Properties

Label 820.2.x.a.273.7
Level $820$
Weight $2$
Character 820.273
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 273.7
Character \(\chi\) \(=\) 820.273
Dual form 820.2.x.a.817.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.03141 - 0.427224i) q^{3} +(0.661175 - 2.13608i) q^{5} +(1.80577 - 4.35952i) q^{7} +(-1.24003 - 1.24003i) q^{9} +(-0.166356 - 0.401618i) q^{11} +(0.389100 + 0.161171i) q^{13} +(-1.59453 + 1.92071i) q^{15} +(-2.80926 + 1.16364i) q^{17} +(-0.838825 + 2.02510i) q^{19} +(-3.72499 + 3.72499i) q^{21} +(2.60933 - 2.60933i) q^{23} +(-4.12569 - 2.82465i) q^{25} +(2.03088 + 4.90299i) q^{27} +(0.255143 + 0.615970i) q^{29} +7.81564i q^{31} +0.485304i q^{33} +(-8.11836 - 6.73968i) q^{35} +(-3.42297 + 3.42297i) q^{37} +(-0.332466 - 0.332466i) q^{39} +(-1.54273 - 6.21450i) q^{41} -0.269822i q^{43} +(-3.46869 + 1.82893i) q^{45} +(4.37677 - 1.81292i) q^{47} +(-10.7948 - 10.7948i) q^{49} +3.39464 q^{51} +(1.93975 - 4.68297i) q^{53} +(-0.967879 + 0.0898093i) q^{55} +(1.73035 - 1.73035i) q^{57} -3.56822i q^{59} +(-2.86341 - 2.86341i) q^{61} +(-7.64516 + 3.16673i) q^{63} +(0.601537 - 0.724588i) q^{65} +(12.6703 - 5.24823i) q^{67} +(-3.80606 + 1.57652i) q^{69} +(0.878331 - 0.363817i) q^{71} -4.54719i q^{73} +(3.04853 + 4.67597i) q^{75} -2.05126 q^{77} +(-12.8604 + 5.32695i) q^{79} -0.663629i q^{81} +(-2.66851 - 2.66851i) q^{83} +(0.628204 + 6.77019i) q^{85} -0.744321i q^{87} +(-3.99780 - 9.65153i) q^{89} +(1.40525 - 1.40525i) q^{91} +(3.33903 - 8.06114i) q^{93} +(3.77117 + 3.13075i) q^{95} +(3.02699 + 7.30780i) q^{97} +(-0.291733 + 0.704305i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.03141 0.427224i −0.595485 0.246658i 0.0645231 0.997916i \(-0.479447\pi\)
−0.660009 + 0.751258i \(0.729447\pi\)
\(4\) 0 0
\(5\) 0.661175 2.13608i 0.295687 0.955285i
\(6\) 0 0
\(7\) 1.80577 4.35952i 0.682517 1.64774i −0.0768194 0.997045i \(-0.524476\pi\)
0.759337 0.650698i \(-0.225524\pi\)
\(8\) 0 0
\(9\) −1.24003 1.24003i −0.413344 0.413344i
\(10\) 0 0
\(11\) −0.166356 0.401618i −0.0501581 0.121092i 0.896814 0.442407i \(-0.145875\pi\)
−0.946973 + 0.321315i \(0.895875\pi\)
\(12\) 0 0
\(13\) 0.389100 + 0.161171i 0.107917 + 0.0447007i 0.435989 0.899952i \(-0.356399\pi\)
−0.328072 + 0.944653i \(0.606399\pi\)
\(14\) 0 0
\(15\) −1.59453 + 1.92071i −0.411706 + 0.495925i
\(16\) 0 0
\(17\) −2.80926 + 1.16364i −0.681347 + 0.282223i −0.696390 0.717664i \(-0.745211\pi\)
0.0150431 + 0.999887i \(0.495211\pi\)
\(18\) 0 0
\(19\) −0.838825 + 2.02510i −0.192440 + 0.464590i −0.990419 0.138094i \(-0.955902\pi\)
0.797980 + 0.602685i \(0.205902\pi\)
\(20\) 0 0
\(21\) −3.72499 + 3.72499i −0.812858 + 0.812858i
\(22\) 0 0
\(23\) 2.60933 2.60933i 0.544082 0.544082i −0.380641 0.924723i \(-0.624297\pi\)
0.924723 + 0.380641i \(0.124297\pi\)
\(24\) 0 0
\(25\) −4.12569 2.82465i −0.825139 0.564930i
\(26\) 0 0
\(27\) 2.03088 + 4.90299i 0.390844 + 0.943581i
\(28\) 0 0
\(29\) 0.255143 + 0.615970i 0.0473789 + 0.114383i 0.945797 0.324758i \(-0.105283\pi\)
−0.898418 + 0.439141i \(0.855283\pi\)
\(30\) 0 0
\(31\) 7.81564i 1.40373i 0.712310 + 0.701865i \(0.247649\pi\)
−0.712310 + 0.701865i \(0.752351\pi\)
\(32\) 0 0
\(33\) 0.485304i 0.0844806i
\(34\) 0 0
\(35\) −8.11836 6.73968i −1.37225 1.13921i
\(36\) 0 0
\(37\) −3.42297 + 3.42297i −0.562733 + 0.562733i −0.930083 0.367350i \(-0.880265\pi\)
0.367350 + 0.930083i \(0.380265\pi\)
\(38\) 0 0
\(39\) −0.332466 0.332466i −0.0532372 0.0532372i
\(40\) 0 0
\(41\) −1.54273 6.21450i −0.240934 0.970541i
\(42\) 0 0
\(43\) 0.269822i 0.0411474i −0.999788 0.0205737i \(-0.993451\pi\)
0.999788 0.0205737i \(-0.00654928\pi\)
\(44\) 0 0
\(45\) −3.46869 + 1.82893i −0.517082 + 0.272641i
\(46\) 0 0
\(47\) 4.37677 1.81292i 0.638418 0.264441i −0.0399071 0.999203i \(-0.512706\pi\)
0.678325 + 0.734762i \(0.262706\pi\)
\(48\) 0 0
\(49\) −10.7948 10.7948i −1.54212 1.54212i
\(50\) 0 0
\(51\) 3.39464 0.475345
\(52\) 0 0
\(53\) 1.93975 4.68297i 0.266445 0.643256i −0.732866 0.680373i \(-0.761818\pi\)
0.999311 + 0.0371176i \(0.0118176\pi\)
\(54\) 0 0
\(55\) −0.967879 + 0.0898093i −0.130509 + 0.0121099i
\(56\) 0 0
\(57\) 1.73035 1.73035i 0.229190 0.229190i
\(58\) 0 0
\(59\) 3.56822i 0.464542i −0.972651 0.232271i \(-0.925384\pi\)
0.972651 0.232271i \(-0.0746156\pi\)
\(60\) 0 0
\(61\) −2.86341 2.86341i −0.366623 0.366623i 0.499621 0.866244i \(-0.333473\pi\)
−0.866244 + 0.499621i \(0.833473\pi\)
\(62\) 0 0
\(63\) −7.64516 + 3.16673i −0.963199 + 0.398970i
\(64\) 0 0
\(65\) 0.601537 0.724588i 0.0746115 0.0898741i
\(66\) 0 0
\(67\) 12.6703 5.24823i 1.54793 0.641173i 0.564988 0.825099i \(-0.308881\pi\)
0.982940 + 0.183926i \(0.0588806\pi\)
\(68\) 0 0
\(69\) −3.80606 + 1.57652i −0.458195 + 0.189791i
\(70\) 0 0
\(71\) 0.878331 0.363817i 0.104239 0.0431771i −0.329955 0.943997i \(-0.607033\pi\)
0.434193 + 0.900820i \(0.357033\pi\)
\(72\) 0 0
\(73\) 4.54719i 0.532208i −0.963944 0.266104i \(-0.914264\pi\)
0.963944 0.266104i \(-0.0857365\pi\)
\(74\) 0 0
\(75\) 3.04853 + 4.67597i 0.352014 + 0.539935i
\(76\) 0 0
\(77\) −2.05126 −0.233763
\(78\) 0 0
\(79\) −12.8604 + 5.32695i −1.44691 + 0.599329i −0.961462 0.274938i \(-0.911343\pi\)
−0.485446 + 0.874267i \(0.661343\pi\)
\(80\) 0 0
\(81\) 0.663629i 0.0737366i
\(82\) 0 0
\(83\) −2.66851 2.66851i −0.292907 0.292907i 0.545320 0.838228i \(-0.316408\pi\)
