Properties

Label 820.2.s.c.583.6
Level $820$
Weight $2$
Character 820.583
Analytic conductor $6.548$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(583,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.583"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(120\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 583.6
Character \(\chi\) \(=\) 820.583
Dual form 820.2.s.c.647.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39711 - 0.219268i) q^{2} -2.16299 q^{3} +(1.90384 + 0.612684i) q^{4} +(-0.498284 + 2.17984i) q^{5} +(3.02194 + 0.474275i) q^{6} +0.295068i q^{7} +(-2.52554 - 1.27344i) q^{8} +1.67853 q^{9} +(1.17413 - 2.93623i) q^{10} +(0.592458 - 0.592458i) q^{11} +(-4.11800 - 1.32523i) q^{12} +5.60783i q^{13} +(0.0646989 - 0.412242i) q^{14} +(1.07778 - 4.71498i) q^{15} +(3.24924 + 2.33291i) q^{16} +5.37402i q^{17} +(-2.34510 - 0.368048i) q^{18} +(2.97295 - 2.97295i) q^{19} +(-2.28421 + 3.84479i) q^{20} -0.638229i q^{21} +(-0.957637 + 0.697823i) q^{22} +(-0.212568 + 0.212568i) q^{23} +(5.46272 + 2.75444i) q^{24} +(-4.50343 - 2.17236i) q^{25} +(1.22962 - 7.83477i) q^{26} +2.85832 q^{27} +(-0.180783 + 0.561762i) q^{28} +(2.66637 - 2.66637i) q^{29} +(-2.53963 + 6.35103i) q^{30} +4.70570i q^{31} +(-4.02802 - 3.97179i) q^{32} +(-1.28148 + 1.28148i) q^{33} +(1.17835 - 7.50810i) q^{34} +(-0.643201 - 0.147028i) q^{35} +(3.19566 + 1.02841i) q^{36} +(2.69046 - 2.69046i) q^{37} +(-4.80541 + 3.50167i) q^{38} -12.1297i q^{39} +(4.03433 - 4.87074i) q^{40} +(-4.98535 + 4.01824i) q^{41} +(-0.139943 + 0.891677i) q^{42} +(-2.01035 - 2.01035i) q^{43} +(1.49094 - 0.764957i) q^{44} +(-0.836386 + 3.65894i) q^{45} +(0.343591 - 0.250372i) q^{46} -10.3048 q^{47} +(-7.02807 - 5.04606i) q^{48} +6.91294 q^{49} +(5.81546 + 4.02249i) q^{50} -11.6240i q^{51} +(-3.43583 + 10.6764i) q^{52} -3.29257i q^{53} +(-3.99340 - 0.626739i) q^{54} +(0.996252 + 1.58668i) q^{55} +(0.375751 - 0.745205i) q^{56} +(-6.43046 + 6.43046i) q^{57} +(-4.30987 + 3.14057i) q^{58} -14.2604 q^{59} +(4.94073 - 8.31624i) q^{60} +2.98490i q^{61} +(1.03181 - 6.57439i) q^{62} +0.495280i q^{63} +(4.75670 + 6.43225i) q^{64} +(-12.2242 - 2.79430i) q^{65} +(2.07136 - 1.50938i) q^{66} -3.44881 q^{67} +(-3.29257 + 10.2313i) q^{68} +(0.459783 - 0.459783i) q^{69} +(0.866385 + 0.346447i) q^{70} +(-5.63883 + 5.63883i) q^{71} +(-4.23920 - 2.13751i) q^{72} +(-3.86014 + 3.86014i) q^{73} +(-4.34880 + 3.16894i) q^{74} +(9.74087 + 4.69880i) q^{75} +(7.48150 - 3.83855i) q^{76} +(0.174815 + 0.174815i) q^{77} +(-2.65965 + 16.9465i) q^{78} +(-1.35423 - 1.35423i) q^{79} +(-6.70442 + 5.92037i) q^{80} -11.2181 q^{81} +(7.84617 - 4.52080i) q^{82} +(-1.25094 + 1.25094i) q^{83} +(0.391032 - 1.21509i) q^{84} +(-11.7145 - 2.67779i) q^{85} +(2.36787 + 3.24948i) q^{86} +(-5.76734 + 5.76734i) q^{87} +(-2.25073 + 0.741816i) q^{88} +(-10.3994 + 10.3994i) q^{89} +(1.97081 - 4.92855i) q^{90} -1.65469 q^{91} +(-0.534934 + 0.274460i) q^{92} -10.1784i q^{93} +(14.3969 + 2.25951i) q^{94} +(4.99919 + 7.96193i) q^{95} +(8.71256 + 8.59094i) q^{96} -13.1496i q^{97} +(-9.65814 - 1.51579i) q^{98} +(0.994459 - 0.994459i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 4 q^{6} - 12 q^{8} + 240 q^{9} - 20 q^{10} + 8 q^{14} + 8 q^{16} - 12 q^{18} - 16 q^{20} - 12 q^{24} - 16 q^{25} - 30 q^{30} - 24 q^{33} + 20 q^{34} - 8 q^{37} - 4 q^{40} - 16 q^{41} + 84 q^{42}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39711 0.219268i −0.987907 0.155046i
\(3\) −2.16299 −1.24880 −0.624402 0.781103i \(-0.714657\pi\)
−0.624402 + 0.781103i \(0.714657\pi\)
\(4\) 1.90384 + 0.612684i 0.951922 + 0.306342i
\(5\) −0.498284 + 2.17984i −0.222839 + 0.974855i
\(6\) 3.02194 + 0.474275i 1.23370 + 0.193622i
\(7\) 0.295068i 0.111525i 0.998444 + 0.0557625i \(0.0177590\pi\)
−0.998444 + 0.0557625i \(0.982241\pi\)
\(8\) −2.52554 1.27344i −0.892913 0.450229i
\(9\) 1.67853 0.559511
\(10\) 1.17413 2.93623i 0.371292 0.928516i
\(11\) 0.592458 0.592458i 0.178633 0.178633i −0.612127 0.790760i \(-0.709686\pi\)
0.790760 + 0.612127i \(0.209686\pi\)
\(12\) −4.11800 1.32523i −1.18876 0.382561i
\(13\) 5.60783i 1.55533i 0.628677 + 0.777667i \(0.283597\pi\)
−0.628677 + 0.777667i \(0.716403\pi\)
\(14\) 0.0646989 0.412242i 0.0172915 0.110176i
\(15\) 1.07778 4.71498i 0.278283 1.21740i
\(16\) 3.24924 + 2.33291i 0.812309 + 0.583227i
\(17\) 5.37402i 1.30339i 0.758481 + 0.651695i \(0.225942\pi\)
−0.758481 + 0.651695i \(0.774058\pi\)
\(18\) −2.34510 0.368048i −0.552745 0.0867498i
\(19\) 2.97295 2.97295i 0.682041 0.682041i −0.278419 0.960460i \(-0.589810\pi\)
0.960460 + 0.278419i \(0.0898103\pi\)
\(20\) −2.28421 + 3.84479i −0.510765 + 0.859721i
\(21\) 0.638229i 0.139273i
\(22\) −0.957637 + 0.697823i −0.204169 + 0.148776i
\(23\) −0.212568 + 0.212568i −0.0443236 + 0.0443236i −0.728921 0.684598i \(-0.759978\pi\)
0.684598 + 0.728921i \(0.259978\pi\)
\(24\) 5.46272 + 2.75444i 1.11507 + 0.562248i
\(25\) −4.50343 2.17236i −0.900685 0.434472i
\(26\) 1.22962 7.83477i 0.241148 1.53652i
\(27\) 2.85832 0.550085
\(28\) −0.180783 + 0.561762i −0.0341648 + 0.106163i
\(29\) 2.66637 2.66637i 0.495132 0.495132i −0.414786 0.909919i \(-0.636144\pi\)
0.909919 + 0.414786i \(0.136144\pi\)
\(30\) −2.53963 + 6.35103i −0.463671 + 1.15953i
\(31\) 4.70570i 0.845169i 0.906323 + 0.422585i \(0.138877\pi\)
−0.906323 + 0.422585i \(0.861123\pi\)
\(32\) −4.02802 3.97179i −0.712059 0.702119i
\(33\) −1.28148 + 1.28148i −0.223077 + 0.223077i
\(34\) 1.17835 7.50810i 0.202085 1.28763i
\(35\) −0.643201 0.147028i −0.108721 0.0248522i
\(36\) 3.19566 + 1.02841i 0.532610 + 0.171402i
\(37\) 2.69046 2.69046i 0.442308 0.442308i −0.450479 0.892787i \(-0.648747\pi\)
0.892787 + 0.450479i \(0.148747\pi\)
\(38\) −4.80541 + 3.50167i −0.779541 + 0.568046i
\(39\) 12.1297i 1.94231i
\(40\) 4.03433 4.87074i 0.637884 0.770132i
\(41\) −4.98535 + 4.01824i −0.778581 + 0.627544i
\(42\) −0.139943 + 0.891677i −0.0215937 + 0.137589i
\(43\) −2.01035 2.01035i −0.306575 0.306575i 0.537004 0.843579i \(-0.319556\pi\)
−0.843579 + 0.537004i \(0.819556\pi\)
\(44\) 1.49094 0.764957i 0.224767 0.115322i
\(45\) −0.836386 + 3.65894i −0.124681 + 0.545442i
\(46\) 0.343591 0.250372i 0.0506598 0.0369154i
\(47\) −10.3048 −1.50311 −0.751554 0.659672i \(-0.770695\pi\)
−0.751554 + 0.659672i \(0.770695\pi\)
\(48\) −7.02807 5.04606i −1.01441 0.728336i
\(49\) 6.91294 0.987562
\(50\) 5.81546 + 4.02249i 0.822430 + 0.568866i
\(51\) 11.6240i 1.62768i
\(52\) −3.43583 + 10.6764i −0.476464 + 1.48056i
\(53\) 3.29257i 0.452269i −0.974096 0.226135i \(-0.927391\pi\)
0.974096 0.226135i \(-0.0726089\pi\)
\(54\) −3.99340 0.626739i −0.543433 0.0852884i
\(55\) 0.996252 + 1.58668i 0.134335 + 0.213947i
\(56\) 0.375751 0.745205i 0.0502118 0.0995822i
\(57\) −6.43046 + 6.43046i −0.851735 + 0.851735i
\(58\) −4.30987 + 3.14057i −0.565913 + 0.412377i
\(59\) −14.2604 −1.85655 −0.928275 0.371893i \(-0.878709\pi\)
−0.928275 + 0.371893i \(0.878709\pi\)
\(60\) 4.94073 8.31624i 0.637845 1.07362i
\(61\) 2.98490i 0.382177i 0.981573 + 0.191089i \(0.0612018\pi\)
−0.981573 + 0.191089i \(0.938798\pi\)
\(62\) 1.03181 6.57439i 0.131040 0.834949i
\(63\) 0.495280i 0.0623995i
\(64\) 4.75670 + 6.43225i 0.594588 + 0.804031i
\(65\) −12.2242 2.79430i −1.51622 0.346590i
\(66\) 2.07136 1.50938i 0.254967 0.185792i
\(67\) −3.44881 −0.421339 −0.210670 0.977557i \(-0.567564\pi\)
−0.210670 + 0.977557i \(0.567564\pi\)
\(68\) −3.29257 + 10.2313i −0.399283 + 1.24073i
\(69\) 0.459783 0.459783i 0.0553514 0.0553514i
\(70\) 0.866385 + 0.346447i 0.103553 + 0.0414084i
