Properties

Label 820.2.s.c.583.14
Level $820$
Weight $2$
Character 820.583
Analytic conductor $6.548$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(583,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.583"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(120\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 583.14
Character \(\chi\) \(=\) 820.583
Dual form 820.2.s.c.647.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.33694 - 0.461086i) q^{2} -2.00537 q^{3} +(1.57480 + 1.23289i) q^{4} +(-1.66826 - 1.48893i) q^{5} +(2.68106 + 0.924650i) q^{6} -4.57903i q^{7} +(-1.53694 - 2.37441i) q^{8} +1.02153 q^{9} +(1.54384 + 2.75981i) q^{10} +(2.54798 - 2.54798i) q^{11} +(-3.15806 - 2.47240i) q^{12} -2.88430i q^{13} +(-2.11133 + 6.12187i) q^{14} +(3.34549 + 2.98585i) q^{15} +(0.959984 + 3.88310i) q^{16} -0.355667i q^{17} +(-1.36572 - 0.471012i) q^{18} +(4.98430 - 4.98430i) q^{19} +(-0.791504 - 4.40154i) q^{20} +9.18267i q^{21} +(-4.58132 + 2.23165i) q^{22} +(0.157197 - 0.157197i) q^{23} +(3.08214 + 4.76158i) q^{24} +(0.566202 + 4.96784i) q^{25} +(-1.32991 + 3.85613i) q^{26} +3.96758 q^{27} +(5.64542 - 7.21105i) q^{28} +(-3.65502 + 3.65502i) q^{29} +(-3.09597 - 5.53446i) q^{30} -9.42699i q^{31} +(0.507003 - 5.63409i) q^{32} +(-5.10964 + 5.10964i) q^{33} +(-0.163993 + 0.475504i) q^{34} +(-6.81784 + 7.63903i) q^{35} +(1.60870 + 1.25943i) q^{36} +(3.67243 - 3.67243i) q^{37} +(-8.96189 + 4.36550i) q^{38} +5.78410i q^{39} +(-0.971297 + 6.24953i) q^{40} +(6.25621 + 1.36377i) q^{41} +(4.23400 - 12.2766i) q^{42} +(-4.13136 - 4.13136i) q^{43} +(7.15391 - 0.871186i) q^{44} +(-1.70417 - 1.52098i) q^{45} +(-0.282644 + 0.137681i) q^{46} -3.92076 q^{47} +(-1.92513 - 7.78706i) q^{48} -13.9675 q^{49} +(1.53363 - 6.90275i) q^{50} +0.713245i q^{51} +(3.55601 - 4.54219i) q^{52} -3.52215i q^{53} +(-5.30440 - 1.82940i) q^{54} +(-8.04444 + 0.456947i) q^{55} +(-10.8725 + 7.03770i) q^{56} +(-9.99539 + 9.99539i) q^{57} +(6.57181 - 3.20125i) q^{58} -4.54425 q^{59} +(1.58726 + 8.82673i) q^{60} -8.21966i q^{61} +(-4.34666 + 12.6033i) q^{62} -4.67760i q^{63} +(-3.27563 + 7.29865i) q^{64} +(-4.29451 + 4.81177i) q^{65} +(9.18726 - 4.47528i) q^{66} +7.29388 q^{67} +(0.438497 - 0.560104i) q^{68} +(-0.315239 + 0.315239i) q^{69} +(12.6373 - 7.06929i) q^{70} +(-8.39564 + 8.39564i) q^{71} +(-1.57002 - 2.42552i) q^{72} +(-6.17916 + 6.17916i) q^{73} +(-6.60311 + 3.21650i) q^{74} +(-1.13545 - 9.96237i) q^{75} +(13.9943 - 1.70420i) q^{76} +(-11.6673 - 11.6673i) q^{77} +(2.66697 - 7.73297i) q^{78} +(7.01044 + 7.01044i) q^{79} +(4.18013 - 7.90737i) q^{80} -11.0211 q^{81} +(-7.73534 - 4.70793i) q^{82} +(-1.29454 + 1.29454i) q^{83} +(-11.3212 + 14.4609i) q^{84} +(-0.529561 + 0.593346i) q^{85} +(3.61845 + 7.42827i) q^{86} +(7.32968 - 7.32968i) q^{87} +(-9.96602 - 2.13385i) q^{88} +(10.8817 - 10.8817i) q^{89} +(1.57707 + 2.81922i) q^{90} -13.2073 q^{91} +(0.441360 - 0.0537477i) q^{92} +18.9047i q^{93} +(5.24180 + 1.80781i) q^{94} +(-15.7364 + 0.893871i) q^{95} +(-1.01673 + 11.2985i) q^{96} +13.6157i q^{97} +(18.6737 + 6.44023i) q^{98} +(2.60282 - 2.60282i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 4 q^{6} - 12 q^{8} + 240 q^{9} - 20 q^{10} + 8 q^{14} + 8 q^{16} - 12 q^{18} - 16 q^{20} - 12 q^{24} - 16 q^{25} - 30 q^{30} - 24 q^{33} + 20 q^{34} - 8 q^{37} - 4 q^{40} - 16 q^{41} + 84 q^{42}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33694 0.461086i −0.945357 0.326037i
\(3\) −2.00537 −1.15780 −0.578902 0.815397i \(-0.696519\pi\)
−0.578902 + 0.815397i \(0.696519\pi\)
\(4\) 1.57480 + 1.23289i 0.787400 + 0.616443i
\(5\) −1.66826 1.48893i −0.746070 0.665868i
\(6\) 2.68106 + 0.924650i 1.09454 + 0.377487i
\(7\) 4.57903i 1.73071i −0.501158 0.865356i \(-0.667093\pi\)
0.501158 0.865356i \(-0.332907\pi\)
\(8\) −1.53694 2.37441i −0.543390 0.839480i
\(9\) 1.02153 0.340509
\(10\) 1.54384 + 2.75981i 0.488205 + 0.872729i
\(11\) 2.54798 2.54798i 0.768243 0.768243i −0.209554 0.977797i \(-0.567201\pi\)
0.977797 + 0.209554i \(0.0672011\pi\)
\(12\) −3.15806 2.47240i −0.911654 0.713720i
\(13\) 2.88430i 0.799961i −0.916524 0.399980i \(-0.869017\pi\)
0.916524 0.399980i \(-0.130983\pi\)
\(14\) −2.11133 + 6.12187i −0.564276 + 1.63614i
\(15\) 3.34549 + 2.98585i 0.863802 + 0.770944i
\(16\) 0.959984 + 3.88310i 0.239996 + 0.970774i
\(17\) 0.355667i 0.0862619i −0.999069 0.0431309i \(-0.986267\pi\)
0.999069 0.0431309i \(-0.0137333\pi\)
\(18\) −1.36572 0.471012i −0.321902 0.111018i
\(19\) 4.98430 4.98430i 1.14348 1.14348i 0.155667 0.987810i \(-0.450247\pi\)
0.987810 0.155667i \(-0.0497528\pi\)
\(20\) −0.791504 4.40154i −0.176986 0.984213i
\(21\) 9.18267i 2.00382i
\(22\) −4.58132 + 2.23165i −0.976740 + 0.475788i
\(23\) 0.157197 0.157197i 0.0327778 0.0327778i −0.690528 0.723306i \(-0.742622\pi\)
0.723306 + 0.690528i \(0.242622\pi\)
\(24\) 3.08214 + 4.76158i 0.629139 + 0.971953i
\(25\) 0.566202 + 4.96784i 0.113240 + 0.993568i
\(26\) −1.32991 + 3.85613i −0.260817 + 0.756248i
\(27\) 3.96758 0.763561
\(28\) 5.64542 7.21105i 1.06688 1.36276i
\(29\) −3.65502 + 3.65502i −0.678720 + 0.678720i −0.959711 0.280990i \(-0.909337\pi\)
0.280990 + 0.959711i \(0.409337\pi\)
\(30\) −3.09597 5.53446i −0.565245 1.01045i
\(31\) 9.42699i 1.69314i −0.532279 0.846569i \(-0.678664\pi\)
0.532279 0.846569i \(-0.321336\pi\)
\(32\) 0.507003 5.63409i 0.0896263 0.995975i
\(33\) −5.10964 + 5.10964i −0.889475 + 0.889475i
\(34\) −0.163993 + 0.475504i −0.0281246 + 0.0815483i
\(35\) −6.81784 + 7.63903i −1.15242 + 1.29123i
\(36\) 1.60870 + 1.25943i 0.268116 + 0.209904i
\(37\) 3.67243 3.67243i 0.603744 0.603744i −0.337560 0.941304i \(-0.609602\pi\)
0.941304 + 0.337560i \(0.109602\pi\)
\(38\) −8.96189 + 4.36550i −1.45381 + 0.708178i
\(39\) 5.78410i 0.926197i
\(40\) −0.971297 + 6.24953i −0.153576 + 0.988137i
\(41\) 6.25621 + 1.36377i 0.977055 + 0.212985i
\(42\) 4.23400 12.2766i 0.653321 1.89433i
\(43\) −4.13136 4.13136i −0.630026 0.630026i 0.318049 0.948074i \(-0.396972\pi\)
−0.948074 + 0.318049i \(0.896972\pi\)
\(44\) 7.15391 0.871186i 1.07849 0.131336i
\(45\) −1.70417 1.52098i −0.254043 0.226734i
\(46\) −0.282644 + 0.137681i −0.0416735 + 0.0203000i
\(47\) −3.92076 −0.571901 −0.285951 0.958244i \(-0.592309\pi\)
−0.285951 + 0.958244i \(0.592309\pi\)
\(48\) −1.92513 7.78706i −0.277868 1.12397i
\(49\) −13.9675 −1.99536
\(50\) 1.53363 6.90275i 0.216887 0.976197i
\(51\) 0.713245i 0.0998743i
\(52\) 3.55601 4.54219i 0.493130 0.629889i
\(53\) 3.52215i 0.483804i −0.970301 0.241902i \(-0.922229\pi\)
0.970301 0.241902i \(-0.0777713\pi\)
\(54\) −5.30440 1.82940i −0.721838 0.248949i
\(55\) −8.04444 + 0.456947i −1.08471 + 0.0616147i
\(56\) −10.8725 + 7.03770i −1.45290 + 0.940452i
\(57\) −9.99539 + 9.99539i −1.32392 + 1.32392i
\(58\) 6.57181 3.20125i 0.862921 0.420345i
\(59\) −4.54425 −0.591611 −0.295806 0.955248i \(-0.595588\pi\)
−0.295806 + 0.955248i \(0.595588\pi\)
\(60\) 1.58726 + 8.82673i 0.204914 + 1.13953i
\(61\) 8.21966i 1.05242i −0.850355 0.526210i \(-0.823613\pi\)
0.850355 0.526210i \(-0.176387\pi\)
\(62\) −4.34666 + 12.6033i −0.552026 + 1.60062i
\(63\) 4.67760i 0.589322i
\(64\) −3.27563 + 7.29865i −0.409454 + 0.912331i
\(65\) −4.29451 + 4.81177i −0.532668 + 0.596826i
\(66\) 9.18726 4.47528i 1.13087 0.550869i
\(67\) 7.29388 0.891090 0.445545 0.895260i \(-0.353010\pi\)
0.445545 + 0.895260i \(0.353010\pi\)
\(68\) 0.438497 0.560104i 0.0531755 0.0679226i
\(69\) −0.315239 + 0.315239i −0.0379503 + 0.0379503i
\(70\) 12.6373 7.06929i 1.51044 0.844941i
