Properties

Label 820.2.cc.a.639.1
Level $820$
Weight $2$
Character 820.639
Analytic conductor $6.548$
Analytic rank $0$
Dimension $16$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(19,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 20, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.cc (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{40})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{40}]$

Embedding invariants

Embedding label 639.1
Root \(-0.891007 - 0.453990i\) of defining polynomial
Character \(\chi\) \(=\) 820.639
Dual form 820.2.cc.a.299.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.221232 - 1.39680i) q^{2} +(1.53176 - 0.634475i) q^{3} +(-1.90211 + 0.618034i) q^{4} +(1.99235 + 1.01515i) q^{5} +(-1.22511 - 1.99920i) q^{6} +(2.37484 - 3.87538i) q^{7} +(1.28408 + 2.52015i) q^{8} +(-0.177595 + 0.177595i) q^{9} +(0.977198 - 3.00750i) q^{10} +(-2.52145 + 2.15352i) q^{12} +(-5.93853 - 2.45982i) q^{14} +(3.69589 + 0.290873i) q^{15} +(3.23607 - 2.35114i) q^{16} +(0.287355 + 0.208775i) q^{18} +(-4.41708 - 0.699596i) q^{20} +(1.17884 - 7.44292i) q^{21} +(4.02266 - 5.53671i) q^{23} +(3.56587 + 3.04554i) q^{24} +(2.93893 + 4.04508i) q^{25} +(-2.06278 + 4.97999i) q^{27} +(-2.12209 + 8.83914i) q^{28} +(-0.809475 - 0.947773i) q^{29} +(-0.411356 - 5.22678i) q^{30} +(-4.00000 - 4.00000i) q^{32} +(8.66561 - 5.31029i) q^{35} +(0.228046 - 0.447565i) q^{36} +6.32456i q^{40} +(-1.26993 - 6.27593i) q^{41} -10.6571 q^{42} +(1.99865 + 12.6190i) q^{43} +(-0.534118 + 0.173545i) q^{45} +(-8.62363 - 4.39396i) q^{46} +(-1.82031 - 2.97047i) q^{47} +(3.46513 - 5.65458i) q^{48} +(-6.20079 - 12.1697i) q^{49} +(5.00000 - 5.00000i) q^{50} +(7.41241 + 1.77956i) q^{54} +(12.8160 + 1.00864i) q^{56} +(-1.14477 + 1.34035i) q^{58} +(-7.20977 + 1.73091i) q^{60} +(1.39642 + 0.221172i) q^{61} +(0.266489 + 1.11001i) q^{63} +(-4.70228 + 6.47214i) q^{64} +(0.727135 - 9.23913i) q^{67} +(2.64883 - 11.0332i) q^{69} +(-9.33454 - 10.9293i) q^{70} +(-0.675611 - 0.219519i) q^{72} +(7.06823 + 4.33142i) q^{75} +(8.83415 - 1.39919i) q^{80} +8.18345i q^{81} +(-8.48528 + 3.16228i) q^{82} -17.7266 q^{83} +(2.35769 + 14.8858i) q^{84} +(17.1841 - 5.58345i) q^{86} +(-1.84126 - 0.938168i) q^{87} +(-8.35664 + 13.6368i) q^{89} +(0.360572 + 0.707663i) q^{90} +(-4.22967 + 13.0176i) q^{92} +(-3.74645 + 3.19977i) q^{94} +(-8.66493 - 3.58913i) q^{96} +(-15.6269 + 11.3536i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} - 12 q^{3} + 20 q^{6} + 16 q^{7} + 8 q^{8} + 12 q^{9} - 16 q^{12} + 20 q^{15} + 16 q^{16} + 4 q^{18} + 4 q^{21} + 8 q^{24} - 48 q^{27} + 8 q^{28} - 80 q^{30} - 64 q^{32} - 20 q^{35} + 24 q^{36}+ \cdots - 104 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{40}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.221232 1.39680i −0.156434 0.987688i
\(3\) 1.53176 0.634475i 0.884361 0.366314i 0.106175 0.994348i \(-0.466140\pi\)
0.778187 + 0.628033i \(0.216140\pi\)
\(4\) −1.90211 + 0.618034i −0.951057 + 0.309017i
\(5\) 1.99235 + 1.01515i 0.891007 + 0.453990i
\(6\) −1.22511 1.99920i −0.500149 0.816169i
\(7\) 2.37484 3.87538i 0.897603 1.46476i 0.0122035 0.999926i \(-0.496115\pi\)
0.885400 0.464830i \(-0.153885\pi\)
\(8\) 1.28408 + 2.52015i 0.453990 + 0.891007i
\(9\) −0.177595 + 0.177595i −0.0591983 + 0.0591983i
\(10\) 0.977198 3.00750i 0.309017 0.951057i
\(11\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(12\) −2.52145 + 2.15352i −0.727880 + 0.621668i
\(13\) 0 0 −0.972370 0.233445i \(-0.925000\pi\)
0.972370 + 0.233445i \(0.0750000\pi\)
\(14\) −5.93853 2.45982i −1.58714 0.657414i
\(15\) 3.69589 + 0.290873i 0.954275 + 0.0751031i
\(16\) 3.23607 2.35114i 0.809017 0.587785i
\(17\) 0 0 0.649448 0.760406i \(-0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(18\) 0.287355 + 0.208775i 0.0677301 + 0.0492088i
\(19\) 0 0 0.972370 0.233445i \(-0.0750000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(20\) −4.41708 0.699596i −0.987688 0.156434i
\(21\) 1.17884 7.44292i 0.257245 1.62418i
\(22\) 0 0
\(23\) 4.02266 5.53671i 0.838782 1.15448i −0.147442 0.989071i \(-0.547104\pi\)
0.986224 0.165414i \(-0.0528960\pi\)
\(24\) 3.56587 + 3.04554i 0.727880 + 0.621668i
\(25\) 2.93893 + 4.04508i 0.587785 + 0.809017i
\(26\) 0 0
\(27\) −2.06278 + 4.97999i −0.396982 + 0.958399i
\(28\) −2.12209 + 8.83914i −0.401037 + 1.67044i
\(29\) −0.809475 0.947773i −0.150316 0.175997i 0.680139 0.733083i \(-0.261919\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) −0.411356 5.22678i −0.0751031 0.954275i
\(31\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 0 0
\(34\) 0 0
\(35\) 8.66561 5.31029i 1.46476 0.897603i
\(36\) 0.228046 0.447565i 0.0380077 0.0745942i
\(37\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 6.32456i 1.00000i
\(41\) −1.26993 6.27593i −0.198330 0.980135i
\(42\) −10.6571 −1.64442
\(43\) 1.99865 + 12.6190i 0.304792 + 1.92438i 0.375371 + 0.926875i \(0.377515\pi\)
−0.0705793 + 0.997506i \(0.522485\pi\)
\(44\) 0 0
\(45\) −0.534118 + 0.173545i −0.0796216 + 0.0258706i
\(46\) −8.62363 4.39396i −1.27149 0.647854i
\(47\) −1.82031 2.97047i −0.265519 0.433288i 0.691898 0.721995i \(-0.256775\pi\)
−0.957417 + 0.288707i \(0.906775\pi\)