\(71\) −5.63883 + 5.63883i −0.669206 + 0.669206i −0.957532 0.288326i \(-0.906901\pi\)
0.288326 + 0.957532i \(0.406901\pi\)
\(72\) −4.23920 2.13751i −0.499595 0.251908i
\(73\) −3.86014 + 3.86014i −0.451795 + 0.451795i −0.895950 0.444155i \(-0.853504\pi\)
0.444155 + 0.895950i \(0.353504\pi\)
\(74\) −4.34880 + 3.16894i −0.505538 + 0.368382i
\(75\) 9.74087 + 4.69880i 1.12478 + 0.542571i
\(76\) 7.48150 3.83855i 0.858187 0.440312i
\(77\) 0.174815 + 0.174815i 0.0199220 + 0.0199220i
\(78\) −2.65965 + 16.9465i −0.301147 + 1.91882i
\(79\) −1.35423 1.35423i −0.152363 0.152363i 0.626810 0.779173i \(-0.284360\pi\)
−0.779173 + 0.626810i \(0.784360\pi\)
\(80\) −6.70442 + 5.92037i −0.749576 + 0.661918i
\(81\) −11.2181 −1.24646
\(82\) 7.84617 4.52080i 0.866464 0.499239i
\(83\) −1.25094 + 1.25094i −0.137309 + 0.137309i −0.772420 0.635112i \(-0.780954\pi\)
0.635112 + 0.772420i \(0.280954\pi\)
\(84\) 0.391032 1.21509i 0.0426651 0.132577i
\(85\) −11.7145 2.67779i −1.27062 0.290447i
\(86\) 2.36787 + 3.24948i 0.255334 + 0.350401i
\(87\) −5.76734 + 5.76734i −0.618323 + 0.618323i
\(88\) −2.25073 + 0.741816i −0.239929 + 0.0790779i
\(89\) −10.3994 + 10.3994i −1.10234 + 1.10234i −0.108209 + 0.994128i \(0.534512\pi\)
−0.994128 + 0.108209i \(0.965488\pi\)
\(90\) 1.97081 4.92855i 0.207742 0.519515i
\(91\) −1.65469 −0.173459
\(92\) −0.534934 + 0.274460i −0.0557707 + 0.0286144i
\(93\) 10.1784i 1.05545i
\(94\) 14.3969 + 2.25951i 1.48493 + 0.233051i
\(95\) 4.99919 + 7.96193i 0.512906 + 0.816877i
\(96\) 8.71256 + 8.59094i 0.889222 + 0.876809i
\(97\) 13.1496i 1.33514i −0.744549 0.667568i \(-0.767335\pi\)
0.744549 0.667568i \(-0.232665\pi\)
\(98\) −9.65814 1.51579i −0.975620 0.153117i
\(99\) 0.994459 0.994459i 0.0999469 0.0999469i
\(100\) −7.24284 6.89501i −0.724284 0.689501i
\(101\) 6.43682 6.43682i 0.640487 0.640487i −0.310188 0.950675i \(-0.600392\pi\)
0.950675 + 0.310188i \(0.100392\pi\)
\(102\) −2.54876 + 16.2400i −0.252365 + 1.60800i
\(103\) 6.32443 + 6.32443i 0.623165 + 0.623165i 0.946339 0.323175i \(-0.104750\pi\)
−0.323175 + 0.946339i \(0.604750\pi\)
\(104\) 7.14124 14.1628i 0.700256 1.38878i
\(105\) 1.39124 + 0.318019i 0.135771 + 0.0310355i
\(106\) −0.721955 + 4.60009i −0.0701225 + 0.446800i
\(107\) −6.55946 6.55946i −0.634127 0.634127i 0.314973 0.949101i \(-0.398004\pi\)
−0.949101 + 0.314973i \(0.898004\pi\)
\(108\) 5.44180 + 1.75125i 0.523637 + 0.168514i
\(109\) −6.36154 6.36154i −0.609325 0.609325i 0.333445 0.942770i \(-0.391789\pi\)
−0.942770 + 0.333445i \(0.891789\pi\)
\(110\) −1.04397 2.43521i −0.0995385 0.232188i
\(111\) −5.81944 + 5.81944i −0.552356 + 0.552356i
\(112\) −0.688365 + 0.958744i −0.0650444 + 0.0905928i
\(113\) −5.99373 5.99373i −0.563843 0.563843i 0.366554 0.930397i \(-0.380538\pi\)
−0.930397 + 0.366554i \(0.880538\pi\)
\(114\) 10.3941 7.57408i 0.973494 0.709378i
\(115\) −0.357446 0.569285i −0.0333320 0.0530861i
\(116\) 6.70999 3.44271i 0.623007 0.319647i
\(117\) 9.41293i 0.870226i
\(118\) 19.9234 + 3.12686i 1.83410 + 0.287851i
\(119\) −1.58570 −0.145361
\(120\) −8.72623 + 10.5354i −0.796592 + 0.961744i
\(121\) 10.2980i 0.936181i
\(122\) 0.654493 4.17024i 0.0592550 0.377556i
\(123\) 10.7833 8.69142i 0.972295 0.783679i
\(124\) −2.88311 + 8.95892i −0.258911 + 0.804535i
\(125\) 6.97939 8.73430i 0.624256 0.781220i
\(126\) 0.108599 0.691962i 0.00967478 0.0616449i
\(127\) −9.71448 9.71448i −0.862020 0.862020i 0.129552 0.991573i \(-0.458646\pi\)
−0.991573 + 0.129552i \(0.958646\pi\)
\(128\) −5.23526 10.0296i −0.462736 0.886496i
\(129\) 4.34836 + 4.34836i 0.382852 + 0.382852i
\(130\) 16.4659 + 6.58432i 1.44415 + 0.577483i
\(131\) 7.66395 0.669603 0.334801 0.942289i \(-0.391331\pi\)
0.334801 + 0.942289i \(0.391331\pi\)
\(132\) −3.22488 + 1.65460i −0.280690 + 0.144014i
\(133\) 0.877221 + 0.877221i 0.0760647 + 0.0760647i
\(134\) 4.81837 + 0.756213i 0.416244 + 0.0653269i
\(135\) −1.42426 + 6.23069i −0.122581 + 0.536253i
\(136\) 6.84349 13.5723i 0.586824 1.16381i
\(137\) 10.8159i 0.924062i −0.886864 0.462031i \(-0.847121\pi\)
0.886864 0.462031i \(-0.152879\pi\)
\(138\) −0.743185 + 0.541553i −0.0632641 + 0.0461001i
\(139\) −5.79546 −0.491565 −0.245782 0.969325i \(-0.579045\pi\)
−0.245782 + 0.969325i \(0.579045\pi\)
\(140\) −1.13447 0.673996i −0.0958804 0.0569631i
\(141\) 22.2892 1.87709
\(142\) 9.11449 6.64166i 0.764871 0.557356i
\(143\) 3.32240 + 3.32240i 0.277833 + 0.277833i
\(144\) 5.45395 + 3.91586i 0.454496 + 0.326322i
\(145\) 4.48366 + 7.14088i 0.372347 + 0.593017i
\(146\) 6.23945 4.54664i 0.516381 0.376283i
\(147\) −14.9526 −1.23327
\(148\) 6.77061 3.47381i 0.556541 0.285545i
\(149\) −0.492775 0.492775i −0.0403697 0.0403697i 0.686634 0.727003i \(-0.259088\pi\)
−0.727003 + 0.686634i \(0.759088\pi\)
\(150\) −12.5788 8.70061i −1.02705 0.710402i
\(151\) 3.76361 3.76361i 0.306279 0.306279i −0.537186 0.843464i \(-0.680513\pi\)
0.843464 + 0.537186i \(0.180513\pi\)
\(152\) −11.2942 + 3.72243i −0.916078 + 0.301929i
\(153\) 9.02046i 0.729261i
\(154\) −0.205905 0.282568i −0.0165923 0.0227699i
\(155\) −10.2577 2.34478i −0.823918 0.188337i
\(156\) 7.43167 23.0930i 0.595010 1.84892i
\(157\) −0.485792 −0.0387704 −0.0193852 0.999812i \(-0.506171\pi\)
−0.0193852 + 0.999812i \(0.506171\pi\)
\(158\) 1.59507 + 2.18895i 0.126897 + 0.174144i
\(159\) 7.12180i 0.564795i
\(160\) 10.6650 6.80136i 0.843140 0.537695i
\(161\) −0.0627220 0.0627220i −0.00494319 0.00494319i
\(162\) 15.6730 + 2.45978i 1.23139 + 0.193258i
\(163\) 13.5914 13.5914i 1.06456 1.06456i 0.0667960 0.997767i \(-0.478722\pi\)
0.997767 0.0667960i \(-0.0212777\pi\)
\(164\) −11.9532 + 4.59565i −0.933391 + 0.358860i
\(165\) −2.15488 3.43197i −0.167758 0.267178i
\(166\) 2.02200 1.47341i 0.156937 0.114359i
\(167\) 11.5521i 0.893929i 0.894552 + 0.446964i \(0.147495\pi\)
−0.894552 + 0.446964i \(0.852505\pi\)
\(168\) −0.812746 + 1.61187i −0.0627047 + 0.124359i
\(169\) −18.4478 −1.41906
\(170\) 15.7793 + 6.30979i 1.21022 + 0.483938i
\(171\) 4.99019 4.99019i 0.381609 0.381609i
\(172\) −2.59568 5.05909i −0.197919 0.385752i
\(173\) 11.4707 11.4707i 0.872101 0.872101i −0.120600 0.992701i \(-0.538482\pi\)
0.992701 + 0.120600i \(0.0384819\pi\)
\(174\) 9.32220 6.79302i 0.706715 0.514978i
\(175\) 0.640994 1.32881i 0.0484546 0.100449i
\(176\) 3.30718 0.542886i 0.249288 0.0409216i
\(177\) 30.8452 2.31847
\(178\) 16.8094 12.2489i 1.25992 0.918094i
\(179\) −3.60813 + 3.60813i −0.269684 + 0.269684i −0.828973 0.559289i \(-0.811074\pi\)
0.559289 + 0.828973i \(0.311074\pi\)
\(180\) −3.83412 + 6.45360i −0.285778 + 0.481023i
\(181\) −7.71931 + 7.71931i −0.573772 + 0.573772i −0.933180 0.359409i \(-0.882978\pi\)
0.359409 + 0.933180i \(0.382978\pi\)
\(182\) 2.31179 + 0.362820i 0.171361 + 0.0268940i
\(183\) 6.45631i 0.477264i
\(184\) 0.807543 0.266157i 0.0595328 0.0196213i
\(185\) 4.52416 + 7.20539i 0.332623 + 0.529750i
\(186\) −2.23180 + 14.2204i −0.163643 + 1.04269i
\(187\) 3.18388 + 3.18388i 0.232828 + 0.232828i
\(188\) −19.6187 6.31357i −1.43084 0.460465i
\(189\) 0.843398i 0.0613482i
\(190\) −5.23862 12.2199i −0.380050 0.886523i
\(191\) 15.8707 + 15.8707i 1.14836 + 1.14836i 0.986875 + 0.161488i \(0.0516293\pi\)
0.161488 + 0.986875i \(0.448371\pi\)
\(192\) −10.2887 13.9129i −0.742523 1.00408i
\(193\) 11.8917i 0.855982i 0.903783 + 0.427991i \(0.140779\pi\)
−0.903783 + 0.427991i \(0.859221\pi\)
\(194\) −2.88328 + 18.3714i −0.207007 + 1.31899i
\(195\) 26.4408 + 6.04404i 1.89347 + 0.432822i
\(196\) 13.1611 + 4.23544i 0.940082 + 0.302532i
\(197\) 18.9229 + 18.9229i 1.34820 + 1.34820i 0.887617 + 0.460583i \(0.152360\pi\)