−0.838228 + 0.545320i \(0.816408\pi\)
\(84\) 0 0
\(85\) 0.628204 + 6.77019i 0.0681383 + 0.734330i
\(86\) 0 0
\(87\) 0.744321i 0.0797996i
\(88\) 0 0
\(89\) −3.99780 9.65153i −0.423765 1.02306i −0.981227 0.192857i \(-0.938225\pi\)
0.557461 0.830203i \(-0.311775\pi\)
\(90\) 0 0
\(91\) 1.40525 1.40525i 0.147310 0.147310i
\(92\) 0 0
\(93\) 3.33903 8.06114i 0.346242 0.835901i
\(94\) 0 0
\(95\) 3.77117 + 3.13075i 0.386914 + 0.321208i
\(96\) 0 0
\(97\) 3.02699 + 7.30780i 0.307344 + 0.741995i 0.999789 + 0.0205242i \(0.00653350\pi\)
−0.692445 + 0.721471i \(0.743466\pi\)
\(98\) 0 0
\(99\) −0.291733 + 0.704305i −0.0293202 + 0.0707853i
\(100\) 0 0
\(101\) −14.1968 5.88049i −1.41263 0.585130i −0.459632 0.888109i \(-0.652019\pi\)
−0.952997 + 0.302979i \(0.902019\pi\)
\(102\) 0 0
\(103\) 7.22797 0.712193 0.356096 0.934449i \(-0.384107\pi\)
0.356096 + 0.934449i \(0.384107\pi\)
\(104\) 0 0
\(105\) 5.49401 + 10.4197i 0.536160 + 1.01686i
\(106\) 0 0
\(107\) 9.23838 + 9.23838i 0.893108 + 0.893108i 0.994814 0.101706i \(-0.0324302\pi\)
−0.101706 + 0.994814i \(0.532430\pi\)
\(108\) 0 0
\(109\) 7.54137 + 3.12374i 0.722332 + 0.299200i 0.713397 0.700760i \(-0.247156\pi\)
0.00893549 + 0.999960i \(0.497156\pi\)
\(110\) 0 0
\(111\) 4.99287 2.06811i 0.473902 0.196297i
\(112\) 0 0
\(113\) 0.904176 0.904176i 0.0850577 0.0850577i −0.663298 0.748356i \(-0.730844\pi\)
0.748356 + 0.663298i \(0.230844\pi\)
\(114\) 0 0
\(115\) −3.84851 7.29896i −0.358876 0.680631i
\(116\) 0 0
\(117\) −0.282640 0.682354i −0.0261301 0.0630836i
\(118\) 0 0
\(119\) 14.3483i 1.31531i
\(120\) 0 0
\(121\) 7.64455 7.64455i 0.694959 0.694959i
\(122\) 0 0
\(123\) −1.06379 + 7.06879i −0.0959190 + 0.637372i
\(124\) 0 0
\(125\) −8.76149 + 6.94523i −0.783652 + 0.621201i
\(126\) 0 0
\(127\) 12.6063 + 12.6063i 1.11862 + 1.11862i 0.991943 + 0.126682i \(0.0404326\pi\)
0.126682 + 0.991943i \(0.459567\pi\)
\(128\) 0 0
\(129\) −0.115274 + 0.278297i −0.0101493 + 0.0245027i
\(130\) 0 0
\(131\) 9.99646 9.99646i 0.873395 0.873395i −0.119446 0.992841i \(-0.538112\pi\)
0.992841 + 0.119446i \(0.0381119\pi\)
\(132\) 0 0
\(133\) 7.31374 + 7.31374i 0.634182 + 0.634182i
\(134\) 0 0
\(135\) 11.8160 1.09640i 1.01696 0.0943631i
\(136\) 0 0
\(137\) −17.8478 + 7.39279i −1.52484 + 0.631609i −0.978554 0.205991i \(-0.933958\pi\)
−0.546285 + 0.837599i \(0.683958\pi\)
\(138\) 0 0
\(139\) 15.6004i 1.32321i 0.749852 + 0.661605i \(0.230125\pi\)
−0.749852 + 0.661605i \(0.769875\pi\)
\(140\) 0 0
\(141\) −5.28877 −0.445395
\(142\) 0 0
\(143\) 0.183081i 0.0153100i
\(144\) 0 0
\(145\) 1.48446 0.137742i 0.123277 0.0114389i
\(146\) 0 0
\(147\) 6.52210 + 15.7457i 0.537933 + 1.29869i
\(148\) 0 0
\(149\) 1.72600 4.16693i 0.141399 0.341368i −0.837276 0.546780i \(-0.815853\pi\)
0.978676 + 0.205412i \(0.0658534\pi\)
\(150\) 0 0
\(151\) −5.48465 13.2411i −0.446334 1.07755i −0.973685 0.227899i \(-0.926814\pi\)
0.527350 0.849648i \(-0.323186\pi\)
\(152\) 0 0
\(153\) 4.92652 + 2.04063i 0.398286 + 0.164975i
\(154\) 0 0
\(155\) 16.6949 + 5.16751i 1.34096 + 0.415064i
\(156\) 0 0
\(157\) 15.5756 + 6.45163i 1.24307 + 0.514896i 0.904673 0.426107i \(-0.140115\pi\)
0.338397 + 0.941003i \(0.390115\pi\)
\(158\) 0 0
\(159\) −4.00136 + 4.00136i −0.317329 + 0.317329i
\(160\) 0 0
\(161\) −6.66356 16.0872i −0.525162 1.26785i
\(162\) 0 0
\(163\) 13.1064 13.1064i 1.02657 1.02657i 0.0269349 0.999637i \(-0.491425\pi\)
0.999637 0.0269349i \(-0.00857468\pi\)
\(164\) 0 0
\(165\) 1.03665 + 0.320871i 0.0807031 + 0.0249798i
\(166\) 0 0
\(167\) 4.60706 11.1224i 0.356505 0.860680i −0.639281 0.768973i \(-0.720768\pi\)
0.995786 0.0917065i \(-0.0292322\pi\)
\(168\) 0 0
\(169\) −9.06697 9.06697i −0.697459 0.697459i
\(170\) 0 0
\(171\) 3.55136 1.47102i 0.271579 0.112492i
\(172\) 0 0
\(173\) 18.3401 1.39437 0.697185 0.716891i \(-0.254436\pi\)
0.697185 + 0.716891i \(0.254436\pi\)
\(174\) 0 0
\(175\) −19.7642 + 12.8854i −1.49403 + 0.974042i
\(176\) 0 0
\(177\) −1.52443 + 3.68030i −0.114583 + 0.276628i
\(178\) 0 0
\(179\) −2.77798 1.15068i −0.207636 0.0860058i 0.276441 0.961031i \(-0.410845\pi\)
−0.484078 + 0.875025i \(0.660845\pi\)
\(180\) 0 0
\(181\) 17.3480 + 7.18576i 1.28946 + 0.534113i 0.918825 0.394664i \(-0.129139\pi\)
0.370638 + 0.928777i \(0.379139\pi\)
\(182\) 0 0
\(183\) 1.73004 + 4.17668i 0.127888 + 0.308749i
\(184\) 0 0
\(185\) 5.04856 + 9.57493i 0.371178 + 0.703963i
\(186\) 0 0
\(187\) 0.934673 + 0.934673i 0.0683501 + 0.0683501i
\(188\) 0 0
\(189\) 25.0420 1.82154
\(190\) 0 0
\(191\) 3.14818 7.60038i 0.227794 0.549944i −0.768114 0.640313i \(-0.778805\pi\)
0.995908 + 0.0903690i \(0.0288046\pi\)
\(192\) 0 0
\(193\) −14.9160 6.17841i −1.07368 0.444732i −0.225390 0.974269i \(-0.572366\pi\)
−0.848287 + 0.529537i \(0.822366\pi\)
\(194\) 0 0
\(195\) −0.929994 + 0.490357i −0.0665983 + 0.0351152i
\(196\) 0 0
\(197\) −13.0916 −0.932741 −0.466370 0.884590i \(-0.654439\pi\)
−0.466370 + 0.884590i \(0.654439\pi\)
\(198\) 0 0
\(199\) −5.47635 2.26838i −0.388208 0.160801i 0.180038 0.983660i \(-0.442378\pi\)
−0.568246 + 0.822858i \(0.692378\pi\)
\(200\) 0 0
\(201\) −15.3105 −1.07992
\(202\) 0 0
\(203\) 3.14606 0.220810
\(204\) 0 0
\(205\) −14.2947 0.813468i −0.998385 0.0568151i
\(206\) 0 0
\(207\) −6.47130 −0.449786
\(208\) 0 0
\(209\) 0.952860 0.0659107
\(210\) 0 0