\(48\) 3.46513 5.65458i 0.500149 0.816169i
\(49\) −6.20079 12.1697i −0.885827 1.73853i
\(50\) 5.00000 5.00000i 0.707107 0.707107i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.760406 0.649448i \(-0.225000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(54\) 7.41241 + 1.77956i 1.00870 + 0.242168i
\(55\) 0 0
\(56\) 12.8160 + 1.00864i 1.71261 + 0.134785i
\(57\) 0 0
\(58\) −1.14477 + 1.34035i −0.150316 + 0.175997i
\(59\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(60\) −7.20977 + 1.73091i −0.930777 + 0.223460i
\(61\) 1.39642 + 0.221172i 0.178794 + 0.0283182i 0.245189 0.969475i \(-0.421150\pi\)
−0.0663955 + 0.997793i \(0.521150\pi\)
\(62\) 0 0
\(63\) 0.266489 + 1.11001i 0.0335745 + 0.139848i
\(64\) −4.70228 + 6.47214i −0.587785 + 0.809017i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.727135 9.23913i 0.0888337 1.12874i −0.777368 0.629046i \(-0.783446\pi\)
0.866202 0.499694i \(-0.166554\pi\)
\(68\) 0 0
\(69\) 2.64883 11.0332i 0.318882 1.32824i
\(70\) −9.33454 10.9293i −1.11569 1.30631i
\(71\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(72\) −0.675611 0.219519i −0.0796216 0.0258706i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 7.06823 + 4.33142i 0.816169 + 0.500149i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(80\) 8.83415 1.39919i 0.987688 0.156434i
\(81\) 8.18345i 0.909272i
\(82\) −8.48528 + 3.16228i −0.937043 + 0.349215i
\(83\) −17.7266 −1.94574 −0.972871 0.231347i \(-0.925687\pi\)
−0.972871 + 0.231347i \(0.925687\pi\)
\(84\) 2.35769 + 14.8858i 0.257245 + 1.62418i
\(85\) 0 0
\(86\) 17.1841 5.58345i 1.85301 0.602079i
\(87\) −1.84126 0.938168i −0.197404 0.100582i
\(88\) 0 0
\(89\) −8.35664 + 13.6368i −0.885802 + 1.44550i 0.00945916 + 0.999955i \(0.496989\pi\)
−0.895261 + 0.445542i \(0.853011\pi\)
\(90\) 0.360572 + 0.707663i 0.0380077 + 0.0745942i
\(91\) 0 0
\(92\) −4.22967 + 13.0176i −0.440974 + 1.35718i
\(93\) 0 0
\(94\) −3.74645 + 3.19977i −0.386417 + 0.330031i
\(95\) 0 0
\(96\) −8.66493 3.58913i −0.884361 0.366314i
\(97\) 0 0 −0.996917 0.0784591i \(-0.975000\pi\)
0.996917 + 0.0784591i \(0.0250000\pi\)
\(98\) −15.6269 + 11.3536i −1.57855 + 1.14689i
\(99\) 0 0
\(100\) −8.09017 5.87785i −0.809017 0.587785i
\(101\) −19.4677 + 4.67378i −1.93711 + 0.465059i −0.947896 + 0.318579i \(0.896794\pi\)
−0.989214 + 0.146480i \(0.953206\pi\)
\(102\) 0 0
\(103\) −1.12930 + 7.13011i −0.111273 + 0.702550i 0.867475 + 0.497482i \(0.165742\pi\)
−0.978748 + 0.205069i \(0.934258\pi\)
\(104\) 0 0
\(105\) 9.90437 13.6322i 0.966568 1.33037i
\(106\) 0 0
\(107\) 7.19805 + 9.90726i 0.695861 + 0.957771i 0.999987 + 0.00513899i \(0.00163580\pi\)
−0.304125 + 0.952632i \(0.598364\pi\)
\(108\) 0.845836 10.7474i 0.0813906 1.03417i
\(109\) −6.42175 + 15.5035i −0.615092 + 1.48496i 0.242249 + 0.970214i \(0.422115\pi\)
−0.857341 + 0.514749i \(0.827885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.42643 18.1246i −0.134785 1.71261i
\(113\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(114\) 0 0
\(115\) 13.6352 6.94746i 1.27149 0.647854i
\(116\) 2.12547 + 1.30249i 0.197345 + 0.120933i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 4.01277 + 9.68769i 0.366314 + 0.884361i
\(121\) 10.8646 1.72078i 0.987688 0.156434i
\(122\) 1.99946i 0.181022i
\(123\) −5.92715 8.80747i −0.534433 0.794142i
\(124\) 0 0
\(125\) 1.74899 + 11.0427i 0.156434 + 0.987688i
\(126\) 1.49150 0.617801i 0.132874 0.0550381i
\(127\) 21.4246 6.96126i 1.90112 0.617712i 0.940585 0.339557i \(-0.110277\pi\)
0.960536 0.278155i \(-0.0897228\pi\)
\(128\) 10.0806 + 5.13632i 0.891007 + 0.453990i
\(129\) 11.0679 + 18.0612i 0.974475 + 1.59020i
\(130\) 0 0
\(131\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −13.0661 + 1.02832i −1.12874 + 0.0888337i
\(135\) −9.16523 + 7.82785i −0.788818 + 0.673714i
\(136\) 0 0
\(137\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(138\) −15.9972 1.25901i −1.36177 0.107174i
\(139\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(140\) −13.2010 + 15.4564i −1.11569 + 1.30631i
\(141\) −4.67296 3.39510i −0.393534 0.285919i
\(142\) 0 0
\(143\) 0 0
\(144\) −0.157159 + 0.992260i −0.0130965 + 0.0826883i
\(145\) −0.650623 2.71004i −0.0540313 0.225056i
\(146\) 0 0
\(147\) −17.2195 14.7068i −1.42024 1.21300i
\(148\) 0 0
\(149\) −1.60541 + 20.3986i −0.131520 + 1.67112i 0.478008 + 0.878355i \(0.341359\pi\)
−0.609528 + 0.792765i \(0.708641\pi\)
\(150\) 4.48642 10.8312i 0.366314 0.884361i
\(151\) 0 0 0.233445 0.972370i \(-0.425000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.852640 0.522499i \(-0.825000\pi\)
0.852640 + 0.522499i \(0.175000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −3.90879 12.0300i −0.309017 0.951057i
\(161\) −11.9037 28.7381i −0.938144 2.26488i
\(162\) 11.4307 1.81044i 0.898077 0.142241i
\(163\) 24.6525i 1.93093i −0.260531 0.965465i \(-0.583898\pi\)
0.260531 0.965465i \(-0.416102\pi\)
\(164\) 6.29429 + 11.1527i 0.491501 + 0.870877i
\(165\) 0 0
\(166\) 3.92168 + 24.7605i 0.304381 + 1.92179i
\(167\) 19.0786 7.90263i 1.47635 0.611524i 0.508053 0.861326i \(-0.330366\pi\)
0.968297 + 0.249802i \(0.0803655\pi\)
\(168\) 20.2710 6.58644i 1.56394 0.508155i
