Properties

Label 820.2.cc.a
Level $820$
Weight $2$
Character orbit 820.cc
Analytic conductor $6.548$
Analytic rank $0$
Dimension $16$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(19,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 20, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.cc (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{40})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{40}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{40}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{40}^{14} + \cdots + \zeta_{40}^{2}) q^{2} + (\zeta_{40}^{15} + \zeta_{40}^{13} + \cdots - 1) q^{3} + 2 \zeta_{40}^{6} q^{4} + ( - 2 \zeta_{40}^{13} + \cdots + \zeta_{40}) q^{5} + (\zeta_{40}^{15} - \zeta_{40}^{12} + \cdots + 2) q^{6}+ \cdots + ( - 7 \zeta_{40}^{13} + 10 \zeta_{40}^{12} + \cdots - 12) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} - 12 q^{3} + 20 q^{6} + 16 q^{7} + 8 q^{8} + 12 q^{9} - 16 q^{12} + 20 q^{15} + 16 q^{16} + 4 q^{18} + 4 q^{21} + 8 q^{24} - 48 q^{27} + 8 q^{28} - 80 q^{30} - 64 q^{32} - 20 q^{35} + 24 q^{36}+ \cdots - 104 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(\zeta_{40}^{11}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
−0.987688 + 0.156434i
0.891007 + 0.453990i
0.453990 + 0.891007i
0.156434 0.987688i
0.156434 + 0.987688i
−0.987688 0.156434i
−0.891007 + 0.453990i
0.453990 0.891007i
−0.453990 + 0.891007i
0.891007 0.453990i
0.987688 + 0.156434i
−0.156434 0.987688i
−0.156434 + 0.987688i
−0.453990 0.891007i
−0.891007 0.453990i
0.987688 0.156434i
1.26007 0.642040i 0.749049 + 1.80837i 1.17557 1.61803i −2.20854 + 0.349798i 2.10490 + 1.79775i 3.90076 3.33156i 0.442463 2.79360i −0.587789 + 0.587789i −2.55834 + 1.85874i
99.1 −0.221232 1.39680i 1.16396 + 2.81005i −1.90211 + 0.618034i −1.99235 1.01515i 3.66757 2.24749i 2.31026 + 1.41573i 1.28408 + 2.52015i −4.42024 + 4.42024i −0.977198 + 3.00750i
179.1 −1.39680 0.221232i −2.89092 + 1.19746i 1.90211 + 0.618034i −1.01515 1.99235i 4.30296 1.03305i 4.41957 + 1.06104i −2.52015 1.28408i 4.80220 4.80220i 0.977198 + 3.00750i
199.1 −0.642040 + 1.26007i −2.53583 + 1.05037i −1.17557 1.61803i 0.349798 2.20854i 0.304553 3.86971i −0.101838 1.29397i 2.79360 0.442463i 3.20582 3.20582i 2.55834 + 1.85874i
239.1 −0.642040 1.26007i −2.53583 1.05037i −1.17557 + 1.61803i 0.349798 + 2.20854i 0.304553 + 3.86971i −0.101838 + 1.29397i 2.79360 + 0.442463i 3.20582 + 3.20582i 2.55834 1.85874i
259.1 1.26007 + 0.642040i 0.749049 1.80837i 1.17557 + 1.61803i −2.20854 0.349798i 2.10490 1.79775i 3.90076 + 3.33156i 0.442463 + 2.79360i −0.587789 0.587789i −2.55834 1.85874i
299.1 −0.221232 + 1.39680i 1.53176 + 0.634475i −1.90211 0.618034i 1.99235 1.01515i −1.22511 + 1.99920i 2.37484 + 3.87538i 1.28408 2.52015i −0.177595 0.177595i 0.977198 + 3.00750i
339.1 −1.39680 + 0.221232i −2.89092 1.19746i 1.90211 0.618034i −1.01515 + 1.99235i 4.30296 + 1.03305i 4.41957 1.06104i −2.52015 + 1.28408i 4.80220 + 4.80220i 0.977198 3.00750i
399.1 −1.39680 + 0.221232i −0.568727 + 1.37303i 1.90211 0.618034i 1.01515 1.99235i 0.490642 2.04367i −0.632529 2.63467i −2.52015 + 1.28408i 0.559561 + 0.559561i −0.977198 + 3.00750i
439.1 −0.221232 + 1.39680i 1.16396 2.81005i −1.90211 0.618034i −1.99235 + 1.01515i 3.66757 + 2.24749i 2.31026 1.41573i 1.28408 2.52015i −4.42024 4.42024i −0.977198 3.00750i
479.1 1.26007 + 0.642040i −2.64054 1.09375i 1.17557 + 1.61803i 2.20854 + 0.349798i −2.62505 3.07353i 0.842968 0.986988i 0.442463 + 2.79360i 3.65485 + 3.65485i 2.55834 + 1.85874i
