Properties

Label 820.2.j.c.483.3
Level $820$
Weight $2$
Character 820.483
Analytic conductor $6.548$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(483,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.483"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(120\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 483.3
Character \(\chi\) \(=\) 820.483
Dual form 820.2.j.c.747.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41313 - 0.0554718i) q^{2} -1.54369i q^{3} +(1.99385 + 0.156777i) q^{4} +(-1.38671 + 1.75415i) q^{5} +(-0.0856310 + 2.18142i) q^{6} -2.96451 q^{7} +(-2.80886 - 0.332148i) q^{8} +0.617035 q^{9} +(2.05690 - 2.40191i) q^{10} +(2.13724 + 2.13724i) q^{11} +(0.242015 - 3.07787i) q^{12} +2.06129 q^{13} +(4.18923 + 0.164447i) q^{14} +(2.70786 + 2.14064i) q^{15} +(3.95084 + 0.625179i) q^{16} -4.42100 q^{17} +(-0.871947 - 0.0342280i) q^{18} +(-2.99818 - 2.99818i) q^{19} +(-3.03989 + 3.28010i) q^{20} +4.57628i q^{21} +(-2.90163 - 3.13874i) q^{22} +(5.19993 - 5.19993i) q^{23} +(-0.512732 + 4.33599i) q^{24} +(-1.15408 - 4.86499i) q^{25} +(-2.91287 - 0.114344i) q^{26} -5.58356i q^{27} +(-5.91078 - 0.464768i) q^{28} +(3.21653 + 3.21653i) q^{29} +(-3.70779 - 3.17520i) q^{30} -9.27745i q^{31} +(-5.54835 - 1.10262i) q^{32} +(3.29922 - 3.29922i) q^{33} +(6.24742 + 0.245241i) q^{34} +(4.11091 - 5.20020i) q^{35} +(1.23027 + 0.0967370i) q^{36} +(-3.03923 + 3.03923i) q^{37} +(4.07049 + 4.40312i) q^{38} -3.18199i q^{39} +(4.47770 - 4.46656i) q^{40} +(-5.60860 - 3.08927i) q^{41} +(0.253854 - 6.46685i) q^{42} +(-5.76865 - 5.76865i) q^{43} +(3.92625 + 4.59639i) q^{44} +(-0.855647 + 1.08237i) q^{45} +(-7.63661 + 7.05971i) q^{46} +4.71449i q^{47} +(0.965080 - 6.09886i) q^{48} +1.78834 q^{49} +(1.36099 + 6.93885i) q^{50} +6.82463i q^{51} +(4.10990 + 0.323164i) q^{52} +6.29275 q^{53} +(-0.309730 + 7.89028i) q^{54} +(-6.71276 + 0.785311i) q^{55} +(8.32690 + 0.984657i) q^{56} +(-4.62825 + 4.62825i) q^{57} +(-4.36693 - 4.72378i) q^{58} +1.86980 q^{59} +(5.06344 + 4.69264i) q^{60} -2.79777i q^{61} +(-0.514637 + 13.1102i) q^{62} -1.82921 q^{63} +(7.77936 + 1.86591i) q^{64} +(-2.85841 + 3.61582i) q^{65} +(-4.84523 + 4.47920i) q^{66} -7.93540i q^{67} +(-8.81479 - 0.693112i) q^{68} +(-8.02706 - 8.02706i) q^{69} +(-6.09770 + 7.12050i) q^{70} +(-1.98163 - 1.98163i) q^{71} +(-1.73316 - 0.204947i) q^{72} +(-0.828844 + 0.828844i) q^{73} +(4.46341 - 4.12623i) q^{74} +(-7.51001 + 1.78154i) q^{75} +(-5.50787 - 6.44796i) q^{76} +(-6.33587 - 6.33587i) q^{77} +(-0.176511 + 4.49655i) q^{78} +(1.53706 - 1.53706i) q^{79} +(-6.57532 + 6.06343i) q^{80} -6.76816 q^{81} +(7.75429 + 4.67665i) q^{82} +(1.78572 - 1.78572i) q^{83} +(-0.717456 + 9.12439i) q^{84} +(6.13063 - 7.75509i) q^{85} +(7.83182 + 8.47182i) q^{86} +(4.96531 - 4.96531i) q^{87} +(-5.29332 - 6.71308i) q^{88} +(-5.58411 - 5.58411i) q^{89} +(1.26918 - 1.48206i) q^{90} -6.11073 q^{91} +(11.1831 - 9.55263i) q^{92} -14.3215 q^{93} +(0.261521 - 6.66217i) q^{94} +(9.41686 - 1.10166i) q^{95} +(-1.70209 + 8.56492i) q^{96} -9.67761 q^{97} +(-2.52715 - 0.0992025i) q^{98} +(1.31875 + 1.31875i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 4 q^{6} + 12 q^{8} - 240 q^{9} - 20 q^{10} - 32 q^{13} - 8 q^{14} + 8 q^{16} + 32 q^{17} - 12 q^{18} + 16 q^{20} - 28 q^{22} + 12 q^{24} - 16 q^{25} - 8 q^{28} - 10 q^{30} + 24 q^{33} - 20 q^{34}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41313 0.0554718i −0.999230 0.0392245i
\(3\) 1.54369i 0.891247i −0.895220 0.445624i \(-0.852982\pi\)
0.895220 0.445624i \(-0.147018\pi\)
\(4\) 1.99385 + 0.156777i 0.996923 + 0.0783886i
\(5\) −1.38671 + 1.75415i −0.620155 + 0.784480i
\(6\) −0.0856310 + 2.18142i −0.0349587 + 0.890561i
\(7\) −2.96451 −1.12048 −0.560240 0.828330i \(-0.689291\pi\)
−0.560240 + 0.828330i \(0.689291\pi\)
\(8\) −2.80886 0.332148i −0.993081 0.117432i
\(9\) 0.617035 0.205678
\(10\) 2.05690 2.40191i 0.650448 0.759551i
\(11\) 2.13724 + 2.13724i 0.644402 + 0.644402i 0.951634 0.307233i \(-0.0994030\pi\)
−0.307233 + 0.951634i \(0.599403\pi\)
\(12\) 0.242015 3.07787i 0.0698636 0.888505i
\(13\) 2.06129 0.571700 0.285850 0.958274i \(-0.407724\pi\)
0.285850 + 0.958274i \(0.407724\pi\)
\(14\) 4.18923 + 0.164447i 1.11962 + 0.0439503i
\(15\) 2.70786 + 2.14064i 0.699165 + 0.552711i
\(16\) 3.95084 + 0.625179i 0.987710 + 0.156295i
\(17\) −4.42100 −1.07225 −0.536125 0.844139i \(-0.680112\pi\)
−0.536125 + 0.844139i \(0.680112\pi\)
\(18\) −0.871947 0.0342280i −0.205520 0.00806762i
\(19\) −2.99818 2.99818i −0.687830 0.687830i 0.273922 0.961752i \(-0.411679\pi\)
−0.961752 + 0.273922i \(0.911679\pi\)
\(20\) −3.03989 + 3.28010i −0.679741 + 0.733453i
\(21\) 4.57628i 0.998626i
\(22\) −2.90163 3.13874i −0.618629 0.669182i
\(23\) 5.19993 5.19993i 1.08426 1.08426i 0.0881540 0.996107i \(-0.471903\pi\)
0.996107 0.0881540i \(-0.0280968\pi\)
\(24\) −0.512732 + 4.33599i −0.104661 + 0.885081i
\(25\) −1.15408 4.86499i −0.230817 0.972997i
\(26\) −2.91287 0.114344i −0.571260 0.0224246i
\(27\) 5.58356i 1.07456i
\(28\) −5.91078 0.464768i −1.11703 0.0878329i
\(29\) 3.21653 + 3.21653i 0.597294 + 0.597294i 0.939592 0.342298i \(-0.111205\pi\)
−0.342298 + 0.939592i \(0.611205\pi\)
\(30\) −3.70779 3.17520i −0.676948 0.579710i
\(31\) 9.27745i 1.66628i −0.553062 0.833140i \(-0.686541\pi\)
0.553062 0.833140i \(-0.313459\pi\)
\(32\) −5.54835 1.10262i −0.980820 0.194917i
\(33\) 3.29922 3.29922i 0.574321 0.574321i
\(34\) 6.24742 + 0.245241i 1.07142 + 0.0420584i
\(35\) 4.11091 5.20020i 0.694871 0.878994i
\(36\) 1.23027 + 0.0967370i 0.205045 + 0.0161228i
\(37\) −3.03923 + 3.03923i −0.499647 + 0.499647i −0.911328 0.411681i \(-0.864942\pi\)
0.411681 + 0.911328i \(0.364942\pi\)
\(38\) 4.07049 + 4.40312i 0.660321 + 0.714281i
\(39\) 3.18199i 0.509526i
\(40\) 4.47770 4.46656i 0.707987 0.706226i
\(41\) −5.60860 3.08927i −0.875916 0.482463i
\(42\) 0.253854 6.46685i 0.0391706 0.997857i
\(43\) −5.76865 5.76865i −0.879710 0.879710i 0.113794 0.993504i \(-0.463700\pi\)
−0.993504 + 0.113794i \(0.963700\pi\)
\(44\) 3.92625 + 4.59639i 0.591905 + 0.692932i
\(45\) −0.855647 + 1.08237i −0.127552 + 0.161350i
\(46\) −7.63661 + 7.05971i −1.12596 + 1.04090i
\(47\) 4.71449i 0.687679i 0.939028 + 0.343840i \(0.111728\pi\)
−0.939028 + 0.343840i \(0.888272\pi\)
\(48\) 0.965080 6.09886i 0.139297 0.880294i
\(49\) 1.78834 0.255477
\(50\) 1.36099 + 6.93885i 0.192474 + 0.981302i
\(51\) 6.82463i 0.955640i
\(52\) 4.10990 + 0.323164i 0.569941 + 0.0448147i
\(53\) 6.29275 0.864375 0.432188 0.901784i \(-0.357742\pi\)
0.432188 + 0.901784i \(0.357742\pi\)
\(54\) −0.309730 + 7.89028i −0.0421490 + 1.07373i
\(55\) −6.71276 + 0.785311i −0.905148 + 0.105891i
\(56\) 8.32690 + 0.984657i 1.11273 + 0.131580i
\(57\) −4.62825 + 4.62825i −0.613027 + 0.613027i
\(58\) −4.36693 4.72378i −0.573406 0.620263i
\(59\) 1.86980 0.243428 0.121714 0.992565i \(-0.461161\pi\)
0.121714 + 0.992565i \(0.461161\pi\)
\(60\) 5.06344 + 4.69264i 0.653688 + 0.605817i
\(61\) 2.79777i 0.358218i −0.983829 0.179109i \(-0.942679\pi\)
0.983829 0.179109i \(-0.0573214\pi\)
\(62\) −0.514637 + 13.1102i −0.0653590 + 1.66500i
\(63\) −1.82921 −0.230459
\(64\) 7.77936 + 1.86591i 0.972419 + 0.233239i
\(65\) −2.85841 + 3.61582i −0.354542 + 0.448487i
\(66\) −4.84523 + 4.47920i −0.596407 + 0.551352i
\(67\) 7.93540i 0.969463i −0.874663 0.484732i \(-0.838917\pi\)
0.874663 0.484732i \(-0.161083\pi\)
\(68\) −8.81479 0.693112i −1.06895 0.0840521i
\(69\) −8.02706 8.02706i −0.966345 0.966345i
\(70\) −6.09770 + 7.12050i −0.728815 + 0.851062i
