| L(s) = 1 | + (−1.03 − 0.427i)3-s + (0.661 − 2.13i)5-s + (1.80 − 4.35i)7-s + (−1.24 − 1.24i)9-s + (−0.166 − 0.401i)11-s + (0.389 + 0.161i)13-s + (−1.59 + 1.92i)15-s + (−2.80 + 1.16i)17-s + (−0.838 + 2.02i)19-s + (−3.72 + 3.72i)21-s + (2.60 − 2.60i)23-s + (−4.12 − 2.82i)25-s + (2.03 + 4.90i)27-s + (0.255 + 0.615i)29-s + 7.81i·31-s + ⋯ |
| L(s) = 1 | + (−0.595 − 0.246i)3-s + (0.295 − 0.955i)5-s + (0.682 − 1.64i)7-s + (−0.413 − 0.413i)9-s + (−0.0501 − 0.121i)11-s + (0.107 + 0.0447i)13-s + (−0.411 + 0.495i)15-s + (−0.681 + 0.282i)17-s + (−0.192 + 0.464i)19-s + (−0.812 + 0.812i)21-s + (0.544 − 0.544i)23-s + (−0.825 − 0.564i)25-s + (0.390 + 0.943i)27-s + (0.0473 + 0.114i)29-s + 1.40i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.853 + 0.520i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.853 + 0.520i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.290765 - 1.03473i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.290765 - 1.03473i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.661 + 2.13i)T \) |
| 41 | \( 1 + (1.54 + 6.21i)T \) |
| good | 3 | \( 1 + (1.03 + 0.427i)T + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (-1.80 + 4.35i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (0.166 + 0.401i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + (-0.389 - 0.161i)T + (9.19 + 9.19i)T^{2} \) |
| 17 | \( 1 + (2.80 - 1.16i)T + (12.0 - 12.0i)T^{2} \) |
| 19 | \( 1 + (0.838 - 2.02i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (-2.60 + 2.60i)T - 23iT^{2} \) |
| 29 | \( 1 + (-0.255 - 0.615i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 - 7.81iT - 31T^{2} \) |
| 37 | \( 1 + (3.42 - 3.42i)T - 37iT^{2} \) |
| 43 | \( 1 + 0.269iT - 43T^{2} \) |
| 47 | \( 1 + (-4.37 + 1.81i)T + (33.2 - 33.2i)T^{2} \) |
| 53 | \( 1 + (-1.93 + 4.68i)T + (-37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + 3.56iT - 59T^{2} \) |
| 61 | \( 1 + (2.86 + 2.86i)T + 61iT^{2} \) |
| 67 | \( 1 + (-12.6 + 5.24i)T + (47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (-0.878 + 0.363i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + 4.54iT - 73T^{2} \) |
| 79 | \( 1 + (12.8 - 5.32i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (2.66 + 2.66i)T + 83iT^{2} \) |
| 89 | \( 1 + (3.99 + 9.65i)T + (-62.9 + 62.9i)T^{2} \) |
| 97 | \( 1 + (-3.02 - 7.30i)T + (-68.5 + 68.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09054344885332356699222801549, −8.850737394518770591842845478635, −8.316463641529737235593211721648, −7.16680986800824343659880383633, −6.46571764667904087498034001540, −5.33118172725382379233662101442, −4.58717849071946689756130972518, −3.59585332348988759514174492024, −1.63362189674158147543806358688, −0.57378299803781610869544910804,
2.14066344061922920066905931172, 2.82855265269767454348202085628, 4.49089792228550508962771186728, 5.51510258879697902609972284986, 5.94178822754567562224358562926, 7.03788075678162455692572228143, 8.105796005524172779844520105773, 8.944161733289025602879354924246, 9.755492623235680569871348511850, 10.83671442490157793363752812930