\(71\) −8.39564 + 8.39564i −0.996379 + 0.996379i −0.999993 0.00361430i \(-0.998850\pi\)
0.00361430 + 0.999993i \(0.498850\pi\)
\(72\) −1.57002 2.42552i −0.185029 0.285850i
\(73\) −6.17916 + 6.17916i −0.723216 + 0.723216i −0.969259 0.246043i \(-0.920870\pi\)
0.246043 + 0.969259i \(0.420870\pi\)
\(74\) −6.60311 + 3.21650i −0.767596 + 0.373910i
\(75\) −1.13545 9.96237i −0.131110 1.15036i
\(76\) 13.9943 1.70420i 1.60526 0.195485i
\(77\) −11.6673 11.6673i −1.32961 1.32961i
\(78\) 2.66697 7.73297i 0.301975 0.875587i
\(79\) 7.01044 + 7.01044i 0.788736 + 0.788736i 0.981287 0.192551i \(-0.0616761\pi\)
−0.192551 + 0.981287i \(0.561676\pi\)
\(80\) 4.18013 7.90737i 0.467353 0.884071i
\(81\) −11.0211 −1.22456
\(82\) −7.73534 4.70793i −0.854225 0.519903i
\(83\) −1.29454 + 1.29454i −0.142094 + 0.142094i −0.774576 0.632481i \(-0.782037\pi\)
0.632481 + 0.774576i \(0.282037\pi\)
\(84\) −11.3212 + 14.4609i −1.23524 + 1.57781i
\(85\) −0.529561 + 0.593346i −0.0574390 + 0.0643574i
\(86\) 3.61845 + 7.42827i 0.390187 + 0.801011i
\(87\) 7.32968 7.32968i 0.785825 0.785825i
\(88\) −9.96602 2.13385i −1.06238 0.227469i
\(89\) 10.8817 10.8817i 1.15346 1.15346i 0.167606 0.985854i \(-0.446396\pi\)
0.985854 0.167606i \(-0.0536036\pi\)
\(90\) 1.57707 + 2.81922i 0.166238 + 0.297172i
\(91\) −13.2073 −1.38450
\(92\) 0.441360 0.0537477i 0.0460149 0.00560359i
\(93\) 18.9047i 1.96032i
\(94\) 5.24180 + 1.80781i 0.540651 + 0.186461i
\(95\) −15.7364 + 0.893871i −1.61452 + 0.0917093i
\(96\) −1.01673 + 11.2985i −0.103770 + 1.15314i
\(97\) 13.6157i 1.38247i 0.722631 + 0.691234i \(0.242932\pi\)
−0.722631 + 0.691234i \(0.757068\pi\)
\(98\) 18.6737 + 6.44023i 1.88633 + 0.650562i
\(99\) 2.60282 2.60282i 0.261594 0.261594i
\(100\) −5.23312 + 8.52141i −0.523312 + 0.852141i
\(101\) −6.41204 + 6.41204i −0.638022 + 0.638022i −0.950067 0.312045i \(-0.898986\pi\)
0.312045 + 0.950067i \(0.398986\pi\)
\(102\) 0.328867 0.953563i 0.0325627 0.0944169i
\(103\) 3.61313 + 3.61313i 0.356012 + 0.356012i 0.862341 0.506329i \(-0.168998\pi\)
−0.506329 + 0.862341i \(0.668998\pi\)
\(104\) −6.84850 + 4.43299i −0.671551 + 0.434691i
\(105\) 13.6723 15.3191i 1.33428 1.49499i
\(106\) −1.62401 + 4.70889i −0.157738 + 0.457368i
\(107\) 0.400234 + 0.400234i 0.0386921 + 0.0386921i 0.726188 0.687496i \(-0.241290\pi\)
−0.687496 + 0.726188i \(0.741290\pi\)
\(108\) 6.24814 + 4.89157i 0.601228 + 0.470692i
\(109\) −2.44951 2.44951i −0.234621 0.234621i 0.579998 0.814618i \(-0.303053\pi\)
−0.814618 + 0.579998i \(0.803053\pi\)
\(110\) 10.9656 + 3.09827i 1.04553 + 0.295408i
\(111\) −7.36460 + 7.36460i −0.699017 + 0.699017i
\(112\) 17.7808 4.39580i 1.68013 0.415364i
\(113\) 8.30678 + 8.30678i 0.781436 + 0.781436i 0.980073 0.198637i \(-0.0636515\pi\)
−0.198637 + 0.980073i \(0.563651\pi\)
\(114\) 17.9719 8.75447i 1.68323 0.819931i
\(115\) −0.496300 + 0.0281913i −0.0462803 + 0.00262885i
\(116\) −10.2621 + 1.24970i −0.952816 + 0.116032i
\(117\) 2.94639i 0.272394i
\(118\) 6.07538 + 2.09529i 0.559284 + 0.192887i
\(119\) −1.62861 −0.149294
\(120\) 1.94781 12.5326i 0.177810 1.14407i
\(121\) 1.98435i 0.180396i
\(122\) −3.78997 + 10.9892i −0.343128 + 0.994912i
\(123\) −12.5460 2.73487i −1.13124 0.246595i
\(124\) 11.6224 14.8456i 1.04372 1.33318i
\(125\) 6.45217 9.13069i 0.577099 0.816674i
\(126\) −2.15678 + 6.25365i −0.192141 + 0.557120i
\(127\) −8.10588 8.10588i −0.719280 0.719280i 0.249178 0.968458i \(-0.419840\pi\)
−0.968458 + 0.249178i \(0.919840\pi\)
\(128\) 7.74462 8.24748i 0.684534 0.728981i
\(129\) 8.28491 + 8.28491i 0.729446 + 0.729446i
\(130\) 7.96012 4.45289i 0.698149 0.390545i
\(131\) −0.0494153 −0.00431743 −0.00215872 0.999998i \(-0.500687\pi\)
−0.00215872 + 0.999998i \(0.500687\pi\)
\(132\) −14.3463 + 1.74705i −1.24868 + 0.152062i
\(133\) −22.8233 22.8233i −1.97903 1.97903i
\(134\) −9.75146 3.36311i −0.842398 0.290528i
\(135\) −6.61897 5.90743i −0.569670 0.508431i
\(136\) −0.844498 + 0.546639i −0.0724151 + 0.0468739i
\(137\) 6.06910i 0.518518i 0.965808 + 0.259259i \(0.0834784\pi\)
−0.965808 + 0.259259i \(0.916522\pi\)
\(138\) 0.566807 0.276102i 0.0482498 0.0235034i
\(139\) 22.7326 1.92816 0.964079 0.265617i \(-0.0855757\pi\)
0.964079 + 0.265617i \(0.0855757\pi\)
\(140\) −20.1548 + 3.62432i −1.70339 + 0.306311i
\(141\) 7.86259 0.662149
\(142\) 15.0956 7.35333i 1.26679 0.617077i
\(143\) −7.34912 7.34912i −0.614564 0.614564i
\(144\) 0.980649 + 3.96668i 0.0817208 + 0.330557i
\(145\) 11.5396 0.655482i 0.958310 0.0544348i
\(146\) 11.1103 5.41202i 0.919493 0.447902i
\(147\) 28.0101 2.31024
\(148\) 10.3110 1.25565i 0.847561 0.103214i
\(149\) −6.94868 6.94868i −0.569258 0.569258i 0.362663 0.931921i \(-0.381868\pi\)
−0.931921 + 0.362663i \(0.881868\pi\)
\(150\) −3.07549 + 13.8426i −0.251113 + 1.13024i
\(151\) −6.90006 + 6.90006i −0.561519 + 0.561519i −0.929739 0.368220i \(-0.879967\pi\)
0.368220 + 0.929739i \(0.379967\pi\)
\(152\) −19.4953 4.17419i −1.58128 0.338572i
\(153\) 0.363323i 0.0293729i
\(154\) 10.2188 + 20.9780i 0.823452 + 1.69046i
\(155\) −14.0361 + 15.7267i −1.12741 + 1.26320i
\(156\) −7.13113 + 9.10879i −0.570948 + 0.729287i
\(157\) 13.8336 1.10404 0.552021 0.833830i \(-0.313857\pi\)
0.552021 + 0.833830i \(0.313857\pi\)
\(158\) −6.14010 12.6049i −0.488480 1.00279i
\(159\) 7.06322i 0.560150i
\(160\) −9.23455 + 8.64425i −0.730055 + 0.683388i
\(161\) −0.719810 0.719810i −0.0567290 0.0567290i
\(162\) 14.7345 + 5.08166i 1.15765 + 0.399253i
\(163\) 12.5958 12.5958i 0.986581 0.986581i −0.0133305 0.999911i \(-0.504243\pi\)
0.999911 + 0.0133305i \(0.00424336\pi\)
\(164\) 8.17090 + 9.86086i 0.638040 + 0.770003i
\(165\) 16.1321 0.916350i 1.25588 0.0713378i
\(166\) 2.32761 1.13382i 0.180658 0.0880018i
\(167\) 1.29426i 0.100153i 0.998745 + 0.0500766i \(0.0159465\pi\)
−0.998745 + 0.0500766i \(0.984053\pi\)
\(168\) 21.8034 14.1132i 1.68217 1.08886i
\(169\) 4.68082 0.360063
\(170\) 0.981574 0.549092i 0.0752833 0.0421135i
\(171\) 5.09159 5.09159i 0.389364 0.389364i
\(172\) −1.41256 11.5995i −0.107707 0.884457i
\(173\) −6.93988 + 6.93988i −0.527629 + 0.527629i −0.919865 0.392236i \(-0.871702\pi\)
0.392236 + 0.919865i \(0.371702\pi\)
\(174\) −13.1789 + 6.41971i −0.999093 + 0.486677i
\(175\) 22.7479 2.59266i 1.71958 0.195986i
\(176\) 12.3400 + 7.44801i 0.930166 + 0.561415i
\(177\) 9.11292 0.684969
\(178\) −19.5656 + 9.53076i −1.46650 + 0.714361i
\(179\) 9.42997 9.42997i 0.704829 0.704829i −0.260614 0.965443i \(-0.583925\pi\)
0.965443 + 0.260614i \(0.0839251\pi\)
\(180\) −0.808542 4.49628i −0.0602651 0.335133i
\(181\) 7.57125 7.57125i 0.562766 0.562766i −0.367326 0.930092i \(-0.619727\pi\)
0.930092 + 0.367326i \(0.119727\pi\)
\(182\) 17.6573 + 6.08970i 1.30885 + 0.451399i
\(183\) 16.4835i 1.21850i
\(184\) −0.614852 0.131648i −0.0453275 0.00970518i
\(185\) −11.5946 + 0.658604i −0.852449 + 0.0484215i
\(186\) 8.71667 25.2743i 0.639137 1.85320i
\(187\) −0.906230 0.906230i −0.0662701 0.0662701i
\(188\) −6.17440 4.83385i −0.450315 0.352544i
\(189\) 18.1677i 1.32150i
\(190\) 21.4507 + 6.06078i 1.55620 + 0.439695i
\(191\) −11.2287 11.2287i −0.812479 0.812479i 0.172526 0.985005i \(-0.444807\pi\)
−0.985005 + 0.172526i \(0.944807\pi\)
\(192\) 6.56887 14.6365i 0.474067 1.05630i
\(193\) 3.03867i 0.218728i −0.994002 0.109364i \(-0.965119\pi\)
0.994002 0.109364i \(-0.0348815\pi\)
\(194\) 6.27802 18.2034i 0.450736 1.30692i
\(195\) 8.61209 9.64940i 0.616725 0.691008i
\(196\) −21.9960 17.2204i −1.57115 1.23003i
\(197\) 2.84117 + 2.84117i 0.202425 + 0.202425i 0.801038 0.598613i \(-0.204281\pi\)
−0.598613 + 0.801038i \(0.704281\pi\)