\(71\) −1.98163 1.98163i −0.235177 0.235177i 0.579673 0.814849i \(-0.303180\pi\)
−0.814849 + 0.579673i \(0.803180\pi\)
\(72\) −1.73316 0.204947i −0.204255 0.0241532i
\(73\) −0.828844 + 0.828844i −0.0970089 + 0.0970089i −0.753946 0.656937i \(-0.771852\pi\)
0.656937 + 0.753946i \(0.271852\pi\)
\(74\) 4.46341 4.12623i 0.518861 0.479664i
\(75\) −7.51001 + 1.78154i −0.867181 + 0.205715i
\(76\) −5.50787 6.44796i −0.631796 0.739632i
\(77\) −6.33587 6.33587i −0.722040 0.722040i
\(78\) −0.176511 + 4.49655i −0.0199859 + 0.509134i
\(79\) 1.53706 1.53706i 0.172933 0.172933i −0.615334 0.788267i \(-0.710979\pi\)
0.788267 + 0.615334i \(0.210979\pi\)
\(80\) −6.57532 + 6.06343i −0.735143 + 0.677912i
\(81\) −6.76816 −0.752018
\(82\) 7.75429 + 4.67665i 0.856318 + 0.516450i
\(83\) 1.78572 1.78572i 0.196008 0.196008i −0.602278 0.798286i \(-0.705740\pi\)
0.798286 + 0.602278i \(0.205740\pi\)
\(84\) −0.717456 + 9.12439i −0.0782808 + 0.995553i
\(85\) 6.13063 7.75509i 0.664961 0.841158i
\(86\) 7.83182 + 8.47182i 0.844527 + 0.913539i
\(87\) 4.96531 4.96531i 0.532337 0.532337i
\(88\) −5.29332 6.71308i −0.564270 0.715616i
\(89\) −5.58411 5.58411i −0.591915 0.591915i 0.346233 0.938148i \(-0.387460\pi\)
−0.938148 + 0.346233i \(0.887460\pi\)
\(90\) 1.26918 1.48206i 0.133783 0.156223i
\(91\) −6.11073 −0.640579
\(92\) 11.1831 9.55263i 1.16592 0.995931i
\(93\) −14.3215 −1.48507
\(94\) 0.261521 6.66217i 0.0269739 0.687150i
\(95\) 9.41686 1.10166i 0.966150 0.113028i
\(96\) −1.70209 + 8.56492i −0.173719 + 0.874153i
\(97\) −9.67761 −0.982612 −0.491306 0.870987i \(-0.663480\pi\)
−0.491306 + 0.870987i \(0.663480\pi\)
\(98\) −2.52715 0.0992025i −0.255281 0.0100210i
\(99\) 1.31875 + 1.31875i 0.132539 + 0.132539i
\(100\) −1.53834 9.88097i −0.153834 0.988097i
\(101\) −8.19176 8.19176i −0.815111 0.815111i 0.170284 0.985395i \(-0.445531\pi\)
−0.985395 + 0.170284i \(0.945531\pi\)
\(102\) 0.378575 9.64406i 0.0374845 0.954904i
\(103\) 4.74151 + 4.74151i 0.467195 + 0.467195i 0.901004 0.433810i \(-0.142831\pi\)
−0.433810 + 0.901004i \(0.642831\pi\)
\(104\) −5.78988 0.684654i −0.567744 0.0671359i
\(105\) −8.02748 6.34596i −0.783401 0.619302i
\(106\) −8.89244 0.349070i −0.863710 0.0339047i
\(107\) −11.9643 11.9643i −1.15663 1.15663i −0.985196 0.171434i \(-0.945160\pi\)
−0.171434 0.985196i \(-0.554840\pi\)
\(108\) 0.875375 11.1328i 0.0842330 1.07125i
\(109\) 12.8867 12.8867i 1.23432 1.23432i 0.272030 0.962289i \(-0.412305\pi\)
0.962289 0.272030i \(-0.0876950\pi\)
\(110\) 9.52953 0.737374i 0.908605 0.0703059i
\(111\) 4.69162 + 4.69162i 0.445309 + 0.445309i
\(112\) −11.7123 1.85335i −1.10671 0.175125i
\(113\) 9.80373 + 9.80373i 0.922257 + 0.922257i 0.997189 0.0749316i \(-0.0238738\pi\)
−0.0749316 + 0.997189i \(0.523874\pi\)
\(114\) 6.79703 6.28356i 0.636601 0.588509i
\(115\) 1.91067 + 16.3322i 0.178171 + 1.52299i
\(116\) 5.90898 + 6.91753i 0.548635 + 0.642277i
\(117\) 1.27189 0.117586
\(118\) −2.64227 0.103721i −0.243240 0.00954832i
\(119\) 13.1061 1.20144
\(120\) −6.89497 6.91216i −0.629422 0.630991i
\(121\) 1.86443i 0.169493i
\(122\) −0.155197 + 3.95360i −0.0140509 + 0.357942i
\(123\) −4.76887 + 8.65791i −0.429994 + 0.780658i
\(124\) 1.45449 18.4978i 0.130617 1.66115i
\(125\) 10.1343 + 4.72188i 0.906439 + 0.422338i
\(126\) 2.58490 + 0.101469i 0.230281 + 0.00903962i
\(127\) −6.95229 6.95229i −0.616916 0.616916i 0.327823 0.944739i \(-0.393685\pi\)
−0.944739 + 0.327823i \(0.893685\pi\)
\(128\) −10.8897 3.06830i −0.962522 0.271202i
\(129\) −8.90497 + 8.90497i −0.784039 + 0.784039i
\(130\) 4.23987 4.95104i 0.371861 0.434235i
\(131\) −4.01067 −0.350414 −0.175207 0.984532i \(-0.556059\pi\)
−0.175207 + 0.984532i \(0.556059\pi\)
\(132\) 7.09539 6.06090i 0.617574 0.527534i
\(133\) 8.88815 + 8.88815i 0.770700 + 0.770700i
\(134\) −0.440191 + 11.2137i −0.0380267 + 0.968717i
\(135\) 9.79441 + 7.74277i 0.842968 + 0.666392i
\(136\) 12.4180 + 1.46843i 1.06483 + 0.125916i
\(137\) 22.6174 1.93234 0.966169 0.257910i \(-0.0830337\pi\)
0.966169 + 0.257910i \(0.0830337\pi\)
\(138\) 10.8980 + 11.7885i 0.927697 + 1.00351i
\(139\) −9.40066 −0.797354 −0.398677 0.917092i \(-0.630530\pi\)
−0.398677 + 0.917092i \(0.630530\pi\)
\(140\) 9.01180 9.72390i 0.761636 0.821820i
\(141\) 7.27769 0.612892
\(142\) 2.69037 + 2.91022i 0.225771 + 0.244220i
\(143\) 4.40547 + 4.40547i 0.368404 + 0.368404i
\(144\) 2.43781 + 0.385757i 0.203151 + 0.0321464i
\(145\) −10.1027 + 1.18189i −0.838979 + 0.0981504i
\(146\) 1.21724 1.12528i 0.100739 0.0931291i
\(147\) 2.76064i 0.227693i
\(148\) −6.53624 + 5.58328i −0.537276 + 0.458943i
\(149\) −7.69811 + 7.69811i −0.630654 + 0.630654i −0.948232 0.317578i \(-0.897130\pi\)
0.317578 + 0.948232i \(0.397130\pi\)
\(150\) 10.7114 2.10095i 0.874583 0.171542i
\(151\) 5.75534 + 5.75534i 0.468363 + 0.468363i 0.901384 0.433021i \(-0.142552\pi\)
−0.433021 + 0.901384i \(0.642552\pi\)
\(152\) 7.42562 + 9.41730i 0.602298 + 0.763844i
\(153\) −2.72791 −0.220538
\(154\) 8.60192 + 9.30484i 0.693162 + 0.749806i
\(155\) 16.2740 + 12.8651i 1.30716 + 1.03335i
\(156\) 0.498863 6.34439i 0.0399410 0.507958i
\(157\) 19.5013i 1.55637i −0.628035 0.778185i \(-0.716141\pi\)
0.628035 0.778185i \(-0.283859\pi\)
\(158\) −2.25733 + 2.08680i −0.179583 + 0.166017i
\(159\) 9.71402i 0.770372i
\(160\) 9.62810 8.20364i 0.761168 0.648555i
\(161\) −15.4153 + 15.4153i −1.21489 + 1.21489i
\(162\) 9.56426 + 0.375442i 0.751440 + 0.0294975i
\(163\) 2.85841 2.85841i 0.223888 0.223888i −0.586246 0.810133i \(-0.699395\pi\)
0.810133 + 0.586246i \(0.199395\pi\)
\(164\) −10.6984 7.03884i −0.835401 0.549641i
\(165\) 1.21227 + 10.3624i 0.0943754 + 0.806711i
\(166\) −2.62250 + 2.42439i −0.203546 + 0.188169i
\(167\) −7.56711 −0.585561 −0.292780 0.956180i \(-0.594580\pi\)
−0.292780 + 0.956180i \(0.594580\pi\)
\(168\) 1.52000 12.8541i 0.117271 0.991716i
\(169\) −8.75107 −0.673159
\(170\) −9.09354 + 10.6188i −0.697443 + 0.814428i
\(171\) −1.84998 1.84998i −0.141472 0.141472i
\(172\) −10.5974 12.4062i −0.808044 0.945962i
\(173\) 12.2848 12.2848i 0.933995 0.933995i −0.0639574 0.997953i \(-0.520372\pi\)
0.997953 + 0.0639574i \(0.0203722\pi\)
\(174\) −7.29203 + 6.74116i −0.552808 + 0.511046i
\(175\) 3.42130 + 14.4223i 0.258626 + 1.09022i
\(176\) 7.10773 + 9.78005i 0.535766 + 0.737199i
\(177\) 2.88639i 0.216954i
\(178\) 7.58129 + 8.20081i 0.568242 + 0.614677i
\(179\) 5.99824 + 5.99824i 0.448329 + 0.448329i 0.894799 0.446469i \(-0.147319\pi\)
−0.446469 + 0.894799i \(0.647319\pi\)
\(180\) −1.87572 + 2.02394i −0.139808 + 0.150855i
\(181\) 11.1195 + 11.1195i 0.826507 + 0.826507i 0.987032 0.160525i \(-0.0513187\pi\)
−0.160525 + 0.987032i \(0.551319\pi\)
\(182\) 8.63523 + 0.338973i 0.640086 + 0.0251264i
\(183\) −4.31888 −0.319261
\(184\) −16.3330 + 12.8787i −1.20409 + 0.949432i
\(185\) −1.11674 9.54580i −0.0821045 0.701821i
\(186\) 20.2380 + 0.794438i 1.48392 + 0.0582510i
\(187\) −9.44873 9.44873i −0.690959 0.690959i
\(188\) −0.739125 + 9.39997i −0.0539062 + 0.685563i
\(189\) 16.5526i 1.20402i
\(190\) −13.3683 + 1.03441i −0.969840 + 0.0750440i
\(191\) −10.2338 + 10.2338i −0.740493 + 0.740493i −0.972673 0.232180i \(-0.925414\pi\)
0.232180 + 0.972673i \(0.425414\pi\)
\(192\) 2.88038 12.0089i 0.207874 0.866666i
\(193\) 6.36563 0.458208 0.229104 0.973402i \(-0.426420\pi\)
0.229104 + 0.973402i \(0.426420\pi\)
\(194\) 13.6757 + 0.536834i 0.981856 + 0.0385425i
\(195\) 5.58168 + 4.41249i 0.399713 + 0.315985i
\(196\) 3.56568 + 0.280371i 0.254691 + 0.0200265i
\(197\) 15.9470 + 15.9470i 1.13618 + 1.13618i 0.989129 + 0.147051i \(0.0469782\pi\)