\(169\) 11.5831 + 5.90188i 0.891007 + 0.453990i
\(170\) 0 0
\(171\) 0 0
\(172\) −11.6006 22.7675i −0.884541 1.73601i
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) −0.903090 + 2.77943i −0.0684631 + 0.210708i
\(175\) 22.6557 1.78304i 1.71261 0.134785i
\(176\) 0 0
\(177\) 0 0
\(178\) 20.8967 + 8.65568i 1.56627 + 0.648771i
\(179\) 0 0 −0.996917 0.0784591i \(-0.975000\pi\)
0.996917 + 0.0784591i \(0.0250000\pi\)
\(180\) 0.908695 0.660206i 0.0677301 0.0492088i
\(181\) −5.33115 + 6.24197i −0.396261 + 0.463962i −0.922287 0.386507i \(-0.873682\pi\)
0.526026 + 0.850469i \(0.323682\pi\)
\(182\) 0 0
\(183\) 2.27931 0.547215i 0.168492 0.0404513i
\(184\) 19.1187 + 3.02811i 1.40945 + 0.223235i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 5.29828 + 4.52516i 0.386417 + 0.330031i
\(189\) 14.4006 + 19.8207i 1.04749 + 1.44174i
\(190\) 0 0
\(191\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(192\) −3.09635 + 12.8972i −0.223460 + 0.930777i
\(193\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 19.3159 + 19.3159i 1.37971 + 1.37971i
\(197\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(198\) 0 0
\(199\) 0 0 0.852640 0.522499i \(-0.175000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(200\) −6.42040 + 12.6007i −0.453990 + 0.891007i
\(201\) −4.74820 14.6135i −0.334912 1.03075i
\(202\) 10.8352 + 26.1586i 0.762364 + 1.84051i
\(203\) −5.59535 + 0.886216i −0.392717 + 0.0622002i
\(204\) 0 0
\(205\) 3.84088 13.7930i 0.268259 0.963347i
\(206\) 10.2092 0.711308
\(207\) 0.268889 + 1.69770i 0.0186891 + 0.117998i
\(208\) 0 0
\(209\) 0 0
\(210\) −21.2327 10.8186i −1.46519 0.746553i
\(211\) 0 0 −0.522499 0.852640i \(-0.675000\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 12.2460 12.2460i 0.837123 0.837123i
\(215\) −8.82821 + 27.1704i −0.602079 + 1.85301i
\(216\) −15.1991 + 1.19619i −1.03417 + 0.0813906i
\(217\) 0 0
\(218\) 23.0760 + 5.54005i 1.56290 + 0.375220i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4.99150 + 3.62654i 0.334255 + 0.242851i 0.742234 0.670141i \(-0.233766\pi\)
−0.407979 + 0.912991i \(0.633766\pi\)
\(224\) −25.0009 + 6.00217i −1.67044 + 0.401037i
\(225\) −1.24033 0.196448i −0.0826883 0.0130965i
\(226\) 0 0
\(227\) 6.07221 + 25.2926i 0.403026 + 1.67873i 0.692403 + 0.721511i \(0.256552\pi\)
−0.289377 + 0.957215i \(0.593448\pi\)
\(228\) 0 0
\(229\) 11.8348 + 10.1079i 0.782064 + 0.667946i 0.948028 0.318186i \(-0.103074\pi\)
−0.165964 + 0.986132i \(0.553074\pi\)
\(230\) −12.7208 17.5086i −0.838782 1.15448i
\(231\) 0 0
\(232\) 1.34910 3.25701i 0.0885726 0.213833i
\(233\) 0 0 0.233445 0.972370i \(-0.425000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(234\) 0 0
\(235\) −0.611206 7.76611i −0.0398707 0.506605i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.852640 0.522499i \(-0.825000\pi\)
0.852640 + 0.522499i \(0.175000\pi\)
\(240\) 12.6440 7.74828i 0.816169 0.500149i
\(241\) −8.56102 + 16.8019i −0.551464 + 1.08231i 0.432113 + 0.901819i \(0.357768\pi\)
−0.983577 + 0.180489i \(0.942232\pi\)
\(242\) −4.80718 14.7950i −0.309017 0.951057i
\(243\) −0.996141 2.40490i −0.0639024 0.154274i
\(244\) −2.79285 + 0.442344i −0.178794 + 0.0283182i
\(245\) 30.5411i 1.95120i
\(246\) −10.9910 + 10.2275i −0.700762 + 0.652085i
\(247\) 0 0
\(248\) 0 0
\(249\) −27.1528 + 11.2471i −1.72074 + 0.712754i
\(250\) 15.0375 4.88599i 0.951057 0.309017i
\(251\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(252\) −1.19291 1.94666i −0.0751465 0.122628i
\(253\) 0 0
\(254\) −14.4633 28.3858i −0.907508 1.78108i
\(255\) 0 0
\(256\) 4.94427 15.2169i 0.309017 0.951057i
\(257\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(258\) 22.7793 19.4554i 1.41818 1.21124i
\(259\) 0 0
\(260\) 0 0
\(261\) 0.312078 + 0.0245611i 0.0193172 + 0.00152029i
\(262\) 0 0
\(263\) −20.6165 + 24.1388i −1.27126 + 1.48846i −0.479623 + 0.877475i \(0.659226\pi\)
−0.791642 + 0.610985i \(0.790774\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4.14814 + 26.1904i −0.253862 + 1.60282i
\(268\) 4.32700 + 18.0233i 0.264314 + 1.10095i
\(269\) 18.9249 26.0479i 1.15387 1.58817i 0.422221 0.906493i \(-0.361251\pi\)
0.731653 0.681677i \(-0.238749\pi\)
\(270\) 12.9616 + 11.0702i 0.788818 + 0.673714i
\(271\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 1.78050 + 22.6234i 0.107174 + 1.36177i
\(277\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 24.5100 + 15.0198i 1.46476 + 0.897603i
\(281\) −25.8068 + 15.8144i −1.53951 + 0.943410i −0.545032 + 0.838415i \(0.683483\pi\)
−0.994473 + 0.104995i \(0.966517\pi\)
\(282\) −3.70848 + 7.27831i −0.220837 + 0.433417i
\(283\) −8.51987 26.2215i −0.506454 1.55870i −0.798313 0.602243i \(-0.794274\pi\)
0.291859 0.956461i \(-0.405726\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −27.3375 9.98283i −1.61368 0.589268i
\(288\) 1.42076 0.0837191
\(289\) −2.65939 16.7907i −0.156434 0.987688i
\(290\) −3.64145 + 1.50834i −0.213833 + 0.0885726i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.522499 0.852640i \(-0.675000\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(294\) −16.7330 + 27.3059i −0.975891 + 1.59251i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 28.8480 2.27039i 1.67112 0.131520i
\(299\) 0 0