499.1 −0.642040 1.26007i −0.808747 + 1.95249i −1.17557 + 1.61803i −0.349798 2.20854i 2.97953 0.234494i −5.11403 0.402483i 2.79360 + 0.442463i −1.03682 1.03682i −2.55834 + 1.85874i
539.1 −0.642040 + 1.26007i −0.808747 1.95249i −1.17557 1.61803i −0.349798 + 2.20854i 2.97953 + 0.234494i −5.11403 + 0.402483i 2.79360 0.442463i −1.03682 + 1.03682i −2.55834 1.85874i
559.1 −1.39680 0.221232i −0.568727 1.37303i 1.90211 + 0.618034i 1.01515 + 1.99235i 0.490642 + 2.04367i −0.632529 + 2.63467i −2.52015 1.28408i 0.559561 0.559561i −0.977198 3.00750i
639.1 −0.221232 1.39680i 1.53176 0.634475i −1.90211 + 0.618034i 1.99235 + 1.01515i −1.22511 1.99920i 2.37484 3.87538i 1.28408 + 2.52015i −0.177595 + 0.177595i 0.977198 3.00750i
719.1 1.26007 0.642040i −2.64054 + 1.09375i 1.17557 1.61803i 2.20854 0.349798i −2.62505 + 3.07353i 0.842968 + 0.986988i 0.442463 2.79360i 3.65485 3.65485i 2.55834 1.85874i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
41.h odd 40 1 inner
820.cc even 40 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 820.2.cc.a 16
4.b odd 2 1 820.2.cc.f yes 16
5.b even 2 1 820.2.cc.f yes 16
20.d odd 2 1 CM 820.2.cc.a 16
41.h odd 40 1 inner 820.2.cc.a 16
164.o even 40 1 820.2.cc.f yes 16
205.ba odd 40 1 820.2.cc.f yes 16
820.cc even 40 1 inner 820.2.cc.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
820.2.cc.a 16 1.a even 1 1 trivial
820.2.cc.a 16 20.d odd 2 1 CM
820.2.cc.a 16 41.h odd 40 1 inner
820.2.cc.a 16 820.cc even 40 1 inner
820.2.cc.f yes 16 4.b odd 2 1
820.2.cc.f yes 16 5.b even 2 1
820.2.cc.f yes 16 164.o even 40 1
820.2.cc.f yes 16 205.ba odd 40 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(820, [\chi])\):

\( T_{3}^{16} + 12 T_{3}^{15} + 66 T_{3}^{14} + 248 T_{3}^{13} + 834 T_{3}^{12} + 2488 T_{3}^{11} + \cdots + 579121 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{8} + 2 T^{7} + 2 T^{6} + \cdots + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{16} + 12 T^{15} + \cdots + 579121 \) Copy content Toggle raw display
$5$ \( T^{16} - 25 T^{12} + \cdots + 390625 \) Copy content Toggle raw display
$7$ \( T^{16} - 16 T^{15} + \cdots + 45212176 \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( T^{16} \) Copy content Toggle raw display
$17$ \( T^{16} \) Copy content Toggle raw display
$19$ \( T^{16} \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 24343800625 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 14170283521 \) Copy content Toggle raw display
$31$ \( T^{16} \) Copy content Toggle raw display
$37$ \( T^{16} \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 7984925229121 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 29\!\cdots\!41 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 47284340602321 \) Copy content Toggle raw display
$53$ \( T^{16} \) Copy content Toggle raw display
$59$ \( T^{16} \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 102389324175121 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 25\!\cdots\!41 \) Copy content Toggle raw display
$71$ \( T^{16} \) Copy content Toggle raw display
$73$ \( T^{16} \) Copy content Toggle raw display
$79$ \( T^{16} \) Copy content Toggle raw display
$83$ \( (T^{8} - 740 T^{6} + \cdots + 26988025)^{2} \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 31\!\cdots\!01 \) Copy content Toggle raw display
$97$ \( T^{16} \) Copy content Toggle raw display
show more
show less