0.147051 + 0.989129i \(0.453022\pi\)
\(198\) −1.79041 1.93671i −0.127239 0.137636i
\(199\) 5.01409 + 5.01409i 0.355440 + 0.355440i 0.862129 0.506689i \(-0.169131\pi\)
−0.506689 + 0.862129i \(0.669131\pi\)
\(200\) 1.62576 + 14.0484i 0.114959 + 0.993370i
\(201\) −12.2498 −0.864031
\(202\) 11.1216 + 12.0304i 0.782511 + 0.846456i
\(203\) −9.53544 9.53544i −0.669256 0.669256i
\(204\) −1.06995 + 13.6073i −0.0749112 + 0.952699i
\(205\) 13.1965 5.55440i 0.921686 0.387936i
\(206\) −6.43733 6.96337i −0.448510 0.485161i
\(207\) 3.20854 3.20854i 0.223009 0.223009i
\(208\) 8.14384 + 1.28868i 0.564674 + 0.0893537i
\(209\) 12.8157i 0.886478i
\(210\) 10.9918 + 9.41293i 0.758507 + 0.649554i
\(211\) 5.64148 5.64148i 0.388375 0.388375i −0.485732 0.874108i \(-0.661447\pi\)
0.874108 + 0.485732i \(0.161447\pi\)
\(212\) 12.5468 + 0.986559i 0.861716 + 0.0677572i
\(213\) −3.05902 + 3.05902i −0.209601 + 0.209601i
\(214\) 16.2433 + 17.5707i 1.11037 + 1.20111i
\(215\) 18.1185 2.11964i 1.23567 0.144558i
\(216\) −1.85457 + 15.6834i −0.126187 + 1.06712i
\(217\) 27.5031i 1.86703i
\(218\) −18.9253 + 17.4956i −1.28178 + 1.18495i
\(219\) 1.27947 + 1.27947i 0.0864589 + 0.0864589i
\(220\) −13.5073 + 0.513382i −0.910664 + 0.0346122i
\(221\) −9.11297 −0.613005
\(222\) −6.36959 6.89010i −0.427499 0.462433i
\(223\) −9.08787 + 9.08787i −0.608569 + 0.608569i −0.942572 0.334003i \(-0.891600\pi\)
0.334003 + 0.942572i \(0.391600\pi\)
\(224\) 16.4482 + 3.26872i 1.09899 + 0.218401i
\(225\) −0.712109 3.00187i −0.0474740 0.200124i
\(226\) −13.3101 14.3977i −0.885372 0.957722i
\(227\) 23.0174i 1.52772i 0.645384 + 0.763858i \(0.276697\pi\)
−0.645384 + 0.763858i \(0.723303\pi\)
\(228\) −9.95362 + 8.50241i −0.659195 + 0.563086i
\(229\) 5.54681 5.54681i 0.366544 0.366544i −0.499671 0.866215i \(-0.666546\pi\)
0.866215 + 0.499671i \(0.166546\pi\)
\(230\) −1.79404 23.1855i −0.118296 1.52881i
\(231\) −9.78059 + 9.78059i −0.643516 + 0.643516i
\(232\) −7.96640 10.1031i −0.523020 0.663303i
\(233\) −15.7716 −1.03323 −0.516615 0.856218i \(-0.672808\pi\)
−0.516615 + 0.856218i \(0.672808\pi\)
\(234\) −1.79734 0.0705540i −0.117496 0.00461226i
\(235\) −8.26992 6.53762i −0.539470 0.426467i
\(236\) 3.72810 + 0.293142i 0.242679 + 0.0190819i
\(237\) −2.37274 2.37274i −0.154126 0.154126i
\(238\) −18.5206 0.727020i −1.20051 0.0471257i
\(239\) −4.45150 + 4.45150i −0.287944 + 0.287944i −0.836267 0.548323i \(-0.815267\pi\)
0.548323 + 0.836267i \(0.315267\pi\)
\(240\) 9.36003 + 10.1502i 0.604187 + 0.655194i
\(241\) 3.53074i 0.227435i −0.993513 0.113717i \(-0.963724\pi\)
0.993513 0.113717i \(-0.0362758\pi\)
\(242\) −0.103423 + 2.63467i −0.00664828 + 0.169363i
\(243\) 6.30278i 0.404323i
\(244\) 0.438626 5.57832i 0.0280802 0.357115i
\(245\) −2.47991 + 3.13702i −0.158435 + 0.200417i
\(246\) 7.21928 11.9702i 0.460284 0.763191i
\(247\) −6.18013 6.18013i −0.393232 0.393232i
\(248\) −3.08149 + 26.0590i −0.195675 + 1.65475i
\(249\) −2.75659 2.75659i −0.174692 0.174692i
\(250\) −14.0591 7.23477i −0.889175 0.457567i
\(251\) 18.8286 1.18845 0.594226 0.804298i \(-0.297458\pi\)
0.594226 + 0.804298i \(0.297458\pi\)
\(252\) −3.64716 0.286778i −0.229749 0.0180653i
\(253\) 22.2270 1.39740
\(254\) 9.43879 + 10.2101i 0.592243 + 0.640639i
\(255\) −11.9714 9.46377i −0.749680 0.592644i
\(256\) 15.2183 + 4.93997i 0.951144 + 0.308748i
\(257\) 11.5190i 0.718534i −0.933235 0.359267i \(-0.883027\pi\)
0.933235 0.359267i \(-0.116973\pi\)
\(258\) 13.0778 12.0899i 0.814189 0.752682i
\(259\) 9.00985 9.00985i 0.559845 0.559845i
\(260\) −6.26611 + 6.76125i −0.388608 + 0.419315i
\(261\) 1.98471 + 1.98471i 0.122850 + 0.122850i
\(262\) 5.66758 + 0.222479i 0.350144 + 0.0137448i
\(263\) 17.2632 1.06450 0.532248 0.846589i \(-0.321347\pi\)
0.532248 + 0.846589i \(0.321347\pi\)
\(264\) −10.3629 + 8.17122i −0.637791 + 0.502904i
\(265\) −8.72620 + 11.0384i −0.536046 + 0.678085i
\(266\) −12.0670 13.0531i −0.739877 0.800338i
\(267\) −8.62012 + 8.62012i −0.527543 + 0.527543i
\(268\) 1.24409 15.8220i 0.0759948 0.966480i
\(269\) 25.7301i 1.56879i −0.620260 0.784396i \(-0.712973\pi\)
0.620260 0.784396i \(-0.287027\pi\)
\(270\) −13.4112 11.4848i −0.816181 0.698944i
\(271\) 7.22865i 0.439109i 0.975600 + 0.219555i \(0.0704604\pi\)
−0.975600 + 0.219555i \(0.929540\pi\)
\(272\) −17.4667 2.76392i −1.05907 0.167587i
\(273\) 9.43305i 0.570914i
\(274\) −31.9613 1.25463i −1.93085 0.0757950i
\(275\) 7.93108 12.8642i 0.478262 0.775740i
\(276\) −14.7463 17.2632i −0.887621 1.03912i
\(277\) 2.59863 2.59863i 0.156136 0.156136i −0.624716 0.780852i \(-0.714785\pi\)
0.780852 + 0.624716i \(0.214785\pi\)
\(278\) 13.2843 + 0.521471i 0.796740 + 0.0312758i
\(279\) 5.72451i 0.342717i
\(280\) −13.2742 + 13.2412i −0.793286 + 0.791312i
\(281\) 12.2283 + 12.2283i 0.729479 + 0.729479i 0.970516 0.241037i \(-0.0774875\pi\)
−0.241037 + 0.970516i \(0.577487\pi\)
\(282\) −10.2843 0.403707i −0.612420 0.0240404i
\(283\) −15.8069 + 15.8069i −0.939625 + 0.939625i −0.998278 0.0586539i \(-0.981319\pi\)
0.0586539 + 0.998278i \(0.481319\pi\)
\(284\) −3.64040 4.26175i −0.216018 0.252888i
\(285\) −1.70061 14.5367i −0.100736 0.861078i
\(286\) −5.98111 6.46987i −0.353670 0.382571i
\(287\) 16.6268 + 9.15819i 0.981447 + 0.540591i
\(288\) −3.42353 0.680353i −0.201733 0.0400902i
\(289\) 2.54523 0.149719
\(290\) 14.3419 1.10974i 0.842184 0.0651663i
\(291\) 14.9392i 0.875751i
\(292\) −1.78253 + 1.52264i −0.104315 + 0.0891060i
\(293\) 18.1339i 1.05939i 0.848187 + 0.529696i \(0.177694\pi\)
−0.848187 + 0.529696i \(0.822306\pi\)
\(294\) −0.153137 + 3.90113i −0.00893116 + 0.227518i
\(295\) −2.59287 + 3.27991i −0.150963 + 0.190964i
\(296\) 9.54625 7.52730i 0.554864 0.437515i
\(297\) 11.9334 11.9334i 0.692447 0.692447i
\(298\) 11.3054 10.4514i 0.654906 0.605432i
\(299\) 10.7186 10.7186i 0.619872 0.619872i
\(300\) −15.2531 + 2.37472i −0.880638 + 0.137105i
\(301\) 17.1012 + 17.1012i 0.985698 + 0.985698i
\(302\) −7.81375 8.45227i −0.449631 0.486373i
\(303\) −12.6455 + 12.6455i −0.726465 + 0.726465i
\(304\) −9.97094 13.7197i −0.571873 0.786881i
\(305\) 4.90771 + 3.87969i 0.281014 + 0.222150i
\(306\) 3.85488 + 0.151322i 0.220369 + 0.00865050i
\(307\) 18.3006 18.3006i 1.04447 1.04447i 0.0455084 0.998964i \(-0.485509\pi\)
0.998964 0.0455084i \(-0.0144908\pi\)
\(308\) −11.6394 13.6261i −0.663218 0.776417i
\(309\) 7.31940 7.31940i 0.416386 0.416386i
\(310\) −22.2836 19.0828i −1.26562 1.08383i
\(311\) −13.2570 + 13.2570i −0.751733 + 0.751733i −0.974803 0.223070i \(-0.928392\pi\)
0.223070 + 0.974803i \(0.428392\pi\)
\(312\) −1.05689 + 8.93775i −0.0598347 + 0.506000i
\(313\) 25.8327i 1.46015i −0.683365 0.730077i \(-0.739484\pi\)
0.683365 0.730077i \(-0.260516\pi\)
\(314\) −1.08177 + 27.5577i −0.0610478 + 1.55517i
\(315\) 2.53658 3.20870i 0.142920 0.180790i
\(316\) 3.30565 2.82369i 0.185957 0.158845i
\(317\) 17.1768i 0.964743i 0.875967 + 0.482371i \(0.160224\pi\)
−0.875967 + 0.482371i \(0.839776\pi\)
\(318\) −0.538854 + 13.7271i −0.0302175 + 0.769779i
\(319\) 13.7490i 0.769794i
\(320\) −14.0608 + 11.0587i −0.786022 + 0.618199i
\(321\) −18.4691 + 18.4691i −1.03084 + 1.03084i
\(322\) 22.6388 20.9286i 1.26161 1.16631i
\(323\) 13.2550 + 13.2550i 0.737526 + 0.737526i
\(324\) −13.4947 1.06109i −0.749704 0.0589497i
\(325\) −2.37890 10.0282i −0.131958 0.556262i
\(326\) −4.19785 + 3.88073i −0.232497 + 0.214934i
\(327\) −19.8930 19.8930i −1.10008 1.10008i
\(328\) 14.7277 + 10.5402i 0.813199 + 0.581986i
\(329\) 13.9762i 0.770531i
\(330\) −1.13827 14.7106i −0.0626599 0.809792i