\(300\) −16.1215 3.87044i −0.930777 0.223460i
\(301\) 53.6499 + 22.2225i 3.09233 + 1.28088i
\(302\) 0 0
\(303\) −26.8544 + 19.5109i −1.54275 + 1.12087i
\(304\) 0 0
\(305\) 2.55764 + 1.85824i 0.146450 + 0.106402i
\(306\) 0 0
\(307\) −28.7097 4.54717i −1.63855 0.259521i −0.731903 0.681409i \(-0.761367\pi\)
−0.906648 + 0.421888i \(0.861367\pi\)
\(308\) 0 0
\(309\) 2.79406 + 11.6381i 0.158949 + 0.662069i
\(310\) 0 0
\(311\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(312\) 0 0
\(313\) 0 0 0.0784591 0.996917i \(-0.475000\pi\)
−0.0784591 + 0.996917i \(0.525000\pi\)
\(314\) 0 0
\(315\) −0.595887 + 2.48205i −0.0335745 + 0.139848i
\(316\) 0 0
\(317\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −15.9388 + 8.12123i −0.891007 + 0.453990i
\(321\) 17.3116 + 10.6085i 0.966238 + 0.592111i
\(322\) −37.5080 + 22.9849i −2.09024 + 1.28090i
\(323\) 0 0
\(324\) −5.05765 15.5658i −0.280981 0.864769i
\(325\) 0 0
\(326\) −34.4346 + 5.45391i −1.90716 + 0.302064i
\(327\) 27.8220i 1.53856i
\(328\) 14.1856 11.2592i 0.783267 0.621685i
\(329\) −15.8346 −0.872991
\(330\) 0 0
\(331\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(332\) 33.7179 10.9556i 1.85051 0.601268i
\(333\) 0 0
\(334\) −15.2592 24.9008i −0.834947 1.36251i
\(335\) 10.8278 17.6694i 0.591588 0.965384i
\(336\) −13.6845 26.8574i −0.746553 1.46519i
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 5.68121 17.4850i 0.309017 0.951057i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −30.1702 2.37444i −1.62904 0.128208i
\(344\) −29.2353 + 21.2407i −1.57626 + 1.14522i
\(345\) 16.4778 19.2930i 0.887134 1.03870i
\(346\) 0 0
\(347\) −21.4522 + 5.15021i −1.15161 + 0.276478i −0.763920 0.645311i \(-0.776728\pi\)
−0.387692 + 0.921789i \(0.626728\pi\)
\(348\) 4.08210 + 0.646541i 0.218824 + 0.0346583i
\(349\) −5.52965 + 34.9128i −0.295995 + 1.86884i 0.171982 + 0.985100i \(0.444983\pi\)
−0.467978 + 0.883740i \(0.655017\pi\)
\(350\) −7.50272 31.2511i −0.401037 1.67044i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 7.46727 31.1034i 0.395764 1.64848i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(360\) −1.12321 1.12321i −0.0591983 0.0591983i
\(361\) 16.9291 8.62582i 0.891007 0.453990i
\(362\) 9.89822 + 6.06564i 0.520239 + 0.318803i
\(363\) 15.5501 9.52912i 0.816169 0.500149i
\(364\) 0 0
\(365\) 0 0
\(366\) −1.26861 3.06269i −0.0663111 0.160089i
\(367\) 24.6944 3.91120i 1.28904 0.204163i 0.525981 0.850497i \(-0.323698\pi\)
0.763055 + 0.646333i \(0.223698\pi\)
\(368\) 27.3750i 1.42702i
\(369\) 1.34011 + 0.889040i 0.0697632 + 0.0462816i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(374\) 0 0
\(375\) 9.68534 + 15.8050i 0.500149 + 0.816169i
\(376\) 5.14861 8.40176i 0.265519 0.433288i
\(377\) 0 0
\(378\) 24.4997 24.4997i 1.26013 1.26013i
\(379\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(380\) 0 0
\(381\) 28.4005 24.2563i 1.45500 1.24269i
\(382\) 0 0
\(383\) −18.0006 7.45608i −0.919786 0.380988i −0.127991 0.991775i \(-0.540853\pi\)
−0.791794 + 0.610788i \(0.790853\pi\)
\(384\) 18.6999 + 1.47171i 0.954275 + 0.0751031i
\(385\) 0 0
\(386\) 0 0
\(387\) −2.59602 1.88612i −0.131963 0.0958769i
\(388\) 0 0
\(389\) 32.0990 + 5.08398i 1.62748 + 0.257768i 0.902402 0.430895i \(-0.141802\pi\)
0.725082 + 0.688663i \(0.241802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 22.7072 31.2538i 1.14689 1.57855i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.233445 0.972370i \(-0.425000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 19.0211 + 6.18034i 0.951057 + 0.309017i
\(401\) −28.3192 28.3192i −1.41420 1.41420i −0.710705 0.703490i \(-0.751624\pi\)
−0.703490 0.710705i \(-0.748376\pi\)
\(402\) −19.3617 + 9.86526i −0.965672 + 0.492035i
\(403\) 0 0
\(404\) 34.1412 20.9218i 1.69859 1.04090i
\(405\) −8.30746 + 16.3043i −0.412801 + 0.810167i
\(406\) 2.47574 + 7.61954i 0.122869 + 0.378151i
\(407\) 0 0
\(408\) 0 0
\(409\) 39.1280i 1.93475i −0.253344 0.967376i \(-0.581530\pi\)
0.253344 0.967376i \(-0.418470\pi\)
\(410\) −20.1159 2.31350i −0.993451 0.114255i
\(411\) 0 0
\(412\) −2.25860 14.2602i −0.111273 0.702550i
\(413\) 0 0
\(414\) 2.31186 0.751169i 0.113622 0.0369179i
\(415\) −35.3175 17.9952i −1.73367 0.883349i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) −10.4141 + 32.0512i −0.508155 + 1.56394i
\(421\) −40.6272 + 3.19743i −1.98005 + 0.155833i −0.999235 0.0391149i \(-0.987546\pi\)
−0.980814 + 0.194948i \(0.937546\pi\)
\(422\) 0 0
\(423\) 0.850818 + 0.204263i 0.0413682 + 0.00993162i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4.17340 4.88643i 0.201965 0.236471i
\(428\) −19.8145 14.3961i −0.957771 0.695861i
\(429\) 0 0
\(430\) 39.9048 + 6.32030i 1.92438 + 0.304792i
\(431\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(432\) 5.03336 + 20.9655i 0.242168 + 1.00870i
\(433\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(434\) 0 0
\(435\) −2.71605 3.73832i −0.130225 0.179239i
\(436\) 2.63322 33.4582i 0.126108 1.60236i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(440\) 0 0
\(441\) 3.26251 + 1.06005i 0.155358 + 0.0504788i
\(442\) 0 0
\(443\) −24.1213 + 12.2904i −1.14604 + 0.583935i −0.920671 0.390339i \(-0.872358\pi\)