\(198\) −4.67994 + 2.27968i −0.332589 + 0.162010i
\(199\) −3.62341 + 3.62341i −0.256857 + 0.256857i −0.823775 0.566918i \(-0.808136\pi\)
0.566918 + 0.823775i \(0.308136\pi\)
\(200\) 10.9255 8.97966i 0.772547 0.634958i
\(201\) −14.6270 −1.03171
\(202\) 11.5290 5.61599i 0.811177 0.395140i
\(203\) 16.7365 + 16.7365i 1.17467 + 1.17467i
\(204\) −0.879350 + 1.12322i −0.0615668 + 0.0786410i
\(205\) −8.40644 11.5902i −0.587132 0.809492i
\(206\) −3.16456 6.49649i −0.220485 0.452632i
\(207\) 0.160581 0.160581i 0.0111611 0.0111611i
\(208\) 11.2000 2.76888i 0.776581 0.191987i
\(209\) 25.3997i 1.75694i
\(210\) −25.3424 + 14.1766i −1.74879 + 0.978276i
\(211\) −0.620705 0.620705i −0.0427311 0.0427311i 0.685418 0.728149i \(-0.259619\pi\)
−0.728149 + 0.685418i \(0.759619\pi\)
\(212\) 4.34241 5.54667i 0.298238 0.380947i
\(213\) 16.8364 16.8364i 1.15361 1.15361i
\(214\) −0.350545 0.719630i −0.0239628 0.0491929i
\(215\) 0.740906 + 13.0435i 0.0505294 + 0.889557i
\(216\) −6.09793 9.42066i −0.414912 0.640995i
\(217\) −43.1665 −2.93033
\(218\) 2.14540 + 4.40428i 0.145305 + 0.298295i
\(219\) 12.3915 12.3915i 0.837342 0.837342i
\(220\) −13.2317 9.19827i −0.892083 0.620148i
\(221\) −1.02585 −0.0690061
\(222\) 13.2417 6.45029i 0.888726 0.432915i
\(223\) −9.89381 + 9.89381i −0.662538 + 0.662538i −0.955978 0.293439i \(-0.905200\pi\)
0.293439 + 0.955978i \(0.405200\pi\)
\(224\) −25.7987 2.32158i −1.72375 0.155117i
\(225\) 0.578390 + 5.07478i 0.0385593 + 0.338318i
\(226\) −7.27550 14.9358i −0.483959 0.993513i
\(227\) 18.0133 1.19558 0.597792 0.801651i \(-0.296045\pi\)
0.597792 + 0.801651i \(0.296045\pi\)
\(228\) −28.0639 + 3.41755i −1.85858 + 0.226333i
\(229\) 16.1132 + 16.1132i 1.06479 + 1.06479i 0.997750 + 0.0670419i \(0.0213561\pi\)
0.0670419 + 0.997750i \(0.478644\pi\)
\(230\) 0.676521 + 0.191147i 0.0446085 + 0.0126039i
\(231\) 23.3972 + 23.3972i 1.53942 + 1.53942i
\(232\) 14.2961 + 3.06096i 0.938582 + 0.200962i
\(233\) 18.0023i 1.17937i 0.807635 + 0.589683i \(0.200747\pi\)
−0.807635 + 0.589683i \(0.799253\pi\)
\(234\) −1.35854 + 3.93913i −0.0888104 + 0.257509i
\(235\) 6.54085 + 5.83772i 0.426678 + 0.380811i
\(236\) −7.15628 5.60254i −0.465834 0.364694i
\(237\) −14.0586 14.0586i −0.913201 0.913201i
\(238\) 2.17735 + 0.750929i 0.141136 + 0.0486755i
\(239\) 9.56330 + 9.56330i 0.618599 + 0.618599i 0.945172 0.326573i \(-0.105894\pi\)
−0.326573 + 0.945172i \(0.605894\pi\)
\(240\) −8.38273 + 15.8572i −0.541103 + 1.02358i
\(241\) 23.9966i 1.54576i 0.634553 + 0.772879i \(0.281184\pi\)
−0.634553 + 0.772879i \(0.718816\pi\)
\(242\) −0.914959 + 2.65296i −0.0588158 + 0.170539i
\(243\) 10.1986 0.654241
\(244\) 10.1339 12.9443i 0.648757 0.828675i
\(245\) 23.3015 + 20.7966i 1.48868 + 1.32865i
\(246\) 15.5122 + 9.44115i 0.989025 + 0.601946i
\(247\) −14.3762 14.3762i −0.914737 0.914737i
\(248\) −22.3835 + 14.4887i −1.42136 + 0.920035i
\(249\) 2.59604 2.59604i 0.164517 0.164517i
\(250\) −12.8362 + 9.23215i −0.811831 + 0.583893i
\(251\) 8.46569 0.534350 0.267175 0.963648i \(-0.413910\pi\)
0.267175 + 0.963648i \(0.413910\pi\)
\(252\) 5.76695 7.36628i 0.363284 0.464032i
\(253\) 0.801068i 0.0503627i
\(254\) 7.09954 + 14.5745i 0.445464 + 0.914489i
\(255\) 1.06197 1.18988i 0.0665031 0.0745132i
\(256\) −14.1569 + 7.45542i −0.884804 + 0.465964i
\(257\) 4.96814 0.309904 0.154952 0.987922i \(-0.450478\pi\)
0.154952 + 0.987922i \(0.450478\pi\)
\(258\) −7.25635 14.8965i −0.451760 0.927413i
\(259\) −16.8162 16.8162i −1.04491 1.04491i
\(260\) −12.6953 + 2.28293i −0.787332 + 0.141581i
\(261\) −3.73370 + 3.73370i −0.231110 + 0.231110i
\(262\) 0.0660651 + 0.0227847i 0.00408151 + 0.00140764i
\(263\) 13.3682i 0.824319i 0.911112 + 0.412159i \(0.135225\pi\)
−0.911112 + 0.412159i \(0.864775\pi\)
\(264\) 19.9856 + 4.27917i 1.23003 + 0.263364i
\(265\) −5.24422 + 5.87587i −0.322150 + 0.360952i
\(266\) 19.9898 + 41.0368i 1.22565 + 2.51612i
\(267\) −21.8219 + 21.8219i −1.33548 + 1.33548i
\(268\) 11.4864 + 8.99253i 0.701644 + 0.549306i
\(269\) 19.1500i 1.16760i −0.811899 0.583798i \(-0.801566\pi\)
0.811899 0.583798i \(-0.198434\pi\)
\(270\) 6.12530 + 10.9498i 0.372774 + 0.666382i
\(271\) 13.2583i 0.805386i −0.915335 0.402693i \(-0.868074\pi\)
0.915335 0.402693i \(-0.131926\pi\)
\(272\) 1.38109 0.341435i 0.0837408 0.0207025i
\(273\) 26.4856 1.60298
\(274\) 2.79838 8.11401i 0.169056 0.490185i
\(275\) 14.1006 + 11.2153i 0.850298 + 0.676306i
\(276\) −0.885091 + 0.107784i −0.0532762 + 0.00648785i
\(277\) −11.0269 + 11.0269i −0.662545 + 0.662545i −0.955979 0.293434i \(-0.905202\pi\)
0.293434 + 0.955979i \(0.405202\pi\)
\(278\) −30.3921 10.4817i −1.82280 0.628651i
\(279\) 9.62992i 0.576528i
\(280\) 28.6168 + 4.44760i 1.71018 + 0.265795i
\(281\) 0.251867 0.251867i 0.0150251 0.0150251i −0.699554 0.714579i \(-0.746618\pi\)
0.714579 + 0.699554i \(0.246618\pi\)
\(282\) −10.5118 3.62533i −0.625967 0.215885i
\(283\) −17.1809 + 17.1809i −1.02130 + 1.02130i −0.0215286 + 0.999768i \(0.506853\pi\)
−0.999768 + 0.0215286i \(0.993147\pi\)
\(284\) −23.5723 + 2.87058i −1.39876 + 0.170338i
\(285\) 31.5573 1.79255i 1.86929 0.106181i
\(286\) 6.43673 + 13.2139i 0.380612 + 0.781354i
\(287\) 6.24475 28.6474i 0.368616 1.69100i
\(288\) 0.517917 5.75537i 0.0305186 0.339138i
\(289\) 16.8735 0.992559
\(290\) −15.7299 4.44441i −0.923693 0.260985i
\(291\) 27.3046i 1.60063i
\(292\) −17.3491 + 2.11274i −1.01528 + 0.123639i
\(293\) −25.2668 −1.47610 −0.738052 0.674744i \(-0.764254\pi\)
−0.738052 + 0.674744i \(0.764254\pi\)
\(294\) −37.4478 12.9151i −2.18400 0.753223i
\(295\) 7.58100 + 6.76605i 0.441383 + 0.393935i
\(296\) −14.3642 3.07554i −0.834899 0.178762i
\(297\) 10.1093 10.1093i 0.586601 0.586601i
\(298\) 6.08600 + 12.4939i 0.352553 + 0.723751i
\(299\) −0.453403 0.453403i −0.0262210 0.0262210i
\(300\) 10.4944 17.0886i 0.605893 0.986612i
\(301\) −18.9176 + 18.9176i −1.09039 + 1.09039i
\(302\) 12.4065 6.04342i 0.713911 0.347760i
\(303\) 12.8585 12.8585i 0.738704 0.738704i
\(304\) 24.1394 + 14.5697i 1.38449 + 0.835628i
\(305\) −12.2385 + 13.7126i −0.700772 + 0.785179i
\(306\) −0.167523 + 0.485740i −0.00957666 + 0.0277679i
\(307\) −10.4574 + 10.4574i −0.596834 + 0.596834i −0.939469 0.342635i \(-0.888681\pi\)
0.342635 + 0.939469i \(0.388681\pi\)
\(308\) −3.98919 32.7580i −0.227305 1.86656i
\(309\) −7.24567 7.24567i −0.412192 0.412192i
\(310\) 26.0167 14.5538i 1.47765 0.826598i
\(311\) 9.95581 + 9.95581i 0.564542 + 0.564542i 0.930594 0.366052i \(-0.119291\pi\)
−0.366052 + 0.930594i \(0.619291\pi\)
\(312\) 13.7338 8.88981i 0.777524 0.503287i
\(313\) 1.97742 0.111770 0.0558852 0.998437i \(-0.482202\pi\)
0.0558852 + 0.998437i \(0.482202\pi\)
\(314\) −18.4947 6.37849i −1.04371 0.359959i
\(315\) −6.96460 + 7.80347i −0.392411 + 0.439676i
\(316\) 2.39696 + 19.6831i 0.134840 + 1.10726i
\(317\) 22.2451 1.24941 0.624704 0.780862i \(-0.285220\pi\)
0.624704 + 0.780862i \(0.285220\pi\)
\(318\) 3.25675 9.44308i 0.182630 0.529542i
\(319\) 18.6258i 1.04284i
\(320\) 16.3318 7.29889i 0.912973 0.408020i
\(321\) −0.802619 0.802619i −0.0447978 0.0447978i
\(322\) 0.630446 + 1.29423i 0.0351334 + 0.0721249i
\(323\) −1.77275 1.77275i −0.0986385 0.0986385i
\(324\) −17.3560 13.5877i −0.964220 0.754873i
\(325\) 14.3287 1.63310i 0.794815 0.0905878i
\(326\) −22.6476 + 11.0321i −1.25433 + 0.611009i
\(327\) 4.91218 + 4.91218i 0.271644 + 0.271644i
\(328\) −6.37727 16.9508i −0.352126 0.935953i
\(329\) 17.9533i 0.989796i
\(330\) −21.9901 6.21319i −1.21052 0.342025i
\(331\) 8.92595 8.92595i 0.490614 0.490614i −0.417885 0.908500i \(-0.637229\pi\)