\(331\) −16.7610 16.7610i −0.921268 0.921268i 0.0758511 0.997119i \(-0.475833\pi\)
−0.997119 + 0.0758511i \(0.975833\pi\)
\(332\) 3.84041 3.28049i 0.210770 0.180040i
\(333\) −1.87531 + 1.87531i −0.102766 + 0.102766i
\(334\) 10.6933 + 0.419761i 0.585110 + 0.0229683i
\(335\) 13.9199 + 11.0041i 0.760524 + 0.601217i
\(336\) −2.86099 + 18.0801i −0.156080 + 0.986353i
\(337\) 24.4784 + 24.4784i 1.33342 + 1.33342i 0.902289 + 0.431133i \(0.141886\pi\)
0.431133 + 0.902289i \(0.358114\pi\)
\(338\) 12.3664 + 0.485438i 0.672641 + 0.0264043i
\(339\) 15.1339 15.1339i 0.821959 0.821959i
\(340\) 13.4394 14.5013i 0.728852 0.786444i
\(341\) 19.8281 19.8281i 1.07375 1.07375i
\(342\) 2.51163 + 2.71688i 0.135814 + 0.146912i
\(343\) 15.4500 0.834223
\(344\) 14.2873 + 18.1193i 0.770317 + 0.976930i
\(345\) 25.2119 2.94948i 1.35736 0.158795i
\(346\) −18.0414 + 16.6785i −0.969912 + 0.896641i
\(347\) 18.6010i 0.998551i −0.866443 0.499276i \(-0.833599\pi\)
0.866443 0.499276i \(-0.166401\pi\)
\(348\) 10.6785 9.12161i 0.572428 0.488969i
\(349\) −19.6738 −1.05311 −0.526557 0.850140i \(-0.676517\pi\)
−0.526557 + 0.850140i \(0.676517\pi\)
\(350\) −4.03469 20.5703i −0.215663 1.09953i
\(351\) 11.5094i 0.614324i
\(352\) −9.50160 14.2147i −0.506437 0.757647i
\(353\) −18.0827 18.0827i −0.962445 0.962445i 0.0368750 0.999320i \(-0.488260\pi\)
−0.999320 + 0.0368750i \(0.988260\pi\)
\(354\) −0.160113 + 4.07883i −0.00850991 + 0.216787i
\(355\) 6.22403 0.728136i 0.330337 0.0386454i
\(356\) −10.2584 12.0093i −0.543694 0.636493i
\(357\) 20.2317i 1.07078i
\(358\) −8.14353 8.80900i −0.430399 0.465570i
\(359\) 1.48120 0.0781748 0.0390874 0.999236i \(-0.487555\pi\)
0.0390874 + 0.999236i \(0.487555\pi\)
\(360\) 2.76290 2.75602i 0.145617 0.145255i
\(361\) 1.02181i 0.0537794i
\(362\) −15.0964 16.3301i −0.793452 0.858290i
\(363\) −2.87809 −0.151060
\(364\) −12.1839 0.958023i −0.638608 0.0502141i
\(365\) −0.304552 2.60328i −0.0159410 0.136262i
\(366\) 6.10311 + 0.239576i 0.319015 + 0.0125228i
\(367\) −8.09969 + 8.09969i −0.422800 + 0.422800i −0.886167 0.463366i \(-0.846641\pi\)
0.463366 + 0.886167i \(0.346641\pi\)
\(368\) 23.7950 17.2932i 1.24040 0.901472i
\(369\) −3.46070 1.90619i −0.180157 0.0992322i
\(370\) 1.04857 + 13.5514i 0.0545128 + 0.704501i
\(371\) −18.6549 −0.968516
\(372\) −28.5548 2.24528i −1.48050 0.116412i
\(373\) 3.43345 + 3.43345i 0.177777 + 0.177777i 0.790386 0.612609i \(-0.209880\pi\)
−0.612609 + 0.790386i \(0.709880\pi\)
\(374\) 12.8281 + 13.8764i 0.663325 + 0.717530i
\(375\) 7.28910 15.6442i 0.376407 0.807861i
\(376\) 1.56591 13.2423i 0.0807556 0.682921i
\(377\) 6.63020 + 6.63020i 0.341473 + 0.341473i
\(378\) 0.918200 23.3908i 0.0472271 1.20309i
\(379\) −3.87141 −0.198861 −0.0994306 0.995044i \(-0.531702\pi\)
−0.0994306 + 0.995044i \(0.531702\pi\)
\(380\) 18.9485 0.720187i 0.972037 0.0369448i
\(381\) −10.7321 + 10.7321i −0.549824 + 0.549824i
\(382\) 15.0294 13.8940i 0.768969 0.710878i
\(383\) −35.7374 −1.82609 −0.913047 0.407855i \(-0.866277\pi\)
−0.913047 + 0.407855i \(0.866277\pi\)
\(384\) −4.73649 + 16.8103i −0.241708 + 0.857846i
\(385\) 19.9001 2.32807i 1.01420 0.118649i
\(386\) −8.99543 0.353113i −0.457855 0.0179730i
\(387\) −3.55945 3.55945i −0.180937 0.180937i
\(388\) −19.2957 1.51723i −0.979589 0.0770256i
\(389\) −13.0931 −0.663846 −0.331923 0.943307i \(-0.607697\pi\)
−0.331923 + 0.943307i \(0.607697\pi\)
\(390\) −7.64285 6.54502i −0.387011 0.331420i
\(391\) −22.9889 + 22.9889i −1.16260 + 1.16260i
\(392\) −5.02320 0.593994i −0.253710 0.0300012i
\(393\) 6.19122i 0.312306i
\(394\) −21.6506 23.4198i −1.09074 1.17987i
\(395\) 0.564782 + 4.82770i 0.0284173 + 0.242908i
\(396\) 2.42263 + 2.83613i 0.121742 + 0.142521i
\(397\) 35.0451i 1.75886i 0.476027 + 0.879431i \(0.342076\pi\)
−0.476027 + 0.879431i \(0.657924\pi\)
\(398\) −6.80740 7.36368i −0.341224 0.369108i
\(399\) 13.7205 13.7205i 0.686885 0.686885i
\(400\) −1.51811 19.9423i −0.0759056 0.997115i
\(401\) 4.35670i 0.217563i −0.994066 0.108782i \(-0.965305\pi\)
0.994066 0.108782i \(-0.0346950\pi\)
\(402\) 17.3104 + 0.679516i 0.863366 + 0.0338912i
\(403\) 19.1236i 0.952612i
\(404\) −15.0488 17.6174i −0.748707 0.876498i
\(405\) 9.38547 11.8724i 0.466368 0.589943i
\(406\) 12.9458 + 14.0037i 0.642490 + 0.694993i
\(407\) −12.9911 −0.643946
\(408\) 2.26679 19.1694i 0.112223 0.949028i
\(409\) 10.2545i 0.507052i 0.967329 + 0.253526i \(0.0815903\pi\)
−0.967329 + 0.253526i \(0.918410\pi\)
\(410\) −18.9565 + 7.11703i −0.936193 + 0.351485i
\(411\) 34.9142i 1.72219i
\(412\) 8.71048 + 10.1972i 0.429134 + 0.502380i
\(413\) −5.54306 −0.272756
\(414\) −4.71205 + 4.35608i −0.231585 + 0.214090i
\(415\) 0.656149 + 5.60869i 0.0322091 + 0.275320i
\(416\) −11.4368 2.27282i −0.560734 0.111434i
\(417\) 14.5117i 0.710639i
\(418\) −0.710908 + 18.1101i −0.0347716 + 0.885795i
\(419\) 10.0143i 0.489231i 0.969620 + 0.244615i \(0.0786617\pi\)
−0.969620 + 0.244615i \(0.921338\pi\)
\(420\) −15.0106 13.9114i −0.732445 0.678806i
\(421\) 9.92673 9.92673i 0.483799 0.483799i −0.422544 0.906343i \(-0.638863\pi\)
0.906343 + 0.422544i \(0.138863\pi\)
\(422\) −8.28506 + 7.65917i −0.403310 + 0.372843i
\(423\) 2.90900i 0.141441i
\(424\) −17.6754 2.09012i −0.858395 0.101505i
\(425\) 5.10220 + 21.5081i 0.247493 + 1.04330i
\(426\) 4.49247 4.15309i 0.217661 0.201218i
\(427\) 8.29403i 0.401376i
\(428\) −21.9792 25.7306i −1.06240 1.24374i
\(429\) 6.80067 6.80067i 0.328339 0.328339i
\(430\) −25.7213 + 1.99026i −1.24039 + 0.0959786i
\(431\) −27.1267 −1.30665 −0.653323 0.757079i \(-0.726626\pi\)
−0.653323 + 0.757079i \(0.726626\pi\)
\(432\) 3.49073 22.0598i 0.167948 1.06135i
\(433\) 17.9466 + 17.9466i 0.862459 + 0.862459i 0.991623 0.129164i \(-0.0412295\pi\)
−0.129164 + 0.991623i \(0.541229\pi\)
\(434\) 1.52565 38.8654i 0.0732335 1.86560i
\(435\) 1.82446 + 15.5953i 0.0874763 + 0.747738i
\(436\) 27.7144 23.6737i 1.32728 1.13376i
\(437\) −31.1807 −1.49157
\(438\) −1.73708 1.87903i −0.0830010 0.0897837i
\(439\) 10.8545 10.8545i 0.518057 0.518057i −0.398926 0.916983i \(-0.630617\pi\)
0.916983 + 0.398926i \(0.130617\pi\)
\(440\) 19.1160 + 0.0238032i 0.911321 + 0.00113477i
\(441\) 1.10347 0.0525461
\(442\) 12.8778 + 0.505513i 0.612533 + 0.0240448i
\(443\) −28.9513 28.9513i −1.37552 1.37552i −0.852037 0.523481i \(-0.824633\pi\)
−0.523481 0.852037i \(-0.675367\pi\)
\(444\) 8.61883 + 10.0899i 0.409032 + 0.478846i
\(445\) 17.5389 2.05184i 0.831424 0.0972665i
\(446\) 13.3464 12.3382i 0.631971 0.584230i
\(447\) 11.8835 + 11.8835i 0.562069 + 0.562069i
\(448\) −23.0620 5.53152i −1.08958 0.261340i
\(449\) −30.5714 −1.44275 −0.721376 0.692543i \(-0.756490\pi\)
−0.721376 + 0.692543i \(0.756490\pi\)
\(450\) 0.839781 + 4.28151i 0.0395876 + 0.201832i
\(451\) −5.38440 18.5894i −0.253541 0.875342i
\(452\) 18.0101 + 21.0841i 0.847125 + 0.991714i
\(453\) 8.88443 8.88443i 0.417427 0.417427i
\(454\) 1.27681 32.5264i 0.0599239 1.52654i
\(455\) 8.47380 10.7191i 0.397258 0.502521i
\(456\) 14.5374 11.4628i 0.680774 0.536796i
\(457\) −6.22884 −0.291373 −0.145686 0.989331i \(-0.546539\pi\)
−0.145686 + 0.989331i \(0.546539\pi\)
\(458\) −8.14603 + 7.53065i −0.380639 + 0.351884i
\(459\) 24.6849i 1.15219i
\(460\) 1.24907 + 32.8635i 0.0582380 + 1.53227i
\(461\) 29.8643 1.39092 0.695460 0.718565i \(-0.255201\pi\)
0.695460 + 0.718565i \(0.255201\pi\)
\(462\) 14.3638 13.2787i 0.668262 0.617779i
\(463\) 34.2640i 1.59238i 0.605044 + 0.796192i \(0.293155\pi\)
−0.605044 + 0.796192i \(0.706845\pi\)
\(464\) 10.6971 + 14.7189i 0.496600 + 0.683307i