\(211\) −8.81195 3.65003i −0.606640 0.251278i 0.0581512 0.998308i \(-0.481479\pi\)
−0.664791 + 0.747029i \(0.731479\pi\)
\(212\) 0 0
\(213\) −1.06135 −0.0727227
\(214\) 0 0
\(215\) −0.576361 0.178399i −0.0393075 0.0121667i
\(216\) 0 0
\(217\) 34.0724 + 14.1133i 2.31299 + 0.958071i
\(218\) 0 0
\(219\) −1.94267 + 4.69002i −0.131273 + 0.316922i
\(220\) 0 0
\(221\) −1.28063 −0.0861444
\(222\) 0 0
\(223\) −10.6232 10.6232i −0.711379 0.711379i 0.255444 0.966824i \(-0.417778\pi\)
−0.966824 + 0.255444i \(0.917778\pi\)
\(224\) 0 0
\(225\) 1.61334 + 8.61865i 0.107556 + 0.574577i
\(226\) 0 0
\(227\) 0.505854 + 1.22124i 0.0335747 + 0.0810565i 0.939778 0.341787i \(-0.111032\pi\)
−0.906203 + 0.422843i \(0.861032\pi\)
\(228\) 0 0
\(229\) 15.4663 + 6.40634i 1.02204 + 0.423343i 0.829833 0.558011i \(-0.188435\pi\)
0.192207 + 0.981354i \(0.438435\pi\)
\(230\) 0 0
\(231\) 2.11569 + 0.876348i 0.139202 + 0.0576595i
\(232\) 0 0
\(233\) −2.50981 + 6.05922i −0.164423 + 0.396953i −0.984520 0.175272i \(-0.943919\pi\)
0.820097 + 0.572225i \(0.193919\pi\)
\(234\) 0 0
\(235\) −0.978729 10.5478i −0.0638452 0.688063i
\(236\) 0 0
\(237\) 15.5402 1.00944
\(238\) 0 0
\(239\) 16.3221 6.76083i 1.05579 0.437322i 0.213834 0.976870i \(-0.431405\pi\)
0.841955 + 0.539548i \(0.181405\pi\)
\(240\) 0 0
\(241\) 5.17206 + 5.17206i 0.333162 + 0.333162i 0.853786 0.520624i \(-0.174301\pi\)
−0.520624 + 0.853786i \(0.674301\pi\)
\(242\) 0 0
\(243\) 5.80913 14.0245i 0.372656 0.899672i
\(244\) 0 0
\(245\) −30.1959 + 15.9214i −1.92915 + 1.01718i
\(246\) 0 0
\(247\) −0.652774 + 0.652774i −0.0415350 + 0.0415350i
\(248\) 0 0
\(249\) 1.61228 + 3.89239i 0.102174 + 0.246670i
\(250\) 0 0
\(251\) 7.75236 7.75236i 0.489324 0.489324i −0.418769 0.908093i \(-0.637538\pi\)
0.908093 + 0.418769i \(0.137538\pi\)
\(252\) 0 0
\(253\) −1.48203 0.613876i −0.0931743 0.0385940i
\(254\) 0 0
\(255\) 2.24445 7.25123i 0.140553 0.454090i
\(256\) 0 0
\(257\) −3.27835 1.35794i −0.204498 0.0847058i 0.278084 0.960557i \(-0.410301\pi\)
−0.482582 + 0.875851i \(0.660301\pi\)
\(258\) 0 0
\(259\) 8.74140 + 21.1036i 0.543164 + 1.31131i
\(260\) 0 0
\(261\) 0.447437 1.08021i 0.0276956 0.0668632i
\(262\) 0 0
\(263\) −10.8637 26.2274i −0.669887 1.61725i −0.781797 0.623533i \(-0.785697\pi\)
0.111910 0.993718i \(-0.464303\pi\)
\(264\) 0 0
\(265\) −8.72070 7.23973i −0.535708 0.444733i
\(266\) 0 0
\(267\) 11.6627i 0.713743i
\(268\) 0 0
\(269\) −7.78640 −0.474745 −0.237373 0.971419i \(-0.576286\pi\)
−0.237373 + 0.971419i \(0.576286\pi\)
\(270\) 0 0
\(271\) 30.9889i 1.88244i 0.337794 + 0.941220i \(0.390319\pi\)
−0.337794 + 0.941220i \(0.609681\pi\)
\(272\) 0 0
\(273\) −2.04975 + 0.849035i −0.124057 + 0.0513859i
\(274\) 0 0
\(275\) −0.448098 + 2.12685i −0.0270213 + 0.128254i
\(276\) 0 0
\(277\) −13.7728 13.7728i −0.827529 0.827529i 0.159645 0.987174i \(-0.448965\pi\)
−0.987174 + 0.159645i \(0.948965\pi\)
\(278\) 0 0
\(279\) 9.69165 9.69165i 0.580224 0.580224i
\(280\) 0 0
\(281\) −0.621868 + 1.50132i −0.0370976 + 0.0895614i −0.941342 0.337453i \(-0.890435\pi\)
0.904245 + 0.427014i \(0.140435\pi\)
\(282\) 0 0
\(283\) 15.8621 + 15.8621i 0.942902 + 0.942902i 0.998456 0.0555536i \(-0.0176924\pi\)
−0.0555536 + 0.998456i \(0.517692\pi\)
\(284\) 0 0
\(285\) −2.55210 4.84022i −0.151173 0.286710i
\(286\) 0 0
\(287\) −29.8780 4.49639i −1.76364 0.265413i
\(288\) 0 0
\(289\) −5.48290 + 5.48290i −0.322523 + 0.322523i
\(290\) 0 0
\(291\) 8.83055i 0.517656i
\(292\) 0 0
\(293\) −1.23733 2.98718i −0.0722857 0.174513i 0.883607 0.468229i \(-0.155108\pi\)
−0.955893 + 0.293716i \(0.905108\pi\)
\(294\) 0 0
\(295\) −7.62200 2.35922i −0.443770 0.137359i
\(296\) 0 0
\(297\) 1.63128 1.63128i 0.0946564 0.0946564i
\(298\) 0 0
\(299\) 1.43584 0.594743i 0.0830366 0.0343949i
\(300\) 0 0
\(301\) −1.17629 0.487236i −0.0678003 0.0280838i
\(302\) 0 0
\(303\) 12.1304 + 12.1304i 0.696873 + 0.696873i
\(304\) 0 0
\(305\) −8.00971 + 4.22327i −0.458634 + 0.241824i
\(306\) 0 0
\(307\) 10.6833 0.609729 0.304864 0.952396i \(-0.401389\pi\)
0.304864 + 0.952396i \(0.401389\pi\)
\(308\) 0 0
\(309\) −7.45501 3.08797i −0.424101 0.175668i
\(310\) 0 0
\(311\) −6.62338 + 15.9903i −0.375578 + 0.906725i 0.617206 + 0.786802i \(0.288265\pi\)
−0.992783 + 0.119923i \(0.961735\pi\)
\(312\) 0 0
\(313\) 0.899901 + 2.17255i 0.0508654 + 0.122800i 0.947270 0.320437i \(-0.103830\pi\)
−0.896404 + 0.443237i \(0.853830\pi\)
\(314\) 0 0
\(315\) 1.70960 + 18.4244i 0.0963251 + 1.03810i
\(316\) 0 0
\(317\) 10.1117 24.4119i 0.567932 1.37111i −0.335363 0.942089i \(-0.608859\pi\)
0.903295 0.429020i \(-0.141141\pi\)
\(318\) 0 0
\(319\) 0.204940 0.204940i 0.0114744 0.0114744i
\(320\) 0 0
\(321\) −5.58171 13.4754i −0.311541 0.752126i
\(322\) 0 0
\(323\) 6.66513i 0.370858i
\(324\) 0 0
\(325\) −1.15006 1.76401i −0.0637938 0.0978498i
\(326\) 0 0
\(327\) −6.44372 6.44372i −0.356338 0.356338i
\(328\) 0 0
\(329\) 22.3543i 1.23243i
\(330\) 0 0
\(331\) −13.5314 + 5.60490i −0.743755 + 0.308073i −0.722190 0.691694i \(-0.756865\pi\)
−0.0215641 + 0.999767i \(0.506865\pi\)
\(332\) 0 0
\(333\) 8.48919 0.465205
\(334\) 0 0
\(335\) −2.83333 30.5349i −0.154801 1.66830i
\(336\) 0 0
\(337\) 6.33503i 0.345091i 0.985002 + 0.172545i \(0.0551992\pi\)
−0.985002 + 0.172545i \(0.944801\pi\)
\(338\) 0 0
\(339\) −1.31886 + 0.546291i −0.0716308 + 0.0296705i