0.460583 + 0.887617i \(0.347640\pi\)
\(198\) −1.60742 + 1.17132i −0.114235 + 0.0832419i
\(199\) 13.1786 13.1786i 0.934207 0.934207i −0.0637586 0.997965i \(-0.520309\pi\)
0.997965 + 0.0637586i \(0.0203088\pi\)
\(200\) 8.60721 + 11.2212i 0.608622 + 0.793461i
\(201\) 7.45974 0.526170
\(202\) −10.4043 + 7.58157i −0.732047 + 0.533437i
\(203\) 0.786759 + 0.786759i 0.0552197 + 0.0552197i
\(204\) 7.12181 22.1302i 0.498626 1.54942i
\(205\) −6.27501 12.8695i −0.438266 0.898846i
\(206\) −7.44919 10.2227i −0.519010 0.712248i
\(207\) −0.356803 + 0.356803i −0.0247995 + 0.0247995i
\(208\) −13.0826 + 18.2212i −0.907112 + 1.26341i
\(209\) 3.52269i 0.243670i
\(210\) −1.87398 0.749362i −0.129317 0.0517109i
\(211\) 15.3564 + 15.3564i 1.05718 + 1.05718i 0.998263 + 0.0589138i \(0.0187637\pi\)
0.0589138 + 0.998263i \(0.481236\pi\)
\(212\) 2.01730 6.26854i 0.138549 0.430525i
\(213\) 12.1967 12.1967i 0.835707 0.835707i
\(214\) 7.72603 + 10.6026i 0.528140 + 0.724778i
\(215\) 5.38396 3.38051i 0.367183 0.230549i
\(216\) −7.21881 3.63990i −0.491178 0.247664i
\(217\) −1.38850 −0.0942576
\(218\) 7.49290 + 10.2827i 0.507483 + 0.696430i
\(219\) 8.34945 8.34945i 0.564204 0.564204i
\(220\) 0.924576 + 3.63117i 0.0623349 + 0.244814i
\(221\) −30.1366 −2.02721
\(222\) 9.40642 6.85439i 0.631318 0.460036i
\(223\) −6.06023 + 6.06023i −0.405823 + 0.405823i −0.880279 0.474456i \(-0.842645\pi\)
0.474456 + 0.880279i \(0.342645\pi\)
\(224\) 1.17195 1.18854i 0.0783039 0.0794124i
\(225\) −7.55915 3.64638i −0.503943 0.243092i
\(226\) 7.05968 + 9.68815i 0.469603 + 0.644446i
\(227\) −22.9523 −1.52340 −0.761698 0.647933i \(-0.775634\pi\)
−0.761698 + 0.647933i \(0.775634\pi\)
\(228\) −16.1824 + 8.30275i −1.07171 + 0.549863i
\(229\) −8.25822 8.25822i −0.545719 0.545719i 0.379481 0.925200i \(-0.376103\pi\)
−0.925200 + 0.379481i \(0.876103\pi\)
\(230\) 0.374566 + 0.873731i 0.0246982 + 0.0576121i
\(231\) −0.378123 0.378123i −0.0248787 0.0248787i
\(232\) −10.1295 + 3.33856i −0.665033 + 0.219187i
\(233\) 1.24661i 0.0816681i 0.999166 + 0.0408341i \(0.0130015\pi\)
−0.999166 + 0.0408341i \(0.986998\pi\)
\(234\) 2.06395 13.1509i 0.134925 0.859702i
\(235\) 5.13471 22.4628i 0.334952 1.46531i
\(236\) −27.1496 8.73714i −1.76729 0.568739i
\(237\) 2.92919 + 2.92919i 0.190271 + 0.190271i
\(238\) 2.21540 + 0.347693i 0.143603 + 0.0225376i
\(239\) −16.3808 16.3808i −1.05959 1.05959i −0.998108 0.0614786i \(-0.980418\pi\)
−0.0614786 0.998108i \(-0.519582\pi\)
\(240\) 14.5016 12.8057i 0.936074 0.826605i
\(241\) 0.184499i 0.0118846i −0.999982 0.00594232i \(-0.998108\pi\)
0.999982 0.00594232i \(-0.00189151\pi\)
\(242\) 2.25802 14.3874i 0.145151 0.924860i
\(243\) 15.6897 1.00650
\(244\) −1.82880 + 5.68278i −0.117077 + 0.363803i
\(245\) −3.44461 + 15.0691i −0.220068 + 0.962730i
\(246\) −16.9712 + 9.77846i −1.08204 + 0.623452i
\(247\) 16.6718 + 16.6718i 1.06080 + 1.06080i
\(248\) 5.99243 11.8844i 0.380520 0.754663i
\(249\) 2.70578 2.70578i 0.171472 0.171472i
\(250\) −11.6661 + 10.6724i −0.737832 + 0.674984i
\(251\) −22.1113 −1.39566 −0.697828 0.716265i \(-0.745850\pi\)
−0.697828 + 0.716265i \(0.745850\pi\)
\(252\) −0.303450 + 0.942936i −0.0191156 + 0.0593994i
\(253\) 0.251875i 0.0158353i
\(254\) 11.4421 + 15.7023i 0.717944 + 0.985249i
\(255\) 25.3384 + 5.79203i 1.58675 + 0.362711i
\(256\) 5.11508 + 15.1603i 0.319693 + 0.947521i
\(257\) −12.2412 −0.763582 −0.381791 0.924249i \(-0.624693\pi\)
−0.381791 + 0.924249i \(0.624693\pi\)
\(258\) −5.12169 7.02860i −0.318863 0.437582i
\(259\) 0.793867 + 0.793867i 0.0493285 + 0.0493285i
\(260\) −21.5609 12.8095i −1.33715 0.794409i
\(261\) 4.47559 4.47559i 0.277032 0.277032i
\(262\) −10.7074 1.68046i −0.661505 0.103819i
\(263\) 11.8229i 0.729030i 0.931197 + 0.364515i \(0.118765\pi\)
−0.931197 + 0.364515i \(0.881235\pi\)
\(264\) 4.86832 1.60454i 0.299624 0.0987528i
\(265\) 7.17728 + 1.64064i 0.440897 + 0.100783i
\(266\) −1.03323 1.41792i −0.0633513 0.0869384i
\(267\) 22.4939 22.4939i 1.37660 1.37660i
\(268\) −6.56599 2.11303i −0.401082 0.129074i
\(269\) 8.55896i 0.521849i 0.965359 + 0.260925i \(0.0840274\pi\)
−0.965359 + 0.260925i \(0.915973\pi\)
\(270\) 3.35604 8.39268i 0.204242 0.510762i
\(271\) 12.5928i 0.764957i 0.923964 + 0.382479i \(0.124929\pi\)
−0.923964 + 0.382479i \(0.875071\pi\)
\(272\) −12.5371 + 17.4615i −0.760172 + 1.05876i
\(273\) 3.57908 0.216616
\(274\) −2.37157 + 15.1110i −0.143272 + 0.912887i
\(275\) −3.95512 + 1.38106i −0.238503 + 0.0832808i
\(276\) 1.15706 0.593654i 0.0696467 0.0357338i
\(277\) −9.15817 + 9.15817i −0.550261 + 0.550261i −0.926516 0.376255i \(-0.877212\pi\)
0.376255 + 0.926516i \(0.377212\pi\)
\(278\) 8.09691 + 1.27076i 0.485620 + 0.0762151i
\(279\) 7.89868i 0.472881i
\(280\) 1.43720 + 1.19040i 0.0858890 + 0.0711401i
\(281\) 21.4286 21.4286i 1.27832 1.27832i 0.336716 0.941606i \(-0.390684\pi\)
0.941606 0.336716i \(-0.109316\pi\)
\(282\) −31.1404 4.88730i −1.85439 0.291034i
\(283\) −11.0847 + 11.0847i −0.658917 + 0.658917i −0.955124 0.296207i \(-0.904278\pi\)
0.296207 + 0.955124i \(0.404278\pi\)
\(284\) −14.1903 + 7.28063i −0.842037 + 0.432026i
\(285\) −10.8132 17.2216i −0.640518 1.02012i
\(286\) −3.91327 5.37027i −0.231397 0.317551i
\(287\) −1.18565 1.47102i −0.0699868 0.0868313i
\(288\) −6.76115 6.66677i −0.398405 0.392843i
\(289\) −11.8800 −0.698826
\(290\) −4.69840 10.9597i −0.275900 0.643577i
\(291\) 28.4424i 1.66732i
\(292\) −9.71415 + 4.98406i −0.568477 + 0.291670i
\(293\) 24.2894 1.41900 0.709501 0.704705i \(-0.248921\pi\)
0.709501 + 0.704705i \(0.248921\pi\)
\(294\) 20.8905 + 3.27863i 1.21836 + 0.191214i
\(295\) 7.10575 31.0855i 0.413713 1.80987i
\(296\) −10.2210 + 3.36872i −0.594083 + 0.195803i
\(297\) 1.69344 1.69344i 0.0982631 0.0982631i
\(298\) 0.580412 + 0.796511i 0.0336223 + 0.0461406i
\(299\) −1.19205 1.19205i −0.0689379 0.0689379i
\(300\) 15.6662 + 14.9139i 0.904489 + 0.861052i
\(301\) 0.593188 0.593188i 0.0341908 0.0341908i
\(302\) −6.08343 + 4.43295i −0.350062 + 0.255088i
\(303\) −13.9228 + 13.9228i −0.799843 + 0.799843i
\(304\) 16.5954 2.72420i 0.951813 0.156244i
\(305\) −6.50661 1.48733i −0.372567 0.0851641i
\(306\) 1.97790 12.6026i 0.113069 0.720442i
\(307\) 10.1386 10.1386i 0.578638 0.578638i −0.355890 0.934528i \(-0.615822\pi\)
0.934528 + 0.355890i \(0.115822\pi\)
\(308\) 0.225714 + 0.439927i 0.0128613 + 0.0250672i
\(309\) −13.6797 13.6797i −0.778210 0.778210i
\(310\) 13.8170 + 5.52510i 0.784753 + 0.313805i
\(311\) −16.2293 16.2293i −0.920279 0.920279i 0.0767695 0.997049i \(-0.475539\pi\)
−0.997049 + 0.0767695i \(0.975539\pi\)
\(312\) −15.4464 + 30.6340i −0.874482 + 1.73431i
\(313\) 10.5559 0.596657 0.298328 0.954463i \(-0.403571\pi\)
0.298328 + 0.954463i \(0.403571\pi\)
\(314\) 0.678706 + 0.106519i 0.0383016 + 0.00601119i
\(315\) −1.07963 0.246790i −0.0608304 0.0139051i
\(316\) −1.74853 3.40796i −0.0983624 0.191713i
\(317\) 8.92147 0.501080 0.250540 0.968106i \(-0.419392\pi\)
0.250540 + 0.968106i \(0.419392\pi\)
\(318\) 1.56158 9.94995i 0.0875692 0.557966i
\(319\) 3.15942i 0.176894i
\(320\) −16.3915 + 7.16377i −0.916311 + 0.400467i
\(321\) 14.1881 + 14.1881i 0.791901 + 0.791901i
\(322\) 0.0738767 + 0.101383i 0.00411699 + 0.00564983i
\(323\) 15.9767 + 15.9767i 0.888966 + 0.888966i
\(324\) −21.3576 6.87316i −1.18653 0.381842i
\(325\) 12.1822 25.2545i 0.675749 1.40087i
\(326\) −21.9689 + 16.0086i −1.21675 + 0.886633i
\(327\) 13.7600 + 13.7600i 0.760927 + 0.760927i
\(328\) 17.7077 3.79968i 0.977744 0.209802i
\(329\) 3.04061i 0.167634i
\(330\) 2.25809 + 5.26734i 0.124304 + 0.289958i