−0.225367 + 0.974274i \(0.572358\pi\)
\(444\) 0 0
\(445\) −30.4928 + 18.6860i −1.44550 + 0.885802i
\(446\) 3.96128 7.77444i 0.187572 0.368130i
\(447\) 10.4833 + 32.2643i 0.495844 + 1.52605i
\(448\) 13.9148 + 33.5934i 0.657414 + 1.58714i
\(449\) −31.9921 + 5.06705i −1.50980 + 0.239129i −0.855777 0.517345i \(-0.826920\pi\)
−0.654024 + 0.756474i \(0.726920\pi\)
\(450\) 1.77595i 0.0837191i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 33.9853 14.0772i 1.59501 0.660675i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.522499 0.852640i \(-0.675000\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(458\) 11.5004 18.7670i 0.537380 0.876925i
\(459\) 0 0
\(460\) −21.6419 + 21.6419i −1.00906 + 1.00906i
\(461\) 13.1976 40.6180i 0.614673 1.89177i 0.208288 0.978068i \(-0.433211\pi\)
0.406385 0.913702i \(-0.366789\pi\)
\(462\) 0 0
\(463\) −16.7085 + 14.2704i −0.776509 + 0.663201i −0.946666 0.322216i \(-0.895572\pi\)
0.170158 + 0.985417i \(0.445572\pi\)
\(464\) −4.84786 1.16387i −0.225056 0.0540313i
\(465\) 0 0
\(466\) 0 0
\(467\) 29.5928 21.5004i 1.36939 0.994920i 0.371605 0.928391i \(-0.378808\pi\)
0.997785 0.0665285i \(-0.0211923\pi\)
\(468\) 0 0
\(469\) −34.0783 24.7593i −1.57359 1.14328i
\(470\) −10.7125 + 2.57184i −0.494131 + 0.118630i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.233445 0.972370i \(-0.425000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(480\) −13.6201 15.9471i −0.621668 0.727880i
\(481\) 0 0
\(482\) 25.3630 + 8.24093i 1.15525 + 0.375364i
\(483\) −36.4672 36.4672i −1.65932 1.65932i
\(484\) −19.6021 + 9.98779i −0.891007 + 0.453990i
\(485\) 0 0
\(486\) −3.13879 + 1.92345i −0.142378 + 0.0872495i
\(487\) 18.6937 36.6885i 0.847094 1.66252i 0.102762 0.994706i \(-0.467232\pi\)
0.744332 0.667809i \(-0.232768\pi\)
\(488\) 1.23573 + 3.80320i 0.0559390 + 0.172163i
\(489\) −15.6414 37.7616i −0.707328 1.70764i
\(490\) −42.6599 + 6.75667i −1.92718 + 0.305235i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 16.7174 + 13.0896i 0.753680 + 0.590126i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 21.7170 + 35.4389i 0.973161 + 1.58805i
\(499\) 0 0 0.522499 0.852640i \(-0.325000\pi\)
−0.522499 + 0.852640i \(0.675000\pi\)
\(500\) −10.1515 19.9235i −0.453990 0.891007i
\(501\) 24.2098 24.2098i 1.08162 1.08162i
\(502\) 0 0
\(503\) −35.5760 + 2.79990i −1.58626 + 0.124841i −0.840663 0.541559i \(-0.817834\pi\)
−0.745594 + 0.666400i \(0.767834\pi\)
\(504\) −2.45519 + 2.09693i −0.109363 + 0.0934046i
\(505\) −43.5311 10.4509i −1.93711 0.465059i
\(506\) 0 0
\(507\) 21.4871 + 1.69107i 0.954275 + 0.0751031i
\(508\) −36.4496 + 26.4822i −1.61719 + 1.17496i
\(509\) −14.7148 + 17.2288i −0.652222 + 0.763654i −0.983702 0.179808i \(-0.942452\pi\)
0.331479 + 0.943462i \(0.392452\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.3488 3.53971i −0.987688 0.156434i
\(513\) 0 0
\(514\) 0 0
\(515\) −9.48811 + 13.0593i −0.418096 + 0.575460i
\(516\) −32.2148 27.5141i −1.41818 1.21124i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.44175 11.0549i −0.413651 0.484323i 0.513990 0.857796i \(-0.328167\pi\)
−0.927641 + 0.373473i \(0.878167\pi\)
\(522\) −0.0347346 0.441345i −0.00152029 0.0193172i
\(523\) 3.42071 + 1.11146i 0.149577 + 0.0486006i 0.382849 0.923811i \(-0.374943\pi\)
−0.233271 + 0.972412i \(0.574943\pi\)
\(524\) 0 0
\(525\) 33.5718 17.1057i 1.46519 0.746553i
\(526\) 38.2781 + 23.4568i 1.66900 + 1.02277i
\(527\) 0 0
\(528\) 0 0
\(529\) −7.36603 22.6703i −0.320262 0.985666i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 37.5004 1.62280
\(535\) 4.28364 + 27.0459i 0.185198 + 1.16929i
\(536\) 24.2177 10.0313i 1.04604 0.433286i
\(537\) 0 0
\(538\) −40.5706 20.6718i −1.74912 0.891223i
\(539\) 0 0
\(540\) 12.5954 20.5539i 0.542021 0.884498i
\(541\) 12.6429 + 24.8131i 0.543560 + 1.06680i 0.985488 + 0.169746i \(0.0542948\pi\)
−0.441928 + 0.897051i \(0.645705\pi\)
\(542\) 0 0
\(543\) −4.20565 + 12.9437i −0.180482 + 0.555466i
\(544\) 0 0
\(545\) −28.5328 + 24.3693i −1.22221 + 1.04387i
\(546\) 0 0
\(547\) 25.0194 + 10.3634i 1.06975 + 0.443106i 0.846903 0.531747i \(-0.178464\pi\)
0.222849 + 0.974853i \(0.428464\pi\)
\(548\) 0 0
\(549\) −0.287277 + 0.208719i −0.0122607 + 0.00890790i
\(550\) 0 0
\(551\) 0 0
\(552\) 31.2066 7.49203i 1.32824 0.318882i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 15.5573 37.5585i 0.657414 1.58714i
\(561\) 0 0
\(562\) 27.7989 + 32.5484i 1.17263 + 1.37297i
\(563\) −3.59291 45.6522i −0.151423 1.92401i −0.337222 0.941425i \(-0.609487\pi\)
0.185799 0.982588i \(-0.440513\pi\)
\(564\) 10.9868 + 3.56982i 0.462627 + 0.150317i
\(565\) 0 0
\(566\) −34.7413 + 17.7016i −1.46029 + 0.744054i
\(567\) 31.7140 + 19.4343i 1.33186 + 0.816166i
\(568\) 0 0
\(569\) 21.5760 42.3453i 0.904513 1.77521i 0.374451 0.927247i \(-0.377831\pi\)
0.530062 0.847959i \(-0.322169\pi\)
\(570\) 0 0
\(571\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −7.89612 + 40.3936i −0.329578 + 1.68600i
\(575\) 34.2188 1.42702
\(576\) −0.314317 1.98452i −0.0130965 0.0826883i
\(577\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(578\) −22.8649 + 7.42927i −0.951057 + 0.309017i
\(579\) 0 0
\(580\) 2.91245 + 4.75269i 0.120933 + 0.197345i