0.908500 + 0.417885i \(0.137229\pi\)
\(332\) −3.63466 + 0.442621i −0.199478 + 0.0242920i
\(333\) 3.75148 3.75148i 0.205580 0.205580i
\(334\) 0.596768 1.73035i 0.0326537 0.0946805i
\(335\) −12.1681 10.8600i −0.664815 0.593348i
\(336\) −35.6572 + 8.81522i −1.94526 + 0.480910i
\(337\) −24.9002 24.9002i −1.35640 1.35640i −0.878309 0.478092i \(-0.841328\pi\)
−0.478092 0.878309i \(-0.658672\pi\)
\(338\) −6.25796 2.15826i −0.340388 0.117394i
\(339\) −16.6582 16.6582i −0.904749 0.904749i
\(340\) −1.56548 + 0.281512i −0.0849001 + 0.0152671i
\(341\) −24.0197 24.0197i −1.30074 1.30074i
\(342\) −9.15480 + 4.45947i −0.495035 + 0.241141i
\(343\) 31.9045i 1.72268i
\(344\) −3.45988 + 16.1592i −0.186544 + 0.871244i
\(345\) 0.995268 0.0565341i 0.0535834 0.00304369i
\(346\) 12.4781 6.07830i 0.670825 0.326771i
\(347\) −34.5791 −1.85630 −0.928152 0.372200i \(-0.878603\pi\)
−0.928152 + 0.372200i \(0.878603\pi\)
\(348\) 20.5794 2.50612i 1.10317 0.134342i
\(349\) 29.6933 1.58945 0.794723 0.606972i \(-0.207616\pi\)
0.794723 + 0.606972i \(0.207616\pi\)
\(350\) −31.6079 7.02252i −1.68951 0.375369i
\(351\) 11.4437i 0.610819i
\(352\) −13.0637 15.6473i −0.696297 0.834006i
\(353\) 11.2623 + 11.2623i 0.599431 + 0.599431i 0.940161 0.340730i \(-0.110674\pi\)
−0.340730 + 0.940161i \(0.610674\pi\)
\(354\) −12.1834 4.20184i −0.647540 0.223325i
\(355\) 26.5066 1.50565i 1.40683 0.0799117i
\(356\) 30.5524 3.72060i 1.61928 0.197192i
\(357\) 3.26597 0.172854
\(358\) −16.9553 + 8.25924i −0.896115 + 0.436514i
\(359\) −7.47454 −0.394491 −0.197246 0.980354i \(-0.563200\pi\)
−0.197246 + 0.980354i \(0.563200\pi\)
\(360\) −0.992206 + 6.38405i −0.0522938 + 0.336469i
\(361\) 30.6865i 1.61508i
\(362\) −13.6133 + 6.63128i −0.715498 + 0.348532i
\(363\) 3.97937i 0.208863i
\(364\) −20.7988 16.2831i −1.09016 0.853466i
\(365\) 19.5088 1.10815i 1.02114 0.0580035i
\(366\) 7.60031 22.0374i 0.397275 1.15191i
\(367\) 4.33614 4.33614i 0.226344 0.226344i −0.584819 0.811164i \(-0.698835\pi\)
0.811164 + 0.584819i \(0.198835\pi\)
\(368\) 0.761318 + 0.459504i 0.0396864 + 0.0239533i
\(369\) 6.39088 + 1.39313i 0.332696 + 0.0725233i
\(370\) 15.8049 + 4.46558i 0.821655 + 0.232154i
\(371\) −16.1280 −0.837325
\(372\) −23.3073 + 29.7710i −1.20843 + 1.54356i
\(373\) 14.1225 + 14.1225i 0.731235 + 0.731235i 0.970864 0.239629i \(-0.0770259\pi\)
−0.239629 + 0.970864i \(0.577026\pi\)
\(374\) 0.793722 + 1.62942i 0.0410424 + 0.0842554i
\(375\) −12.9390 + 18.3105i −0.668168 + 0.945548i
\(376\) 6.02597 + 9.30948i 0.310766 + 0.480100i
\(377\) 10.5422 + 10.5422i 0.542949 + 0.542949i
\(378\) −8.37686 + 24.2890i −0.430859 + 1.24929i
\(379\) −30.6121 −1.57244 −0.786219 0.617948i \(-0.787964\pi\)
−0.786219 + 0.617948i \(0.787964\pi\)
\(380\) −25.8837 17.9935i −1.32780 0.923046i
\(381\) 16.2553 + 16.2553i 0.832785 + 0.832785i
\(382\) 9.83465 + 20.1894i 0.503185 + 1.03298i
\(383\) 30.1532i 1.54076i −0.637586 0.770379i \(-0.720067\pi\)
0.637586 0.770379i \(-0.279933\pi\)
\(384\) −15.5309 + 16.5393i −0.792556 + 0.844017i
\(385\) 2.09238 + 36.8357i 0.106637 + 1.87732i
\(386\) −1.40109 + 4.06251i −0.0713136 + 0.206776i
\(387\) −4.22029 4.22029i −0.214529 0.214529i
\(388\) −16.7866 + 21.4420i −0.852212 + 1.08855i
\(389\) 24.0016 1.21693 0.608465 0.793581i \(-0.291786\pi\)
0.608465 + 0.793581i \(0.291786\pi\)
\(390\) −15.9630 + 8.92972i −0.808319 + 0.452174i
\(391\) −0.0559097 0.0559097i −0.00282748 0.00282748i
\(392\) 21.4672 + 33.1646i 1.08426 + 1.67507i
\(393\) 0.0990961 0.00499874
\(394\) −2.48844 5.10849i −0.125366 0.257362i
\(395\) −1.25723 22.1333i −0.0632583 1.11365i
\(396\) 7.30791 0.889939i 0.367236 0.0447211i
\(397\) −9.87585 −0.495655 −0.247827 0.968804i \(-0.579717\pi\)
−0.247827 + 0.968804i \(0.579717\pi\)
\(398\) 6.51498 3.17357i 0.326567 0.159077i
\(399\) 45.7692 + 45.7692i 2.29133 + 2.29133i
\(400\) −18.7470 + 6.96766i −0.937352 + 0.348383i
\(401\) 7.13568i 0.356339i −0.984000 0.178169i \(-0.942982\pi\)
0.984000 0.178169i \(-0.0570175\pi\)
\(402\) 19.5553 + 6.74429i 0.975331 + 0.336375i
\(403\) −27.1903 −1.35444
\(404\) −18.0030 + 2.19236i −0.895682 + 0.109074i
\(405\) 18.3860 + 16.4095i 0.913609 + 0.815397i
\(406\) −14.6586 30.0925i −0.727495 1.49347i
\(407\) 18.7145i 0.927644i
\(408\) 1.69354 1.09621i 0.0838425 0.0542707i
\(409\) 9.89588i 0.489320i −0.969609 0.244660i \(-0.921324\pi\)
0.969609 0.244660i \(-0.0786763\pi\)
\(410\) 5.89482 + 19.3714i 0.291125 + 0.956685i
\(411\) 12.1708i 0.600342i
\(412\) 1.23538 + 10.1445i 0.0608626 + 0.499785i
\(413\) 20.8083i 1.02391i
\(414\) −0.288728 + 0.140645i −0.0141902 + 0.00691231i
\(415\) 4.08711 0.232160i 0.200628 0.0113963i
\(416\) −16.2504 1.46235i −0.796741 0.0716975i
\(417\) −45.5874 −2.23243
\(418\) −11.7115 + 33.9579i −0.572827 + 1.66093i
\(419\) 1.35375i 0.0661351i −0.999453 0.0330676i \(-0.989472\pi\)
0.999453 0.0330676i \(-0.0105277\pi\)
\(420\) 40.4179 7.26812i 1.97219 0.354648i
\(421\) −13.5068 13.5068i −0.658282 0.658282i 0.296692 0.954973i \(-0.404117\pi\)
−0.954973 + 0.296692i \(0.904117\pi\)
\(422\) 0.543645 + 1.11604i 0.0264642 + 0.0543281i
\(423\) −4.00516 −0.194737
\(424\) −8.36302 + 5.41333i −0.406144 + 0.262895i
\(425\) 1.76690 0.201379i 0.0857070 0.00976833i
\(426\) −30.2722 + 14.7462i −1.46669 + 0.714454i
\(427\) −37.6381 −1.82143
\(428\) 0.136845 + 1.12373i 0.00661467 + 0.0543176i
\(429\) 14.7377 + 14.7377i 0.711545 + 0.711545i
\(430\) 5.02362 17.7799i 0.242260 0.857423i
\(431\) −23.7484 −1.14392 −0.571959 0.820282i \(-0.693816\pi\)
−0.571959 + 0.820282i \(0.693816\pi\)
\(432\) 3.80882 + 15.4065i 0.183252 + 0.741245i
\(433\) 3.02756 + 3.02756i 0.145495 + 0.145495i 0.776102 0.630607i \(-0.217194\pi\)
−0.630607 + 0.776102i \(0.717194\pi\)
\(434\) 57.7109 + 19.9035i 2.77021 + 0.955397i
\(435\) −23.1412 + 1.31449i −1.10954 + 0.0630248i
\(436\) −0.837520 6.87745i −0.0401099 0.329370i
\(437\) 1.56703i 0.0749614i
\(438\) −22.2803 + 10.8531i −1.06459 + 0.518583i
\(439\) 2.91251 + 2.91251i 0.139007 + 0.139007i 0.773186 0.634179i \(-0.218662\pi\)
−0.634179 + 0.773186i \(0.718662\pi\)
\(440\) 13.4488 + 18.3985i 0.641146 + 0.877113i
\(441\) −14.2682 −0.679438
\(442\) 1.37150 + 0.473005i 0.0652354 + 0.0224986i
\(443\) −21.8300 21.8300i −1.03717 1.03717i −0.999282 0.0378928i \(-0.987935\pi\)
−0.0378928 0.999282i \(-0.512065\pi\)
\(444\) −20.6775 + 2.51805i −0.981309 + 0.119501i
\(445\) −34.3556 + 1.95150i −1.62861 + 0.0925099i
\(446\) 17.7893 8.66550i 0.842347 0.410323i
\(447\) 13.9347 + 13.9347i 0.659089 + 0.659089i
\(448\) 33.4207 + 14.9992i 1.57898 + 0.708646i
\(449\) 18.1811 0.858019 0.429010 0.903300i \(-0.358863\pi\)
0.429010 + 0.903300i \(0.358863\pi\)
\(450\) 1.56664 7.05134i 0.0738520 0.332403i
\(451\) 19.4155 12.4658i 0.914241 0.586992i
\(452\) 2.84020 + 23.3228i 0.133592 + 1.09701i
\(453\) 13.8372 13.8372i 0.650128 0.650128i
\(454\) −24.0826 8.30568i −1.13025 0.389805i
\(455\) 22.0332 + 19.6647i 1.03293 + 0.921894i
\(456\) 39.0954 + 8.37082i 1.83081 + 0.392000i
\(457\) 5.06758i 0.237051i 0.992951 + 0.118526i \(0.0378168\pi\)
−0.992951 + 0.118526i \(0.962183\pi\)
\(458\) −14.1128 28.9719i −0.659447 1.35377i
\(459\) 1.41114i 0.0658662i
\(460\) −0.816330 0.567486i −0.0380616 0.0264592i
\(461\) 12.4732 0.580933 0.290467 0.956885i \(-0.406189\pi\)
0.290467 + 0.956885i \(0.406189\pi\)
\(462\) −20.4925 42.0687i −0.953396 1.95721i
\(463\) 4.42097 0.205460 0.102730 0.994709i \(-0.467242\pi\)
0.102730 + 0.994709i \(0.467242\pi\)
\(464\) −17.7016 10.6840i −0.821774 0.495994i