\(331\) 14.1620 14.1620i 0.778415 0.778415i −0.201146 0.979561i \(-0.564467\pi\)
0.979561 + 0.201146i \(0.0644666\pi\)
\(332\) −3.14803 + 1.61517i −0.172771 + 0.0886437i
\(333\) 4.51602 4.51602i 0.247476 0.247476i
\(334\) 2.53301 16.1396i 0.138600 0.883119i
\(335\) 1.71849 7.51786i 0.0938910 0.410745i
\(336\) 1.48893 2.07376i 0.0812277 0.113133i
\(337\) −9.81602 9.81602i −0.534713 0.534713i 0.387258 0.921971i \(-0.373422\pi\)
−0.921971 + 0.387258i \(0.873422\pi\)
\(338\) 25.7736 + 4.04501i 1.40190 + 0.220020i
\(339\) 12.9644 + 12.9644i 0.704129 + 0.704129i
\(340\) −20.6619 12.2754i −1.12055 0.665726i
\(341\) 2.78793 + 2.78793i 0.150975 + 0.150975i
\(342\) −8.06604 + 5.87766i −0.436162 + 0.317828i
\(343\) 4.10526i 0.221663i
\(344\) 2.51715 + 7.63726i 0.135716 + 0.411774i
\(345\) 0.773153 + 1.23136i 0.0416251 + 0.0662941i
\(346\) −18.5410 + 13.5107i −0.996771 + 0.726339i
\(347\) −29.6855 −1.59360 −0.796801 0.604241i \(-0.793476\pi\)
−0.796801 + 0.604241i \(0.793476\pi\)
\(348\) −14.5137 + 7.44655i −0.778014 + 0.399177i
\(349\) −11.0175 −0.589753 −0.294876 0.955535i \(-0.595278\pi\)
−0.294876 + 0.955535i \(0.595278\pi\)
\(350\) −1.18691 + 1.71595i −0.0634428 + 0.0917216i
\(351\) 16.0290i 0.855565i
\(352\) −4.73954 + 0.0333130i −0.252619 + 0.00177559i
\(353\) 11.9989 + 11.9989i 0.638635 + 0.638635i 0.950219 0.311584i \(-0.100859\pi\)
−0.311584 + 0.950219i \(0.600859\pi\)
\(354\) −43.0942 6.76337i −2.29043 0.359469i
\(355\) −9.48202 15.1015i −0.503253 0.801504i
\(356\) −26.1704 + 13.4273i −1.38703 + 0.711647i
\(357\) 3.42985 0.181527
\(358\) 5.83211 4.24981i 0.308236 0.224610i
\(359\) 29.8748 1.57673 0.788367 0.615206i \(-0.210927\pi\)
0.788367 + 0.615206i \(0.210927\pi\)
\(360\) 6.77176 8.17570i 0.356903 0.430897i
\(361\) 1.32316i 0.0696398i
\(362\) 12.4773 9.09214i 0.655794 0.477872i
\(363\) 22.2745i 1.16911i
\(364\) −3.15027 1.01380i −0.165119 0.0531376i
\(365\) −6.49105 10.3379i −0.339757 0.541113i
\(366\) −1.41566 + 9.02019i −0.0739978 + 0.471493i
\(367\) −3.28211 + 3.28211i −0.171324 + 0.171324i −0.787561 0.616237i \(-0.788657\pi\)
0.616237 + 0.787561i \(0.288657\pi\)
\(368\) −1.18659 + 0.194783i −0.0618551 + 0.0101537i
\(369\) −8.36808 + 6.74475i −0.435625 + 0.351117i
\(370\) −4.74085 11.0587i −0.246465 0.574916i
\(371\) 0.971530 0.0504393
\(372\) 6.23614 19.3781i 0.323329 1.00471i
\(373\) 0.510894 + 0.510894i 0.0264531 + 0.0264531i 0.720210 0.693757i \(-0.244046\pi\)
−0.693757 + 0.720210i \(0.744046\pi\)
\(374\) −3.75011 5.14636i −0.193914 0.266112i
\(375\) −15.0964 + 18.8922i −0.779573 + 0.975590i
\(376\) 26.0251 + 13.1225i 1.34214 + 0.676742i
\(377\) 14.9526 + 14.9526i 0.770096 + 0.770096i
\(378\) 0.184930 1.17832i 0.00951179 0.0606063i
\(379\) −32.1666 −1.65229 −0.826144 0.563459i \(-0.809470\pi\)
−0.826144 + 0.563459i \(0.809470\pi\)
\(380\) 4.63952 + 18.2212i 0.238002 + 0.934727i
\(381\) 21.0123 + 21.0123i 1.07649 + 1.07649i
\(382\) −18.6932 25.6531i −0.956427 1.31252i
\(383\) 12.3819i 0.632684i 0.948645 + 0.316342i \(0.102455\pi\)
−0.948645 + 0.316342i \(0.897545\pi\)
\(384\) 11.3238 + 21.6939i 0.577866 + 1.10706i
\(385\) −0.468177 + 0.293962i −0.0238605 + 0.0149817i
\(386\) 2.60747 16.6140i 0.132717 0.845631i
\(387\) −3.37443 3.37443i −0.171532 0.171532i
\(388\) 8.05653 25.0347i 0.409008 1.27094i
\(389\) −4.79811 −0.243274 −0.121637 0.992575i \(-0.538814\pi\)
−0.121637 + 0.992575i \(0.538814\pi\)
\(390\) −35.6155 14.2418i −1.80346 0.721163i
\(391\) −1.14235 1.14235i −0.0577709 0.0577709i
\(392\) −17.4589 8.80321i −0.881807 0.444629i
\(393\) −16.5771 −0.836202
\(394\) −22.2882 30.5866i −1.12286 1.54093i
\(395\) 3.62680 2.27722i 0.182484 0.114579i
\(396\) 2.50258 1.28401i 0.125760 0.0645237i
\(397\) 12.9178 0.648327 0.324163 0.946001i \(-0.394917\pi\)
0.324163 + 0.946001i \(0.394917\pi\)
\(398\) −21.3016 + 15.5223i −1.06775 + 0.778065i
\(399\) −1.89742 1.89742i −0.0949898 0.0949898i
\(400\) −9.56478 17.5646i −0.478239 0.878230i
\(401\) 35.5877i 1.77716i 0.458719 + 0.888581i \(0.348309\pi\)
−0.458719 + 0.888581i \(0.651691\pi\)
\(402\) −10.4221 1.63568i −0.519807 0.0815805i
\(403\) −26.3888 −1.31452
\(404\) 16.1984 8.31096i 0.805902 0.413486i
\(405\) 5.58982 24.4537i 0.277760 1.21512i
\(406\) −0.926679 1.27170i −0.0459903 0.0631135i
\(407\) 3.18796i 0.158022i
\(408\) −14.8024 + 29.3568i −0.732828 + 1.45338i
\(409\) 28.3999i 1.40429i 0.712036 + 0.702143i \(0.247773\pi\)
−0.712036 + 0.702143i \(0.752227\pi\)
\(410\) 5.94502 + 19.3561i 0.293603 + 0.955927i
\(411\) 23.3946i 1.15397i
\(412\) 8.16585 + 15.9156i 0.402302 + 0.784105i
\(413\) 4.20779i 0.207052i
\(414\) 0.576729 0.420258i 0.0283447 0.0206546i
\(415\) −2.10353 3.35018i −0.103258 0.164454i
\(416\) 22.2731 22.5884i 1.09203 1.10749i
\(417\) 12.5355 0.613868
\(418\) −0.772414 + 4.92160i −0.0377800 + 0.240723i
\(419\) 19.6389i 0.959424i −0.877426 0.479712i \(-0.840741\pi\)
0.877426 0.479712i \(-0.159259\pi\)
\(420\) 2.45385 + 1.45785i 0.119736 + 0.0711357i
\(421\) −13.1860 13.1860i −0.642647 0.642647i 0.308558 0.951205i \(-0.400154\pi\)
−0.951205 + 0.308558i \(0.900154\pi\)
\(422\) −18.0874 24.8217i −0.880482 1.20830i
\(423\) −17.2969 −0.841005
\(424\) −4.19289 + 8.31552i −0.203625 + 0.403837i
\(425\) 11.6743 24.2015i 0.566287 1.17394i
\(426\) −19.7146 + 14.3659i −0.955174 + 0.696028i
\(427\) −0.880747 −0.0426223
\(428\) −8.46931 16.5071i −0.409380 0.797899i
\(429\) −7.18633 7.18633i −0.346959 0.346959i
\(430\) −8.26324 + 3.54243i −0.398489 + 0.170831i
\(431\) −35.2396 −1.69743 −0.848716 0.528850i \(-0.822624\pi\)
−0.848716 + 0.528850i \(0.822624\pi\)
\(432\) 9.28737 + 6.66821i 0.446839 + 0.320824i
\(433\) 0.610511 + 0.610511i 0.0293393 + 0.0293393i 0.721624 0.692285i \(-0.243396\pi\)
−0.692285 + 0.721624i \(0.743396\pi\)
\(434\) 1.93989 + 0.304454i 0.0931177 + 0.0146142i
\(435\) −9.69811 15.4457i −0.464989 0.740562i
\(436\) −8.21376 16.0090i −0.393368 0.766691i
\(437\) 1.26391i 0.0604610i
\(438\) −13.4959 + 9.83435i −0.644858 + 0.469903i
\(439\) −22.5528 22.5528i −1.07639 1.07639i −0.996830 0.0795578i \(-0.974649\pi\)
−0.0795578 0.996830i \(-0.525351\pi\)
\(440\) −0.495537 5.27588i −0.0236238 0.251518i
\(441\) 11.6036 0.552552
\(442\) 42.1042 + 6.60799i 2.00269 + 0.314310i
\(443\) 16.8925 + 16.8925i 0.802587 + 0.802587i 0.983499 0.180913i \(-0.0579051\pi\)
−0.180913 + 0.983499i \(0.557905\pi\)
\(444\) −14.6448 + 7.51382i −0.695010 + 0.356590i
\(445\) −17.4872 27.8510i −0.828975 1.32026i
\(446\) 9.79564 7.13801i 0.463837 0.337994i
\(447\) 1.06587 + 1.06587i 0.0504138 + 0.0504138i
\(448\) −1.89795 + 1.40355i −0.0896696 + 0.0663114i
\(449\) 8.55502 0.403736 0.201868 0.979413i \(-0.435299\pi\)
0.201868 + 0.979413i \(0.435299\pi\)
\(450\) 9.76144 + 6.75188i 0.460159 + 0.318287i
\(451\) −0.572973 + 5.33425i −0.0269802 + 0.251180i
\(452\) −7.73886 15.0834i −0.364006 0.709463i
\(453\) −8.14066 + 8.14066i −0.382482 + 0.382482i
\(454\) 32.0669 + 5.03270i 1.50497 + 0.236196i
\(455\) 0.824506 3.60696i 0.0386534 0.169097i
\(456\) 24.4292 8.05158i 1.14400 0.377050i
\(457\) 28.2440i 1.32120i −0.750739 0.660599i \(-0.770303\pi\)
0.750739 0.660599i \(-0.229697\pi\)
\(458\) 9.72690 + 13.3484i 0.454508 + 0.623731i
\(459\) 15.3607i 0.716975i
\(460\) −0.331729 1.30283i −0.0154670 0.0607448i
\(461\) 26.8598 1.25098 0.625492 0.780231i \(-0.284898\pi\)
0.625492 + 0.780231i \(0.284898\pi\)
\(462\) 0.445370 + 0.611191i 0.0207205 + 0.0284352i
\(463\) −18.4162 −0.855873 −0.427936 0.903809i \(-0.640759\pi\)
−0.427936 + 0.903809i \(0.640759\pi\)
\(464\) 14.8841 2.44327i 0.690975 0.113426i