\(340\) 0 0
\(341\) 3.13890 1.30018i 0.169981 0.0704084i
\(342\) 0 0
\(343\) −36.0367 + 14.9269i −1.94580 + 0.805976i
\(344\) 0 0
\(345\) 0.851106 + 9.17240i 0.0458220 + 0.493826i
\(346\) 0 0
\(347\) 2.14069 0.886701i 0.114918 0.0476006i −0.324484 0.945891i \(-0.605191\pi\)
0.439402 + 0.898291i \(0.355191\pi\)
\(348\) 0 0
\(349\) 3.51068 + 3.51068i 0.187922 + 0.187922i 0.794797 0.606875i \(-0.207577\pi\)
−0.606875 + 0.794797i \(0.707577\pi\)
\(350\) 0 0
\(351\) 2.23507i 0.119299i
\(352\) 0 0
\(353\) 24.6843 24.6843i 1.31381 1.31381i 0.395228 0.918583i \(-0.370665\pi\)
0.918583 0.395228i \(-0.129335\pi\)
\(354\) 0 0
\(355\) −0.196411 2.11673i −0.0104244 0.112345i
\(356\) 0 0
\(357\) 6.12994 14.7990i 0.324431 0.783246i
\(358\) 0 0
\(359\) −9.98691 −0.527089 −0.263544 0.964647i \(-0.584892\pi\)
−0.263544 + 0.964647i \(0.584892\pi\)
\(360\) 0 0
\(361\) 10.0376 + 10.0376i 0.528296 + 0.528296i
\(362\) 0 0
\(363\) −11.1506 + 4.61874i −0.585256 + 0.242421i
\(364\) 0 0
\(365\) −9.71317 3.00649i −0.508411 0.157367i
\(366\) 0 0
\(367\) 8.75431i 0.456971i −0.973547 0.228486i \(-0.926623\pi\)
0.973547 0.228486i \(-0.0733774\pi\)
\(368\) 0 0
\(369\) −5.79314 + 9.61922i −0.301579 + 0.500756i
\(370\) 0 0
\(371\) −16.9128 16.9128i −0.878067 0.878067i
\(372\) 0 0
\(373\) 18.4099 18.4099i 0.953228 0.953228i −0.0457261 0.998954i \(-0.514560\pi\)
0.998954 + 0.0457261i \(0.0145602\pi\)
\(374\) 0 0
\(375\) 12.0039 3.42027i 0.619877 0.176622i
\(376\) 0 0
\(377\) 0.280796i 0.0144617i
\(378\) 0 0
\(379\) 8.68435i 0.446085i −0.974809 0.223042i \(-0.928401\pi\)
0.974809 0.223042i \(-0.0715988\pi\)
\(380\) 0 0
\(381\) −7.61654 18.3879i −0.390207 0.942043i
\(382\) 0 0
\(383\) 10.3419 + 24.9675i 0.528445 + 1.27578i 0.932541 + 0.361063i \(0.117586\pi\)
−0.404096 + 0.914717i \(0.632414\pi\)
\(384\) 0 0
\(385\) −1.35624 + 4.38166i −0.0691205 + 0.223310i
\(386\) 0 0
\(387\) −0.334587 + 0.334587i −0.0170080 + 0.0170080i
\(388\) 0 0
\(389\) −19.7477 + 19.7477i −1.00125 + 1.00125i −0.00124717 + 0.999999i \(0.500397\pi\)
−0.999999 + 0.00124717i \(0.999603\pi\)
\(390\) 0 0
\(391\) −4.29398 + 10.3666i −0.217156 + 0.524261i
\(392\) 0 0
\(393\) −14.5812 + 6.03973i −0.735524 + 0.304664i
\(394\) 0 0
\(395\) 2.87583 + 30.9929i 0.144699 + 1.55942i
\(396\) 0 0
\(397\) −0.215919 0.0894366i −0.0108367 0.00448869i 0.377259 0.926108i \(-0.376867\pi\)
−0.388095 + 0.921619i \(0.626867\pi\)
\(398\) 0 0
\(399\) −4.41886 10.6681i −0.221220 0.534072i
\(400\) 0 0
\(401\) −19.7095 19.7095i −0.984246 0.984246i 0.0156322 0.999878i \(-0.495024\pi\)
−0.999878 + 0.0156322i \(0.995024\pi\)
\(402\) 0 0
\(403\) −1.25965 + 3.04107i −0.0627477 + 0.151486i
\(404\) 0 0
\(405\) −1.41757 0.438775i −0.0704395 0.0218029i
\(406\) 0 0
\(407\) 1.94416 + 0.805296i 0.0963682 + 0.0399170i
\(408\) 0 0
\(409\) −10.1126 −0.500034 −0.250017 0.968241i \(-0.580436\pi\)
−0.250017 + 0.968241i \(0.580436\pi\)
\(410\) 0 0
\(411\) 21.5668 1.06381
\(412\) 0 0
\(413\) −15.5557 6.44338i −0.765446 0.317058i
\(414\) 0 0
\(415\) −7.46452 + 3.93581i −0.366419 + 0.193201i
\(416\) 0 0
\(417\) 6.66488 16.0905i 0.326381 0.787953i
\(418\) 0 0
\(419\) 24.9878 + 24.9878i 1.22073 + 1.22073i 0.967371 + 0.253363i \(0.0815367\pi\)
0.253363 + 0.967371i \(0.418463\pi\)
\(420\) 0 0
\(421\) 7.56934 + 18.2740i 0.368907 + 0.890620i 0.993930 + 0.110014i \(0.0350895\pi\)
−0.625023 + 0.780606i \(0.714911\pi\)
\(422\) 0 0
\(423\) −7.67542 3.17926i −0.373191 0.154581i
\(424\) 0 0
\(425\) 14.8770 + 3.13438i 0.721642 + 0.152040i
\(426\) 0 0
\(427\) −17.6538 + 7.31243i −0.854326 + 0.353873i
\(428\) 0 0
\(429\) −0.0782168 + 0.188832i −0.00377634 + 0.00911690i
\(430\) 0 0
\(431\) 27.4763 27.4763i 1.32349 1.32349i 0.412557 0.910932i \(-0.364636\pi\)
0.910932 0.412557i \(-0.135364\pi\)
\(432\) 0 0
\(433\) −1.02997 + 1.02997i −0.0494970 + 0.0494970i −0.731422 0.681925i \(-0.761143\pi\)
0.681925 + 0.731422i \(0.261143\pi\)
\(434\) 0 0
\(435\) −1.58993 0.492127i −0.0762314 0.0235957i
\(436\) 0 0
\(437\) 3.09538 + 7.47292i 0.148072 + 0.357478i
\(438\) 0 0
\(439\) −10.6934 25.8160i −0.510366 1.23213i −0.943671 0.330885i \(-0.892653\pi\)
0.433305 0.901247i \(-0.357347\pi\)
\(440\) 0 0
\(441\) 26.7719i 1.27485i
\(442\) 0 0
\(443\) 19.5219i 0.927513i −0.885963 0.463757i \(-0.846501\pi\)
0.885963 0.463757i \(-0.153499\pi\)
\(444\) 0 0
\(445\) −23.2597 + 2.15826i −1.10262 + 0.102312i
\(446\) 0 0
\(447\) −3.56043 + 3.56043i −0.168402 + 0.168402i
\(448\) 0 0
\(449\) 9.50363 + 9.50363i 0.448504 + 0.448504i 0.894857 0.446353i \(-0.147277\pi\)
−0.446353 + 0.894857i \(0.647277\pi\)
\(450\) 0 0
\(451\) −2.23921 + 1.65340i −0.105440 + 0.0778558i
\(452\) 0 0
\(453\) 16.0002i 0.751755i
\(454\) 0 0
\(455\) −2.07262 3.93085i −0.0971658 0.184281i
\(456\) 0 0
\(457\) 5.66806 2.34779i 0.265141 0.109825i −0.246153 0.969231i \(-0.579166\pi\)
0.511294 + 0.859406i \(0.329166\pi\)
\(458\) 0 0
\(459\) −11.4106 11.4106i −0.532600 0.532600i
\(460\) 0 0
\(461\) 28.3368 1.31978 0.659888 0.751364i \(-0.270604\pi\)
0.659888 + 0.751364i \(0.270604\pi\)
\(462\) 0 0
\(463\) −7.43559 + 17.9511i −0.345561 + 0.834259i 0.651572 + 0.758587i \(0.274110\pi\)
−0.997133 + 0.0756715i \(0.975890\pi\)
\(464\) 0 0
\(465\) −15.0116 12.4623i −0.696145 0.577924i
\(466\) 0 0