\(465\) 28.1476 31.5379i 1.30531 1.46254i
\(466\) 8.30059 24.0679i 0.384517 1.11492i
\(467\) 26.1837 + 26.1837i 1.21164 + 1.21164i 0.970488 + 0.241149i \(0.0775241\pi\)
0.241149 + 0.970488i \(0.422476\pi\)
\(468\) 3.63256 4.63997i 0.167915 0.214483i
\(469\) 33.3989i 1.54222i
\(470\) −6.05302 10.8206i −0.279205 0.499115i
\(471\) −27.7416 −1.27826
\(472\) 6.98424 + 10.7899i 0.321476 + 0.496646i
\(473\) −21.0532 −0.968026
\(474\) 12.3132 + 25.2776i 0.565564 + 1.16104i
\(475\) 27.5833 + 21.9391i 1.26561 + 1.00663i
\(476\) −2.56473 2.00789i −0.117554 0.0920315i
\(477\) 3.59797i 0.164740i
\(478\) −8.37602 17.1950i −0.383110 0.786483i
\(479\) −8.05823 8.05823i −0.368190 0.368190i 0.498627 0.866817i \(-0.333838\pi\)
−0.866817 + 0.498627i \(0.833838\pi\)
\(480\) 18.5187 17.3350i 0.845261 0.791229i
\(481\) −10.5924 10.5924i −0.482971 0.482971i
\(482\) 11.0645 32.0820i 0.503975 1.46129i
\(483\) 1.44349 + 1.44349i 0.0656810 + 0.0656810i
\(484\) 2.44648 3.12496i 0.111204 0.142044i
\(485\) 20.2728 22.7146i 0.920540 1.03142i
\(486\) −13.6349 4.70244i −0.618492 0.213307i
\(487\) 12.5632 12.5632i 0.569293 0.569293i −0.362637 0.931930i \(-0.618124\pi\)
0.931930 + 0.362637i \(0.118124\pi\)
\(488\) −19.5168 + 12.6331i −0.883486 + 0.571875i
\(489\) −25.2593 + 25.2593i −1.14227 + 1.14227i
\(490\) −21.5636 38.5477i −0.974145 1.74141i
\(491\) 25.0910i 1.13234i −0.824288 0.566170i \(-0.808424\pi\)
0.824288 0.566170i \(-0.191576\pi\)
\(492\) −16.3857 19.7747i −0.738725 0.891513i
\(493\) 1.29997 + 1.29997i 0.0585477 + 0.0585477i
\(494\) 12.5914 + 25.8488i 0.566514 + 1.16299i
\(495\) −8.21760 + 0.466783i −0.369354 + 0.0209804i
\(496\) 36.6059 9.04977i 1.64365 0.406347i
\(497\) 38.4439 + 38.4439i 1.72444 + 1.72444i
\(498\) −4.66774 + 2.27374i −0.209166 + 0.101889i
\(499\) 1.47490 + 1.47490i 0.0660255 + 0.0660255i 0.739348 0.673323i \(-0.235134\pi\)
−0.673323 + 0.739348i \(0.735134\pi\)
\(500\) 21.4180 6.42422i 0.957841 0.287300i
\(501\) 2.59549i 0.115958i
\(502\) −11.3181 3.90341i −0.505151 0.174218i
\(503\) 14.2879 0.637064 0.318532 0.947912i \(-0.396810\pi\)
0.318532 + 0.947912i \(0.396810\pi\)
\(504\) −11.1065 + 7.18919i −0.494724 + 0.320232i
\(505\) 20.2440 1.14992i 0.900847 0.0511707i
\(506\) −0.369361 + 1.07098i −0.0164201 + 0.0476107i
\(507\) −9.38679 −0.416882
\(508\) −2.77151 22.7587i −0.122966 1.00976i
\(509\) −26.6826 26.6826i −1.18269 1.18269i −0.979046 0.203641i \(-0.934723\pi\)
−0.203641 0.979046i \(-0.565277\pi\)
\(510\) −1.96842 + 1.10114i −0.0871632 + 0.0487591i
\(511\) 28.2946 + 28.2946i 1.25168 + 1.25168i
\(512\) 22.3644 3.43990i 0.988377 0.152023i
\(513\) 19.7756 19.7756i 0.873115 0.873115i
\(514\) −6.64209 2.29074i −0.292970 0.101040i
\(515\) −0.647969 11.4073i −0.0285529 0.502667i
\(516\) 2.83272 + 23.2614i 0.124704 + 1.02403i
\(517\) −9.98999 + 9.98999i −0.439359 + 0.439359i
\(518\) 14.7285 + 30.2359i 0.647131 + 1.32849i
\(519\) 13.9171 13.9171i 0.610891 0.610891i
\(520\) 18.0255 + 2.80151i 0.790471 + 0.122854i
\(521\) −16.1289 16.1289i −0.706622 0.706622i 0.259202 0.965823i \(-0.416541\pi\)
−0.965823 + 0.259202i \(0.916541\pi\)
\(522\) 6.71327 3.27016i 0.293832 0.143131i
\(523\) 14.8097 14.8097i 0.647582 0.647582i −0.304826 0.952408i \(-0.598598\pi\)
0.952408 + 0.304826i \(0.0985983\pi\)
\(524\) −0.0778191 0.0609234i −0.00339954 0.00266145i
\(525\) −45.6180 + 5.19925i −1.99093 + 0.226914i
\(526\) 6.16389 17.8724i 0.268759 0.779275i
\(527\) −3.35287 −0.146053
\(528\) −24.7464 14.9361i −1.07695 0.650008i
\(529\) 22.9506i 0.997851i
\(530\) 9.72046 5.43763i 0.422230 0.236195i
\(531\) −4.64207 −0.201449
\(532\) −7.80358 64.0805i −0.338328 2.77824i
\(533\) 3.93352 18.0448i 0.170380 0.781606i
\(534\) 39.2363 19.1127i 1.69792 0.827089i
\(535\) −0.0717769 1.26361i −0.00310319 0.0546308i
\(536\) −11.2103 17.3187i −0.484210 0.748052i
\(537\) −18.9106 + 18.9106i −0.816053 + 0.816053i
\(538\) −8.82980 + 25.6023i −0.380680 + 1.10379i
\(539\) −35.5889 + 35.5889i −1.53292 + 1.53292i
\(540\) −3.14035 17.4635i −0.135139 0.751507i
\(541\) 11.9694i 0.514607i 0.966331 + 0.257303i \(0.0828339\pi\)
−0.966331 + 0.257303i \(0.917166\pi\)
\(542\) −6.11323 + 17.7255i −0.262586 + 0.761377i
\(543\) −15.1832 + 15.1832i −0.651573 + 0.651573i
\(544\) −2.00386 0.180324i −0.0859147 0.00773134i
\(545\) 0.439289 + 7.73357i 0.0188171 + 0.331270i
\(546\) −35.4095 12.2121i −1.51539 0.522631i
\(547\) −26.9973 −1.15432 −0.577162 0.816630i \(-0.695840\pi\)
−0.577162 + 0.816630i \(0.695840\pi\)
\(548\) −7.48251 + 9.55762i −0.319637 + 0.408281i
\(549\) 8.39660i 0.358358i
\(550\) −13.6804 21.4957i −0.583334 0.916579i
\(551\) 36.4354i 1.55220i
\(552\) 1.23301 + 0.264003i 0.0524803 + 0.0112367i
\(553\) 32.1010 32.1010i 1.36507 1.36507i
\(554\) 19.8267 9.65796i 0.842356 0.410327i
\(555\) 23.2514 1.32075i 0.986968 0.0560626i
\(556\) 35.7993 + 28.0268i 1.51823 + 1.18860i
\(557\) 7.41625i 0.314237i −0.987580 0.157118i \(-0.949780\pi\)
0.987580 0.157118i \(-0.0502204\pi\)
\(558\) −4.44022 + 12.8746i −0.187970 + 0.545025i
\(559\) −11.9161 + 11.9161i −0.503996 + 0.503996i
\(560\) −36.2081 19.1410i −1.53007 0.808853i
\(561\) 1.81733 + 1.81733i 0.0767278 + 0.0767278i
\(562\) −0.452863 + 0.220598i −0.0191029 + 0.00930536i
\(563\) 9.81331 0.413582 0.206791 0.978385i \(-0.433698\pi\)
0.206791 + 0.978385i \(0.433698\pi\)
\(564\) 12.3820 + 9.69367i 0.521376 + 0.408177i
\(565\) −1.48972 26.2261i −0.0626728 1.10334i
\(566\) 30.8916 15.0479i 1.29847 0.632509i
\(567\) 50.4658i 2.11936i
\(568\) 32.8383 + 7.03108i 1.37786 + 0.295018i
\(569\) −29.9427 −1.25526 −0.627631 0.778511i \(-0.715976\pi\)
−0.627631 + 0.778511i \(0.715976\pi\)
\(570\) −43.0167 12.1541i −1.80177 0.509080i
\(571\) −17.9920 + 17.9920i −0.752944 + 0.752944i −0.975028 0.222084i \(-0.928714\pi\)
0.222084 + 0.975028i \(0.428714\pi\)
\(572\) −2.51276 20.6340i −0.105064 0.862752i
\(573\) 22.5177 + 22.5177i 0.940691 + 0.940691i
\(574\) −21.5577 + 35.4203i −0.899803 + 1.47842i
\(575\) 0.869934 + 0.691924i 0.0362788 + 0.0288552i
\(576\) −3.34614 + 7.45576i −0.139423 + 0.310657i
\(577\) 27.2917 1.13617 0.568084 0.822970i \(-0.307685\pi\)
0.568084 + 0.822970i \(0.307685\pi\)
\(578\) −22.5588 7.78014i −0.938322 0.323611i
\(579\) 6.09368i 0.253245i
\(580\) 18.9807 + 13.1947i 0.788129 + 0.547882i
\(581\) 5.92774 + 5.92774i 0.245924 + 0.245924i
\(582\) −12.5898 + 36.5045i −0.521863 + 1.51316i
\(583\) −8.97434 8.97434i −0.371679 0.371679i
\(584\) 24.1689 + 5.17485i 1.00011 + 0.214137i
\(585\) −4.38695 + 4.91535i −0.181378 + 0.203225i
\(586\) 33.7801 + 11.6502i 1.39544 + 0.481265i
\(587\) 35.6851i 1.47288i −0.676501 0.736442i \(-0.736505\pi\)
0.676501 0.736442i \(-0.263495\pi\)
\(588\) 44.1103 + 34.5333i 1.81908 + 1.42413i
\(589\) −46.9870 46.9870i −1.93606 1.93606i
\(590\) −7.01559 12.5413i −0.288827 0.516316i
\(591\) −5.69761 5.69761i −0.234368 0.234368i
\(592\) 17.7859 + 10.7349i 0.730995 + 0.441203i
\(593\) 17.6194 0.723541 0.361770 0.932267i \(-0.382172\pi\)
0.361770 + 0.932267i \(0.382172\pi\)
\(594\) −18.1767 + 8.85423i −0.745801 + 0.363294i
\(595\) 2.71695 + 2.42488i 0.111384 + 0.0994103i
\(596\) −2.37584 19.5097i −0.0973184 0.799148i
\(597\) 7.26630 7.26630i 0.297390 0.297390i
\(598\) 0.397113 + 0.815229i 0.0162392 + 0.0333372i
\(599\) −20.7527 −0.847933 −0.423967 0.905678i \(-0.639363\pi\)
−0.423967 + 0.905678i \(0.639363\pi\)
\(600\) −21.9096 + 18.0076i −0.894457 + 0.735157i
\(601\) −17.9460 + 17.9460i −0.732034 + 0.732034i −0.971022 0.238988i \(-0.923184\pi\)