\(465\) 19.8597 25.1220i 0.920971 1.16501i
\(466\) 22.2872 + 0.874878i 1.03244 + 0.0405279i
\(467\) 15.6866 + 15.6866i 0.725889 + 0.725889i 0.969798 0.243909i \(-0.0784298\pi\)
−0.243909 + 0.969798i \(0.578430\pi\)
\(468\) 2.53595 + 0.199403i 0.117224 + 0.00921742i
\(469\) 23.5246i 1.08626i
\(470\) 11.3238 + 9.69722i 0.522327 + 0.447300i
\(471\) −30.1038 −1.38711
\(472\) −5.25201 0.621051i −0.241743 0.0285862i
\(473\) 24.6579i 1.13377i
\(474\) 3.22136 + 3.48461i 0.147962 + 0.160053i
\(475\) −11.1260 + 18.0463i −0.510494 + 0.828019i
\(476\) 26.1316 + 2.05474i 1.19774 + 0.0941788i
\(477\) 3.88284 0.177783
\(478\) 6.53747 6.04360i 0.299017 0.276428i
\(479\) −20.5525 + 20.5525i −0.939067 + 0.939067i −0.998247 0.0591805i \(-0.981151\pi\)
0.0591805 + 0.998247i \(0.481151\pi\)
\(480\) −12.6638 14.8628i −0.578022 0.678389i
\(481\) −6.26475 + 6.26475i −0.285648 + 0.285648i
\(482\) −0.195856 + 4.98937i −0.00892101 + 0.227260i
\(483\) 23.7963 + 23.7963i 1.08277 + 1.08277i
\(484\) 0.292299 3.71738i 0.0132863 0.168972i
\(485\) 13.4200 16.9760i 0.609372 0.770839i
\(486\) −0.349626 + 8.90661i −0.0158594 + 0.404012i
\(487\) −21.1914 + 21.1914i −0.960273 + 0.960273i −0.999240 0.0389676i \(-0.987593\pi\)
0.0389676 + 0.999240i \(0.487593\pi\)
\(488\) −0.929273 + 7.85853i −0.0420662 + 0.355739i
\(489\) −4.41248 4.41248i −0.199539 0.199539i
\(490\) 3.67843 4.29544i 0.166175 0.194048i
\(491\) 23.7640i 1.07245i −0.844074 0.536227i \(-0.819849\pi\)
0.844074 0.536227i \(-0.180151\pi\)
\(492\) −10.8657 + 16.5149i −0.489866 + 0.744549i
\(493\) −14.2203 14.2203i −0.640448 0.640448i
\(494\) 8.39048 + 9.07612i 0.377505 + 0.408354i
\(495\) −4.14201 + 0.484564i −0.186169 + 0.0217795i
\(496\) 5.80007 36.6538i 0.260431 1.64580i
\(497\) 5.87458 + 5.87458i 0.263511 + 0.263511i
\(498\) 3.74249 + 4.04832i 0.167705 + 0.181410i
\(499\) 1.32382 1.32382i 0.0592624 0.0592624i −0.676854 0.736117i \(-0.736657\pi\)
0.736117 + 0.676854i \(0.236657\pi\)
\(500\) 19.4659 + 11.0035i 0.870543 + 0.492093i
\(501\) 11.6812i 0.521880i
\(502\) −26.6072 1.04446i −1.18754 0.0466164i
\(503\) 7.86192i 0.350546i −0.984520 0.175273i \(-0.943919\pi\)
0.984520 0.175273i \(-0.0560808\pi\)
\(504\) 5.13798 + 0.607568i 0.228864 + 0.0270632i
\(505\) 25.7291 3.01000i 1.14493 0.133943i
\(506\) −31.4095 1.23297i −1.39632 0.0548122i
\(507\) 13.5089i 0.599951i
\(508\) −12.7718 14.9517i −0.566658 0.663376i
\(509\) 18.0015 18.0015i 0.797904 0.797904i −0.184860 0.982765i \(-0.559183\pi\)
0.982765 + 0.184860i \(0.0591833\pi\)
\(510\) 16.3922 + 14.0376i 0.725857 + 0.621594i
\(511\) 2.45712 2.45712i 0.108697 0.108697i
\(512\) −21.2313 7.82498i −0.938301 0.345818i
\(513\) −16.7405 + 16.7405i −0.739113 + 0.739113i
\(514\) −0.638978 + 16.2778i −0.0281841 + 0.717981i
\(515\) −14.8924 + 1.74223i −0.656238 + 0.0767718i
\(516\) −19.1512 + 16.3590i −0.843086 + 0.720167i
\(517\) −10.0760 + 10.0760i −0.443141 + 0.443141i
\(518\) −13.2318 + 12.2323i −0.581374 + 0.537454i
\(519\) −18.9639 18.9639i −0.832421 0.832421i
\(520\) 9.22985 9.20690i 0.404756 0.403749i
\(521\) −11.6549 + 11.6549i −0.510612 + 0.510612i −0.914714 0.404102i \(-0.867584\pi\)
0.404102 + 0.914714i \(0.367584\pi\)
\(522\) −2.69455 2.91474i −0.117937 0.127575i
\(523\) −12.8140 + 12.8140i −0.560318 + 0.560318i −0.929398 0.369079i \(-0.879673\pi\)
0.369079 + 0.929398i \(0.379673\pi\)
\(524\) −7.99666 0.628782i −0.349336 0.0274685i
\(525\) 22.2635 5.28140i 0.971660 0.230499i
\(526\) −24.3951 0.957622i −1.06368 0.0417543i
\(527\) 41.0156i 1.78667i
\(528\) 15.0973 10.9721i 0.657026 0.477500i
\(529\) 31.0786i 1.35124i
\(530\) 12.9435 15.1146i 0.562231 0.656537i
\(531\) 1.15373 0.0500677
\(532\) 16.3281 + 19.1151i 0.707915 + 0.828743i
\(533\) −11.5610 6.36790i −0.500761 0.275824i
\(534\) 12.6595 11.7031i 0.547829 0.506444i
\(535\) 37.5781 4.39618i 1.62464 0.190063i
\(536\) −2.63573 + 22.2894i −0.113846 + 0.962755i
\(537\) 9.25939 9.25939i 0.399572 0.399572i
\(538\) −1.42729 + 36.3599i −0.0615351 + 1.56758i
\(539\) 3.82211 + 3.82211i 0.164630 + 0.164630i
\(540\) 18.3146 + 16.9734i 0.788137 + 0.730420i
\(541\) 42.2366i 1.81589i −0.419087 0.907946i \(-0.637650\pi\)
0.419087 0.907946i \(-0.362350\pi\)
\(542\) 0.400986 10.2150i 0.0172238 0.438771i
\(543\) 17.1650 17.1650i 0.736622 0.736622i
\(544\) 24.5293 + 4.87467i 1.05168 + 0.209000i
\(545\) 4.73510 + 40.4752i 0.202830 + 1.73377i
\(546\) 0.523268 13.3301i 0.0223938 0.570475i
\(547\) 11.8730i 0.507653i 0.967250 + 0.253827i \(0.0816892\pi\)
−0.967250 + 0.253827i \(0.918311\pi\)
\(548\) 45.0957 + 3.54590i 1.92639 + 0.151473i
\(549\) 1.72632i 0.0736776i
\(550\) −11.9212 + 17.7388i −0.508322 + 0.756383i
\(551\) 19.2875i 0.821674i
\(552\) 19.8807 + 25.2130i 0.846179 + 1.07314i
\(553\) −4.55665 + 4.55665i −0.193768 + 0.193768i
\(554\) −3.81634 + 3.52804i −0.162141 + 0.149892i
\(555\) −14.7357 + 1.72390i −0.625496 + 0.0731754i
\(556\) −18.7435 1.47381i −0.794900 0.0625034i
\(557\) −37.9898 −1.60968 −0.804840 0.593492i \(-0.797749\pi\)
−0.804840 + 0.593492i \(0.797749\pi\)
\(558\) −0.317549 + 8.08945i −0.0134429 + 0.342454i
\(559\) −11.8909 11.8909i −0.502930 0.502930i
\(560\) 19.4926 17.9751i 0.823714 0.759587i
\(561\) −14.5859 + 14.5859i −0.615816 + 0.615816i
\(562\) −16.6018 17.9584i −0.700304 0.757531i
\(563\) 26.0989i 1.09994i −0.835185 0.549969i \(-0.814639\pi\)
0.835185 0.549969i \(-0.185361\pi\)
\(564\) 14.5106 + 1.14098i 0.611006 + 0.0480438i
\(565\) −30.7921 + 3.60230i −1.29543 + 0.151550i
\(566\) 23.2140 21.4603i 0.975758 0.902045i
\(567\) 20.0643 0.842622
\(568\) 4.90793 + 6.22433i 0.205932 + 0.261167i
\(569\) −33.8234 −1.41795 −0.708976 0.705232i \(-0.750843\pi\)
−0.708976 + 0.705232i \(0.750843\pi\)
\(570\) 1.59680 + 20.6365i 0.0668828 + 0.864367i
\(571\) 17.2518 + 17.2518i 0.721964 + 0.721964i 0.969005 0.247041i \(-0.0794582\pi\)
−0.247041 + 0.969005i \(0.579458\pi\)
\(572\) 8.09316 + 9.47451i 0.338392 + 0.396149i
\(573\) 15.7978 + 15.7978i 0.659963 + 0.659963i
\(574\) −22.9877 13.8640i −0.959487 0.578672i
\(575\) −31.2988 19.2964i −1.30525 0.804717i
\(576\) 4.80013 + 1.15133i 0.200005 + 0.0479722i
\(577\) 24.9786i 1.03987i 0.854205 + 0.519937i \(0.174045\pi\)
−0.854205 + 0.519937i \(0.825955\pi\)
\(578\) −3.59673 0.141189i −0.149604 0.00587267i
\(579\) 9.82653i 0.408376i
\(580\) −20.3284 + 0.772635i −0.844092 + 0.0320819i
\(581\) −5.29379 + 5.29379i −0.219623 + 0.219623i
\(582\) 0.828703 21.1109i 0.0343509 0.875077i
\(583\) 13.4491 + 13.4491i 0.557005 + 0.557005i
\(584\) 2.60340 2.05281i 0.107730 0.0849457i
\(585\) −1.76374 + 2.23108i −0.0729216 + 0.0922440i
\(586\) 1.00592 25.6255i 0.0415541 1.05858i
\(587\) −23.1395 −0.955070 −0.477535 0.878613i \(-0.658470\pi\)
−0.477535 + 0.878613i \(0.658470\pi\)
\(588\) 0.432805 5.50428i 0.0178486 0.226993i
\(589\) −27.8155 + 27.8155i −1.14612 + 1.14612i
\(590\) 3.84599 4.49110i 0.158337 0.184896i
\(591\) 24.6172 24.6172i 1.01262 1.01262i
\(592\) −13.9076 + 10.1075i −0.571599 + 0.415414i
\(593\) 22.5816i 0.927314i 0.886015 + 0.463657i \(0.153463\pi\)
−0.886015 + 0.463657i \(0.846537\pi\)
\(594\) −17.5254 + 16.2014i −0.719074 + 0.664753i
\(595\) −18.1743 + 22.9901i −0.745076 + 0.942502i
\(596\) −16.5557 + 14.1420i −0.678149 + 0.579277i
\(597\) 7.74018 7.74018i 0.316785 0.316785i
\(598\) −15.7413 + 14.5521i −0.643709 + 0.595081i
\(599\) 30.7814 1.25770 0.628848 0.777528i \(-0.283527\pi\)
0.628848 + 0.777528i \(0.283527\pi\)
\(600\) 21.6863 2.50966i 0.885339 0.102456i
\(601\) 5.29646 + 5.29646i 0.216047 + 0.216047i 0.806830 0.590783i \(-0.201181\pi\)
