 0.251530 + 0.251530i
\(658\) 0 0
\(659\) 35.5800 + 14.7377i 1.38600 + 0.574101i 0.946079 0.323935i \(-0.105006\pi\)
0.439922 + 0.898036i \(0.355006\pi\)
\(660\) 0 0
\(661\) 3.17147 + 3.17147i 0.123356 + 0.123356i 0.766090 0.642734i \(-0.222200\pi\)
−0.642734 + 0.766090i \(0.722200\pi\)
\(662\) 0 0
\(663\) 7.89029 + 19.0488i 0.306433 + 0.739796i
\(664\) 0 0
\(665\) 0.893995 2.43744i 0.0346676 0.0945198i
\(666\) 0 0
\(667\) 8.03197 + 19.3909i 0.310999 + 0.750819i
\(668\) 0 0
\(669\) −18.1759 7.52870i −0.702721 0.291076i
\(670\) 0 0
\(671\) 37.3322 15.4635i 1.44120 0.596963i
\(672\) 0 0
\(673\) −32.6154 13.5097i −1.25723 0.520763i −0.348173 0.937430i \(-0.613198\pi\)
−0.909059 + 0.416668i \(0.863198\pi\)
\(674\) 0 0
\(675\) 2.32240 1.19439i 0.0893893 0.0459720i
\(676\) 0 0
\(677\) 16.9700i 0.652208i 0.945334 + 0.326104i \(0.105736\pi\)
−0.945334 + 0.326104i \(0.894264\pi\)
\(678\) 0 0
\(679\) 25.1919 0.966778
\(680\) 0 0
\(681\) 2.56980i 0.0984750i
\(682\) 0 0
\(683\) −19.0623 + 46.0203i −0.729397 + 1.76092i −0.0847987 + 0.996398i \(0.527025\pi\)
−0.644598 + 0.764522i \(0.722975\pi\)
\(684\) 0 0
\(685\) −1.26569 30.7350i −0.0483594 1.17432i
\(686\) 0 0
\(687\) −18.2711 + 18.2711i −0.697087 + 0.697087i
\(688\) 0 0
\(689\) 8.03689 + 8.03689i 0.306181 + 0.306181i
\(690\) 0 0
\(691\) 33.1211 13.7192i 1.25999 0.521903i 0.350081 0.936720i \(-0.386154\pi\)
0.909905 + 0.414816i \(0.136154\pi\)
\(692\) 0 0
\(693\) 36.0702 36.0702i 1.37020 1.37020i
\(694\) 0 0
\(695\) 4.58288 + 9.89189i 0.173839 + 0.375221i
\(696\) 0 0
\(697\) −27.2007 + 8.51352i −1.03030 + 0.322472i
\(698\) 0 0
\(699\) −23.6152 23.6152i −0.893209 0.893209i
\(700\) 0 0
\(701\) 25.3713i 0.958261i 0.877744 + 0.479130i \(0.159048\pi\)
−0.877744 + 0.479130i \(0.840952\pi\)
\(702\) 0 0
\(703\) 2.59104 + 1.07324i 0.0977228 + 0.0404781i
\(704\) 0 0
\(705\) 41.3835 19.1729i 1.55859 0.722092i
\(706\) 0 0
\(707\) −33.9745 33.9745i −1.27774 1.27774i
\(708\) 0 0
\(709\) 9.08944 21.9439i 0.341361 0.824119i −0.656217 0.754572i \(-0.727845\pi\)
0.997579 0.0695471i \(-0.0221554\pi\)
\(710\) 0 0
\(711\) −7.31040 17.6489i −0.274162 0.661885i
\(712\) 0 0
\(713\) −32.4678 + 32.4678i −1.21593 + 1.21593i
\(714\) 0 0
\(715\) 5.83926 + 12.6037i 0.218376 + 0.471352i
\(716\) 0 0
\(717\) 26.8770 1.00374
\(718\) 0 0
\(719\) −11.8403 28.5850i −0.441568 1.06604i −0.975399 0.220448i \(-0.929248\pi\)
0.533831 0.845591i \(-0.320752\pi\)
\(720\) 0 0
\(721\) −34.9457 + 14.4750i −1.30145 + 0.539077i
\(722\) 0 0
\(723\) −52.3501 21.6841i −1.94692 0.806441i
\(724\) 0 0
\(725\) 19.5261 10.0421i 0.725182 0.372954i
\(726\) 0 0
\(727\) −14.2232 + 5.89145i −0.527510 + 0.218502i −0.630512 0.776179i \(-0.717155\pi\)
0.103002 + 0.994681i \(0.467155\pi\)