0.238988 + 0.971022i \(0.423184\pi\)
\(602\) 34.0143 16.5690i 1.38632 0.675302i
\(603\) 7.45089 0.303424
\(604\) −19.3732 + 2.35922i −0.788284 + 0.0959953i
\(605\) −2.95456 + 3.31043i −0.120120 + 0.134588i
\(606\) −23.1199 + 11.2622i −0.939184 + 0.457494i
\(607\) 31.8391 31.8391i 1.29231 1.29231i 0.358951 0.933356i \(-0.383135\pi\)
0.933356 0.358951i \(-0.116865\pi\)
\(608\) −25.5549 30.6090i −1.03639 1.24136i
\(609\) −33.5628 33.5628i −1.36004 1.36004i
\(610\) 22.6847 12.6898i 0.918477 0.513796i
\(611\) 11.3086i 0.457498i
\(612\) 0.447936 0.572161i 0.0181067 0.0231282i
\(613\) −26.5028 + 26.5028i −1.07044 + 1.07044i −0.0731148 + 0.997324i \(0.523294\pi\)
−0.997324 + 0.0731148i \(0.976706\pi\)
\(614\) 18.8026 9.15909i 0.758811 0.369631i
\(615\) 16.8581 + 23.2426i 0.679783 + 0.937232i
\(616\) −9.77096 + 45.6347i −0.393683 + 1.83867i
\(617\) 0.109186 + 0.109186i 0.00439567 + 0.00439567i 0.709301 0.704906i \(-0.249011\pi\)
−0.704906 + 0.709301i \(0.749011\pi\)
\(618\) 6.34613 + 13.0279i 0.255279 + 0.524058i
\(619\) −46.6015 −1.87307 −0.936537 0.350569i \(-0.885988\pi\)
−0.936537 + 0.350569i \(0.885988\pi\)
\(620\) −41.4933 + 7.46150i −1.66641 + 0.299661i
\(621\) 0.623692 0.623692i 0.0250279 0.0250279i
\(622\) −8.71980 17.9008i −0.349632 0.717756i
\(623\) −49.8277 49.8277i −1.99631 1.99631i
\(624\) −22.4602 + 5.55265i −0.899128 + 0.222284i
\(625\) −24.3588 + 5.62560i −0.974353 + 0.225024i
\(626\) −2.64369 0.911761i −0.105663 0.0364413i
\(627\) 50.9360i 2.03419i
\(628\) 21.7852 + 17.0553i 0.869323 + 0.680579i
\(629\) −1.30616 1.30616i −0.0520801 0.0520801i
\(630\) 12.9093 7.22146i 0.514319 0.287710i
\(631\) 44.8712i 1.78629i −0.449766 0.893147i \(-0.648493\pi\)
0.449766 0.893147i \(-0.351507\pi\)
\(632\) 5.87102 27.4203i 0.233537 1.09072i
\(633\) 1.24475 + 1.24475i 0.0494742 + 0.0494742i
\(634\) −29.7402 10.2569i −1.18114 0.407353i
\(635\) 1.45369 + 25.5918i 0.0576878 + 1.01558i
\(636\) −8.70815 + 11.1232i −0.345301 + 0.441062i
\(637\) 40.2865i 1.59621i
\(638\) 8.58810 24.9015i 0.340006 0.985860i
\(639\) −8.57637 + 8.57637i −0.339276 + 0.339276i
\(640\) −25.1999 + 2.22781i −0.996115 + 0.0880618i
\(641\) 27.0398 27.0398i 1.06801 1.06801i 0.0704963 0.997512i \(-0.477542\pi\)
0.997512 0.0704963i \(-0.0224583\pi\)
\(642\) 0.702974 + 1.44313i 0.0277442 + 0.0569557i
\(643\) 20.5246 0.809410 0.404705 0.914447i \(-0.367374\pi\)
0.404705 + 0.914447i \(0.367374\pi\)
\(644\) −0.246112 2.02100i −0.00969819 0.0796385i
\(645\) −1.48579 26.1570i −0.0585031 1.02993i
\(646\) 1.55266 + 3.18745i 0.0610888 + 0.125408i
\(647\) 16.2726 16.2726i 0.639743 0.639743i −0.310749 0.950492i \(-0.600580\pi\)
0.950492 + 0.310749i \(0.100580\pi\)
\(648\) 16.9387 + 26.1685i 0.665415 + 1.02800i
\(649\) −11.5786 + 11.5786i −0.454501 + 0.454501i
\(650\) −19.9096 4.42343i −0.780919 0.173501i
\(651\) 86.5650 3.39275
\(652\) 35.3651 4.30668i 1.38500 0.168662i
\(653\) 25.6831i 1.00506i 0.864561 + 0.502528i \(0.167597\pi\)
−0.864561 + 0.502528i \(0.832403\pi\)
\(654\) −4.30234 8.83222i −0.168235 0.345367i
\(655\) 0.0824377 + 0.0735757i 0.00322111 + 0.00287484i
\(656\) 0.710209 + 25.6026i 0.0277290 + 0.999615i
\(657\) −6.31218 + 6.31218i −0.246261 + 0.246261i
\(658\) 8.27800 24.0024i 0.322710 0.935710i
\(659\) 8.02251 + 8.02251i 0.312513 + 0.312513i 0.845882 0.533370i \(-0.179075\pi\)
−0.533370 + 0.845882i \(0.679075\pi\)
\(660\) 26.5346 + 18.4460i 1.03286 + 0.718009i
\(661\) 7.81677i 0.304037i −0.988378 0.152019i \(-0.951423\pi\)
0.988378 0.152019i \(-0.0485774\pi\)
\(662\) −16.0491 + 7.81779i −0.623764 + 0.303847i
\(663\) 2.05721 0.0798955
\(664\) 5.06340 + 1.08414i 0.196498 + 0.0420727i
\(665\) 4.09306 + 72.0574i 0.158722 + 2.79426i
\(666\) −6.74525 + 3.28574i −0.261373 + 0.127320i
\(667\) 1.14912i 0.0444940i
\(668\) −1.59568 + 2.03821i −0.0617387 + 0.0788606i
\(669\) 19.8408 19.8408i 0.767089 0.767089i
\(670\) 11.2606 + 20.1297i 0.435034 + 0.777680i
\(671\) −20.9435 20.9435i −0.808515 0.808515i
\(672\) 51.7360 + 4.65564i 1.99576 + 0.179595i
\(673\) 4.92470 0.189833 0.0949166 0.995485i \(-0.469742\pi\)
0.0949166 + 0.995485i \(0.469742\pi\)
\(674\) 21.8089 + 44.7712i 0.840047 + 1.72452i
\(675\) 2.24645 + 19.7103i 0.0864660 + 0.758650i
\(676\) 7.37135 + 5.77092i 0.283513 + 0.221958i
\(677\) 18.9928 + 18.9928i 0.729954 + 0.729954i 0.970610 0.240656i \(-0.0773626\pi\)
−0.240656 + 0.970610i \(0.577363\pi\)
\(678\) 14.5901 + 29.9518i 0.560329 + 1.15029i
\(679\) 62.3468 2.39265
\(680\) 2.22275 + 0.345458i 0.0852385 + 0.0132477i
\(681\) −36.1234 −1.38425
\(682\) 21.0377 + 43.1880i 0.805575 + 1.65376i
\(683\) 15.7812i 0.603850i −0.953332 0.301925i \(-0.902371\pi\)
0.953332 0.301925i \(-0.0976292\pi\)
\(684\) 14.2956 1.74088i 0.546606 0.0665643i
\(685\) 9.03644 10.1249i 0.345265 0.386851i
\(686\) 14.7107 42.6543i 0.561658 1.62855i
\(687\) −32.3131 32.3131i −1.23282 1.23282i
\(688\) 12.0764 20.0085i 0.460409 0.762816i
\(689\) −10.1589 −0.387024
\(690\) −1.35668 0.383322i −0.0516478 0.0145928i
\(691\) 6.86743 + 6.86743i 0.261249 + 0.261249i 0.825562 0.564312i \(-0.190859\pi\)
−0.564312 + 0.825562i \(0.690859\pi\)
\(692\) −19.4850 + 2.37284i −0.740708 + 0.0902017i
\(693\) −11.9184 11.9184i −0.452743 0.452743i
\(694\) 46.2301 + 15.9440i 1.75487 + 0.605224i
\(695\) −37.9240 33.8472i −1.43854 1.28390i
\(696\) −28.6689 6.13838i −1.08669 0.232675i
\(697\) 0.485048 2.22513i 0.0183725 0.0842826i
\(698\) −39.6981 13.6912i −1.50259 0.518218i
\(699\) 36.1013i 1.36547i
\(700\) 39.0198 + 23.9626i 1.47481 + 0.905703i
\(701\) 4.06136 0.153395 0.0766977 0.997054i \(-0.475562\pi\)
0.0766977 + 0.997054i \(0.475562\pi\)
\(702\) −5.27653 + 15.2995i −0.199150 + 0.577442i
\(703\) 36.6090i 1.38073i
\(704\) 10.2505 + 26.9430i 0.386332 + 1.01545i
\(705\) −13.1169 11.7068i −0.494010 0.440904i
\(706\) −9.86408 20.2499i −0.371240 0.762113i
\(707\) 29.3609 + 29.3609i 1.10423 + 1.10423i
\(708\) 14.3510 + 11.2352i 0.539345 + 0.422245i
\(709\) −22.1251 + 22.1251i −0.830924 + 0.830924i −0.987643 0.156719i \(-0.949908\pi\)
0.156719 + 0.987643i \(0.449908\pi\)
\(710\) −36.1319 10.2089i −1.35601 0.383132i
\(711\) 7.16135 + 7.16135i 0.268571 + 0.268571i
\(712\) −42.5622 9.11310i −1.59509 0.341528i
\(713\) −1.48189 1.48189i −0.0554974 0.0554974i
\(714\) −4.36640 1.50589i −0.163408 0.0563567i
\(715\) 1.31797 + 23.2026i 0.0492894 + 0.867727i
\(716\) 26.4764 3.22423i 0.989469 0.120495i
\(717\) −19.1780 19.1780i −0.716215 0.716215i
\(718\) 9.99299 + 3.44641i 0.372935 + 0.128619i
\(719\) 0.908376 0.908376i 0.0338767 0.0338767i −0.689966 0.723842i \(-0.742374\pi\)
0.723842 + 0.689966i \(0.242374\pi\)
\(720\) 4.27012 8.07758i 0.159138 0.301034i
\(721\) 16.5446 16.5446i 0.616154 0.616154i
\(722\) −14.1491 + 41.0259i −0.526576 + 1.52683i
\(723\) 48.1222i 1.78968i
\(724\) 21.2577 2.58871i 0.790035 0.0962086i
\(725\) −20.2270 16.0881i −0.751213 0.597496i
\(726\) 1.83483 5.32017i 0.0680971 0.197450i
\(727\) 32.0189i 1.18752i −0.804644 0.593758i \(-0.797644\pi\)
0.804644 0.593758i \(-0.202356\pi\)
\(728\) 20.2988 + 31.3595i 0.752324 + 1.16226i
\(729\) 12.6111 0.467080
\(730\) −26.5930 7.51370i −0.984250 0.278094i
\(731\) −1.46939 + 1.46939i −0.0543472 + 0.0543472i
\(732\) −20.3223 + 25.9582i −0.751133 + 0.959443i
\(733\) 22.3532 22.3532i 0.825634 0.825634i −0.161276 0.986909i \(-0.551561\pi\)
0.986909 + 0.161276i \(0.0515608\pi\)
\(734\) −7.79647 + 3.79781i −0.287773 + 0.140180i
\(735\) −46.7282 41.7050i −1.72360 1.53831i
\(736\) −0.805962 0.965361i −0.0297082 0.0355837i