\(467\) −4.25833 + 4.25833i −0.197052 + 0.197052i −0.798735 0.601683i \(-0.794497\pi\)
0.601683 + 0.798735i \(0.294497\pi\)
\(468\) 0 0
\(469\) 64.7137i 2.98820i
\(470\) 0 0
\(471\) −13.3086 13.3086i −0.613227 0.613227i
\(472\) 0 0
\(473\) −0.108365 + 0.0448863i −0.00498263 + 0.00206387i
\(474\) 0 0
\(475\) 9.18094 5.98556i 0.421250 0.274637i
\(476\) 0 0
\(477\) −8.21239 + 3.40168i −0.376020 + 0.155752i
\(478\) 0 0
\(479\) −6.09390 + 2.52417i −0.278437 + 0.115332i −0.517532 0.855664i \(-0.673149\pi\)
0.239095 + 0.970996i \(0.423149\pi\)
\(480\) 0 0
\(481\) −1.88356 + 0.780197i −0.0858830 + 0.0355739i
\(482\) 0 0
\(483\) 19.4394i 0.884523i
\(484\) 0 0
\(485\) 17.6114 1.63416i 0.799694 0.0742035i
\(486\) 0 0
\(487\) 3.88897 0.176226 0.0881129 0.996110i \(-0.471916\pi\)
0.0881129 + 0.996110i \(0.471916\pi\)
\(488\) 0 0
\(489\) −19.1175 + 7.91871i −0.864521 + 0.358096i
\(490\) 0 0
\(491\) 10.8724i 0.490665i 0.969439 + 0.245332i \(0.0788971\pi\)
−0.969439 + 0.245332i \(0.921103\pi\)
\(492\) 0 0
\(493\) −1.43353 1.43353i −0.0645629 0.0645629i
\(494\) 0 0
\(495\) 1.31157 + 1.08883i 0.0589506 + 0.0489395i
\(496\) 0 0
\(497\) 4.48607i 0.201228i
\(498\) 0 0
\(499\) −2.94056 7.09914i −0.131638 0.317801i 0.844293 0.535881i \(-0.180021\pi\)
−0.975931 + 0.218080i \(0.930021\pi\)
\(500\) 0 0
\(501\) −9.50355 + 9.50355i −0.424587 + 0.424587i
\(502\) 0 0
\(503\) 10.0261 24.2050i 0.447040 1.07925i −0.526386 0.850246i \(-0.676453\pi\)
0.973426 0.229004i \(-0.0735468\pi\)
\(504\) 0 0
\(505\) −21.9477 + 26.4374i −0.976662 + 1.17645i
\(506\) 0 0
\(507\) 5.47814 + 13.2254i 0.243293 + 0.587361i
\(508\) 0 0
\(509\) 4.91124 11.8568i 0.217687 0.525542i −0.776879 0.629649i \(-0.783199\pi\)
0.994566 + 0.104107i \(0.0331985\pi\)
\(510\) 0 0
\(511\) −19.8236 8.21118i −0.876942 0.363241i
\(512\) 0 0
\(513\) −11.6326 −0.513592
\(514\) 0 0
\(515\) 4.77896 15.4395i 0.210586 0.680347i
\(516\) 0 0
\(517\) −1.45620 1.45620i −0.0640436 0.0640436i
\(518\) 0 0
\(519\) −18.9162 7.83533i −0.830327 0.343933i
\(520\) 0 0
\(521\) 24.5155 10.1546i 1.07404 0.444883i 0.225627 0.974214i \(-0.427557\pi\)
0.848416 + 0.529330i \(0.177557\pi\)
\(522\) 0 0
\(523\) −14.2135 + 14.2135i −0.621513 + 0.621513i −0.945918 0.324405i \(-0.894836\pi\)
0.324405 + 0.945918i \(0.394836\pi\)
\(524\) 0 0
\(525\) 25.8899 4.84637i 1.12993 0.211513i
\(526\) 0 0
\(527\) −9.09455 21.9562i −0.396165 0.956427i
\(528\) 0 0
\(529\) 9.38284i 0.407949i
\(530\) 0 0
\(531\) −4.42470 + 4.42470i −0.192016 + 0.192016i
\(532\) 0 0
\(533\) 0.401317 2.66671i 0.0173829 0.115508i
\(534\) 0 0
\(535\) 25.8421 13.6258i 1.11725 0.589093i
\(536\) 0 0
\(537\) 2.37365 + 2.37365i 0.102430 + 0.102430i
\(538\) 0 0
\(539\) −2.53962 + 6.13118i −0.109389 + 0.264089i
\(540\) 0 0
\(541\) 24.3581 24.3581i 1.04724 1.04724i 0.0484099 0.998828i \(-0.484585\pi\)
0.998828 0.0484099i \(-0.0154154\pi\)
\(542\) 0 0
\(543\) −14.8229 14.8229i −0.636113 0.636113i
\(544\) 0 0
\(545\) 11.6587 14.0437i 0.499405 0.601564i
\(546\) 0 0
\(547\) 3.80124 1.57453i 0.162529 0.0673219i −0.299935 0.953960i \(-0.596965\pi\)
0.462465 + 0.886638i \(0.346965\pi\)
\(548\) 0 0
\(549\) 7.10145i 0.303083i
\(550\) 0 0
\(551\) −1.46142 −0.0622587
\(552\) 0 0
\(553\) 65.6844i 2.79318i
\(554\) 0 0
\(555\) −1.11650 12.0326i −0.0473927 0.510754i
\(556\) 0 0
\(557\) −15.6599 37.8063i −0.663531 1.60190i −0.792231 0.610221i \(-0.791080\pi\)
0.128700 0.991684i \(-0.458920\pi\)
\(558\) 0 0
\(559\) 0.0434873 0.104988i 0.00183932 0.00444051i
\(560\) 0 0
\(561\) −0.564717 1.36335i −0.0238424 0.0575606i
\(562\) 0 0
\(563\) −15.7601 6.52805i −0.664209 0.275124i 0.0249996 0.999687i \(-0.492042\pi\)
−0.689208 + 0.724563i \(0.742042\pi\)
\(564\) 0 0
\(565\) −1.33358 2.52921i −0.0561039 0.106405i
\(566\) 0 0
\(567\) −2.89310 1.19836i −0.121499 0.0503265i
\(568\) 0 0
\(569\) −12.0334 + 12.0334i −0.504468 + 0.504468i −0.912823 0.408355i \(-0.866103\pi\)
0.408355 + 0.912823i \(0.366103\pi\)
\(570\) 0 0
\(571\) −0.909472 2.19566i −0.0380602 0.0918855i 0.903706 0.428153i \(-0.140835\pi\)
−0.941767 + 0.336267i \(0.890835\pi\)
\(572\) 0 0
\(573\) −6.49413 + 6.49413i −0.271296 + 0.271296i
\(574\) 0 0
\(575\) −18.1357 + 3.39485i −0.756312 + 0.141575i
\(576\) 0 0
\(577\) 0.498804 1.20422i 0.0207655 0.0501323i −0.913157 0.407609i \(-0.866363\pi\)
0.933922 + 0.357476i \(0.116363\pi\)
\(578\) 0 0
\(579\) 12.7450 + 12.7450i 0.529662 + 0.529662i
\(580\) 0 0
\(581\) −16.4522 + 6.81471i −0.682550 + 0.282722i
\(582\) 0 0
\(583\) −2.20345 −0.0912577
\(584\) 0 0
\(585\) −1.64444 + 0.152587i −0.0679892 + 0.00630870i
\(586\) 0 0
\(587\) −8.32346 + 20.0946i −0.343546 + 0.829393i 0.653806 + 0.756662i \(0.273171\pi\)
−0.997352 + 0.0727307i \(0.976829\pi\)
\(588\) 0 0
\(589\) −15.8275 6.55595i −0.652159 0.270133i
\(590\) 0 0
\(591\) 13.5029 + 5.59307i 0.555434 + 0.230068i
\(592\) 0 0
\(593\) −12.5243 30.2363i −0.514312 1.24166i −0.941352 0.337425i \(-0.890444\pi\)
0.427041 0.904232i \(-0.359556\pi\)
\(594\) 0 0
\(595\) 30.6491 + 9.48674i 1.25649 + 0.388918i
\(596\) 0 0
\(597\) 4.67926 + 4.67926i 0.191510 + 0.191510i
\(598\) 0 0
\(599\) −16.2896 −0.665573 −0.332787 0.943002i \(-0.607989\pi\)
−0.332787 + 0.943002i \(0.607989\pi\)
\(600\) 0 0
\(601\) −9.57060 + 23.1055i −0.390393 + 0.942492i 0.599461 + 0.800404i \(0.295382\pi\)
−0.989854 + 0.142088i \(0.954618\pi\)