\(465\) 22.1873 + 5.07174i 1.02891 + 0.235196i
\(466\) 0.273342 1.74165i 0.0126623 0.0806806i
\(467\) 23.2022 + 23.2022i 1.07367 + 1.07367i 0.997061 + 0.0766098i \(0.0244096\pi\)
0.0766098 + 0.997061i \(0.475590\pi\)
\(468\) −5.76715 + 17.9207i −0.266587 + 0.828387i
\(469\) 1.01763i 0.0469899i
\(470\) −12.0991 + 30.2572i −0.558092 + 1.39566i
\(471\) 1.05076 0.0484166
\(472\) 36.0153 + 18.1598i 1.65774 + 0.835873i
\(473\) −2.38209 −0.109529
\(474\) −3.45013 4.73469i −0.158470 0.217471i
\(475\) −19.8468 + 6.93013i −0.910632 + 0.317976i
\(476\) −3.01892 0.971531i −0.138372 0.0445301i
\(477\) 5.52668i 0.253049i
\(478\) 19.2940 + 26.4776i 0.882489 + 1.21106i
\(479\) −5.93689 5.93689i −0.271264 0.271264i 0.558345 0.829609i \(-0.311436\pi\)
−0.829609 + 0.558345i \(0.811436\pi\)
\(480\) −23.0682 + 14.7113i −1.05292 + 0.671475i
\(481\) 15.0876 + 15.0876i 0.687937 + 0.687937i
\(482\) −0.0404548 + 0.257766i −0.00184266 + 0.0117409i
\(483\) 0.135667 + 0.135667i 0.00617307 + 0.00617307i
\(484\) −6.30941 + 19.6058i −0.286791 + 0.891171i
\(485\) 28.6640 + 6.55222i 1.30156 + 0.297521i
\(486\) −21.9203 3.44026i −0.994326 0.156053i
\(487\) −15.9947 + 15.9947i −0.724790 + 0.724790i −0.969577 0.244787i \(-0.921282\pi\)
0.244787 + 0.969577i \(0.421282\pi\)
\(488\) 3.80109 7.53848i 0.172067 0.341251i
\(489\) −29.3981 + 29.3981i −1.32943 + 1.32943i
\(490\) 8.11667 20.2979i 0.366674 0.916967i
\(491\) 14.0574i 0.634404i 0.948358 + 0.317202i \(0.102743\pi\)
−0.948358 + 0.317202i \(0.897257\pi\)
\(492\) 25.8548 9.94036i 1.16562 0.448146i
\(493\) 14.3291 + 14.3291i 0.645351 + 0.645351i
\(494\) −19.6368 26.9480i −0.883500 1.21245i
\(495\) 1.67224 + 2.66329i 0.0751617 + 0.119706i
\(496\) −10.9780 + 15.2899i −0.492926 + 0.686539i
\(497\) −1.66384 1.66384i −0.0746332 0.0746332i
\(498\) −4.37356 + 3.18698i −0.195984 + 0.142812i
\(499\) 28.5996 + 28.5996i 1.28029 + 1.28029i 0.940499 + 0.339796i \(0.110358\pi\)
0.339796 + 0.940499i \(0.389642\pi\)
\(500\) 18.6390 12.3526i 0.833563 0.552424i
\(501\) 24.9871i 1.11634i
\(502\) 30.8920 + 4.84831i 1.37878 + 0.216391i
\(503\) 14.2373 0.634808 0.317404 0.948290i \(-0.397189\pi\)
0.317404 + 0.948290i \(0.397189\pi\)
\(504\) 0.630710 1.25085i 0.0280940 0.0557173i
\(505\) 10.8239 + 17.2386i 0.481657 + 0.767108i
\(506\) 0.0552282 0.351898i 0.00245519 0.0156438i
\(507\) 39.9024 1.77213
\(508\) −12.5429 24.4467i −0.556503 1.08465i
\(509\) 13.8837 + 13.8837i 0.615384 + 0.615384i 0.944344 0.328960i \(-0.106698\pi\)
−0.328960 + 0.944344i \(0.606698\pi\)
\(510\) −34.1305 13.6480i −1.51133 0.604344i
\(511\) −1.13900 1.13900i −0.0503865 0.0503865i
\(512\) −3.82216 22.3023i −0.168917 0.985630i
\(513\) 8.49765 8.49765i 0.375180 0.375180i
\(514\) 17.1023 + 2.68409i 0.754348 + 0.118390i
\(515\) −16.9376 + 10.6349i −0.746361 + 0.468630i
\(516\) 5.61443 + 10.9428i 0.247161 + 0.481729i
\(517\) −6.10515 + 6.10515i −0.268504 + 0.268504i
\(518\) −0.935051 1.28319i −0.0410838 0.0563801i
\(519\) −24.8110 + 24.8110i −1.08908 + 1.08908i
\(520\) 27.3143 + 22.6239i 1.19781 + 0.992123i
\(521\) −27.1602 27.1602i −1.18991 1.18991i −0.977091 0.212821i \(-0.931735\pi\)
−0.212821 0.977091i \(-0.568265\pi\)
\(522\) −7.23425 + 5.27154i −0.316635 + 0.230729i
\(523\) −12.5127 + 12.5127i −0.547141 + 0.547141i −0.925613 0.378472i \(-0.876450\pi\)
0.378472 + 0.925613i \(0.376450\pi\)
\(524\) 14.5910 + 4.69558i 0.637409 + 0.205127i
\(525\) −1.38646 + 2.87421i −0.0605102 + 0.125441i
\(526\) 2.59238 16.5179i 0.113033 0.720214i
\(527\) −25.2885 −1.10159
\(528\) −7.15341 + 1.17426i −0.311312 + 0.0511030i
\(529\) 22.9096i 0.996071i
\(530\) −9.66773 3.86590i −0.419939 0.167924i
\(531\) −23.9366 −1.03876
\(532\) 1.13263 + 2.20755i 0.0491058 + 0.0957094i
\(533\) −22.5336 27.9570i −0.976040 1.21095i
\(534\) −36.3587 + 26.4943i −1.57339 + 1.14652i
\(535\) 17.5671 11.0301i 0.759491 0.476874i
\(536\) 8.71010 + 4.39185i 0.376219 + 0.189699i
\(537\) 7.80435 7.80435i 0.336783 0.336783i
\(538\) 1.87671 11.9578i 0.0809106 0.515539i
\(539\) 4.09562 4.09562i 0.176411 0.176411i
\(540\) −6.52901 + 10.9896i −0.280964 + 0.472919i
\(541\) 10.8226i 0.465301i 0.972560 + 0.232650i \(0.0747397\pi\)
−0.972560 + 0.232650i \(0.925260\pi\)
\(542\) 2.76119 17.5935i 0.118603 0.755707i
\(543\) 16.6968 16.6968i 0.716528 0.716528i
\(544\) 21.3444 21.6466i 0.915136 0.928091i
\(545\) 17.0370 10.6973i 0.729785 0.458222i
\(546\) −5.00037 0.784778i −0.213996 0.0335854i
\(547\) 39.0177 1.66828 0.834139 0.551554i \(-0.185965\pi\)
0.834139 + 0.551554i \(0.185965\pi\)
\(548\) 6.62671 20.5917i 0.283079 0.879634i
\(549\) 5.01025i 0.213832i
\(550\) 5.82857 1.06226i 0.248531 0.0452949i
\(551\) 15.8540i 0.675401i
\(552\) −1.74671 + 0.575695i −0.0743448 + 0.0245032i
\(553\) 0.399590 0.399590i 0.0169923 0.0169923i
\(554\) 14.8031 10.7869i 0.628922 0.458291i
\(555\) −9.78572 15.5852i −0.415381 0.661554i
\(556\) −11.0336 3.55079i −0.467931 0.150587i
\(557\) 35.3386i 1.49734i −0.662941 0.748672i \(-0.730692\pi\)
0.662941 0.748672i \(-0.269308\pi\)
\(558\) 1.73193 11.0353i 0.0733183 0.467163i
\(559\) 11.2737 11.2737i 0.476826 0.476826i
\(560\) −1.74691 1.97826i −0.0738204 0.0835965i
\(561\) −6.88670 6.88670i −0.290757 0.290757i
\(562\) −34.6367 + 25.2395i −1.46106 + 1.06467i
\(563\) −12.9105 −0.544114 −0.272057 0.962281i \(-0.587704\pi\)
−0.272057 + 0.962281i \(0.587704\pi\)
\(564\) 42.4351 + 13.6562i 1.78684 + 0.575030i
\(565\) 16.0520 10.0788i 0.675312 0.424019i
\(566\) 17.9171 13.0560i 0.753111 0.548786i
\(567\) 3.31010i 0.139011i
\(568\) 21.4218 7.06038i 0.898839 0.296247i
\(569\) −25.8383 −1.08320 −0.541599 0.840637i \(-0.682181\pi\)
−0.541599 + 0.840637i \(0.682181\pi\)
\(570\) 11.3311 + 26.4315i 0.474608 + 1.10709i
\(571\) −6.86766 + 6.86766i −0.287403 + 0.287403i −0.836052 0.548650i \(-0.815142\pi\)
0.548650 + 0.836052i \(0.315142\pi\)
\(572\) 4.28975 + 8.36092i 0.179364 + 0.349588i
\(573\) −34.3282 34.3282i −1.43408 1.43408i
\(574\) 1.33394 + 2.31515i 0.0556777 + 0.0966325i
\(575\) 1.41906 0.495510i 0.0591789 0.0206642i
\(576\) 7.98428 + 10.7967i 0.332678 + 0.449864i
\(577\) −24.7568 −1.03064 −0.515320 0.856998i \(-0.672327\pi\)
−0.515320 + 0.856998i \(0.672327\pi\)
\(578\) 16.5978 + 2.60491i 0.690376 + 0.108350i
\(579\) 25.7216i 1.06895i
\(580\) 4.16108 + 16.3422i 0.172779 + 0.678572i
\(581\) −0.369112 0.369112i −0.0153134 0.0153134i
\(582\) 6.23651 39.7372i 0.258512 1.64716i
\(583\) −1.95071 1.95071i −0.0807901 0.0807901i
\(584\) 14.6646 4.83328i 0.606825 0.200003i
\(585\) −20.5187 4.69031i −0.848344 0.193921i
\(586\) −33.9350 5.32589i −1.40184 0.220010i
\(587\) 15.4873i 0.639230i 0.947548 + 0.319615i \(0.103553\pi\)
−0.947548 + 0.319615i \(0.896447\pi\)
\(588\) −28.4674 9.16123i −1.17398 0.377803i
\(589\) 13.9898 + 13.9898i 0.576440 + 0.576440i
\(590\) −16.7436 + 41.8719i −0.689323 + 1.72384i
\(591\) −40.9300 40.9300i −1.68364 1.68364i
\(592\) 15.0185 2.46534i 0.617257 0.101325i
\(593\) −11.8002 −0.484577 −0.242289 0.970204i \(-0.577898\pi\)
−0.242289 + 0.970204i \(0.577898\pi\)
\(594\) −2.73724 + 1.99460i −0.112310 + 0.0818396i
\(595\) 0.790128 3.45657i 0.0323921 0.141706i
\(596\) −0.636251 1.24008i −0.0260618 0.0507957i
\(597\) −28.5052 + 28.5052i −1.16664 + 1.16664i
\(598\) 1.40405 + 1.92680i 0.0574157 + 0.0787928i
\(599\) 30.5031 1.24632 0.623162 0.782093i \(-0.285848\pi\)
0.623162 + 0.782093i \(0.285848\pi\)
\(600\) −18.6173 24.2714i −0.760049 0.990877i
\(601\) 6.76101 6.76101i 0.275787 0.275787i −0.555637 0.831425i \(-0.687526\pi\)