\(737\) 18.5846 18.5846i 0.684574 0.684574i
\(738\) −7.90185 4.80927i −0.290871 0.177032i
\(739\) −19.2570 −0.708380 −0.354190 0.935174i \(-0.615243\pi\)
−0.354190 + 0.935174i \(0.615243\pi\)
\(740\) −19.0711 13.2576i −0.701067 0.487359i
\(741\) 28.8297 + 28.8297i 1.05909 + 1.05909i
\(742\) 21.5621 + 7.43641i 0.791571 + 0.272999i
\(743\) 25.8253 + 25.8253i 0.947437 + 0.947437i 0.998686 0.0512490i \(-0.0163202\pi\)
−0.0512490 + 0.998686i \(0.516320\pi\)
\(744\) 44.8874 29.0553i 1.64565 1.06522i
\(745\) 1.24616 + 21.9383i 0.0456557 + 0.803757i
\(746\) −12.3692 25.3926i −0.452868 0.929688i
\(747\) −1.32241 + 1.32241i −0.0483844 + 0.0483844i
\(748\) −0.309852 2.54441i −0.0113293 0.0930328i
\(749\) 1.83268 1.83268i 0.0669648 0.0669648i
\(750\) 25.7413 18.5139i 0.939941 0.676033i
\(751\) 3.98264 3.98264i 0.145328 0.145328i −0.630699 0.776028i \(-0.717232\pi\)
0.776028 + 0.630699i \(0.217232\pi\)
\(752\) −3.76387 15.2247i −0.137254 0.555187i
\(753\) −16.9769 −0.618672
\(754\) −9.23337 18.9551i −0.336259 0.690303i
\(755\) 21.7848 1.23744i 0.792829 0.0450350i
\(756\) 22.3987 28.6104i 0.814632 1.04055i
\(757\) 2.43172i 0.0883822i 0.999023 + 0.0441911i \(0.0140710\pi\)
−0.999023 + 0.0441911i \(0.985929\pi\)
\(758\) 40.9264 + 14.1148i 1.48652 + 0.512673i
\(759\) 1.60644i 0.0583101i
\(760\) 26.3083 + 35.9908i 0.954302 + 1.30552i
\(761\) 18.3270 0.664353 0.332176 0.943217i \(-0.392217\pi\)
0.332176 + 0.943217i \(0.392217\pi\)
\(762\) −14.2372 29.2274i −0.515760 1.05880i
\(763\) −11.2164 + 11.2164i −0.406060 + 0.406060i
\(764\) −3.83924 31.5266i −0.138899 1.14059i
\(765\) −0.540961 + 0.606118i −0.0195585 + 0.0219142i
\(766\) −13.9032 + 40.3130i −0.502344 + 1.45657i
\(767\) 13.1070i 0.473266i
\(768\) 28.3898 14.9509i 1.02443 0.539495i
\(769\) 44.0139i 1.58718i 0.608453 + 0.793590i \(0.291791\pi\)
−0.608453 + 0.793590i \(0.708209\pi\)
\(770\) 14.1871 50.2118i 0.511267 1.80951i
\(771\) −9.96299 −0.358808
\(772\) 3.74634 4.78530i 0.134834 0.172227i
\(773\) −0.849292 −0.0305469 −0.0152735 0.999883i \(-0.504862\pi\)
−0.0152735 + 0.999883i \(0.504862\pi\)
\(774\) 3.69634 + 7.58817i 0.132862 + 0.272751i
\(775\) 46.8318 5.33758i 1.68225 0.191732i
\(776\) 32.3293 20.9265i 1.16055 0.751219i
\(777\) 33.7227 + 33.7227i 1.20980 + 1.20980i
\(778\) −32.0886 11.0668i −1.15043 0.396764i
\(779\) 37.9803 24.3854i 1.36078 0.873697i
\(780\) 25.4589 4.57813i 0.911576 0.163924i
\(781\) 42.7838i 1.53092i
\(782\) 0.0489686 + 0.100527i 0.00175111 + 0.00359484i
\(783\) −14.5016 + 14.5016i −0.518244 + 0.518244i
\(784\) −13.4086 54.2372i −0.478879 1.93704i
\(785\) −23.0781 20.5972i −0.823693 0.735146i
\(786\) −0.132485 0.0456918i −0.00472559 0.00162977i
\(787\) −7.06534 + 7.06534i −0.251852 + 0.251852i −0.821730 0.569878i \(-0.806991\pi\)
0.569878 + 0.821730i \(0.306991\pi\)
\(788\) 0.971433 + 7.97711i 0.0346059 + 0.284173i
\(789\) 26.8083i 0.954399i
\(790\) −8.52451 + 30.1705i −0.303288 + 1.07342i
\(791\) 38.0370 38.0370i 1.35244 1.35244i
\(792\) −10.1805 2.17978i −0.361750 0.0774552i
\(793\) −23.7080 −0.841894
\(794\) 13.2034 + 4.55362i 0.468571 + 0.161602i
\(795\) 10.5166 11.7833i 0.372986 0.417911i
\(796\) −10.1734 + 1.23889i −0.360587 + 0.0439114i
\(797\) 2.90820 2.90820i 0.103014 0.103014i −0.653722 0.756735i \(-0.726793\pi\)
0.756735 + 0.653722i \(0.226793\pi\)
\(798\) −40.0870 82.2941i −1.41906 2.91318i
\(799\) 1.39448i 0.0493333i
\(800\) 28.2763 0.671321i 0.999718 0.0237348i
\(801\) 11.1160 11.1160i 0.392763 0.392763i
\(802\) −3.29016 + 9.53995i −0.116180 + 0.336868i
\(803\) 31.4887i 1.11121i
\(804\) −23.0345 18.0334i −0.812365 0.635988i
\(805\) 0.129089 + 2.27258i 0.00454978 + 0.0800978i
\(806\) 36.3517 + 12.5371i 1.28043 + 0.441599i
\(807\) 38.4029i 1.35185i
\(808\) 25.0797 + 5.36988i 0.882302 + 0.188912i
\(809\) −35.3334 + 35.3334i −1.24226 + 1.24226i −0.283193 + 0.959063i \(0.591394\pi\)
−0.959063 + 0.283193i \(0.908606\pi\)
\(810\) −17.0147 30.4161i −0.597837 1.06871i
\(811\) 21.1131 0.741383 0.370691 0.928756i \(-0.379121\pi\)
0.370691 + 0.928756i \(0.379121\pi\)
\(812\) 5.72241 + 46.9907i 0.200817 + 1.64905i
\(813\) 26.5879i 0.932479i
\(814\) −8.62901 + 25.0201i −0.302447 + 0.876955i
\(815\) −39.7674 + 2.25890i −1.39299 + 0.0791258i
\(816\) −2.76960 + 0.684704i −0.0969553 + 0.0239694i
\(817\) −41.1838 −1.44084
\(818\) −4.56286 + 13.2302i −0.159536 + 0.462582i
\(819\) −13.4916 −0.471435
\(820\) 1.05088 28.6164i 0.0366982 0.999326i
\(821\) 25.4002 0.886472 0.443236 0.896405i \(-0.353830\pi\)
0.443236 + 0.896405i \(0.353830\pi\)
\(822\) −5.61180 + 16.2716i −0.195734 + 0.567538i
\(823\) 31.0979 1.08400 0.542002 0.840377i \(-0.317667\pi\)
0.542002 + 0.840377i \(0.317667\pi\)
\(824\) 3.02588 14.1322i 0.105412 0.492319i
\(825\) −28.2770 22.4908i −0.984478 0.783029i
\(826\) 9.59440 27.8193i 0.333832 0.967958i
\(827\) 24.5973i 0.855333i −0.903937 0.427667i \(-0.859336\pi\)
0.903937 0.427667i \(-0.140664\pi\)
\(828\) 0.450860 0.0549047i 0.0156685 0.00190807i
\(829\) 31.6535 1.09937 0.549686 0.835371i \(-0.314747\pi\)
0.549686 + 0.835371i \(0.314747\pi\)
\(830\) −5.57125 1.57413i −0.193381 0.0546388i
\(831\) 22.1132 22.1132i 0.767097 0.767097i
\(832\) 21.0515 + 9.44790i 0.729829 + 0.327547i
\(833\) 4.96779i 0.172124i
\(834\) 60.9475 + 21.0197i 2.11044 + 0.727854i
\(835\) 1.92706 2.15917i 0.0666888 0.0747213i
\(836\) 31.3150 39.9995i 1.08305 1.38341i
\(837\) 37.4024i 1.29281i
\(838\) −0.624197 + 1.80988i −0.0215625 + 0.0625213i
\(839\) −1.55280 + 1.55280i −0.0536087 + 0.0536087i −0.733403 0.679794i \(-0.762069\pi\)
0.679794 + 0.733403i \(0.262069\pi\)
\(840\) −57.3873 8.91911i −1.98005 0.307738i
\(841\) 2.28166i 0.0786779i
\(842\) 11.8299 + 24.2855i 0.407687 + 0.836935i
\(843\) −0.505088 + 0.505088i −0.0173961 + 0.0173961i
\(844\) −0.212227 1.74275i −0.00730517 0.0599878i
\(845\) −7.80884 6.96939i −0.268632 0.239754i
\(846\) 5.35464 + 1.84672i 0.184096 + 0.0634916i
\(847\) −9.08642 −0.312213
\(848\) 13.6768 3.38121i 0.469664 0.116111i
\(849\) 34.4541 34.4541i 1.18246 1.18246i
\(850\) −2.45508 0.545460i −0.0842085 0.0187091i
\(851\) 1.15459i 0.0395788i
\(852\) 47.2713 5.75659i 1.61949 0.197217i
\(853\) 1.64231 1.64231i 0.0562316 0.0562316i −0.678432 0.734663i \(-0.737340\pi\)
0.734663 + 0.678432i \(0.237340\pi\)
\(854\) 50.3197 + 17.3544i 1.72191 + 0.593855i
\(855\) −16.0751 + 0.913113i −0.549757 + 0.0312278i
\(856\) 0.335183 1.56545i 0.0114563 0.0535061i
\(857\) 11.7972 11.7972i 0.402986 0.402986i −0.476298 0.879284i \(-0.658022\pi\)
0.879284 + 0.476298i \(0.158022\pi\)
\(858\) −12.9081 26.4988i −0.440674 0.904654i
\(859\) 35.1075i 1.19785i 0.800804 + 0.598926i \(0.204406\pi\)
−0.800804 + 0.598926i \(0.795594\pi\)
\(860\) −14.9143 + 21.4543i −0.508574 + 0.731585i
\(861\) −12.5231 + 57.4487i −0.426785 + 1.95785i
\(862\) 31.7501 + 10.9500i 1.08141 + 0.372960i
\(863\) 13.6822 + 13.6822i 0.465746 + 0.465746i 0.900533 0.434787i \(-0.143176\pi\)
−0.434787 + 0.900533i \(0.643176\pi\)
\(864\) 2.01158 22.3537i 0.0684352 0.760488i
\(865\) 21.9105 1.24458i 0.744980 0.0423170i
\(866\) −2.65169 5.44362i −0.0901080 0.184982i
\(867\) −33.8377 −1.14919
\(868\) −67.9786 53.2194i −2.30734 1.80638i
\(869\) 35.7248 1.21188
\(870\) 31.5444 + 8.91270i 1.06946 + 0.302169i
\(871\) 21.0377i 0.712837i
\(872\) −2.05139 + 9.58089i −0.0694688 + 0.324450i
\(873\) 13.9088i 0.470742i
\(874\) −0.722538 + 2.09503i −0.0244402 + 0.0708653i
\(875\) −41.8097 29.5447i −1.41343 0.998792i
\(876\) 34.7915 4.23683i 1.17550 0.143149i