\(602\) 0 0
\(603\) −22.2196 9.20366i −0.904852 0.374802i
\(604\) 0 0
\(605\) −11.2750 21.3838i −0.458394 0.869374i
\(606\) 0 0
\(607\) −3.58240 −0.145405 −0.0727026 0.997354i \(-0.523162\pi\)
−0.0727026 + 0.997354i \(0.523162\pi\)
\(608\) 0 0
\(609\) −3.24488 1.34407i −0.131489 0.0544646i
\(610\) 0 0
\(611\) 1.99519 0.0807169
\(612\) 0 0
\(613\) 34.9087 1.40995 0.704975 0.709233i \(-0.250958\pi\)
0.704975 + 0.709233i \(0.250958\pi\)
\(614\) 0 0
\(615\) 14.3962 + 6.94606i 0.580510 + 0.280092i
\(616\) 0 0
\(617\) 41.0127 1.65111 0.825555 0.564321i \(-0.190862\pi\)
0.825555 + 0.564321i \(0.190862\pi\)
\(618\) 0 0
\(619\) 31.2587 1.25639 0.628196 0.778055i \(-0.283793\pi\)
0.628196 + 0.778055i \(0.283793\pi\)
\(620\) 0 0
\(621\) 18.0927 + 7.49426i 0.726036 + 0.300734i
\(622\) 0 0
\(623\) −49.2951 −1.97497
\(624\) 0 0
\(625\) 9.04271 + 23.3073i 0.361708 + 0.932291i
\(626\) 0 0
\(627\) −0.982790 0.407085i −0.0392489 0.0162574i
\(628\) 0 0
\(629\) 5.63294 13.5991i 0.224600 0.542232i
\(630\) 0 0
\(631\) −14.3299 −0.570465 −0.285232 0.958458i \(-0.592071\pi\)
−0.285232 + 0.958458i \(0.592071\pi\)
\(632\) 0 0
\(633\) 7.52936 + 7.52936i 0.299265 + 0.299265i
\(634\) 0 0
\(635\) 35.2630 18.5931i 1.39937 0.737843i
\(636\) 0 0
\(637\) −2.46046 5.94009i −0.0974871 0.235355i
\(638\) 0 0
\(639\) −1.54030 0.638015i −0.0609335 0.0252395i
\(640\) 0 0
\(641\) 5.36857 + 2.22373i 0.212046 + 0.0878322i 0.486178 0.873860i \(-0.338391\pi\)
−0.274132 + 0.961692i \(0.588391\pi\)
\(642\) 0 0
\(643\) 12.5986 30.4157i 0.496841 1.19948i −0.454335 0.890831i \(-0.650123\pi\)
0.951176 0.308649i \(-0.0998768\pi\)
\(644\) 0 0
\(645\) 0.518249 + 0.430239i 0.0204060 + 0.0169406i
\(646\) 0 0
\(647\) −23.0484 −0.906126 −0.453063 0.891478i \(-0.649669\pi\)
−0.453063 + 0.891478i \(0.649669\pi\)
\(648\) 0 0
\(649\) −1.43306 + 0.593592i −0.0562525 + 0.0233005i
\(650\) 0 0
\(651\) −29.1131 29.1131i −1.14103 1.14103i
\(652\) 0 0
\(653\) −10.2779 + 24.8130i −0.402205 + 0.971008i 0.584925 + 0.811087i \(0.301124\pi\)
−0.987130 + 0.159921i \(0.948876\pi\)
\(654\) 0 0
\(655\) −14.7438 27.9627i −0.576090 1.09259i
\(656\) 0 0
\(657\) −5.63866 + 5.63866i −0.219985 + 0.219985i
\(658\) 0 0
\(659\) 15.3127 + 36.9681i 0.596498 + 1.44007i 0.877128 + 0.480257i \(0.159457\pi\)
−0.280630 + 0.959816i \(0.590543\pi\)
\(660\) 0 0
\(661\) −30.9218 + 30.9218i −1.20272 + 1.20272i −0.229383 + 0.973336i \(0.573671\pi\)
−0.973336 + 0.229383i \(0.926329\pi\)
\(662\) 0 0
\(663\) 1.32086 + 0.547116i 0.0512978 + 0.0212482i
\(664\) 0 0
\(665\) 20.4584 10.7871i 0.793343 0.418305i
\(666\) 0 0
\(667\) 2.27302 + 0.941515i 0.0880116 + 0.0364556i
\(668\) 0 0
\(669\) 6.41837 + 15.4953i 0.248149 + 0.599084i
\(670\) 0 0
\(671\) −0.673653 + 1.62634i −0.0260061 + 0.0627843i
\(672\) 0 0
\(673\) 10.5272 + 25.4149i 0.405794 + 0.979673i 0.986232 + 0.165369i \(0.0528814\pi\)
−0.580438 + 0.814305i \(0.697119\pi\)
\(674\) 0 0
\(675\) 5.47042 25.9648i 0.210557 0.999384i
\(676\) 0 0
\(677\) 34.9508i 1.34327i 0.740883 + 0.671634i \(0.234407\pi\)
−0.740883 + 0.671634i \(0.765593\pi\)
\(678\) 0 0
\(679\) 37.3245 1.43238
\(680\) 0 0
\(681\) 1.47571i 0.0565494i
\(682\) 0 0
\(683\) 37.1326 15.3808i 1.42084 0.588531i 0.465768 0.884907i \(-0.345778\pi\)
0.955071 + 0.296376i \(0.0957782\pi\)
\(684\) 0 0
\(685\) 3.99110 + 43.0123i 0.152492 + 1.64341i
\(686\) 0 0
\(687\) −13.2151 13.2151i −0.504189 0.504189i
\(688\) 0 0
\(689\) 1.50952 1.50952i 0.0575080 0.0575080i
\(690\) 0 0
\(691\) −6.19650 + 14.9597i −0.235726 + 0.569093i −0.996832 0.0795345i \(-0.974657\pi\)
0.761106 + 0.648627i \(0.224657\pi\)
\(692\) 0 0
\(693\) 2.54363 + 2.54363i 0.0966244 + 0.0966244i
\(694\) 0 0
\(695\) 33.3238 + 10.3146i 1.26404 + 0.391256i
\(696\) 0 0
\(697\) 11.5654 + 15.6630i 0.438069 + 0.593278i
\(698\) 0 0
\(699\) 5.17729 5.17729i 0.195823 0.195823i
\(700\) 0 0
\(701\) 51.1728i 1.93277i 0.257102 + 0.966384i \(0.417232\pi\)
−0.257102 + 0.966384i \(0.582768\pi\)
\(702\) 0 0
\(703\) −4.06059 9.80313i −0.153148 0.369732i
\(704\) 0 0
\(705\) −3.49681 + 11.2973i −0.131697 + 0.425479i
\(706\) 0 0
\(707\) −51.2722 + 51.2722i −1.92829 + 1.92829i
\(708\) 0 0
\(709\) −13.6171 + 5.64041i −0.511403 + 0.211830i −0.623436 0.781875i \(-0.714264\pi\)
0.112033 + 0.993704i \(0.464264\pi\)
\(710\) 0 0
\(711\) 22.5529 + 9.34171i 0.845800 + 0.350342i
\(712\) 0 0
\(713\) 20.3936 + 20.3936i 0.763745 + 0.763745i
\(714\) 0 0
\(715\) −0.391077 0.121049i −0.0146254 0.00452697i
\(716\) 0 0
\(717\) −19.7232 −0.736576
\(718\) 0 0
\(719\) −25.6832 10.6383i −0.957823 0.396743i −0.151657 0.988433i \(-0.548461\pi\)
−0.806166 + 0.591690i \(0.798461\pi\)
\(720\) 0 0
\(721\) 13.0521 31.5105i 0.486084 1.17351i
\(722\) 0 0
\(723\) −3.12489 7.54415i −0.116216 0.280570i
\(724\) 0 0
\(725\) 0.687257 3.26199i 0.0255241 0.121147i
\(726\) 0 0
\(727\) −10.1029 + 24.3905i −0.374695 + 0.904593i 0.618246 + 0.785984i \(0.287843\pi\)
−0.992941 + 0.118609i \(0.962157\pi\)
\(728\) 0 0
\(729\) −13.3910 + 13.3910i −0.495962 + 0.495962i
\(730\) 0 0
\(731\) 0.313974 + 0.758000i 0.0116127 + 0.0280356i
\(732\) 0 0
\(733\) 42.7291i 1.57823i 0.614243 + 0.789117i \(0.289462\pi\)
−0.614243 + 0.789117i \(0.710538\pi\)
\(734\) 0 0
\(735\) 37.9464 3.52104i 1.39968 0.129876i
\(736\) 0 0
\(737\) −4.21556 4.21556i −0.155282 0.155282i