0.831425 + 0.555637i \(0.187526\pi\)
\(602\) −0.958817 + 0.698683i −0.0390785 + 0.0284762i
\(603\) −5.78894 −0.235744
\(604\) 9.47124 4.85942i 0.385379 0.197727i
\(605\) −22.4480 5.13133i −0.912641 0.208618i
\(606\) 22.5045 16.3989i 0.914183 0.666158i
\(607\) −11.3825 + 11.3825i −0.462002 + 0.462002i −0.899311 0.437309i \(-0.855932\pi\)
0.437309 + 0.899311i \(0.355932\pi\)
\(608\) −23.7830 + 0.167164i −0.964528 + 0.00677940i
\(609\) −1.70175 1.70175i −0.0689585 0.0689585i
\(610\) 8.76434 + 3.50465i 0.354858 + 0.141899i
\(611\) 57.7875i 2.33783i
\(612\) −5.52669 + 17.1735i −0.223403 + 0.694199i
\(613\) −21.0461 + 21.0461i −0.850044 + 0.850044i −0.990138 0.140094i \(-0.955260\pi\)
0.140094 + 0.990138i \(0.455260\pi\)
\(614\) −16.3878 + 11.9416i −0.661356 + 0.481925i
\(615\) 13.5728 + 27.8366i 0.547308 + 1.12248i
\(616\) −0.218886 0.664119i −0.00881916 0.0267581i
\(617\) 21.9292 + 21.9292i 0.882838 + 0.882838i 0.993822 0.110985i \(-0.0354004\pi\)
−0.110985 + 0.993822i \(0.535400\pi\)
\(618\) 16.1125 + 22.1116i 0.648141 + 0.889458i
\(619\) −17.6974 −0.711319 −0.355660 0.934616i \(-0.615744\pi\)
−0.355660 + 0.934616i \(0.615744\pi\)
\(620\) −18.0924 10.7488i −0.726609 0.431683i
\(621\) −0.607589 + 0.607589i −0.0243817 + 0.0243817i
\(622\) 19.1156 + 26.2327i 0.766465 + 1.05184i
\(623\) −3.06853 3.06853i −0.122938 0.122938i
\(624\) 28.2975 39.4123i 1.13281 1.57775i
\(625\) 15.5617 + 19.5661i 0.622467 + 0.782646i
\(626\) −14.7478 2.31458i −0.589441 0.0925091i
\(627\) 7.61955i 0.304296i
\(628\) −0.924872 0.297637i −0.0369064 0.0118770i
\(629\) 14.4586 + 14.4586i 0.576501 + 0.576501i
\(630\) 1.45426 + 0.581523i 0.0579389 + 0.0231684i
\(631\) 32.8381i 1.30726i 0.756812 + 0.653632i \(0.226756\pi\)
−0.756812 + 0.653632i \(0.773244\pi\)
\(632\) 1.69563 + 5.14470i 0.0674487 + 0.204645i
\(633\) −33.2157 33.2157i −1.32021 1.32021i
\(634\) −12.4643 1.95619i −0.495021 0.0776904i
\(635\) 26.0166 16.3355i 1.03244 0.648253i
\(636\) −4.36341 + 13.5588i −0.173021 + 0.537641i
\(637\) 38.7666i 1.53599i
\(638\) −0.692760 + 4.41407i −0.0274266 + 0.174755i
\(639\) −9.46496 + 9.46496i −0.374428 + 0.374428i
\(640\) 24.4715 6.41447i 0.967321 0.253554i
\(641\) −34.3455 + 34.3455i −1.35657 + 1.35657i −0.478455 + 0.878112i \(0.658803\pi\)
−0.878112 + 0.478455i \(0.841197\pi\)
\(642\) −16.7113 22.9333i −0.659543 0.905105i
\(643\) −4.81618 −0.189932 −0.0949658 0.995481i \(-0.530274\pi\)
−0.0949658 + 0.995481i \(0.530274\pi\)
\(644\) −0.0809841 0.157842i −0.00319122 0.00621983i
\(645\) −11.6455 + 7.31202i −0.458540 + 0.287911i
\(646\) −18.8180 25.8244i −0.740385 1.01605i
\(647\) −3.59621 + 3.59621i −0.141381 + 0.141381i −0.774255 0.632874i \(-0.781875\pi\)
0.632874 + 0.774255i \(0.281875\pi\)
\(648\) 28.3318 + 14.2856i 1.11298 + 0.561192i
\(649\) −8.44871 + 8.44871i −0.331641 + 0.331641i
\(650\) −22.5575 + 32.6121i −0.884776 + 1.27915i
\(651\) 3.00331 0.117709
\(652\) 34.2032 17.5487i 1.33950 0.687260i
\(653\) 35.9169i 1.40554i −0.711418 0.702769i \(-0.751947\pi\)
0.711418 0.702769i \(-0.248053\pi\)
\(654\) −16.2071 22.2413i −0.633747 0.869704i
\(655\) −3.81883 + 16.7062i −0.149214 + 0.652766i
\(656\) −25.5728 + 1.42585i −0.998449 + 0.0556700i
\(657\) −6.47937 + 6.47937i −0.252784 + 0.252784i
\(658\) −0.666708 + 4.24807i −0.0259910 + 0.165607i
\(659\) 17.7691 + 17.7691i 0.692185 + 0.692185i 0.962712 0.270527i \(-0.0871981\pi\)
−0.270527 + 0.962712i \(0.587198\pi\)
\(660\) −1.99985 7.85419i −0.0778441 0.305724i
\(661\) 30.6829i 1.19343i −0.802454 0.596714i \(-0.796473\pi\)
0.802454 0.596714i \(-0.203527\pi\)
\(662\) −22.8912 + 16.6807i −0.889692 + 0.648312i
\(663\) 65.1852 2.53158
\(664\) 4.75230 1.56630i 0.184425 0.0607844i
\(665\) −2.34931 + 1.47510i −0.0911022 + 0.0572018i
\(666\) −7.29960 + 5.31917i −0.282854 + 0.206113i
\(667\) 1.13357i 0.0438921i
\(668\) −7.07779 + 21.9934i −0.273848 + 0.850950i
\(669\) 13.1082 13.1082i 0.506793 0.506793i
\(670\) −4.04934 + 10.1265i −0.156440 + 0.391220i
\(671\) 1.76843 + 1.76843i 0.0682693 + 0.0682693i
\(672\) −2.53491 + 2.57079i −0.0977862 + 0.0991706i
\(673\) −26.1544 −1.00818 −0.504089 0.863652i \(-0.668172\pi\)
−0.504089 + 0.863652i \(0.668172\pi\)
\(674\) 11.5617 + 15.8664i 0.445342 + 0.611152i
\(675\) −12.8722 6.20931i −0.495453 0.238997i
\(676\) −35.1217 11.3027i −1.35083 0.434718i
\(677\) −13.8939 13.8939i −0.533984 0.533984i 0.387771 0.921756i \(-0.373245\pi\)
−0.921756 + 0.387771i \(0.873245\pi\)
\(678\) −15.2700 20.9554i −0.586442 0.804787i
\(679\) 3.88001 0.148901
\(680\) 26.1755 + 21.6806i 1.00378 + 0.831412i
\(681\) 49.6456 1.90242
\(682\) −3.28375 4.50636i −0.125741 0.172557i
\(683\) 9.79987i 0.374982i −0.982266 0.187491i \(-0.939965\pi\)
0.982266 0.187491i \(-0.0600355\pi\)
\(684\) 12.5579 6.44313i 0.480165 0.246359i
\(685\) 23.5769 + 5.38938i 0.900827 + 0.205917i
\(686\) 0.900151 5.73550i 0.0343679 0.218982i
\(687\) 17.8625 + 17.8625i 0.681496 + 0.681496i
\(688\) −1.84214 11.2220i −0.0702309 0.427836i
\(689\) 18.4642 0.703429
\(690\) −0.810183 1.88987i −0.0308431 0.0719462i
\(691\) −7.23522 7.23522i −0.275241 0.275241i 0.555965 0.831206i \(-0.312349\pi\)
−0.831206 + 0.555965i \(0.812349\pi\)
\(692\) 28.8663 14.8105i 1.09733 0.563011i
\(693\) 0.293433 + 0.293433i 0.0111466 + 0.0111466i
\(694\) 41.4740 + 6.50909i 1.57433 + 0.247082i
\(695\) 2.88779 12.6332i 0.109540 0.479204i
\(696\) 21.9100 7.22128i 0.830496 0.273722i
\(697\) −21.5941 26.7914i −0.817934 1.01480i
\(698\) 15.3927 + 2.41578i 0.582621 + 0.0914388i
\(699\) 2.69641i 0.101987i
\(700\) 2.03449 2.13713i 0.0768967 0.0807759i
\(701\) −0.962763 −0.0363630 −0.0181815 0.999835i \(-0.505788\pi\)
−0.0181815 + 0.999835i \(0.505788\pi\)
\(702\) 3.51465 22.3943i 0.132652 0.845219i
\(703\) 15.9972i 0.603345i
\(704\) 6.62898 + 0.992689i 0.249839 + 0.0374134i
\(705\) −11.1063 + 48.5869i −0.418289 + 1.82989i
\(706\) −14.1328 19.3947i −0.531894 0.729930i
\(707\) 1.89930 + 1.89930i 0.0714304 + 0.0714304i
\(708\) 58.7244 + 18.8984i 2.20700 + 0.710244i
\(709\) −6.53364 + 6.53364i −0.245376 + 0.245376i −0.819070 0.573694i \(-0.805510\pi\)
0.573694 + 0.819070i \(0.305510\pi\)
\(710\) 9.93617 + 23.1776i 0.372898 + 0.869839i
\(711\) −2.27312 2.27312i −0.0852487 0.0852487i
\(712\) 39.5072 13.0211i 1.48060 0.487987i
\(713\) −1.00028 1.00028i −0.0374609 0.0374609i
\(714\) −4.79189 0.752057i −0.179332 0.0281450i
\(715\) −8.89782 + 5.58682i −0.332760 + 0.208935i
\(716\) −9.07995 + 4.65867i −0.339334 + 0.174103i
\(717\) 35.4316 + 35.4316i 1.32322 + 1.32322i
\(718\) −41.7385 6.55060i −1.55767 0.244466i
\(719\) 26.9605 26.9605i 1.00546 1.00546i 0.00547208 0.999985i \(-0.498258\pi\)
0.999985 0.00547208i \(-0.00174183\pi\)
\(720\) −11.2536 + 9.93754i −0.419396 + 0.370350i
\(721\) −1.86613 + 1.86613i −0.0694985 + 0.0694985i
\(722\) 0.290126 1.84860i 0.0107974 0.0687977i
\(723\) 0.399070i 0.0148416i
\(724\) −19.4258 + 9.96685i −0.721956 + 0.370415i
\(725\) −17.8001 + 6.21548i −0.661080 + 0.230837i
\(726\) −4.88408 + 31.1199i −0.181265 + 1.15497i
\(727\) 30.5494i 1.13302i 0.824056 + 0.566508i \(0.191706\pi\)
−0.824056 + 0.566508i \(0.808294\pi\)
\(728\) 4.17898 + 2.10715i 0.154883 + 0.0780961i
\(729\) −0.282400 −0.0104592
\(730\) 6.80194 + 15.8665i 0.251751 + 0.587247i
\(731\) 10.8036 10.8036i 0.399587 0.399587i
\(732\) 3.95568 12.2918i 0.146206 0.454318i
\(733\) −4.41040 + 4.41040i −0.162902 + 0.162902i −0.783851 0.620949i \(-0.786747\pi\)
0.620949 + 0.783851i \(0.286747\pi\)
\(734\) 5.30513 3.86581i 0.195816 0.142690i
\(735\) 7.45066 32.5944i 0.274822 1.20226i