−0.590783 + 0.806830i \(0.701181\pi\)
\(602\) −23.2175 25.1148i −0.946276 1.02360i
\(603\) 4.89642i 0.199397i
\(604\) 10.5729 + 12.3776i 0.430207 + 0.503636i
\(605\) 3.27048 + 2.58541i 0.132964 + 0.105112i
\(606\) 18.5711 17.1682i 0.754401 0.697411i
\(607\) 18.0562 18.0562i 0.732877 0.732877i −0.238312 0.971189i \(-0.576594\pi\)
0.971189 + 0.238312i \(0.0765940\pi\)
\(608\) 13.3291 + 19.9408i 0.540568 + 0.808707i
\(609\) −14.7197 + 14.7197i −0.596473 + 0.596473i
\(610\) −6.71999 5.75472i −0.272084 0.233002i
\(611\) 9.71795i 0.393146i
\(612\) −5.43903 0.427674i −0.219860 0.0172877i
\(613\) 5.56262 5.56262i 0.224672 0.224672i −0.585790 0.810463i \(-0.699216\pi\)
0.810463 + 0.585790i \(0.199216\pi\)
\(614\) −26.8763 + 24.8459i −1.08464 + 1.00270i
\(615\) −8.57425 20.3713i −0.345747 0.821450i
\(616\) 15.6921 + 19.9010i 0.632253 + 0.801834i
\(617\) −31.7482 31.7482i −1.27813 1.27813i −0.941711 0.336423i \(-0.890783\pi\)
−0.336423 0.941711i \(-0.609217\pi\)
\(618\) −10.7492 + 9.93721i −0.432398 + 0.399733i
\(619\) 16.3590 0.657525 0.328763 0.944413i \(-0.393368\pi\)
0.328763 + 0.944413i \(0.393368\pi\)
\(620\) 30.4310 + 28.2025i 1.22214 + 1.13264i
\(621\) −29.0342 29.0342i −1.16510 1.16510i
\(622\) 19.4691 17.9983i 0.780641 0.721668i
\(623\) 16.5542 + 16.5542i 0.663229 + 0.663229i
\(624\) 1.98931 12.5715i 0.0796362 0.503264i
\(625\) −22.3362 + 11.2292i −0.893447 + 0.449168i
\(626\) −1.43299 + 36.5049i −0.0572738 + 1.45903i
\(627\) −19.7833 −0.790071
\(628\) 3.05735 38.8825i 0.122002 1.55158i
\(629\) 13.4364 13.4364i 0.535746 0.535746i
\(630\) −3.76249 + 4.39359i −0.149901 + 0.175045i
\(631\) 35.5160i 1.41387i −0.707280 0.706934i \(-0.750078\pi\)
0.707280 0.706934i \(-0.249922\pi\)
\(632\) −4.82793 + 3.80686i −0.192045 + 0.151429i
\(633\) −8.70867 8.70867i −0.346139 0.346139i
\(634\) 0.952825 24.2729i 0.0378415 0.964000i
\(635\) 21.8361 2.55456i 0.866541 0.101375i
\(636\) 1.52294 19.3683i 0.0603884 0.768002i
\(637\) 3.68630 0.146056
\(638\) 0.762680 19.4290i 0.0301948 0.769202i
\(639\) −1.22274 1.22274i −0.0483707 0.0483707i
\(640\) 20.4831 14.8473i 0.809665 0.586892i
\(641\) 25.6964 + 25.6964i 1.01495 + 1.01495i 0.999887 + 0.0150587i \(0.00479353\pi\)
0.0150587 + 0.999887i \(0.495206\pi\)
\(642\) 27.1236 25.0746i 1.07048 0.989615i
\(643\) 21.6776i 0.854879i 0.904044 + 0.427440i \(0.140584\pi\)
−0.904044 + 0.427440i \(0.859416\pi\)
\(644\) −33.1524 + 28.3189i −1.30639 + 1.11592i
\(645\) −3.27206 27.9693i −0.128837 1.10129i
\(646\) −17.9956 19.4662i −0.708029 0.765887i
\(647\) −11.9198 + 11.9198i −0.468618 + 0.468618i −0.901467 0.432849i \(-0.857508\pi\)
0.432849 + 0.901467i \(0.357508\pi\)
\(648\) 19.0108 + 2.24803i 0.746815 + 0.0883110i
\(649\) 3.99621 + 3.99621i 0.156865 + 0.156865i
\(650\) 2.80541 + 14.3030i 0.110037 + 0.561010i
\(651\) 42.4562 1.66399
\(652\) 6.14736 5.25109i 0.240749 0.205649i
\(653\) 29.0297 1.13602 0.568010 0.823022i \(-0.307713\pi\)
0.568010 + 0.823022i \(0.307713\pi\)
\(654\) 27.0077 + 29.2147i 1.05609 + 1.14239i
\(655\) 5.56163 7.03532i 0.217311 0.274893i
\(656\) −20.2273 15.7116i −0.789745 0.613435i
\(657\) −0.511426 + 0.511426i −0.0199526 + 0.0199526i
\(658\) −0.775283 + 19.7501i −0.0302237 + 0.769938i
\(659\) 8.94014 8.94014i 0.348258 0.348258i −0.511202 0.859460i \(-0.670800\pi\)
0.859460 + 0.511202i \(0.170800\pi\)
\(660\) 0.792500 + 20.8511i 0.0308480 + 0.811627i
\(661\) 21.5704i 0.838989i −0.907758 0.419495i \(-0.862207\pi\)
0.907758 0.419495i \(-0.137793\pi\)
\(662\) 22.7556 + 24.6152i 0.884423 + 0.956695i
\(663\) 14.0676i 0.546339i
\(664\) −5.60896 + 4.42271i −0.217670 + 0.171634i
\(665\) −27.9164 + 3.26588i −1.08255 + 0.126645i
\(666\) 2.75408 2.54602i 0.106718 0.0986564i
\(667\) 33.4514 1.29524
\(668\) −15.0877 1.18635i −0.583759 0.0459013i
\(669\) 14.0288 + 14.0288i 0.542385 + 0.542385i
\(670\) −19.0601 16.3223i −0.736356 0.630585i
\(671\) 5.97950 5.97950i 0.230836 0.230836i
\(672\) 5.04588 25.3908i 0.194649 0.979472i
\(673\) 10.1260i 0.390327i 0.980771 + 0.195164i \(0.0625238\pi\)
−0.980771 + 0.195164i \(0.937476\pi\)
\(674\) −33.2331 35.9488i −1.28009 1.38470i
\(675\) −27.1640 + 6.44390i −1.04554 + 0.248026i
\(676\) −17.4483 1.37197i −0.671088 0.0527680i
\(677\) −14.7928 14.7928i −0.568534 0.568534i 0.363183 0.931718i \(-0.381690\pi\)
−0.931718 + 0.363183i \(0.881690\pi\)
\(678\) −22.2256 + 20.5466i −0.853567 + 0.789086i
\(679\) 28.6894 1.10100
\(680\) −19.7959 + 19.7467i −0.759139 + 0.757250i
\(681\) 35.5316 1.36157
\(682\) −29.1195 + 26.9197i −1.11504 + 1.03081i
\(683\) 19.8031 0.757746 0.378873 0.925449i \(-0.376312\pi\)
0.378873 + 0.925449i \(0.376312\pi\)
\(684\) −3.39854 3.97861i −0.129947 0.152126i
\(685\) −31.3638 + 39.6744i −1.19835 + 1.51588i
\(686\) −21.8328 0.857041i −0.833581 0.0327220i
\(687\) −8.56254 8.56254i −0.326681 0.326681i
\(688\) −19.1846 26.3974i −0.731405 1.00639i
\(689\) 12.9712 0.494163
\(690\) −35.7911 + 2.76944i −1.36254 + 0.105431i
\(691\) 21.0786 21.0786i 0.801867 0.801867i −0.181520 0.983387i \(-0.558102\pi\)
0.983387 + 0.181520i \(0.0581017\pi\)
\(692\) 26.4200 22.5680i 1.00434 0.857907i
\(693\) −3.90945 3.90945i −0.148508 0.148508i
\(694\) −1.03183 + 26.2855i −0.0391677 + 0.997783i
\(695\) 13.0360 16.4902i 0.494482 0.625508i
\(696\) −15.5960 + 12.2976i −0.591167 + 0.466140i
\(697\) 24.7956 + 13.6577i 0.939201 + 0.517321i
\(698\) 27.8015 + 1.09134i 1.05230 + 0.0413079i
\(699\) 24.3464i 0.920864i
\(700\) 4.56044 + 29.2923i 0.172369 + 1.10714i
\(701\) 15.4811 0.584714 0.292357 0.956309i \(-0.405560\pi\)
0.292357 + 0.956309i \(0.405560\pi\)
\(702\) −0.638445 + 16.2642i −0.0240966 + 0.613852i
\(703\) 18.2243 0.687344
\(704\) 12.6384 + 20.6142i 0.476329 + 0.776928i
\(705\) −10.0920 + 12.7662i −0.380088 + 0.480801i
\(706\) 24.5500 + 26.5562i 0.923953 + 0.999456i
\(707\) 24.2846 + 24.2846i 0.913316 + 0.913316i
\(708\) 0.452520 5.75501i 0.0170067 0.216287i
\(709\) 7.17183 + 7.17183i 0.269344 + 0.269344i 0.828836 0.559492i \(-0.189004\pi\)
−0.559492 + 0.828836i \(0.689004\pi\)
\(710\) −8.83573 + 0.683689i −0.331599 + 0.0256584i
\(711\) 0.948422 0.948422i 0.0355686 0.0355686i
\(712\) 13.8302 + 17.5397i 0.518310 + 0.657329i
\(713\) −48.2421 48.2421i −1.80668 1.80668i
\(714\) −1.12229 + 28.5899i −0.0420006 + 1.06995i
\(715\) −13.8370 + 1.61876i −0.517473 + 0.0605381i
\(716\) 11.0192 + 12.8999i 0.411806 + 0.482094i
\(717\) 6.87172 + 6.87172i 0.256629 + 0.256629i
\(718\) −2.09312 0.0821649i −0.0781146 0.00306637i
\(719\) −9.68519 9.68519i −0.361197 0.361197i 0.503057 0.864253i \(-0.332209\pi\)
−0.864253 + 0.503057i \(0.832209\pi\)
\(720\) −4.05720 + 3.74135i −0.151203 + 0.139432i
\(721\) −14.0563 14.0563i −0.523483 0.523483i
\(722\) −0.0566816 + 1.44394i −0.00210947 + 0.0537380i
\(723\) −5.45035 −0.202701
\(724\) 20.4273 + 23.9139i 0.759175 + 0.888752i
\(725\) 11.9362 19.3605i 0.443300 0.719031i
\(726\) 4.06710 + 0.159653i 0.150944 + 0.00592526i
\(727\) 28.5846 1.06015 0.530073 0.847952i \(-0.322165\pi\)
0.530073 + 0.847952i \(0.322165\pi\)
\(728\) 17.1642 + 2.02967i 0.636146 + 0.0752245i
\(729\) −30.0340 −1.11237
\(730\) 0.285962 + 3.69566i 0.0105839 + 0.136782i
\(731\) 25.5032 + 25.5032i 0.943269 + 0.943269i
\(732\) −8.61117 0.677101i −0.318278 0.0250264i
\(733\) −4.86128 + 4.86128i −0.179555 + 0.179555i −0.791162 0.611607i \(-0.790524\pi\)
0.611607 + 0.791162i \(0.290524\pi\)
\(734\) 11.8952 10.9966i 0.439059 0.405891i
\(735\) 4.84257 + 3.82820i 0.178621 + 0.141205i