\(728\) 0 0
\(729\) −21.6600 21.6600i −0.802221 0.802221i
\(730\) 0 0
\(731\) 5.20767 + 2.15709i 0.192613 + 0.0797828i
\(732\) 0 0
\(733\) 34.7888i 1.28495i 0.766306 + 0.642476i \(0.222093\pi\)
−0.766306 + 0.642476i \(0.777907\pi\)
\(734\) 0 0
\(735\) 86.9437 3.58040i 3.20697 0.132065i
\(736\) 0 0
\(737\) −1.73681 + 1.73681i −0.0639762 + 0.0639762i
\(738\) 0 0
\(739\) 19.2080i 0.706578i 0.935514 + 0.353289i \(0.114937\pi\)
−0.935514 + 0.353289i \(0.885063\pi\)
\(740\) 0 0
\(741\) −0.432765 + 1.04479i −0.0158980 + 0.0383812i
\(742\) 0 0
\(743\) −20.0415 −0.735253 −0.367627 0.929973i \(-0.619830\pi\)
−0.367627 + 0.929973i \(0.619830\pi\)
\(744\) 0 0
\(745\) 28.3707 30.8077i 1.03942 1.12871i
\(746\) 0 0
\(747\) 36.9295i 1.35118i
\(748\) 0 0
\(749\) 7.27850 17.5719i 0.265951 0.642062i
\(750\) 0 0
\(751\) −6.08557 + 14.6919i −0.222066 + 0.536114i −0.995170 0.0981648i \(-0.968703\pi\)
0.773105 + 0.634279i \(0.218703\pi\)
\(752\) 0 0
\(753\) −7.70249 + 18.5954i −0.280694 + 0.677656i
\(754\) 0 0
\(755\) −11.6028 + 0.477810i −0.422269 + 0.0173893i
\(756\) 0 0
\(757\) 6.04798 14.6011i 0.219818 0.530687i −0.775047 0.631904i \(-0.782274\pi\)
0.994864 + 0.101217i \(0.0322737\pi\)
\(758\) 0 0
\(759\) 28.1445 28.1445i 1.02158 1.02158i
\(760\) 0 0
\(761\) 34.5906i 1.25391i 0.779056 + 0.626954i \(0.215699\pi\)
−0.779056 + 0.626954i \(0.784301\pi\)
\(762\) 0 0
\(763\) 4.31206 + 4.31206i 0.156107 + 0.156107i
\(764\) 0 0
\(765\) −23.4996 21.6407i −0.849631 0.782422i
\(766\) 0 0
\(767\) 19.0178 7.87741i 0.686691 0.284437i
\(768\) 0 0
\(769\) −11.7855 −0.424995 −0.212498 0.977162i \(-0.568160\pi\)
−0.212498 + 0.977162i \(0.568160\pi\)
\(770\) 0 0
\(771\) −30.4097 + 30.4097i −1.09518 + 1.09518i
\(772\) 0 0
\(773\) −7.04199 + 17.0009i −0.253283 + 0.611478i −0.998465 0.0553821i \(-0.982362\pi\)
0.745183 + 0.666860i \(0.232362\pi\)
\(774\) 0 0
\(775\) 36.6438 + 31.0583i 1.31628 + 1.11565i
\(776\) 0 0
\(777\) 136.133i 4.88375i
\(778\) 0 0
\(779\) −1.38511 0.724749i −0.0496268 0.0259668i
\(780\) 0 0
\(781\) −2.70733 + 2.70733i −0.0968757 + 0.0968757i
\(782\) 0 0
\(783\) 1.62187 + 1.62187i 0.0579608 + 0.0579608i
\(784\) 0 0
\(785\) 1.91894 + 1.76715i 0.0684900 + 0.0630722i
\(786\) 0 0
\(787\) 12.7861i 0.455774i 0.973688 + 0.227887i \(0.0731817\pi\)
−0.973688 + 0.227887i \(0.926818\pi\)
\(788\) 0 0
\(789\) 12.3270i 0.438851i
\(790\) 0 0
\(791\) −31.9835 13.2480i −1.13720 0.471045i
\(792\) 0 0
\(793\) −20.7647 8.60101i −0.737375 0.305431i
\(794\) 0 0
\(795\) −31.9870 11.7321i −1.13446 0.416094i
\(796\) 0 0
\(797\) 6.16140 + 6.16140i 0.218248 + 0.218248i 0.807760 0.589512i \(-0.200680\pi\)
−0.589512 + 0.807760i \(0.700680\pi\)
\(798\) 0 0
\(799\) −25.7633 25.7633i −0.911441 0.911441i