\(736\) 1.70050 0.0119524i 0.0626814 0.000440571i
\(737\) −2.04327 + 2.04327i −0.0752649 + 0.0752649i
\(738\) 13.1700 7.58831i 0.484796 0.279330i
\(739\) 5.37329 0.197660 0.0988299 0.995104i \(-0.468490\pi\)
0.0988299 + 0.995104i \(0.468490\pi\)
\(740\) 4.19867 + 16.4898i 0.154346 + 0.606177i
\(741\) −36.0610 36.0610i −1.32473 1.32473i
\(742\) −1.35734 0.213026i −0.0498294 0.00782041i
\(743\) 24.3657 + 24.3657i 0.893892 + 0.893892i 0.994887 0.100995i \(-0.0322025\pi\)
−0.100995 + 0.994887i \(0.532202\pi\)
\(744\) −12.9616 + 25.7059i −0.475194 + 0.942426i
\(745\) 1.31971 0.828629i 0.0483505 0.0303586i
\(746\) −0.601753 0.825798i −0.0220317 0.0302346i
\(747\) −2.09975 + 2.09975i −0.0768257 + 0.0768257i
\(748\) 4.11089 + 8.01231i 0.150309 + 0.292959i
\(749\) 1.93549 1.93549i 0.0707211 0.0707211i
\(750\) 25.2338 23.0844i 0.921407 0.842923i
\(751\) 28.5669 28.5669i 1.04242 1.04242i 0.0433622 0.999059i \(-0.486193\pi\)
0.999059 0.0433622i \(-0.0138070\pi\)
\(752\) −33.4827 24.0401i −1.22099 0.876653i
\(753\) 47.8267 1.74290
\(754\) −17.6118 24.1690i −0.641383 0.880184i
\(755\) 6.32874 + 10.0794i 0.230326 + 0.366828i
\(756\) −0.516737 + 1.60570i −0.0187935 + 0.0583987i
\(757\) 6.18605i 0.224836i −0.993661 0.112418i \(-0.964140\pi\)
0.993661 0.112418i \(-0.0358595\pi\)
\(758\) 44.9404 + 7.05311i 1.63231 + 0.256181i
\(759\) 0.544805i 0.0197752i
\(760\) −2.48660 26.4743i −0.0901985 0.960325i
\(761\) 3.98484 0.144450 0.0722251 0.997388i \(-0.476990\pi\)
0.0722251 + 0.997388i \(0.476990\pi\)
\(762\) −24.7492 33.9639i −0.896571 1.23038i
\(763\) 1.87708 1.87708i 0.0679550 0.0679550i
\(764\) 20.4916 + 39.9390i 0.741359 + 1.44494i
\(765\) −19.6632 4.49475i −0.710924 0.162508i
\(766\) 2.71495 17.2988i 0.0980950 0.625033i
\(767\) 79.9702i 2.88756i
\(768\) −11.0639 32.7917i −0.399233 1.18327i
\(769\) 16.5226i 0.595822i 0.954594 + 0.297911i \(0.0962898\pi\)
−0.954594 + 0.297911i \(0.903710\pi\)
\(770\) 0.718552 0.308041i 0.0258948 0.0111010i
\(771\) 26.4775 0.953564
\(772\) −7.28584 + 22.6399i −0.262223 + 0.814828i
\(773\) 35.3417 1.27115 0.635577 0.772038i \(-0.280762\pi\)
0.635577 + 0.772038i \(0.280762\pi\)
\(774\) 3.97455 + 5.45436i 0.142862 + 0.196053i
\(775\) 10.2225 21.1918i 0.367203 0.761231i
\(776\) −16.7452 + 33.2098i −0.601117 + 1.19216i
\(777\) −1.71713 1.71713i −0.0616016 0.0616016i
\(778\) 6.70349 + 1.05207i 0.240332 + 0.0377186i
\(779\) −2.87517 + 26.7672i −0.103014 + 0.959035i
\(780\) 46.6361 + 27.7068i 1.66984 + 0.992061i
\(781\) 6.68154i 0.239084i
\(782\) 1.34550 + 1.84646i 0.0481152 + 0.0660294i
\(783\) 7.62135 7.62135i 0.272365 0.272365i
\(784\) 22.4618 + 16.1272i 0.802206 + 0.575973i
\(785\) 0.242062 1.05895i 0.00863958 0.0377955i
\(786\) 23.1600 + 3.63482i 0.826090 + 0.129650i
\(787\) −5.01916 + 5.01916i −0.178914 + 0.178914i −0.790882 0.611968i \(-0.790378\pi\)
0.611968 + 0.790882i \(0.290378\pi\)
\(788\) 24.4325 + 47.6199i 0.870370 + 1.69639i
\(789\) 25.5728i 0.910416i
\(790\) −5.56637 + 2.38629i −0.198043 + 0.0849003i
\(791\) 1.76856 1.76856i 0.0628826 0.0628826i
\(792\) −3.77793 + 1.24516i −0.134243 + 0.0442449i
\(793\) −16.7388 −0.594413
\(794\) −18.0476 2.83246i −0.640487 0.100520i
\(795\) −15.5244 3.54868i −0.550594 0.125859i
\(796\) 33.1643 17.0157i 1.17548 0.603105i
\(797\) 39.0883 39.0883i 1.38458 1.38458i 0.548296 0.836284i \(-0.315277\pi\)
0.836284 0.548296i \(-0.184723\pi\)
\(798\) 2.23487 + 3.06695i 0.0791134 + 0.108569i
\(799\) 55.3781i 1.95914i
\(800\) 9.51171 + 26.6370i 0.336290 + 0.941759i
\(801\) −17.4558 + 17.4558i −0.616770 + 0.616770i
\(802\) 7.80324 49.7199i 0.275542 1.75567i
\(803\) 4.57394i 0.161411i
\(804\) 14.2022 + 4.57046i 0.500872 + 0.161188i
\(805\) 0.167977 0.105471i 0.00592043 0.00371735i
\(806\) 36.8681 + 5.78622i 1.29862 + 0.203811i
\(807\) 18.5130i 0.651687i
\(808\) −24.4533 + 8.05954i −0.860266 + 0.283534i
\(809\) −8.49004 + 8.49004i −0.298494 + 0.298494i −0.840424 0.541930i \(-0.817694\pi\)
0.541930 + 0.840424i \(0.317694\pi\)
\(810\) −13.1715 + 32.9390i −0.462800 + 1.15736i
\(811\) −11.7840 −0.413791 −0.206895 0.978363i \(-0.566336\pi\)
−0.206895 + 0.978363i \(0.566336\pi\)
\(812\) 1.01583 + 1.97990i 0.0356487 + 0.0694809i
\(813\) 27.2381i 0.955281i
\(814\) −0.699019 + 4.45394i −0.0245006 + 0.156111i
\(815\) 22.8548 + 36.3996i 0.800568 + 1.27502i
\(816\) 27.1176 37.7690i 0.949306 1.32218i
\(817\) −11.9533 −0.418193
\(818\) 6.22720 39.6779i 0.217729 1.38730i
\(819\) −2.77745 −0.0970520
\(820\) −4.06169 28.3461i −0.141840 0.989890i
\(821\) −32.6457 −1.13934 −0.569672 0.821872i \(-0.692930\pi\)
−0.569672 + 0.821872i \(0.692930\pi\)
\(822\) 5.12969 32.6849i 0.178919 1.14002i
\(823\) 14.1894 0.494612 0.247306 0.968937i \(-0.420455\pi\)
0.247306 + 0.968937i \(0.420455\pi\)
\(824\) −7.91882 24.0264i −0.275865 0.836999i
\(825\) 8.55490 2.98721i 0.297843 0.104001i
\(826\) −0.922634 + 5.87876i −0.0321026 + 0.204548i
\(827\) 5.63679i 0.196011i 0.995186 + 0.0980053i \(0.0312462\pi\)
−0.995186 + 0.0980053i \(0.968754\pi\)
\(828\) −0.897904 + 0.460689i −0.0312043 + 0.0160101i
\(829\) 53.6658 1.86389 0.931945 0.362601i \(-0.118111\pi\)
0.931945 + 0.362601i \(0.118111\pi\)
\(830\) 2.20428 + 5.14182i 0.0765117 + 0.178475i
\(831\) 19.8090 19.8090i 0.687168 0.687168i
\(832\) −36.0710 + 26.6748i −1.25054 + 0.924782i
\(833\) 37.1502i 1.28718i
\(834\) −17.5135 2.74864i −0.606444 0.0951777i
\(835\) −25.1818 5.75623i −0.871451 0.199203i
\(836\) 2.15830 6.70665i 0.0746463 0.231954i
\(837\) 13.4504i 0.464915i
\(838\) −4.30619 + 27.4378i −0.148755 + 0.947822i
\(839\) 3.67736 3.67736i 0.126957 0.126957i −0.640773 0.767730i \(-0.721386\pi\)
0.767730 + 0.640773i \(0.221386\pi\)
\(840\) −3.10865 2.57483i −0.107259 0.0888400i
\(841\) 14.7809i 0.509688i
\(842\) 15.5311 + 21.3136i 0.535236 + 0.734516i
\(843\) −46.3498 + 46.3498i −1.59637 + 1.59637i
\(844\) 19.8275 + 38.6447i 0.682492 + 1.33021i
\(845\) 9.19225 40.2133i 0.316223 1.38338i
\(846\) 24.1657 + 3.79266i 0.830835 + 0.130394i
\(847\) −3.03860 −0.104408
\(848\) 7.68126 10.6983i 0.263776 0.367382i
\(849\) 23.9761 23.9761i 0.822858 0.822858i
\(850\) −21.6169 + 31.2524i −0.741455 + 1.07195i
\(851\) 1.14381i 0.0392094i
\(852\) 30.6934 15.7479i 1.05154 0.539515i
\(853\) −3.99055 + 3.99055i −0.136634 + 0.136634i −0.772116 0.635482i \(-0.780801\pi\)
0.635482 + 0.772116i \(0.280801\pi\)
\(854\) 1.23050 + 0.193120i 0.0421069 + 0.00660842i
\(855\) 8.39129 + 13.3644i 0.286976 + 0.457051i
\(856\) 8.21311 + 24.9193i 0.280718 + 0.851723i
\(857\) 13.7999 13.7999i 0.471394 0.471394i −0.430971 0.902366i \(-0.641829\pi\)
0.902366 + 0.430971i \(0.141829\pi\)
\(858\) 8.46438 + 11.6158i 0.288969 + 0.396558i
\(859\) 50.0285i 1.70695i 0.521133 + 0.853475i \(0.325509\pi\)
−0.521133 + 0.853475i \(0.674491\pi\)
\(860\) 12.3214 3.13730i 0.420156 0.106981i
\(861\) 2.56456 + 3.18179i 0.0873998 + 0.108435i
\(862\) 49.2336 + 7.72691i 1.67690 + 0.263180i
\(863\) −16.8897 16.8897i −0.574932 0.574932i 0.358571 0.933503i \(-0.383264\pi\)
−0.933503 + 0.358571i \(0.883264\pi\)
\(864\) −11.5134 11.3527i −0.391693 0.386225i
\(865\) 19.2886 + 30.7200i 0.655834 + 1.04451i
\(866\) −0.719086 0.986817i −0.0244355 0.0335334i
\(867\) 25.6964 0.872697
\(868\) −2.64349 0.850712i −0.0897258 0.0288750i
\(869\) −1.60465 −0.0544340
\(870\) 10.1626 + 23.7058i 0.344545 + 0.803702i
\(871\) 19.3403i 0.655323i
\(872\) 7.96528 + 24.1674i 0.269738 + 0.818410i
\(873\) 22.0720i 0.747023i
\(874\) 0.277135 1.76582i 0.00937423 0.0597298i
\(875\) 2.57721 + 2.05939i 0.0871256 + 0.0696202i