\(736\) −34.5846 + 23.1175i −1.27481 + 0.852124i
\(737\) 16.9598 16.9598i 0.624724 0.624724i
\(738\) 4.78466 + 2.88565i 0.176126 + 0.106222i
\(739\) −48.5523 −1.78603 −0.893013 0.450031i \(-0.851413\pi\)
−0.893013 + 0.450031i \(0.851413\pi\)
\(740\) −0.730048 19.2079i −0.0268371 0.706098i
\(741\) −9.54018 + 9.54018i −0.350467 + 0.350467i
\(742\) 26.3618 + 1.03482i 0.967771 + 0.0379895i
\(743\) −1.48445 1.48445i −0.0544594 0.0544594i 0.679353 0.733812i \(-0.262261\pi\)
−0.733812 + 0.679353i \(0.762261\pi\)
\(744\) 40.2270 + 4.75685i 1.47479 + 0.174395i
\(745\) −2.82861 24.1787i −0.103632 0.885838i
\(746\) −4.66143 5.04235i −0.170667 0.184614i
\(747\) 1.10185 1.10185i 0.0403146 0.0403146i
\(748\) −17.3580 20.3207i −0.634670 0.742997i
\(749\) 35.4682 + 35.4682i 1.29598 + 1.29598i
\(750\) −11.1682 + 21.7028i −0.407806 + 0.792475i
\(751\) 11.4482 + 11.4482i 0.417751 + 0.417751i 0.884428 0.466677i \(-0.154549\pi\)
−0.466677 + 0.884428i \(0.654549\pi\)
\(752\) −2.94740 + 18.6262i −0.107481 + 0.679228i
\(753\) 29.0655i 1.05920i
\(754\) −9.00152 9.73710i −0.327816 0.354604i
\(755\) −18.0767 + 2.11475i −0.657878 + 0.0769637i
\(756\) −2.59506 + 33.0032i −0.0943815 + 1.20032i
\(757\) 11.4281 0.415362 0.207681 0.978197i \(-0.433408\pi\)
0.207681 + 0.978197i \(0.433408\pi\)
\(758\) 5.47079 + 0.214754i 0.198708 + 0.00780023i
\(759\) 34.3115i 1.24543i
\(760\) −26.8165 0.0333918i −0.972738 0.00121125i
\(761\) −10.4760 −0.379755 −0.189877 0.981808i \(-0.560809\pi\)
−0.189877 + 0.981808i \(0.560809\pi\)
\(762\) 15.7612 14.5705i 0.570968 0.527835i
\(763\) −38.2027 + 38.2027i −1.38303 + 1.38303i
\(764\) −22.0091 + 18.8002i −0.796261 + 0.680169i
\(765\) 3.78281 4.78516i 0.136768 0.173008i
\(766\) 50.5014 + 1.98242i 1.82469 + 0.0716276i
\(767\) 3.85421 0.139167
\(768\) 7.62576 23.4923i 0.275171 0.847704i
\(769\) 16.0229i 0.577800i −0.957359 0.288900i \(-0.906711\pi\)
0.957359 0.288900i \(-0.0932895\pi\)
\(770\) −28.2504 + 2.18596i −1.01808 + 0.0787764i
\(771\) −17.7817 −0.640391
\(772\) 12.6921 + 0.997985i 0.456798 + 0.0359183i
\(773\) 19.6802i 0.707848i 0.935274 + 0.353924i \(0.115153\pi\)
−0.935274 + 0.353924i \(0.884847\pi\)
\(774\) 4.83250 + 5.22740i 0.173701 + 0.187895i
\(775\) −45.1347 + 10.7070i −1.62129 + 0.384605i
\(776\) 27.1830 + 3.21440i 0.975814 + 0.115390i
\(777\) −13.9084 13.9084i −0.498960 0.498960i
\(778\) 18.5022 + 0.726297i 0.663335 + 0.0260390i
\(779\) 7.55340 + 26.0778i 0.270629 + 0.934334i
\(780\) 10.4372 + 9.67290i 0.373713 + 0.346345i
\(781\) 8.47045i 0.303097i
\(782\) 33.7614 31.2110i 1.20731 1.11610i
\(783\) 17.9597 17.9597i 0.641827 0.641827i
\(784\) 7.06545 + 1.11803i 0.252338 + 0.0399298i
\(785\) 34.2081 + 27.0426i 1.22094 + 0.965190i
\(786\) 0.343438 8.74896i 0.0122500 0.312065i
\(787\) 22.5369 22.5369i 0.803353 0.803353i −0.180265 0.983618i \(-0.557695\pi\)
0.983618 + 0.180265i \(0.0576955\pi\)
\(788\) 29.2958 + 34.2961i 1.04362 + 1.22175i
\(789\) 26.6490i 0.948729i
\(790\) −0.530307 6.85348i −0.0188675 0.243836i
\(791\) −29.0633 29.0633i −1.03337 1.03337i
\(792\) −3.26616 4.14220i −0.116058 0.147187i
\(793\) 5.76702i 0.204793i
\(794\) 1.94401 49.5231i 0.0689904 1.75751i
\(795\) 17.0399 + 13.4705i 0.604341 + 0.477750i
\(796\) 9.21123 + 10.7834i 0.326483 + 0.382208i
\(797\) −17.4581 + 17.4581i −0.618396 + 0.618396i −0.945120 0.326724i \(-0.894055\pi\)
0.326724 + 0.945120i \(0.394055\pi\)
\(798\) −20.1499 + 18.6277i −0.713299 + 0.659413i
\(799\) 20.8428i 0.737364i
\(800\) 1.03905 + 28.2652i 0.0367359 + 0.999325i
\(801\) −3.44559 3.44559i −0.121744 0.121744i
\(802\) −0.241674 + 6.15657i −0.00853381 + 0.217396i
\(803\) −3.54287 −0.125025
\(804\) −24.4241 1.92048i −0.861373 0.0677302i
\(805\) −5.66422 48.4172i −0.199637 1.70648i
\(806\) −1.06082 + 27.0240i −0.0373657 + 0.951879i
\(807\) −39.7192 −1.39818
\(808\) 20.2886 + 25.7304i 0.713751 + 0.905191i
\(809\) 25.9195 + 25.9195i 0.911280 + 0.911280i 0.996373 0.0850929i \(-0.0271187\pi\)
−0.0850929 + 0.996373i \(0.527119\pi\)
\(810\) −13.9214 + 16.2565i −0.489149 + 0.571196i
\(811\) 37.1832 1.30568 0.652839 0.757496i \(-0.273578\pi\)
0.652839 + 0.757496i \(0.273578\pi\)
\(812\) −17.5172 20.5071i −0.614735 0.719659i
\(813\) 11.1588 0.391355
\(814\) 18.3581 + 0.720641i 0.643451 + 0.0252585i
\(815\) 1.05030 + 8.97785i 0.0367904 + 0.314480i
\(816\) −4.26662 + 26.9630i −0.149361 + 0.943895i
\(817\) 34.5909i 1.21018i
\(818\) 0.568835 14.4909i 0.0198889 0.506662i
\(819\) −3.77053 −0.131753
\(820\) 27.1827 9.00571i 0.949260 0.314493i
\(821\) 5.36728 0.187319 0.0936597 0.995604i \(-0.470143\pi\)
0.0936597 + 0.995604i \(0.470143\pi\)
\(822\) −1.93675 + 49.3382i −0.0675521 + 1.72087i
\(823\) 26.3813i 0.919594i 0.888024 + 0.459797i \(0.152078\pi\)
−0.888024 + 0.459797i \(0.847922\pi\)
\(824\) −11.7433 14.8931i −0.409099 0.518826i
\(825\) −19.8583 12.2431i −0.691376 0.426250i
\(826\) 7.83303 + 0.307483i 0.272546 + 0.0106987i
\(827\) 12.5425 0.436144 0.218072 0.975933i \(-0.430023\pi\)
0.218072 + 0.975933i \(0.430023\pi\)
\(828\) 6.90036 5.89431i 0.239804 0.204841i
\(829\) 21.0122 0.729784 0.364892 0.931050i \(-0.381106\pi\)
0.364892 + 0.931050i \(0.381106\pi\)
\(830\) −0.616096 7.96218i −0.0213850 0.276371i
\(831\) −4.01147 4.01147i −0.139156 0.139156i
\(832\) 16.0355 + 3.84619i 0.555932 + 0.133343i
\(833\) −7.90625 −0.273935
\(834\) 0.804988 20.5068i 0.0278745 0.710092i
\(835\) 10.4934 13.2739i 0.363138 0.459361i
\(836\) 2.00920 25.5524i 0.0694897 0.883750i
\(837\) −51.8013 −1.79051
\(838\) 0.555512 14.1515i 0.0191898 0.488854i
\(839\) −31.9387 31.9387i −1.10265 1.10265i −0.994090 0.108555i \(-0.965378\pi\)
−0.108555 0.994090i \(-0.534622\pi\)
\(840\) 20.4402 + 20.4912i 0.705255 + 0.707014i
\(841\) 8.30792i 0.286480i
\(842\) −14.5784 + 13.4771i −0.502404 + 0.464450i
\(843\) 18.8766 18.8766i 0.650146 0.650146i
\(844\) 12.1327 10.3638i 0.417625 0.356736i
\(845\) 12.1352 15.3507i 0.417463 0.528080i
\(846\) 0.161368 4.11079i 0.00554793 0.141332i
\(847\) 5.52711i 0.189914i
\(848\) 24.8617 + 3.93409i 0.853753 + 0.135097i
\(849\) 24.4009 + 24.4009i 0.837438 + 0.837438i
\(850\) −6.01695 30.6767i −0.206380 1.05220i
\(851\) 31.6076i 1.08350i
\(852\) −6.57880 + 5.61963i −0.225386 + 0.192525i
\(853\) 15.4377 15.4377i 0.528577 0.528577i −0.391571 0.920148i \(-0.628068\pi\)
0.920148 + 0.391571i \(0.128068\pi\)
\(854\) 0.460084 11.7205i 0.0157438 0.401067i
\(855\) 5.81053 0.679761i 0.198716 0.0232473i
\(856\) 29.6320 + 37.5798i 1.01280 + 1.28445i
\(857\) −11.2527 + 11.2527i −0.384383 + 0.384383i −0.872679 0.488295i \(-0.837619\pi\)
0.488295 + 0.872679i \(0.337619\pi\)
\(858\) −9.98744 + 9.23295i −0.340966 + 0.315208i
\(859\) 5.66627i 0.193330i −0.995317 0.0966652i \(-0.969182\pi\)
0.995317 0.0966652i \(-0.0308176\pi\)
\(860\) 36.4578 1.38567i 1.24320 0.0472511i
\(861\) 14.1374 25.6665i 0.481800 0.874712i
\(862\) 38.3334 + 1.50477i 1.30564 + 0.0512525i
\(863\) 11.0287 + 11.0287i 0.375422 + 0.375422i 0.869447 0.494026i \(-0.164475\pi\)
−0.494026 + 0.869447i \(0.664475\pi\)
\(864\) −6.15653 + 30.9796i −0.209449 + 1.05395i
\(865\) 4.51395 + 38.5848i 0.153479 + 1.31192i
\(866\) −24.3653 26.3563i −0.827966 0.895625i
\(867\) 3.92904i 0.133437i
\(868\) −4.31186 + 54.8370i −0.146354 + 1.86129i
\(869\) 6.57015 0.222877
\(870\) −1.71309 22.1393i −0.0580793 0.750594i
\(871\) 16.3572i 0.554242i
\(872\) −40.4771 + 31.9165i −1.37073 + 1.08083i
\(873\) −5.97142 −0.202102
\(874\) 44.0622 + 1.72965i 1.49043 + 0.0585062i
\(875\) −30.0432 13.9981i −1.01565 0.473221i