\(581\) −42.0977 + 68.6971i −1.74651 + 2.85004i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 45.2261 + 10.8578i 1.86668 + 0.448151i 0.998816 0.0486476i \(-0.0154911\pi\)
0.867866 + 0.496798i \(0.165491\pi\)
\(588\) 41.8428 + 17.3318i 1.72557 + 0.714753i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.972370 0.233445i \(-0.0750000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −9.55338 39.7927i −0.391322 1.62997i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(600\) −1.83964 + 23.3749i −0.0751031 + 0.954275i
\(601\) −10.1297 + 24.4554i −0.413201 + 0.997555i 0.571072 + 0.820900i \(0.306528\pi\)
−0.984273 + 0.176655i \(0.943472\pi\)
\(602\) 19.1714 79.8546i 0.781368 3.25463i
\(603\) 1.51169 + 1.76996i 0.0615607 + 0.0720783i
\(604\) 0 0
\(605\) 23.3929 + 7.60081i 0.951057 + 0.309017i
\(606\) 33.1939 + 33.1939i 1.34841 + 1.34841i
\(607\) −7.40968 + 3.77542i −0.300750 + 0.153240i −0.597853 0.801606i \(-0.703979\pi\)
0.297103 + 0.954845i \(0.403979\pi\)
\(608\) 0 0
\(609\) −8.00844 + 4.90758i −0.324518 + 0.198865i
\(610\) 2.02976 3.98362i 0.0821825 0.161292i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(614\) 41.1078i 1.65898i
\(615\) −2.86803 23.5645i −0.115650 0.950214i
\(616\) 0 0
\(617\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(618\) 15.6380 6.47748i 0.629053 0.260562i
\(619\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(620\) 0 0
\(621\) 19.2749 + 31.4538i 0.773476 + 1.26220i
\(622\) 0 0
\(623\) 33.0021 + 64.7703i 1.32220 + 2.59497i
\(624\) 0 0
\(625\) −7.72542 + 23.7764i −0.309017 + 0.951057i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 3.59876 + 0.283229i 0.143378 + 0.0112841i
\(631\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 49.7520 + 7.87994i 1.97435 + 0.312706i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 14.8699 + 20.4667i 0.587785 + 0.809017i
\(641\) 2.79898 35.5644i 0.110553 1.40471i −0.652214 0.758035i \(-0.726159\pi\)
0.762767 0.646674i \(-0.223841\pi\)
\(642\) 10.9882 26.5278i 0.433669 1.04697i
\(643\) 10.9502 45.6107i 0.431832 1.79871i −0.153765 0.988107i \(-0.549140\pi\)
0.585597 0.810602i \(-0.300860\pi\)
\(644\) 40.4033 + 47.3062i 1.59211 + 1.86413i
\(645\) 3.71628 + 47.2198i 0.146328 + 1.85928i
\(646\) 0 0
\(647\) −35.9166 35.9166i −1.41203 1.41203i −0.745308 0.666720i \(-0.767698\pi\)
−0.666720 0.745308i \(-0.732302\pi\)
\(648\) −20.6235 + 10.5082i −0.810167 + 0.412801i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 15.2361 + 46.8918i 0.596690 + 1.83642i
\(653\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(654\) 38.8619 6.15511i 1.51962 0.240684i
\(655\) 0 0
\(656\) −18.8652 17.3235i −0.736561 0.676371i
\(657\) 0 0
\(658\) 3.50312 + 22.1178i 0.136566 + 0.862243i
\(659\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(660\) 0 0
\(661\) 42.9179 + 21.8677i 1.66931 + 0.850556i 0.993545 + 0.113440i \(0.0361871\pi\)
0.675766 + 0.737116i \(0.263813\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −22.7623 44.6735i −0.883349 1.73367i
\(665\) 0 0
\(666\) 0 0
\(667\) −8.50379 + 0.669263i −0.329268 + 0.0259140i
\(668\) −31.4056 + 26.8229i −1.21512 + 1.03781i
\(669\) 9.94672 + 2.38800i 0.384562 + 0.0923252i
\(670\) −27.0762 11.2153i −1.04604 0.433286i
\(671\) 0 0
\(672\) −34.4870 + 25.0563i −1.33037 + 0.966568i
\(673\) 0 0 0.649448 0.760406i \(-0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(674\) 0 0
\(675\) −26.2068 + 6.29170i −1.00870 + 0.242168i
\(676\) −25.6799 4.06730i −0.987688 0.156434i
\(677\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 25.3487 + 34.8894i 0.971362 + 1.33697i
\(682\) 0 0
\(683\) 0.520412 1.25639i 0.0199130 0.0480743i −0.913610 0.406591i \(-0.866717\pi\)
0.933523 + 0.358517i \(0.116717\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 3.35797 + 42.6671i 0.128208 + 1.62904i
\(687\) 24.5412 + 7.97392i 0.936305 + 0.304224i
\(688\) 36.1368 + 36.1368i 1.37770 + 1.37770i
\(689\) 0 0
\(690\) −30.5939 18.7480i −1.16469 0.713723i
\(691\) 0 0 0.852640 0.522499i \(-0.175000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 11.9397 + 28.8250i 0.453226 + 1.09418i
\(695\) 0 0
\(696\) 5.84492i 0.221551i
\(697\) 0 0
\(698\) 49.9896 1.89214
\(699\) 0 0
\(700\) −41.9917 + 17.3935i −1.58714 + 0.657414i
\(701\) 47.3175 15.3744i 1.78716 0.580682i 0.787778 0.615959i \(-0.211231\pi\)
0.999378 + 0.0352773i \(0.0112314\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −5.86363 11.5080i −0.220837 0.433417i
\(706\) 0 0
\(707\) −28.1199 + 86.5442i −1.05756 + 3.25483i
\(708\) 0 0
\(709\) 5.46492 4.66749i 0.205240 0.175291i −0.540887 0.841095i \(-0.681911\pi\)
0.746127 + 0.665804i \(0.231911\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −45.0973 3.54924i −1.69009 0.133013i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.233445 0.972370i \(-0.575000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(720\) −1.32041 + 1.81739i −0.0492088 + 0.0677301i
\(721\) 24.9500 + 21.3093i 0.929186 + 0.793599i
\(722\) −15.7938 21.7383i −0.587785 0.809017i
\(723\) −2.45300 + 31.1683i −0.0912279 + 1.15916i
\(724\) 6.28269 15.1678i 0.233495 0.563706i
\(725\) 1.45484 6.05983i 0.0540313 0.225056i
