L(s) = 1 | + (−0.221 − 1.39i)2-s + (1.16 + 2.81i)3-s + (−1.90 + 0.618i)4-s + (−1.99 − 1.01i)5-s + (3.66 − 2.24i)6-s + (2.31 + 1.41i)7-s + (1.28 + 2.52i)8-s + (−4.42 + 4.42i)9-s + (−0.977 + 3.00i)10-s + (−3.95 − 4.62i)12-s + (1.46 − 3.54i)14-s + (0.533 − 6.78i)15-s + (3.23 − 2.35i)16-s + (7.15 + 5.19i)18-s + (4.41 + 0.699i)20-s + (−1.28 + 8.13i)21-s + ⋯ |
L(s) = 1 | + (−0.156 − 0.987i)2-s + (0.672 + 1.62i)3-s + (−0.951 + 0.309i)4-s + (−0.891 − 0.453i)5-s + (1.49 − 0.917i)6-s + (0.873 + 0.535i)7-s + (0.453 + 0.891i)8-s + (−1.47 + 1.47i)9-s + (−0.309 + 0.951i)10-s + (−1.14 − 1.33i)12-s + (0.391 − 0.946i)14-s + (0.137 − 1.75i)15-s + (0.809 − 0.587i)16-s + (1.68 + 1.22i)18-s + (0.987 + 0.156i)20-s + (−0.281 + 1.77i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.271 - 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.271 - 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.647794 + 0.855753i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.647794 + 0.855753i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.221 + 1.39i)T \) |
| 5 | \( 1 + (1.99 + 1.01i)T \) |
| 41 | \( 1 + (-1.26 - 6.27i)T \) |
good | 3 | \( 1 + (-1.16 - 2.81i)T + (-2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (-2.31 - 1.41i)T + (3.17 + 6.23i)T^{2} \) |
| 11 | \( 1 + (10.8 - 1.72i)T^{2} \) |
| 13 | \( 1 + (11.5 + 5.90i)T^{2} \) |
| 17 | \( 1 + (-2.65 - 16.7i)T^{2} \) |
| 19 | \( 1 + (16.9 - 8.62i)T^{2} \) |
| 23 | \( 1 + (4.02 - 5.53i)T + (-7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (8.13 - 6.94i)T + (4.53 - 28.6i)T^{2} \) |
| 31 | \( 1 + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (29.9 - 21.7i)T^{2} \) |
| 43 | \( 1 + (1.99 + 12.6i)T + (-40.8 + 13.2i)T^{2} \) |
| 47 | \( 1 + (11.3 - 6.92i)T + (21.3 - 41.8i)T^{2} \) |
| 53 | \( 1 + (8.29 - 52.3i)T^{2} \) |
| 59 | \( 1 + (-18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (1.39 + 0.221i)T + (58.0 + 18.8i)T^{2} \) |
| 67 | \( 1 + (-13.4 - 1.05i)T + (66.1 + 10.4i)T^{2} \) |
| 71 | \( 1 + (-70.1 + 11.1i)T^{2} \) |
| 73 | \( 1 - 73iT^{2} \) |
| 79 | \( 1 + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 - 17.7T + 83T^{2} \) |
| 89 | \( 1 + (-8.53 - 5.23i)T + (40.4 + 79.2i)T^{2} \) |
| 97 | \( 1 + (95.8 + 15.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50989368931055726305852495536, −9.543779774969243385893661529060, −9.032517476655709337715235270602, −8.285277414213660254976468464233, −7.70783877098124500795816767012, −5.32925587328779875765202371846, −4.89329541377054053481657308070, −3.86624936620068747996301924285, −3.34349965656125609421890469887, −1.90898962162832668639027754473,
0.52045180091402228627542089386, 1.99579492744385707912219986073, 3.54990194560283119423675755771, 4.60033507951228715627006309665, 6.05832258616761030088696420036, 6.79429155873533881932662935610, 7.55841361307867667829990159291, 8.019321706472154159019048141664, 8.499142492977477771933434436430, 9.704384744772493521839481938782