\(800\) 0 0
\(801\) −46.1901 + 19.1326i −1.63205 + 0.676016i
\(802\) 0 0
\(803\) 3.63307 8.77100i 0.128208 0.309522i
\(804\) 0 0
\(805\) 50.7820 2.09124i 1.78983 0.0737065i
\(806\) 0 0
\(807\) 27.8689 + 67.2814i 0.981030 + 2.36842i
\(808\) 0 0
\(809\) −28.4639 11.7901i −1.00074 0.414520i −0.178671 0.983909i \(-0.557180\pi\)
−0.822068 + 0.569389i \(0.807180\pi\)
\(810\) 0 0
\(811\) −3.05810 + 3.05810i −0.107384 + 0.107384i −0.758758 0.651373i \(-0.774193\pi\)
0.651373 + 0.758758i \(0.274193\pi\)
\(812\) 0 0
\(813\) −19.7328 + 8.17359i −0.692060 + 0.286660i
\(814\) 0 0
\(815\) −34.1438 12.5231i −1.19601 0.438667i
\(816\) 0 0
\(817\) 0.118311 + 0.285629i 0.00413919 + 0.00999290i
\(818\) 0 0
\(819\) −28.3730 −0.991433
\(820\) 0 0
\(821\) −47.4549 −1.65619 −0.828093 0.560591i \(-0.810574\pi\)
−0.828093 + 0.560591i \(0.810574\pi\)
\(822\) 0 0
\(823\) 18.3237 + 44.2374i 0.638725 + 1.54202i 0.828379 + 0.560168i \(0.189263\pi\)
−0.189654 + 0.981851i \(0.560737\pi\)
\(824\) 0 0
\(825\) −31.7644 26.9226i −1.10589 0.937326i
\(826\) 0 0
\(827\) 11.6697 4.83377i 0.405797 0.168087i −0.170442 0.985368i \(-0.554520\pi\)
0.576239 + 0.817281i \(0.304520\pi\)
\(828\) 0 0
\(829\) −32.4596 + 32.4596i −1.12737 + 1.12737i −0.136767 + 0.990603i \(0.543671\pi\)
−0.990603 + 0.136767i \(0.956329\pi\)
\(830\) 0 0
\(831\) −73.5633 30.4709i −2.55188 1.05702i
\(832\) 0 0
\(833\) −26.6018 64.2224i −0.921697 2.22517i
\(834\) 0 0
\(835\) 22.9846 24.9590i 0.795416 0.863742i
\(836\) 0 0
\(837\) −1.92024 + 4.63587i −0.0663732 + 0.160239i
\(838\) 0 0
\(839\) 2.36426 0.979310i 0.0816234 0.0338095i −0.341498 0.939882i \(-0.610934\pi\)
0.423122 + 0.906073i \(0.360934\pi\)
\(840\) 0 0
\(841\) −6.86989 6.86989i −0.236893 0.236893i
\(842\) 0 0
\(843\) −23.8886 23.8886i −0.822766 0.822766i
\(844\) 0 0
\(845\) −7.34927 + 20.0375i −0.252823 + 0.689309i
\(846\) 0 0
\(847\) −0.740547 0.306745i −0.0254455 0.0105399i
\(848\) 0 0
\(849\) 66.4296 + 27.5160i 2.27986 + 0.944347i
\(850\) 0 0
\(851\) 54.9029i 1.88205i
\(852\) 0 0
\(853\) 26.7825i 0.917015i −0.888690 0.458508i \(-0.848384\pi\)
0.888690 0.458508i \(-0.151616\pi\)
\(854\) 0 0
\(855\) −0.0720945 1.75069i −0.00246558 0.0598723i
\(856\) 0 0
\(857\) 11.1900 + 11.1900i 0.382243 + 0.382243i 0.871910 0.489666i \(-0.162881\pi\)
−0.489666 + 0.871910i \(0.662881\pi\)
\(858\) 0 0
\(859\) 9.92550 9.92550i 0.338654 0.338654i −0.517207 0.855860i \(-0.673028\pi\)
0.855860 + 0.517207i \(0.173028\pi\)
\(860\) 0 0
\(861\) 6.77246 75.5791i 0.230805 2.57573i
\(862\) 0 0
\(863\) 9.99669i 0.340291i −0.985419 0.170146i \(-0.945576\pi\)
0.985419 0.170146i \(-0.0544238\pi\)
\(864\) 0 0
\(865\) −10.9589 + 5.07724i −0.372615 + 0.172631i
\(866\) 0 0