\(726\) −16.7505 19.6123i −0.621668 0.727880i
\(727\) −4.23098 53.7596i −0.156918 1.99383i −0.0786754 0.996900i \(-0.525069\pi\)
−0.0782428 0.996934i \(-0.524931\pi\)
\(728\) 0 0
\(729\) −20.4114 20.4114i −0.755978 0.755978i
\(730\) 0 0
\(731\) 0 0
\(732\) −3.99731 + 2.44956i −0.147745 + 0.0905382i
\(733\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(734\) −10.9264 33.6279i −0.403299 1.24123i
\(735\) −19.3776 46.7816i −0.714753 1.72557i
\(736\) −38.2375 + 6.05622i −1.40945 + 0.223235i
\(737\) 0 0
\(738\) 0.945339 2.06855i 0.0347984 0.0761443i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −26.7885 13.6494i −0.982774 0.500748i −0.112678 0.993632i \(-0.535943\pi\)
−0.870095 + 0.492883i \(0.835943\pi\)
\(744\) 0 0
\(745\) −23.9063 + 39.0115i −0.875858 + 1.42927i
\(746\) 0 0
\(747\) 3.14815 3.14815i 0.115185 0.115185i
\(748\) 0 0
\(749\) 55.4886 4.36704i 2.02751 0.159568i
\(750\) 19.9338 17.0251i 0.727880 0.621668i
\(751\) 0 0 −0.972370 0.233445i \(-0.925000\pi\)
0.972370 + 0.233445i \(0.0750000\pi\)
\(752\) −12.8746 5.33285i −0.469490 0.194469i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −39.6414 28.8012i −1.44174 1.04749i
\(757\) 0 0 0.972370 0.233445i \(-0.0750000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −24.6322 + 33.9034i −0.892918 + 1.22900i 0.0797547 + 0.996815i \(0.474586\pi\)
−0.972673 + 0.232181i \(0.925414\pi\)
\(762\) −40.1644 34.3036i −1.45500 1.24269i
\(763\) 44.8312 + 61.7049i 1.62300 + 2.23387i
\(764\) 0 0
\(765\) 0 0
\(766\) −6.43237 + 26.7927i −0.232411 + 0.968061i
\(767\) 0 0
\(768\) −2.08132 26.4456i −0.0751031 0.954275i
\(769\) 39.4313 + 12.8120i 1.42193 + 0.462013i 0.916215 0.400687i \(-0.131229\pi\)
0.505715 + 0.862700i \(0.331229\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.852640 0.522499i \(-0.175000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(774\) −2.06022 + 4.04340i −0.0740529 + 0.145337i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 45.9607i 1.64777i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 6.38967 2.07613i 0.228348 0.0741948i
\(784\) −48.6789 24.8031i −1.73853 0.885827i
\(785\) 0 0
\(786\) 0 0
\(787\) −12.3931 24.3228i −0.441766 0.867015i −0.999320 0.0368739i \(-0.988260\pi\)
0.557554 0.830141i \(-0.311740\pi\)
\(788\) 0 0
\(789\) −16.2640 + 50.0554i −0.579013 + 1.78202i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 4.42463 27.9360i 0.156434 0.987688i
\(801\) −0.937729 3.90592i −0.0331330 0.138009i
\(802\) −33.2913 + 45.8215i −1.17556 + 1.61801i
\(803\) 0 0
\(804\) 18.0632 + 24.8619i 0.637041 + 0.876812i
\(805\) 5.45722 69.3405i 0.192342 2.44393i
\(806\) 0 0
\(807\) 12.4617 51.9065i 0.438671 1.82720i
\(808\) −36.7767 43.0600i −1.29380 1.51485i
\(809\) −1.68433 21.4015i −0.0592179 0.752435i −0.952812 0.303560i \(-0.901825\pi\)
0.893594 0.448875i \(-0.148175\pi\)
\(810\) 24.6118 + 7.99685i 0.864769 + 0.280981i
\(811\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(812\) 10.0953 5.14380i 0.354275 0.180512i
\(813\) 0 0
\(814\) 0 0
\(815\) 25.0261 49.1164i 0.876624 1.72047i
\(816\) 0 0
\(817\) 0 0
\(818\) −54.6540 + 8.65634i −1.91093 + 0.302662i
\(819\) 0 0
\(820\) 1.21877 + 28.6097i 0.0425613 + 0.999094i
\(821\) 14.9400 0.521408 0.260704 0.965419i \(-0.416045\pi\)
0.260704 + 0.965419i \(0.416045\pi\)
\(822\) 0 0
\(823\) 35.8145 14.8349i 1.24842 0.517111i 0.342081 0.939670i \(-0.388868\pi\)
0.906335 + 0.422560i \(0.138868\pi\)
\(824\) −19.4190 + 6.30962i −0.676494 + 0.219806i
\(825\) 0 0
\(826\) 0 0
\(827\) −22.3115 + 36.4090i −0.775845 + 1.26606i 0.183274 + 0.983062i \(0.441331\pi\)
−0.959119 + 0.283003i \(0.908669\pi\)
\(828\) −1.56069 3.06303i −0.0542377 0.106448i
\(829\) 3.17555 3.17555i 0.110291 0.110291i −0.649808 0.760099i \(-0.725151\pi\)
0.760099 + 0.649808i \(0.225151\pi\)
\(830\) −17.3224 + 53.3127i −0.601268 + 1.85051i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 46.0337 + 3.62293i 1.59306 + 0.125377i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.972370 0.233445i \(-0.0750000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(840\) 47.0732 + 7.45565i 1.62418 + 0.257245i
\(841\) 4.29357 27.1086i 0.148054 0.934778i
\(842\) 13.4542 + 56.0408i 0.463662 + 1.93129i
\(843\) −29.4959 + 40.5977i −1.01589 + 1.39826i
\(844\) 0 0
\(845\) 17.0863 + 23.5172i 0.587785 + 0.809017i
\(846\) 0.0970875 1.23361i 0.00333794 0.0424125i
\(847\) 19.1329 46.1909i 0.657414 1.58714i
\(848\) 0 0
\(849\) −29.6873 34.7593i −1.01886 1.19294i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(854\) −7.74866 4.74838i −0.265154 0.162486i
\(855\) 0 0
\(856\) −15.7249 + 30.8618i −0.537466 + 1.05484i
\(857\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(858\) 0 0
\(859\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(860\) 57.1374i 1.94837i
\(861\) −48.2083 + 2.05367i −1.64293 + 0.0699887i
\(862\) 0 0
\(863\) 1.48407 + 9.37003i 0.0505183 + 0.318960i 0.999987 + 0.00509811i \(0.00162279\pi\)
−0.949469 + 0.313862i \(0.898377\pi\)
\(864\) 28.1711 11.6688i 0.958399 0.396982i
\(865\) 0 0
\(866\) 0 0
\(867\) −14.7268 24.0320i −0.500149 0.816169i
\(868\) 0 0
\(869\) 0 0
\(870\) −4.62082 + 4.62082i −0.156660 + 0.156660i