\(876\) 2.35048 + 2.75167i 0.0794155 + 0.0929702i
\(877\) 19.8199 19.8199i 0.669270 0.669270i −0.288277 0.957547i \(-0.593082\pi\)
0.957547 + 0.288277i \(0.0930823\pi\)
\(878\) −15.9409 + 14.7366i −0.537979 + 0.497338i
\(879\) 27.9930 0.944181
\(880\) −27.0120 1.09404i −0.910575 0.0368800i
\(881\) 15.9214i 0.536406i −0.963362 0.268203i \(-0.913570\pi\)
0.963362 0.268203i \(-0.0864298\pi\)
\(882\) −1.55934 0.0612114i −0.0525057 0.00206109i
\(883\) 10.2171 0.343831 0.171916 0.985112i \(-0.445004\pi\)
0.171916 + 0.985112i \(0.445004\pi\)
\(884\) −18.1699 1.42871i −0.611119 0.0480526i
\(885\) 5.06316 + 4.00258i 0.170196 + 0.134545i
\(886\) 39.3058 + 42.5178i 1.32051 + 1.42841i
\(887\) 19.9340i 0.669319i −0.942339 0.334659i \(-0.891379\pi\)
0.942339 0.334659i \(-0.108621\pi\)
\(888\) −11.6198 14.7364i −0.389934 0.494521i
\(889\) 20.6101 + 20.6101i 0.691242 + 0.691242i
\(890\) −24.8985 + 1.92659i −0.834599 + 0.0645794i
\(891\) −14.4652 14.4652i −0.484602 0.484602i
\(892\) −19.5446 + 16.6950i −0.654401 + 0.558991i
\(893\) 14.1349 14.1349i 0.473006 0.473006i
\(894\) −16.1336 17.4520i −0.539589 0.583683i
\(895\) −18.8396 + 2.20401i −0.629739 + 0.0736718i
\(896\) 32.2827 + 9.09603i 1.07849 + 0.303877i
\(897\) −16.5461 16.5461i −0.552459 0.552459i
\(898\) 43.2012 + 1.69585i 1.44164 + 0.0565912i
\(899\) 29.8412 29.8412i 0.995259 0.995259i
\(900\) −0.949212 6.09690i −0.0316404 0.203230i
\(901\) −27.8202 −0.926826
\(902\) 6.57764 + 26.5679i 0.219012 + 0.884613i
\(903\) 26.3989 26.3989i 0.878501 0.878501i
\(904\) −24.2810 30.7936i −0.807573 1.02418i
\(905\) −34.9248 + 4.08578i −1.16094 + 0.135816i
\(906\) −13.0476 + 12.0620i −0.433479 + 0.400732i
\(907\) 7.01709 7.01709i 0.232999 0.232999i −0.580944 0.813943i \(-0.697317\pi\)
0.813943 + 0.580944i \(0.197317\pi\)
\(908\) −3.60860 + 45.8931i −0.119756 + 1.52302i
\(909\) −5.05460 5.05460i −0.167650 0.167650i
\(910\) −12.5691 + 14.6774i −0.416663 + 0.486552i
\(911\) −0.588254 −0.0194897 −0.00974486 0.999953i \(-0.503102\pi\)
−0.00974486 + 0.999953i \(0.503102\pi\)
\(912\) −21.1790 + 15.3920i −0.701306 + 0.509680i
\(913\) 7.63302 0.252616
\(914\) 8.80213 + 0.345525i 0.291149 + 0.0114290i
\(915\) 5.98902 7.57596i 0.197991 0.250453i
\(916\) 11.9291 10.1899i 0.394149 0.336683i
\(917\) 11.8897 0.392632
\(918\) 1.36932 34.8829i 0.0451942 1.15131i
\(919\) 23.5896 + 23.5896i 0.778150 + 0.778150i 0.979516 0.201366i \(-0.0645380\pi\)
−0.201366 + 0.979516i \(0.564538\pi\)
\(920\) 0.0579135 46.5096i 0.00190935 1.53338i
\(921\) −28.2504 28.2504i −0.930883 0.930883i
\(922\) −42.2020 1.65663i −1.38985 0.0545581i
\(923\) −4.08473 4.08473i −0.134451 0.134451i
\(924\) −21.0344 + 17.9676i −0.691980 + 0.591091i
\(925\) 18.2934 + 11.2783i 0.601482 + 0.370828i
\(926\) 1.90069 48.4193i 0.0624604 1.59116i
\(927\) 2.92568 + 2.92568i 0.0960918 + 0.0960918i
\(928\) −14.2998 21.3930i −0.469415 0.702260i
\(929\) 30.7912 30.7912i 1.01023 1.01023i 0.0102800 0.999947i \(-0.496728\pi\)
0.999947 0.0102800i \(-0.00327228\pi\)
\(930\) −29.4578 + 34.3989i −0.965959 + 1.12798i
\(931\) −5.36177 5.36177i −0.175725 0.175725i
\(932\) −31.4461 2.47262i −1.03005 0.0809935i
\(933\) 20.4646 + 20.4646i 0.669980 + 0.669980i
\(934\) −21.2970 23.0373i −0.696858 0.753803i
\(935\) 29.6771 3.47186i 0.970545 0.113542i
\(936\) −3.57255 0.422455i −0.116773 0.0138084i
\(937\) 17.2613 0.563902 0.281951 0.959429i \(-0.409018\pi\)
0.281951 + 0.959429i \(0.409018\pi\)
\(938\) 1.30495 33.2432i 0.0426082 1.08543i
\(939\) −39.8776 −1.30136
\(940\) −15.4640 14.3315i −0.504380 0.467443i
\(941\) 56.7672i 1.85056i 0.379289 + 0.925278i \(0.376169\pi\)
−0.379289 + 0.925278i \(0.623831\pi\)
\(942\) 42.5405 + 1.66991i 1.38604 + 0.0544087i
\(943\) −45.2284 + 13.1003i −1.47284 + 0.426605i
\(944\) 7.38729 + 1.16896i 0.240436 + 0.0380465i
\(945\) −29.0357 22.9536i −0.944530 0.746679i
\(946\) −1.36782 + 34.8448i −0.0444717 + 1.13290i
\(947\) −28.9392 28.9392i −0.940398 0.940398i 0.0579230 0.998321i \(-0.481552\pi\)
−0.998321 + 0.0579230i \(0.981552\pi\)
\(948\) −4.35889 5.10288i −0.141570 0.165734i
\(949\) −1.70849 + 1.70849i −0.0554599 + 0.0554599i
\(950\) 16.7234 24.8845i 0.542580 0.807358i
\(951\) 26.5155 0.859824
\(952\) −36.8132 4.35317i −1.19312 0.141087i
\(953\) −3.64179 3.64179i −0.117969 0.117969i 0.645658 0.763627i \(-0.276583\pi\)
−0.763627 + 0.645658i \(0.776583\pi\)
\(954\) −5.48694 0.215388i −0.177646 0.00697345i
\(955\) −3.76034 32.1430i −0.121682 1.04012i
\(956\) −9.57351 + 8.17772i −0.309629 + 0.264486i
\(957\) 21.2241 0.686077
\(958\) 30.1833 27.9031i 0.975179 0.901510i
\(959\) −67.0497 −2.16515
\(960\) 17.0711 + 21.7054i 0.550968 + 0.700540i
\(961\) −55.0711 −1.77649
\(962\) 9.20039 8.50536i 0.296633 0.274224i
\(963\) −7.38237 7.38237i −0.237893 0.237893i
\(964\) 0.553539 7.03975i 0.0178283 0.226735i
\(965\) −8.82726 + 11.1663i −0.284160 + 0.359455i
\(966\) −32.3072 34.9472i −1.03947 1.12441i
\(967\) 9.73391i 0.313021i 0.987676 + 0.156511i \(0.0500246\pi\)
−0.987676 + 0.156511i \(0.949975\pi\)
\(968\) −0.619265 + 5.23690i −0.0199039 + 0.168320i
\(969\) 20.4615 20.4615i 0.657318 0.657318i
\(970\) −19.9059 + 23.2447i −0.639138 + 0.746344i
\(971\) 40.0375 + 40.0375i 1.28487 + 1.28487i 0.937865 + 0.347000i \(0.112800\pi\)
0.347000 + 0.937865i \(0.387200\pi\)
\(972\) 0.988131 12.5668i 0.0316943 0.403079i
\(973\) 27.8684 0.893419
\(974\) 31.1216 28.7705i 0.997200 0.921868i
\(975\) −15.4803 + 3.67228i −0.495767 + 0.117607i
\(976\) 1.74911 11.0535i 0.0559875 0.353815i
\(977\) 0.823965i 0.0263610i 0.999913 + 0.0131805i \(0.00419560\pi\)
−0.999913 + 0.0131805i \(0.995804\pi\)
\(978\) 5.99062 + 6.48016i 0.191559 + 0.207213i
\(979\) 23.8692i 0.762862i
\(980\) −5.43636 + 5.86594i −0.173658 + 0.187381i
\(981\) 7.95152 7.95152i 0.253873 0.253873i
\(982\) −1.31823 + 33.5815i −0.0420665 + 1.07163i
\(983\) 16.1528 16.1528i 0.515195 0.515195i −0.400919 0.916114i \(-0.631309\pi\)
0.916114 + 0.400919i \(0.131309\pi\)
\(984\) 16.2708 22.7349i 0.518693 0.724761i
\(985\) −50.0874 + 5.85962i −1.59592 + 0.186703i
\(986\) 19.3062 + 20.8838i 0.614834 + 0.665077i
\(987\) −21.5748 −0.686734
\(988\) −11.3533 13.2911i −0.361197 0.422847i
\(989\) −59.9931 −1.90767
\(990\) 5.88005 0.454985i 0.186880 0.0144604i
\(991\) 15.8979 + 15.8979i 0.505013 + 0.505013i 0.912991 0.407979i \(-0.133766\pi\)
−0.407979 + 0.912991i \(0.633766\pi\)
\(992\) −10.2295 + 51.4746i −0.324786 + 1.63432i
\(993\) −25.8737 + 25.8737i −0.821078 + 0.821078i
\(994\) −7.97565 8.62740i −0.252972 0.273644i
\(995\) −15.7485 + 1.84239i −0.499263 + 0.0584076i
\(996\) −5.06405 5.92839i −0.160460 0.187848i
\(997\) 26.9189i 0.852530i −0.904598 0.426265i \(-0.859829\pi\)
0.904598 0.426265i \(-0.140171\pi\)
\(998\) −1.94416 + 1.79729i −0.0615413 + 0.0568923i
\(999\) 16.9698 + 16.9698i 0.536899 + 0.536899i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.j.c.483.3 240
4.3 odd 2 inner 820.2.j.c.483.61 yes 240
5.2 odd 4 820.2.s.c.647.60 yes 240
20.7 even 4 820.2.s.c.647.118 yes 240
41.9 even 4 820.2.s.c.583.118 yes 240
164.91 odd 4 820.2.s.c.583.60 yes 240
205.132 odd 4 inner 820.2.j.c.747.61 yes 240
820.747 even 4 inner 820.2.j.c.747.3 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.j.c.483.3 240 1.1 even 1 trivial
820.2.j.c.483.61 yes 240 4.3 odd 2 inner
820.2.j.c.747.3 yes 240 820.747 even 4 inner
820.2.j.c.747.61 yes 240 205.132 odd 4 inner
820.2.s.c.583.60 yes 240 164.91 odd 4
820.2.s.c.583.118 yes 240 41.9 even 4
820.2.s.c.647.60 yes 240 5.2 odd 4
820.2.s.c.647.118 yes 240 20.7 even 4