\(738\) 0 0
\(739\) 7.24292i 0.266435i 0.991087 + 0.133218i \(0.0425309\pi\)
−0.991087 + 0.133218i \(0.957469\pi\)
\(740\) 0 0
\(741\) 0.952159 0.394397i 0.0349784 0.0144885i
\(742\) 0 0
\(743\) 41.7474 1.53157 0.765783 0.643100i \(-0.222352\pi\)
0.765783 + 0.643100i \(0.222352\pi\)
\(744\) 0 0
\(745\) −7.75971 6.44194i −0.284294 0.236015i
\(746\) 0 0
\(747\) 6.61808i 0.242143i
\(748\) 0 0
\(749\) 56.9573 23.5925i 2.08117 0.862051i
\(750\) 0 0
\(751\) 30.4138 12.5978i 1.10982 0.459701i 0.248942 0.968518i \(-0.419917\pi\)
0.860875 + 0.508817i \(0.169917\pi\)
\(752\) 0 0
\(753\) −11.3079 + 4.68387i −0.412081 + 0.170690i
\(754\) 0 0
\(755\) −31.9104 + 2.96096i −1.16134 + 0.107760i
\(756\) 0 0
\(757\) 41.2537 17.0878i 1.49939 0.621068i 0.526055 0.850451i \(-0.323671\pi\)
0.973336 + 0.229383i \(0.0736707\pi\)
\(758\) 0 0
\(759\) 1.26632 + 1.26632i 0.0459644 + 0.0459644i
\(760\) 0 0
\(761\) 24.7884i 0.898578i 0.893386 + 0.449289i \(0.148323\pi\)
−0.893386 + 0.449289i \(0.851677\pi\)
\(762\) 0 0
\(763\) 27.2360 27.2360i 0.986009 0.986009i
\(764\) 0 0
\(765\) 7.61625 9.17424i 0.275366 0.331695i
\(766\) 0 0
\(767\) 0.575092 1.38839i 0.0207654 0.0501320i
\(768\) 0 0
\(769\) 11.7479 0.423641 0.211820 0.977309i \(-0.432061\pi\)
0.211820 + 0.977309i \(0.432061\pi\)
\(770\) 0 0
\(771\) 2.80118 + 2.80118i 0.100882 + 0.100882i
\(772\) 0 0
\(773\) −13.1080 + 5.42950i −0.471461 + 0.195285i −0.605747 0.795657i \(-0.707126\pi\)
0.134287 + 0.990943i \(0.457126\pi\)
\(774\) 0 0
\(775\) 22.0765 32.2449i 0.793009 1.15827i
\(776\) 0 0
\(777\) 25.5010i 0.914844i
\(778\) 0 0
\(779\) 13.8791 + 2.08868i 0.497269 + 0.0748348i
\(780\) 0 0
\(781\) −0.292231 0.292231i −0.0104568 0.0104568i
\(782\) 0 0
\(783\) −2.50193 + 2.50193i −0.0894116 + 0.0894116i
\(784\) 0 0
\(785\) 24.0794 29.0051i 0.859432 1.03524i
\(786\) 0 0
\(787\) 2.91744i 0.103996i −0.998647 0.0519978i \(-0.983441\pi\)
0.998647 0.0519978i \(-0.0165589\pi\)
\(788\) 0 0
\(789\) 31.6925i 1.12828i
\(790\) 0 0
\(791\) −2.30904 5.57451i −0.0820999 0.198207i
\(792\) 0 0
\(793\) −0.652657 1.57565i −0.0231765 0.0559531i
\(794\) 0 0
\(795\) 5.90164 + 11.1928i 0.209309 + 0.396969i
\(796\) 0 0
\(797\) 18.2595 18.2595i 0.646786 0.646786i −0.305429 0.952215i \(-0.598800\pi\)
0.952215 + 0.305429i \(0.0987998\pi\)
\(798\) 0 0
\(799\) −10.1859 + 10.1859i −0.360352 + 0.360352i
\(800\) 0 0
\(801\) −7.01082 + 16.9256i −0.247715 + 0.598037i
\(802\) 0 0
\(803\) −1.82623 + 0.756450i −0.0644463 + 0.0266945i
\(804\) 0 0
\(805\) −38.7695 + 3.59741i −1.36644 + 0.126792i
\(806\) 0 0
\(807\) 8.03098 + 3.32654i 0.282704 + 0.117100i
\(808\) 0 0
\(809\) −6.42188 15.5038i −0.225781 0.545084i 0.769874 0.638195i \(-0.220319\pi\)
−0.995656 + 0.0931112i \(0.970319\pi\)
\(810\) 0 0
\(811\) −9.87507 9.87507i −0.346761 0.346761i 0.512141 0.858901i \(-0.328853\pi\)
−0.858901 + 0.512141i \(0.828853\pi\)
\(812\) 0 0
\(813\) 13.2392 31.9623i 0.464319 1.12097i
\(814\) 0 0
\(815\) −19.3307 36.6620i −0.677125 1.28421i
\(816\) 0 0
\(817\) 0.546416 + 0.226333i 0.0191167 + 0.00791839i
\(818\) 0 0
\(819\) −3.48512 −0.121780
\(820\) 0 0
\(821\) −18.0844 −0.631150 −0.315575 0.948901i \(-0.602197\pi\)
−0.315575 + 0.948901i \(0.602197\pi\)
\(822\) 0 0
\(823\) −7.13807 2.95668i −0.248817 0.103064i 0.254789 0.966997i \(-0.417994\pi\)
−0.503607 + 0.863933i \(0.667994\pi\)
\(824\) 0 0
\(825\) 1.37081 2.00222i 0.0477256 0.0697082i
\(826\) 0 0
\(827\) −17.1995 + 41.5234i −0.598087 + 1.44391i 0.277442 + 0.960742i \(0.410513\pi\)
−0.875529 + 0.483166i \(0.839487\pi\)
\(828\) 0 0
\(829\) 19.5197 + 19.5197i 0.677947 + 0.677947i 0.959535 0.281589i \(-0.0908613\pi\)
−0.281589 + 0.959535i \(0.590861\pi\)
\(830\) 0 0
\(831\) 8.32136 + 20.0895i 0.288665 + 0.696899i
\(832\) 0 0
\(833\) 42.8868 + 17.7643i 1.48594 + 0.615496i
\(834\) 0 0
\(835\) −20.7124 17.1949i −0.716781 0.595056i
\(836\) 0 0
\(837\) −38.3200 + 15.8727i −1.32453 + 0.548639i
\(838\) 0 0
\(839\) 12.2038 29.4625i 0.421321 1.01716i −0.560638 0.828061i \(-0.689444\pi\)
0.981958 0.189097i \(-0.0605560\pi\)
\(840\) 0 0
\(841\) 20.1918 20.1918i 0.696268 0.696268i
\(842\) 0 0
\(843\) 1.28280 1.28280i 0.0441821 0.0441821i
\(844\) 0 0
\(845\) −25.3626 + 13.3729i −0.872501 + 0.460043i
\(846\) 0 0
\(847\) −19.5222 47.1309i −0.670792 1.61944i
\(848\) 0 0
\(849\) −9.58365 23.1370i −0.328910 0.794059i
\(850\) 0 0
\(851\) 17.8633i 0.612346i
\(852\) 0 0
\(853\) 5.89080i 0.201697i 0.994902 + 0.100849i \(0.0321558\pi\)
−0.994902 + 0.100849i \(0.967844\pi\)
\(854\) 0 0
\(855\) −0.794151 8.55860i −0.0271594 0.292698i
\(856\) 0 0
\(857\) 39.1868 39.1868i 1.33860 1.33860i 0.441175 0.897421i \(-0.354562\pi\)
0.897421 0.441175i \(-0.145438\pi\)
\(858\) 0 0
\(859\) 33.8316 + 33.8316i 1.15432 + 1.15432i 0.985678 + 0.168640i \(0.0539375\pi\)
0.168640 + 0.985678i \(0.446063\pi\)
\(860\) 0 0
\(861\) 28.8956 + 17.4023i 0.984758 + 0.593067i
\(862\) 0 0
\(863\) 3.51029i 0.119491i 0.998214 + 0.0597457i \(0.0190290\pi\)
−0.998214 + 0.0597457i \(0.980971\pi\)
\(864\) 0 0
\(865\) 12.1260 39.1759i 0.412296 1.33202i
\(866\) 0 0
\(867\) 7.99755 3.31269i 0.271611 0.112505i
\(868\) 0 0
\(869\) 4.27880 + 4.27880i 0.145148 + 0.145148i
\(870\) 0 0
\(871\) 5.77589 0.195709
\(872\) 0 0
\(873\) 5.30834 12.8155i 0.179660 0.433738i
\(874\) 0 0