\(876\) 21.0116 10.7805i 0.709917 0.364238i
\(877\) −4.14206 + 4.14206i −0.139867 + 0.139867i −0.773574 0.633706i \(-0.781533\pi\)
0.633706 + 0.773574i \(0.281533\pi\)
\(878\) 26.5637 + 36.4539i 0.896482 + 1.23026i
\(879\) −52.5377 −1.77205
\(880\) −0.464512 + 7.47965i −0.0156587 + 0.252139i
\(881\) 45.0414i 1.51748i 0.651392 + 0.758741i \(0.274185\pi\)
−0.651392 + 0.758741i \(0.725815\pi\)
\(882\) −16.2115 2.54429i −0.545870 0.0856709i
\(883\) 41.9659i 1.41226i −0.708080 0.706132i \(-0.750438\pi\)
0.708080 0.706132i \(-0.249562\pi\)
\(884\) −57.3753 18.4642i −1.92974 0.621018i
\(885\) −15.3697 + 67.2377i −0.516646 + 2.26017i
\(886\) −19.8967 27.3047i −0.668443 0.917319i
\(887\) 8.42535 0.282896 0.141448 0.989946i \(-0.454824\pi\)
0.141448 + 0.989946i \(0.454824\pi\)
\(888\) 22.1079 7.28652i 0.741893 0.244519i
\(889\) 2.86643 2.86643i 0.0961369 0.0961369i
\(890\) 18.3248 + 42.7453i 0.614249 + 1.43283i
\(891\) −6.64627 + 6.64627i −0.222658 + 0.222658i
\(892\) −15.2507 + 7.82472i −0.510632 + 0.261991i
\(893\) −30.6356 + 30.6356i −1.02518 + 1.02518i
\(894\) −1.25543 1.72285i −0.0419877 0.0576206i
\(895\) −6.06728 9.66303i −0.202807 0.322999i
\(896\) 2.95940 1.54476i 0.0988665 0.0516066i
\(897\) 2.57839 + 2.57839i 0.0860899 + 0.0860899i
\(898\) −11.9523 1.87584i −0.398854 0.0625977i
\(899\) 12.5471 + 12.5471i 0.418471 + 0.418471i
\(900\) −12.1573 11.5735i −0.405245 0.385783i
\(901\) 17.6943 0.589483
\(902\) 1.97014 7.32691i 0.0655984 0.243959i
\(903\) −1.28306 + 1.28306i −0.0426976 + 0.0426976i
\(904\) 7.50475 + 22.7701i 0.249604 + 0.757321i
\(905\) −12.9805 20.6733i −0.431485 0.687203i
\(906\) 13.1584 9.58843i 0.437159 0.318554i
\(907\) −12.9621 + 12.9621i −0.430400 + 0.430400i −0.888764 0.458364i \(-0.848436\pi\)
0.458364 + 0.888764i \(0.348436\pi\)
\(908\) −43.6975 14.0625i −1.45015 0.466680i
\(909\) 10.8044 10.8044i 0.358360 0.358360i
\(910\) −1.94282 + 4.85854i −0.0644038 + 0.161059i
\(911\) 12.1400 0.402215 0.201108 0.979569i \(-0.435546\pi\)
0.201108 + 0.979569i \(0.435546\pi\)
\(912\) −35.8958 + 5.89242i −1.18863 + 0.195117i
\(913\) 1.48226i 0.0490557i
\(914\) −6.19300 + 39.4600i −0.204846 + 1.30522i
\(915\) 14.0737 + 3.21708i 0.465263 + 0.106353i
\(916\) −10.6627 20.7820i −0.352305 0.686658i
\(917\) 2.26138i 0.0746775i
\(918\) 3.36810 21.4606i 0.111164 0.708305i
\(919\) −7.87823 + 7.87823i −0.259879 + 0.259879i −0.825005 0.565126i \(-0.808828\pi\)
0.565126 + 0.825005i \(0.308828\pi\)
\(920\) 0.177794 + 1.89294i 0.00586170 + 0.0624083i
\(921\) −21.9296 + 21.9296i −0.722606 + 0.722606i
\(922\) −37.5261 5.88948i −1.23586 0.193960i
\(923\) −31.6216 31.6216i −1.04084 1.04084i
\(924\) −0.488218 0.951558i −0.0160612 0.0313040i
\(925\) −17.9609 + 6.27163i −0.590551 + 0.206210i
\(926\) 25.7295 + 4.03808i 0.845523 + 0.132700i
\(927\) 10.6158 + 10.6158i 0.348667 + 0.348667i
\(928\) −21.3304 + 0.149926i −0.700206 + 0.00492155i
\(929\) 20.5130 + 20.5130i 0.673011 + 0.673011i 0.958409 0.285398i \(-0.0921259\pi\)
−0.285398 + 0.958409i \(0.592126\pi\)
\(930\) −29.8861 11.9507i −0.980003 0.391880i
\(931\) 20.5518 20.5518i 0.673558 0.673558i
\(932\) −0.763778 + 2.37335i −0.0250184 + 0.0777417i
\(933\) 35.1038 + 35.1038i 1.14925 + 1.14925i
\(934\) −27.3286 37.5036i −0.894219 1.22716i
\(935\) −8.52683 + 5.35387i −0.278857 + 0.175090i
\(936\) 11.9868 23.7727i 0.391801 0.777036i
\(937\) 15.7880i 0.515772i 0.966175 + 0.257886i \(0.0830259\pi\)
−0.966175 + 0.257886i \(0.916974\pi\)
\(938\) −0.223134 + 1.42174i −0.00728558 + 0.0464216i
\(939\) −22.8324 −0.745107
\(940\) 23.5383 39.6197i 0.767734 1.29225i
\(941\) 9.90115i 0.322768i −0.986892 0.161384i \(-0.948404\pi\)
0.986892 0.161384i \(-0.0515958\pi\)
\(942\) −1.46803 0.230399i −0.0478311 0.00750680i
\(943\) 0.205577 1.91388i 0.00669452 0.0623245i
\(944\) −46.3355 33.2683i −1.50809 1.08279i
\(945\) −1.83848 0.420252i −0.0598056 0.0136708i
\(946\) 3.32805 + 0.522316i 0.108204 + 0.0169820i
\(947\) 32.5623 + 32.5623i 1.05813 + 1.05813i 0.998203 + 0.0599306i \(0.0190879\pi\)
0.0599306 + 0.998203i \(0.480912\pi\)
\(948\) 3.78205 + 7.37139i 0.122835 + 0.239412i
\(949\) −21.6470 21.6470i −0.702692 0.702692i
\(950\) 29.2477 5.33041i 0.948921 0.172941i
\(951\) −19.2971 −0.625751
\(952\) 4.00474 + 2.01929i 0.129794 + 0.0654456i
\(953\) −6.28887 6.28887i −0.203716 0.203716i 0.597874 0.801590i \(-0.296012\pi\)
−0.801590 + 0.597874i \(0.796012\pi\)
\(954\) −1.21183 + 7.72140i −0.0392343 + 0.249989i
\(955\) −42.5037 + 26.6875i −1.37539 + 0.863587i
\(956\) −21.1502 41.2228i −0.684048 1.33324i
\(957\) 6.83380i 0.220906i
\(958\) 6.99273 + 9.59628i 0.225925 + 0.310042i
\(959\) 3.19141 0.103056
\(960\) 35.4546 15.4952i 1.14429 0.500105i
\(961\) 8.85635 0.285689
\(962\) −17.7709 24.3874i −0.572956 0.786280i
\(963\) −11.0103 11.0103i −0.354801 0.354801i
\(964\) 0.113040 0.351257i 0.00364076 0.0113132i
\(965\) −25.9220 5.92544i −0.834458 0.190747i
\(966\) −0.159795 0.219290i −0.00514131 0.00705553i
\(967\) −37.3230 −1.20023 −0.600114 0.799914i \(-0.704878\pi\)
−0.600114 + 0.799914i \(0.704878\pi\)
\(968\) 13.1139 26.0080i 0.421496 0.835928i
\(969\) −34.5574 34.5574i −1.11014 1.11014i
\(970\) −38.6101 15.4393i −1.23970 0.495725i
\(971\) 27.7930 27.7930i 0.891920 0.891920i −0.102783 0.994704i \(-0.532775\pi\)
0.994704 + 0.102783i \(0.0327748\pi\)
\(972\) 29.8708 + 9.61285i 0.958107 + 0.308332i
\(973\) 1.71005i 0.0548218i
\(974\) 25.8536 18.8393i 0.828401 0.603650i
\(975\) −26.3501 + 54.6252i −0.843878 + 1.74941i
\(976\) −6.96349 + 9.69864i −0.222896 + 0.310446i
\(977\) −20.6029 −0.659144 −0.329572 0.944130i \(-0.606904\pi\)
−0.329572 + 0.944130i \(0.606904\pi\)
\(978\) 47.5186 34.6264i 1.51948 1.10723i
\(979\) 12.3224i 0.393827i
\(980\) −15.7906 + 26.5788i −0.504412 + 0.849027i
\(981\) −10.6780 10.6780i −0.340924 0.340924i
\(982\) 3.08235 19.6398i 0.0983617 0.626732i
\(983\) 20.3951 20.3951i 0.650502 0.650502i −0.302612 0.953114i \(-0.597859\pi\)
0.953114 + 0.302612i \(0.0978586\pi\)
\(984\) −38.3016 + 8.21868i −1.22101 + 0.262002i
\(985\) −50.6779 + 31.8199i −1.61473 + 1.01387i
\(986\) −16.8775 23.1613i −0.537488 0.737606i
\(987\) 6.57681i 0.209342i
\(988\) 21.5259 + 41.9550i 0.684832 + 1.33477i
\(989\) 0.854672 0.0271770
\(990\) −1.75233 4.08758i −0.0556928 0.129912i
\(991\) −6.36284 + 6.36284i −0.202122 + 0.202122i −0.800909 0.598786i \(-0.795650\pi\)
0.598786 + 0.800909i \(0.295650\pi\)
\(992\) 18.6901 18.9546i 0.593410 0.601811i
\(993\) −30.6323 + 30.6323i −0.972088 + 0.972088i
\(994\) 1.95974 + 2.68939i 0.0621591 + 0.0853023i
\(995\) 22.1606 + 35.2940i 0.702538 + 1.11889i
\(996\) 6.80916 3.49359i 0.215757 0.110699i
\(997\) −18.1185 −0.573818 −0.286909 0.957958i \(-0.592628\pi\)
−0.286909 + 0.957958i \(0.592628\pi\)
\(998\) −33.6859 46.2279i −1.06631 1.46332i
\(999\) 7.69020 7.69020i 0.243307 0.243307i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.s.c.583.6 yes 240
4.3 odd 2 inner 820.2.s.c.583.56 yes 240
5.2 odd 4 820.2.j.c.747.65 yes 240
20.7 even 4 820.2.j.c.747.115 yes 240
41.32 even 4 820.2.j.c.483.115 yes 240
164.155 odd 4 820.2.j.c.483.65 240
205.32 odd 4 inner 820.2.s.c.647.56 yes 240
820.647 even 4 inner 820.2.s.c.647.6 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.j.c.483.65 240 164.155 odd 4
820.2.j.c.483.115 yes 240 41.32 even 4
820.2.j.c.747.65 yes 240 5.2 odd 4
820.2.j.c.747.115 yes 240 20.7 even 4
820.2.s.c.583.6 yes 240 1.1 even 1 trivial
820.2.s.c.583.56 yes 240 4.3 odd 2 inner
820.2.s.c.647.6 yes 240 820.647 even 4 inner
820.2.s.c.647.56 yes 240 205.32 odd 4 inner