sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(820, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([20,20,33]))
pari:[g,chi] = znchar(Mod(99,820))
Modulus: | \(820\) | |
Conductor: | \(820\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(40\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{820}(19,\cdot)\)
\(\chi_{820}(99,\cdot)\)
\(\chi_{820}(179,\cdot)\)
\(\chi_{820}(199,\cdot)\)
\(\chi_{820}(239,\cdot)\)
\(\chi_{820}(259,\cdot)\)
\(\chi_{820}(299,\cdot)\)
\(\chi_{820}(339,\cdot)\)
\(\chi_{820}(399,\cdot)\)
\(\chi_{820}(439,\cdot)\)
\(\chi_{820}(479,\cdot)\)
\(\chi_{820}(499,\cdot)\)
\(\chi_{820}(539,\cdot)\)
\(\chi_{820}(559,\cdot)\)
\(\chi_{820}(639,\cdot)\)
\(\chi_{820}(719,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((411,657,621)\) → \((-1,-1,e\left(\frac{33}{40}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 820 }(99, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(-i\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{8}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)