\(875\) 14.4566 + 50.7374i 0.488723 + 1.71524i
\(876\) 0 0
\(877\) −16.3231 + 16.3231i −0.551193 + 0.551193i −0.926785 0.375592i \(-0.877439\pi\)
0.375592 + 0.926785i \(0.377439\pi\)
\(878\) 0 0
\(879\) 3.60963i 0.121750i
\(880\) 0 0
\(881\) 35.7057 + 35.7057i 1.20295 + 1.20295i 0.973264 + 0.229690i \(0.0737713\pi\)
0.229690 + 0.973264i \(0.426229\pi\)
\(882\) 0 0
\(883\) −22.7354 + 9.41729i −0.765106 + 0.316917i −0.730888 0.682497i \(-0.760894\pi\)
−0.0342176 + 0.999414i \(0.510894\pi\)
\(884\) 0 0
\(885\) 6.85350 + 5.68963i 0.230378 + 0.191255i
\(886\) 0 0
\(887\) −2.15511 + 0.892674i −0.0723614 + 0.0299731i −0.418571 0.908184i \(-0.637469\pi\)
0.346209 + 0.938157i \(0.387469\pi\)
\(888\) 0 0
\(889\) 77.7213 32.1932i 2.60669 1.07973i
\(890\) 0 0
\(891\) −0.266525 + 0.110398i −0.00892893 + 0.00369849i
\(892\) 0 0
\(893\) 10.3841i 0.347492i
\(894\) 0 0
\(895\) −4.29468 + 5.17320i −0.143555 + 0.172921i
\(896\) 0 0
\(897\) −1.73503 −0.0579308
\(898\) 0 0
\(899\) −4.81420 + 1.99411i −0.160563 + 0.0665072i
\(900\) 0 0
\(901\) 15.4129i 0.513477i
\(902\) 0 0
\(903\) 1.00508 + 1.00508i 0.0334470 + 0.0334470i
\(904\) 0 0
\(905\) 26.8194 32.3056i 0.891507 1.07387i
\(906\) 0 0
\(907\) 30.2223i 1.00352i −0.865008 0.501758i \(-0.832687\pi\)
0.865008 0.501758i \(-0.167313\pi\)
\(908\) 0 0
\(909\) 10.3124 + 24.8964i 0.342042 + 0.825762i
\(910\) 0 0
\(911\) −29.4076 + 29.4076i −0.974316 + 0.974316i −0.999678 0.0253621i \(-0.991926\pi\)
0.0253621 + 0.999678i \(0.491926\pi\)
\(912\) 0 0
\(913\) −0.627800 + 1.51564i −0.0207772 + 0.0501605i
\(914\) 0 0
\(915\) 10.0656 0.933984i 0.332758 0.0308766i
\(916\) 0 0
\(917\) −25.5284 61.6311i −0.843023 2.03524i
\(918\) 0 0
\(919\) 15.2321 36.7736i 0.502462 1.21305i −0.445677 0.895194i \(-0.647037\pi\)
0.948139 0.317856i \(-0.102963\pi\)
\(920\) 0 0
\(921\) −11.0189 4.56417i −0.363085 0.150395i
\(922\) 0 0
\(923\) 0.400396 0.0131792
\(924\) 0 0
\(925\) 23.7908 4.45344i 0.782237 0.146428i
\(926\) 0 0
\(927\) −8.96291 8.96291i −0.294381 0.294381i
\(928\) 0 0
\(929\) −38.2675 15.8509i −1.25552 0.520052i −0.346985 0.937871i \(-0.612795\pi\)
−0.908530 + 0.417819i \(0.862795\pi\)
\(930\) 0 0
\(931\) 30.9156 12.8057i 1.01322 0.419689i
\(932\) 0 0
\(933\) 13.6629 13.6629i 0.447302 0.447302i
\(934\) 0 0
\(935\) 2.61452 1.37856i 0.0855040 0.0450836i
\(936\) 0 0
\(937\) 1.35356 + 3.26779i 0.0442190 + 0.106754i 0.944446 0.328667i \(-0.106599\pi\)
−0.900227 + 0.435421i \(0.856599\pi\)
\(938\) 0 0
\(939\) 2.62525i 0.0856720i
\(940\) 0 0
\(941\) −37.7304 + 37.7304i −1.22998 + 1.22998i −0.266003 + 0.963972i \(0.585703\pi\)
−0.963972 + 0.266003i \(0.914297\pi\)
\(942\) 0 0
\(943\) −20.2411 12.1902i −0.659142 0.396966i
\(944\) 0 0
\(945\) 16.5571 53.4917i 0.538604 1.74009i
\(946\) 0 0
\(947\) −8.64029 8.64029i −0.280772 0.280772i 0.552645 0.833417i \(-0.313619\pi\)
−0.833417 + 0.552645i \(0.813619\pi\)
\(948\) 0 0
\(949\) 0.732873 1.76931i 0.0237901 0.0574343i
\(950\) 0 0
\(951\) −20.8587 + 20.8587i −0.676391 + 0.676391i
\(952\) 0 0
\(953\) −1.65636 1.65636i −0.0536546 0.0536546i 0.679770 0.733425i \(-0.262079\pi\)
−0.733425 + 0.679770i \(0.762079\pi\)
\(954\) 0 0
\(955\) −14.1535 11.7500i −0.457998 0.380220i
\(956\) 0 0
\(957\) −0.298933 + 0.123822i −0.00966312 + 0.00400260i
\(958\) 0 0
\(959\) 91.1574i 2.94363i
\(960\) 0 0
\(961\) −30.0842 −0.970459
\(962\) 0 0
\(963\) 22.9118i 0.738322i
\(964\) 0 0
\(965\) −23.0597 + 27.7768i −0.742317 + 0.894166i
\(966\) 0 0
\(967\) −12.2078 29.4721i −0.392575 0.947759i −0.989377 0.145371i \(-0.953562\pi\)
0.596802 0.802388i \(-0.296438\pi\)
\(968\) 0 0
\(969\) −2.84751 + 6.87449i −0.0914751 + 0.220840i
\(970\) 0 0
\(971\) 20.9957 + 50.6880i 0.673783 + 1.62666i 0.775127 + 0.631805i \(0.217686\pi\)
−0.101344 + 0.994851i \(0.532314\pi\)
\(972\) 0 0
\(973\) 68.0103 + 28.1708i 2.18031 + 0.903114i
\(974\) 0 0
\(975\) 0.432553 + 2.31076i 0.0138528 + 0.0740034i
\(976\) 0 0
\(977\) −36.7788 15.2343i −1.17666 0.487387i −0.293269 0.956030i \(-0.594743\pi\)
−0.883388 + 0.468643i \(0.844743\pi\)
\(978\) 0 0
\(979\) −3.21117 + 3.21117i −0.102629 + 0.102629i
\(980\) 0 0
\(981\) −5.47801 13.2251i −0.174899 0.422244i
\(982\) 0 0
\(983\) −28.5291 + 28.5291i −0.909937 + 0.909937i −0.996267 0.0863301i \(-0.972486\pi\)
0.0863301 + 0.996267i \(0.472486\pi\)
\(984\) 0 0
\(985\) −8.65587 + 27.9648i −0.275799 + 0.891033i
\(986\) 0 0
\(987\) −9.55032 + 23.0565i −0.303990 + 0.733897i
\(988\) 0 0
\(989\) −0.704052 0.704052i −0.0223876 0.0223876i
\(990\) 0 0
\(991\) −46.5910 + 19.2986i −1.48001 + 0.613041i −0.969117 0.246603i \(-0.920686\pi\)
−0.510894 + 0.859643i \(0.670686\pi\)
\(992\) 0 0
\(993\) 16.3510 0.518884
\(994\) 0 0
\(995\) −8.46628 + 10.1981i −0.268399 + 0.323303i
\(996\) 0 0
\(997\) 0.996401 2.40553i 0.0315563 0.0761838i −0.907316 0.420450i \(-0.861872\pi\)
0.938872 + 0.344266i \(0.111872\pi\)
\(998\) 0 0
\(999\) −23.7344 9.83113i −0.750924 0.311043i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.273.7 84
5.2 odd 4 820.2.y.a.437.7 yes 84
41.38 odd 8 820.2.y.a.653.7 yes 84
205.202 even 8 inner 820.2.x.a.817.7 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.273.7 84 1.1 even 1 trivial
820.2.x.a.817.7 yes 84 205.202 even 8 inner
820.2.y.a.437.7 yes 84 5.2 odd 4
820.2.y.a.653.7 yes 84 41.38 odd 8