\(867\) −2.68309 + 6.47755i −0.0911225 + 0.219989i
\(868\) 0 0
\(869\) −14.0648 + 14.0648i −0.477116 + 0.477116i
\(870\) 0 0
\(871\) 1.36618 0.0462913
\(872\) 0 0
\(873\) 15.7077 6.50635i 0.531626 0.220207i
\(874\) 0 0
\(875\) −6.54840 52.7656i −0.221376 1.78380i
\(876\) 0 0
\(877\) 4.12554 + 4.12554i 0.139310 + 0.139310i 0.773322 0.634013i \(-0.218593\pi\)
−0.634013 + 0.773322i \(0.718593\pi\)
\(878\) 0 0
\(879\) 1.74155i 0.0587409i
\(880\) 0 0
\(881\) 15.9100 15.9100i 0.536022 0.536022i −0.386336 0.922358i \(-0.626259\pi\)
0.922358 + 0.386336i \(0.126259\pi\)
\(882\) 0 0
\(883\) −5.64045 + 13.6173i −0.189816 + 0.458257i −0.989924 0.141599i \(-0.954776\pi\)
0.800108 + 0.599856i \(0.204776\pi\)
\(884\) 0 0
\(885\) −41.7999 + 45.3904i −1.40509 + 1.52578i
\(886\) 0 0
\(887\) −6.25396 + 15.0984i −0.209987 + 0.506954i −0.993421 0.114522i \(-0.963467\pi\)
0.783434 + 0.621476i \(0.213467\pi\)
\(888\) 0 0
\(889\) −19.7427 + 47.6631i −0.662149 + 1.59857i
\(890\) 0 0
\(891\) −10.6498 + 25.7108i −0.356781 + 0.861345i
\(892\) 0 0
\(893\) 1.99837i 0.0668729i
\(894\) 0 0
\(895\) 16.1634 + 14.8848i 0.540284 + 0.497545i
\(896\) 0 0
\(897\) −22.1386 −0.739186
\(898\) 0 0
\(899\) −16.1448 + 38.9771i −0.538461 + 1.29996i
\(900\) 0 0
\(901\) 27.2173i 0.906740i
\(902\) 0 0
\(903\) −10.6115 + 10.6115i −0.353129 + 0.353129i
\(904\) 0 0
\(905\) −20.8008 19.1554i −0.691443 0.636748i
\(906\) 0 0
\(907\) 6.16728i 0.204781i 0.994744 + 0.102391i \(0.0326492\pi\)
−0.994744 + 0.102391i \(0.967351\pi\)
\(908\) 0 0
\(909\) −29.9585 12.4092i −0.993660 0.411587i
\(910\) 0 0
\(911\) 12.0258 + 12.0258i 0.398433 + 0.398433i 0.877680 0.479247i \(-0.159090\pi\)
−0.479247 + 0.877680i \(0.659090\pi\)
\(912\) 0 0
\(913\) −35.5251 + 14.7150i −1.17571 + 0.486995i
\(914\) 0 0
\(915\) 67.3161 2.77212i 2.22540 0.0916436i
\(916\) 0 0
\(917\) −76.2241 31.5731i −2.51714 1.04263i
\(918\) 0 0
\(919\) 40.4109 16.7387i 1.33303 0.552160i 0.401514 0.915853i \(-0.368484\pi\)
0.931519 + 0.363693i \(0.118484\pi\)
\(920\) 0 0
\(921\) 2.51504 + 6.07185i 0.0828734 + 0.200074i
\(922\) 0 0
\(923\) 2.12959 0.0700964
\(924\) 0 0
\(925\) 57.2419 4.72253i 1.88210 0.155276i
\(926\) 0 0
\(927\) −18.0509 + 18.0509i −0.592871 + 0.592871i
\(928\) 0 0
\(929\) −2.20155 5.31502i −0.0722306 0.174380i 0.883641 0.468165i \(-0.155085\pi\)
−0.955871 + 0.293785i \(0.905085\pi\)
\(930\) 0 0
\(931\) 1.45905 3.52246i 0.0478184 0.115444i
\(932\) 0 0
\(933\) −38.3804 38.3804i −1.25652 1.25652i
\(934\) 0 0
\(935\) −11.4541 + 31.2290i −0.374588 + 1.02130i
\(936\) 0 0
\(937\) 10.6542 + 4.41312i 0.348058 + 0.144170i 0.549862 0.835256i \(-0.314680\pi\)
−0.201804 + 0.979426i \(0.564680\pi\)
\(938\) 0 0
\(939\) 66.1486i 2.15868i
\(940\) 0 0