\(871\) 0 0
\(872\) −47.3171 + 3.72393i −1.60236 + 0.126108i
\(873\) 0 0
\(874\) 0 0
\(875\) 46.9482 + 19.4466i 1.58714 + 0.657414i
\(876\) 0 0
\(877\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 15.5086 + 2.45632i 0.522498 + 0.0827556i 0.412112 0.911133i \(-0.364791\pi\)
0.110386 + 0.993889i \(0.464791\pi\)
\(882\) 0.758915 4.79160i 0.0255540 0.161342i
\(883\) −13.8730 57.7850i −0.466862 1.94462i −0.244159 0.969735i \(-0.578512\pi\)
−0.222703 0.974886i \(-0.571488\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 22.5037 + 30.9737i 0.756026 + 1.04058i
\(887\) 1.90399 24.1925i 0.0639298 0.812305i −0.878466 0.477805i \(-0.841433\pi\)
0.942396 0.334500i \(-0.108567\pi\)
\(888\) 0 0
\(889\) 23.9023 99.5601i 0.801656 3.33914i
\(890\) 32.8466 + 38.4585i 1.10102 + 1.28913i
\(891\) 0 0
\(892\) −11.7357 3.81317i −0.392941 0.127674i
\(893\) 0 0
\(894\) 42.7477 21.7810i 1.42970 0.728467i
\(895\) 0 0
\(896\) 43.8449 26.8682i 1.46476 0.897603i
\(897\) 0 0
\(898\) 14.1553 + 43.5656i 0.472370 + 1.45380i
\(899\) 0 0
\(900\) 2.48065 0.392896i 0.0826883 0.0130965i
\(901\) 0 0
\(902\) 0 0
\(903\) 96.2784 3.20394
\(904\) 0 0
\(905\) −16.9581 + 7.02427i −0.563706 + 0.233495i
\(906\) 0 0
\(907\) 12.1083 + 6.16950i 0.402051 + 0.204855i 0.643310 0.765606i \(-0.277561\pi\)
−0.241260 + 0.970461i \(0.577561\pi\)
\(908\) −27.1817 44.3565i −0.902056 1.47202i
\(909\) 2.62733 4.28741i 0.0871429 0.142204i
\(910\) 0 0
\(911\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 5.09670 + 1.22361i 0.168492 + 0.0404513i
\(916\) −28.7581 11.9120i −0.950193 0.393583i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.649448 0.760406i \(-0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(920\) 35.0173 + 25.4415i 1.15448 + 0.838782i
\(921\) −46.8614 + 11.2504i −1.54414 + 0.370714i
\(922\) −59.6551 9.44843i −1.96463 0.311168i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 23.6293 + 20.1814i 0.776509 + 0.663201i
\(927\) −1.06571 1.46683i −0.0350026 0.0481770i
\(928\) −0.553194 + 7.02899i −0.0181595 + 0.230738i
\(929\) −23.2622 + 56.1600i −0.763209 + 1.84255i −0.312282 + 0.949989i \(0.601093\pi\)
−0.450927 + 0.892561i \(0.648907\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −36.5787 36.5787i −1.19689 1.19689i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.852640 0.522499i \(-0.175000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(938\) −27.0447 + 53.0782i −0.883041 + 1.73306i
\(939\) 0 0
\(940\) 5.96230 + 14.3943i 0.194469 + 0.469490i
\(941\) −47.8820 + 7.58377i −1.56091 + 0.247224i −0.876329 0.481714i \(-0.840015\pi\)
−0.684580 + 0.728937i \(0.740015\pi\)
\(942\) 0 0
\(943\) −39.8565 18.2147i −1.29791 0.593151i
\(944\) 0 0
\(945\) 8.56996 + 54.1086i 0.278781 + 1.76015i
\(946\) 0 0
\(947\) −34.5155 + 11.2148i −1.12160 + 0.364431i −0.810380 0.585905i \(-0.800739\pi\)
−0.311225 + 0.950336i \(0.600739\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −19.2617 + 22.5525i −0.621668 + 0.727880i
\(961\) 25.0795 + 18.2213i 0.809017 + 0.587785i
\(962\) 0 0
\(963\) −3.03782 0.481143i −0.0978922 0.0155046i
\(964\) 5.89985 37.2502i 0.190021 1.19975i
\(965\) 0 0
\(966\) −42.8698 + 59.0052i −1.37931 + 1.89846i
\(967\) −20.8234 17.7849i −0.669636 0.571923i 0.248285 0.968687i \(-0.420133\pi\)
−0.917921 + 0.396764i \(0.870133\pi\)
\(968\) 18.2876 + 25.1707i 0.587785 + 0.809017i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.233445 0.972370i \(-0.425000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(972\) 3.38108 + 3.95874i 0.108448 + 0.126976i
\(973\) 0 0
\(974\) −55.3822 17.9948i −1.77456 0.576590i
\(975\) 0 0
\(976\) 5.03893 2.56746i 0.161292 0.0821825i
\(977\) 0 0 −0.852640 0.522499i \(-0.825000\pi\)
0.852640 + 0.522499i \(0.175000\pi\)
\(978\) −49.2852 + 30.2020i −1.57597 + 0.965753i
\(979\) 0 0
\(980\) 18.8755 + 58.0927i 0.602954 + 1.85570i
\(981\) −1.61287 3.89381i −0.0514949 0.124320i
\(982\) 0 0
\(983\) 15.0075i 0.478664i −0.970938 0.239332i \(-0.923072\pi\)
0.970938 0.239332i \(-0.0769284\pi\)
\(984\) 14.5852 26.2468i 0.464959 0.836716i
\(985\) 0 0
\(986\) 0 0
\(987\) −24.2548 + 10.0467i −0.772040 + 0.319789i
\(988\) 0 0
\(989\) 77.9077 + 39.6960i 2.47732 + 1.26226i
\(990\) 0 0
\(991\) 0 0 0.522499 0.852640i \(-0.325000\pi\)
−0.522499 + 0.852640i \(0.675000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 44.6966 38.1745i 1.41627 1.20961i
\(997\) 0 0 −0.972370 0.233445i \(-0.925000\pi\)
0.972370 + 0.233445i \(0.0750000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.cc.a.639.1 yes 16
4.3 odd 2 820.2.cc.f.639.1 yes 16
5.4 even 2 820.2.cc.f.639.1 yes 16
20.19 odd 2 CM 820.2.cc.a.639.1 yes 16
41.12 odd 40 inner 820.2.cc.a.299.1 16
164.135 even 40 820.2.cc.f.299.1 yes 16
205.94 odd 40 820.2.cc.f.299.1 yes 16
820.299 even 40 inner 820.2.cc.a.299.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.cc.a.299.1 16 41.12 odd 40 inner
820.2.cc.a.299.1 16 820.299 even 40 inner
820.2.cc.a.639.1 yes 16 1.1 even 1 trivial
820.2.cc.a.639.1 yes 16 20.19 odd 2 CM
820.2.cc.f.299.1 yes 16 164.135 even 40
820.2.cc.f.299.1 yes 16 205.94 odd 40
820.2.cc.f.639.1 yes 16 4.3 odd 2
820.2.cc.f.639.1 yes 16 5.4 even 2