\(877\) 29.1768 29.1768i 0.985231 0.985231i −0.0146619 0.999893i \(-0.504667\pi\)
0.999893 + 0.0146619i \(0.00466718\pi\)
\(878\) −2.55093 5.23677i −0.0860896 0.176732i
\(879\) 50.6694 1.70904
\(880\) −9.49690 30.7987i −0.320141 1.03822i
\(881\) 7.04428i 0.237328i 0.992934 + 0.118664i \(0.0378611\pi\)
−0.992934 + 0.118664i \(0.962139\pi\)
\(882\) 19.0757 + 6.57887i 0.642311 + 0.221522i
\(883\) 0.316090i 0.0106373i −0.999986 0.00531864i \(-0.998307\pi\)
0.999986 0.00531864i \(-0.00169298\pi\)
\(884\) −1.61551 1.26476i −0.0543354 0.0425383i
\(885\) −15.2028 13.5685i −0.511035 0.456099i
\(886\) 19.1198 + 39.2508i 0.642343 + 1.31866i
\(887\) −9.84344 −0.330510 −0.165255 0.986251i \(-0.552845\pi\)
−0.165255 + 0.986251i \(0.552845\pi\)
\(888\) 28.8055 + 6.16762i 0.966649 + 0.206972i
\(889\) −37.1171 + 37.1171i −1.24487 + 1.24487i
\(890\) 46.8311 + 13.2319i 1.56978 + 0.443534i
\(891\) −28.0814 + 28.0814i −0.940762 + 0.940762i
\(892\) −27.7787 + 3.38282i −0.930100 + 0.113265i
\(893\) −19.5422 + 19.5422i −0.653956 + 0.653956i
\(894\) −12.2047 25.0549i −0.408187 0.837962i
\(895\) −29.7722 + 1.69115i −0.995174 + 0.0565287i
\(896\) −37.7655 35.4628i −1.26166 1.18473i
\(897\) 0.909243 + 0.909243i 0.0303587 + 0.0303587i
\(898\) −24.3070 8.38305i −0.811134 0.279746i
\(899\) 34.4558 + 34.4558i 1.14917 + 1.14917i
\(900\) −5.34577 + 8.70484i −0.178192 + 0.290161i
\(901\) −1.25271 −0.0417339
\(902\) −31.7051 + 7.71377i −1.05567 + 0.256840i
\(903\) 37.9369 37.9369i 1.26246 1.26246i
\(904\) 6.95667 32.4907i 0.231375 1.08062i
\(905\) −23.9038 + 1.35781i −0.794591 + 0.0451350i
\(906\) −24.8796 + 12.1193i −0.826569 + 0.402637i
\(907\) −2.65862 + 2.65862i −0.0882781 + 0.0882781i −0.749867 0.661589i \(-0.769882\pi\)
0.661589 + 0.749867i \(0.269882\pi\)
\(908\) 28.3673 + 22.2083i 0.941403 + 0.737010i
\(909\) −6.55007 + 6.55007i −0.217252 + 0.217252i
\(910\) −20.3899 36.4497i −0.675920 1.20829i
\(911\) 19.4337 0.643867 0.321933 0.946762i \(-0.395667\pi\)
0.321933 + 0.946762i \(0.395667\pi\)
\(912\) −48.4085 29.2176i −1.60296 0.967492i
\(913\) 6.59692i 0.218326i
\(914\) 2.33659 6.77503i 0.0772875 0.224098i
\(915\) 24.5427 27.4988i 0.811357 0.909082i
\(916\) 5.50932 + 45.2409i 0.182033 + 1.49480i
\(917\) 0.226274i 0.00747223i
\(918\) −0.650656 + 1.88660i −0.0214748 + 0.0622671i
\(919\) 24.2342 24.2342i 0.799412 0.799412i −0.183591 0.983003i \(-0.558772\pi\)
0.983003 + 0.183591i \(0.0587721\pi\)
\(920\) 0.829722 + 1.13509i 0.0273551 + 0.0374229i
\(921\) 20.9709 20.9709i 0.691016 0.691016i
\(922\) −16.6758 5.75120i −0.549189 0.189406i
\(923\) 24.2155 + 24.2155i 0.797064 + 0.797064i
\(924\) 7.99982 + 65.6920i 0.263175 + 2.16111i
\(925\) 20.3234 + 16.1647i 0.668228 + 0.531492i
\(926\) −5.91055 2.03845i −0.194233 0.0669875i
\(927\) 3.69090 + 3.69090i 0.121225 + 0.121225i
\(928\) 18.7396 + 22.4458i 0.615157 + 0.736820i
\(929\) −33.4285 33.4285i −1.09675 1.09675i −0.994788 0.101966i \(-0.967487\pi\)
−0.101966 0.994788i \(-0.532513\pi\)
\(930\) −52.1733 + 29.1857i −1.71083 + 0.957038i
\(931\) −69.6183 + 69.6183i −2.28165 + 2.28165i
\(932\) −22.1947 + 28.3499i −0.727012 + 0.928633i
\(933\) −19.9651 19.9651i −0.653629 0.653629i
\(934\) −22.9330 47.0789i −0.750391 1.54047i
\(935\) 0.162521 + 2.86114i 0.00531500 + 0.0935693i
\(936\) −6.99593 + 4.52842i −0.228669 + 0.148016i
\(937\) 22.0009i 0.718739i 0.933195 + 0.359370i \(0.117008\pi\)
−0.933195 + 0.359370i \(0.882992\pi\)
\(938\) −15.3998 + 44.6522i −0.502821 + 1.45795i
\(939\) −3.96547 −0.129408
\(940\) 3.10329 + 17.2574i 0.101218 + 0.562873i
\(941\) 33.6199i 1.09598i −0.836486 0.547988i \(-0.815394\pi\)
0.836486 0.547988i \(-0.184606\pi\)
\(942\) 37.0887 + 12.7913i 1.20842 + 0.416762i
\(943\) 1.19784 0.769076i 0.0390070 0.0250446i
\(944\) −4.36241 17.6458i −0.141984 0.574321i
\(945\) −27.0503 + 30.3085i −0.879947 + 0.985934i
\(946\) 28.1468 + 9.70733i 0.915130 + 0.315613i
\(947\) 21.4622 + 21.4622i 0.697429 + 0.697429i 0.963855 0.266426i \(-0.0858428\pi\)
−0.266426 + 0.963855i \(0.585843\pi\)
\(948\) −4.80680 39.4720i −0.156118 1.28199i
\(949\) 17.8226 + 17.8226i 0.578545 + 0.578545i
\(950\) −26.7613 42.0494i −0.868253 1.36426i
\(951\) −44.6097 −1.44657
\(952\) 2.50307 + 3.86698i 0.0811251 + 0.125330i
\(953\) −14.3244 14.3244i −0.464014 0.464014i 0.435955 0.899969i \(-0.356411\pi\)
−0.899969 + 0.435955i \(0.856411\pi\)
\(954\) −1.65897 + 4.81025i −0.0537112 + 0.155738i
\(955\) 2.01372 + 35.4511i 0.0651626 + 1.14717i
\(956\) 3.26982 + 26.8507i 0.105753 + 0.868415i
\(957\) 37.3517i 1.20741i
\(958\) 7.05781 + 14.4889i 0.228027 + 0.468115i
\(959\) 27.7906 0.897406
\(960\) −32.7513 + 14.6370i −1.05704 + 0.472407i
\(961\) −57.8682 −1.86672
\(962\) 9.27735 + 19.0454i 0.299114 + 0.614047i
\(963\) 0.408850 + 0.408850i 0.0131750 + 0.0131750i
\(964\) −29.5851 + 37.7899i −0.952872 + 1.21713i
\(965\) −4.52436 + 5.06931i −0.145644 + 0.163187i
\(966\) −1.26428 2.59542i −0.0406775 0.0835064i
\(967\) −12.7871 −0.411206 −0.205603 0.978636i \(-0.565916\pi\)
−0.205603 + 0.978636i \(0.565916\pi\)
\(968\) −4.71167 + 3.04983i −0.151439 + 0.0980254i
\(969\) 3.55503 + 3.55503i 0.114204 + 0.114204i
\(970\) −37.5768 + 21.0205i −1.20652 + 0.674927i
\(971\) −11.2873 + 11.2873i −0.362226 + 0.362226i −0.864632 0.502406i \(-0.832448\pi\)
0.502406 + 0.864632i \(0.332448\pi\)
\(972\) 16.0608 + 12.5737i 0.515149 + 0.403303i
\(973\) 104.093i 3.33708i
\(974\) −22.5889 + 11.0035i −0.723795 + 0.352574i
\(975\) −28.7345 + 3.27497i −0.920239 + 0.104883i
\(976\) 31.9177 7.89075i 1.02166 0.252577i
\(977\) −19.1640 −0.613111 −0.306555 0.951853i \(-0.599176\pi\)
−0.306555 + 0.951853i \(0.599176\pi\)
\(978\) 45.4169 22.1234i 1.45227 0.707428i
\(979\) 55.4527i 1.77228i
\(980\) 11.0553 + 61.4786i 0.353150 + 1.96386i
\(981\) −2.50224 2.50224i −0.0798903 0.0798903i
\(982\) −11.5691 + 33.5451i −0.369185 + 1.07047i
\(983\) 11.1165 11.1165i 0.354563 0.354563i −0.507241 0.861804i \(-0.669335\pi\)
0.861804 + 0.507241i \(0.169335\pi\)
\(984\) 12.7888 + 33.9927i 0.407692 + 1.08365i
\(985\) −0.509528 8.97010i −0.0162349 0.285811i
\(986\) −1.13858 2.33737i −0.0362597 0.0744372i
\(987\) 36.0030i 1.14599i
\(988\) −4.91542 40.3639i −0.156380 1.28415i
\(989\) −1.29887 −0.0413018
\(990\) 11.2016 + 3.16496i 0.356012 + 0.100589i
\(991\) −16.2263 + 16.2263i −0.515446 + 0.515446i −0.916190 0.400744i \(-0.868752\pi\)
0.400744 + 0.916190i \(0.368752\pi\)
\(992\) −53.1125 4.77952i −1.68632 0.151750i
\(993\) −17.8999 + 17.8999i −0.568035 + 0.568035i
\(994\) −33.6711 69.1230i −1.06798 2.19245i
\(995\) 11.4398 0.649814i 0.362666 0.0206005i
\(996\) 7.28886 0.887620i 0.230956 0.0281253i
\(997\) −51.4430 −1.62922 −0.814608 0.580012i \(-0.803048\pi\)
−0.814608 + 0.580012i \(0.803048\pi\)
\(998\) −1.29179 2.65190i −0.0408909 0.0839445i
\(999\) 14.5707 14.5707i 0.460995 0.460995i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.s.c.583.14 yes 240
4.3 odd 2 inner 820.2.s.c.583.45 yes 240
5.2 odd 4 820.2.j.c.747.76 yes 240
20.7 even 4 820.2.j.c.747.107 yes 240
41.32 even 4 820.2.j.c.483.107 yes 240
164.155 odd 4 820.2.j.c.483.76 240
205.32 odd 4 inner 820.2.s.c.647.45 yes 240
820.647 even 4 inner 820.2.s.c.647.14 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.j.c.483.76 240 164.155 odd 4
820.2.j.c.483.107 yes 240 41.32 even 4
820.2.j.c.747.76 yes 240 5.2 odd 4
820.2.j.c.747.107 yes 240 20.7 even 4
820.2.s.c.583.14 yes 240 1.1 even 1 trivial
820.2.s.c.583.45 yes 240 4.3 odd 2 inner
820.2.s.c.647.14 yes 240 820.647 even 4 inner
820.2.s.c.647.45 yes 240 205.32 odd 4 inner