\(941\) 41.3204 + 41.3204i 1.34701 + 1.34701i 0.888894 + 0.458114i \(0.151475\pi\)
0.458114 + 0.888894i \(0.348525\pi\)
\(942\) 0 0
\(943\) 2.73135 30.4813i 0.0889452 0.992608i
\(944\) 0 0
\(945\) 5.03966 2.33486i 0.163940 0.0759529i
\(946\) 0 0
\(947\) −6.07026 + 6.07026i −0.197257 + 0.197257i −0.798823 0.601566i \(-0.794544\pi\)
0.601566 + 0.798823i \(0.294544\pi\)
\(948\) 0 0
\(949\) −4.87855 + 2.02076i −0.158364 + 0.0655967i
\(950\) 0 0
\(951\) 25.6675 + 25.6675i 0.832326 + 0.832326i
\(952\) 0 0
\(953\) 38.3744 38.3744i 1.24307 1.24307i 0.284350 0.958721i \(-0.408222\pi\)
0.958721 0.284350i \(-0.0917777\pi\)
\(954\) 0 0
\(955\) −2.85798 + 3.10347i −0.0924820 + 0.100426i
\(956\) 0 0
\(957\) 13.9950 33.7870i 0.452395 1.09218i
\(958\) 0 0
\(959\) 65.4230i 2.11262i
\(960\) 0 0
\(961\) −61.2953 −1.97727
\(962\) 0 0
\(963\) 12.8363i 0.413643i
\(964\) 0 0
\(965\) −22.6204 20.8310i −0.728176 0.670575i
\(966\) 0 0
\(967\) −31.8034 13.1734i −1.02273 0.423628i −0.192646 0.981268i \(-0.561707\pi\)
−0.830083 + 0.557640i \(0.811707\pi\)
\(968\) 0 0
\(969\) −2.50190 + 1.03632i −0.0803726 + 0.0332914i
\(970\) 0 0
\(971\) −7.42464 3.07539i −0.238268 0.0986938i 0.260354 0.965513i \(-0.416161\pi\)
−0.498622 + 0.866819i \(0.666161\pi\)
\(972\) 0 0
\(973\) 8.87306 + 21.4215i 0.284457 + 0.686740i
\(974\) 0 0
\(975\) 1.90427 + 23.0817i 0.0609855 + 0.739207i
\(976\) 0 0
\(977\) 8.13749 + 19.6456i 0.260341 + 0.628520i 0.998960 0.0456044i \(-0.0145214\pi\)
−0.738618 + 0.674124i \(0.764521\pi\)
\(978\) 0 0
\(979\) 36.8100 + 36.8100i 1.17645 + 1.17645i
\(980\) 0 0
\(981\) 3.80234 + 1.57498i 0.121399 + 0.0502853i
\(982\) 0 0
\(983\) −23.2199 23.2199i −0.740601 0.740601i 0.232093 0.972694i \(-0.425443\pi\)
−0.972694 + 0.232093i \(0.925443\pi\)
\(984\) 0 0
\(985\) −11.8678 + 5.49830i −0.378139 + 0.175190i
\(986\) 0 0
\(987\) 89.6184 37.1212i 2.85258 1.18158i
\(988\) 0 0
\(989\) −4.27966 + 4.27966i −0.136085 + 0.136085i
\(990\) 0 0
\(991\) 16.8885 40.7723i 0.536479 1.29518i −0.390686 0.920524i \(-0.627762\pi\)
0.927165 0.374652i \(-0.122238\pi\)
\(992\) 0 0
\(993\) −51.8883 −1.64662
\(994\) 0 0
\(995\) 23.2784 + 21.4370i 0.737976 + 0.679599i
\(996\) 0 0
\(997\) 55.1118 22.8281i 1.74541 0.722972i 0.747109 0.664702i \(-0.231441\pi\)
0.998301 0.0582703i \(-0.0185585\pi\)
\(998\) 0 0
\(999\) 2.29606 + 5.54318i 0.0726441 + 0.175378i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.577.4 84
5.3 odd 4 820.2.y.a.413.18 yes 84
41.14 odd 8 820.2.y.a.137.18 yes 84
205.178 even 8 inner 820.2.x.a.793.4 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.4 84 1.1 even 1 trivial
820.2.x.a.793.4 yes 84 205.178 even 8 inner
820.2.y.a.137.18 yes 84 41.14 odd 8
820.2.y.a.413.18 yes 84 5.3 odd 4