Properties

Label 820.2.cc.a.539.1
Level $820$
Weight $2$
Character 820.539
Analytic conductor $6.548$
Analytic rank $0$
Dimension $16$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(19,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 20, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.cc (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{40})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{40}]$

Embedding invariants

Embedding label 539.1
Root \(-0.156434 + 0.987688i\) of defining polynomial
Character \(\chi\) \(=\) 820.539
Dual form 820.2.cc.a.499.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.642040 + 1.26007i) q^{2} +(-0.808747 - 1.95249i) q^{3} +(-1.17557 - 1.61803i) q^{4} +(-0.349798 + 2.20854i) q^{5} +(2.97953 + 0.234494i) q^{6} +(-5.11403 + 0.402483i) q^{7} +(2.79360 - 0.442463i) q^{8} +(-1.03682 + 1.03682i) q^{9} +(-2.55834 - 1.85874i) q^{10} +(-2.20845 + 3.60387i) q^{12} +(2.77625 - 6.70246i) q^{14} +(4.59504 - 1.10317i) q^{15} +(-1.23607 + 3.80423i) q^{16} +(-0.640788 - 1.97214i) q^{18} +(3.98470 - 2.03031i) q^{20} +(4.92180 + 9.65957i) q^{21} +(4.06728 - 1.32154i) q^{23} +(-3.12322 - 5.09664i) q^{24} +(-4.75528 - 1.54508i) q^{25} +(-2.99457 - 1.24039i) q^{27} +(6.66313 + 7.80152i) q^{28} +(9.17546 + 5.62273i) q^{29} +(-1.56012 + 6.49837i) q^{30} +(-4.00000 - 4.00000i) q^{32} +(0.899978 - 11.4353i) q^{35} +(2.89646 + 0.458754i) q^{36} +6.32456i q^{40} +(-0.731592 - 6.36119i) q^{41} -15.3318 q^{42} +(2.32190 - 4.55699i) q^{43} +(-1.92717 - 2.65253i) q^{45} +(-0.946117 + 5.97355i) q^{46} +(10.2027 + 0.802973i) q^{47} +(8.42737 - 0.663249i) q^{48} +(19.0775 - 3.02157i) q^{49} +(5.00000 - 5.00000i) q^{50} +(3.48561 - 2.97700i) q^{54} +(-14.1085 + 3.38715i) q^{56} +(-12.9761 + 7.95174i) q^{58} +(-7.18677 - 6.13808i) q^{60} +(13.5717 - 6.91514i) q^{61} +(4.88501 - 5.71961i) q^{63} +(7.60845 - 2.47214i) q^{64} +(2.77307 + 11.5507i) q^{67} +(-5.86969 - 6.87252i) q^{69} +(13.8315 + 8.47596i) q^{70} +(-2.43770 + 3.35521i) q^{72} +(0.829061 + 10.5342i) q^{75} +(-7.96940 - 4.06061i) q^{80} +11.2489i q^{81} +(8.48528 + 3.16228i) q^{82} +16.8188 q^{83} +(9.84359 - 19.3191i) q^{84} +(4.25139 + 5.85154i) q^{86} +(3.55769 - 22.4623i) q^{87} +(-9.67595 + 0.761514i) q^{89} +(4.57970 - 0.725353i) q^{90} +(-6.91967 - 5.02743i) q^{92} +(-7.56237 + 12.3407i) q^{94} +(-4.57496 + 11.0449i) q^{96} +(-8.44108 + 25.9790i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} - 12 q^{3} + 20 q^{6} + 16 q^{7} + 8 q^{8} + 12 q^{9} - 16 q^{12} + 20 q^{15} + 16 q^{16} + 4 q^{18} + 4 q^{21} + 8 q^{24} - 48 q^{27} + 8 q^{28} - 80 q^{30} - 64 q^{32} - 20 q^{35} + 24 q^{36}+ \cdots - 104 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{40}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.642040 + 1.26007i −0.453990 + 0.891007i
\(3\) −0.808747 1.95249i −0.466930 1.12727i −0.965496 0.260418i \(-0.916140\pi\)
0.498566 0.866852i \(-0.333860\pi\)
\(4\) −1.17557 1.61803i −0.587785 0.809017i
\(5\) −0.349798 + 2.20854i −0.156434 + 0.987688i
\(6\) 2.97953 + 0.234494i 1.21639 + 0.0957317i
\(7\) −5.11403 + 0.402483i −1.93292 + 0.152124i −0.985706 0.168476i \(-0.946115\pi\)
−0.947215 + 0.320600i \(0.896115\pi\)
\(8\) 2.79360 0.442463i 0.987688 0.156434i
\(9\) −1.03682 + 1.03682i −0.345606 + 0.345606i
\(10\) −2.55834 1.85874i −0.809017 0.587785i
\(11\) 0 0 −0.972370 0.233445i \(-0.925000\pi\)
0.972370 + 0.233445i \(0.0750000\pi\)
\(12\) −2.20845 + 3.60387i −0.637525 + 1.04035i
\(13\) 0 0 0.760406 0.649448i \(-0.225000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(14\) 2.77625 6.70246i 0.741984 1.79131i
\(15\) 4.59504 1.10317i 1.18643 0.284838i
\(16\) −1.23607 + 3.80423i −0.309017 + 0.951057i
\(17\) 0 0 0.852640 0.522499i \(-0.175000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(18\) −0.640788 1.97214i −0.151035 0.464839i
\(19\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(20\) 3.98470 2.03031i 0.891007 0.453990i
\(21\) 4.92180 + 9.65957i 1.07402 + 2.10789i
\(22\) 0 0
\(23\) 4.06728 1.32154i 0.848086 0.275560i 0.147442 0.989071i \(-0.452896\pi\)
0.700644 + 0.713511i \(0.252896\pi\)
\(24\) −3.12322 5.09664i −0.637525 1.04035i
\(25\) −4.75528 1.54508i −0.951057 0.309017i
\(26\) 0 0
\(27\) −2.99457 1.24039i −0.576305 0.238713i
\(28\) 6.66313 + 7.80152i 1.25921 + 1.47435i
\(29\) 9.17546 + 5.62273i 1.70384 + 1.04411i 0.873386 + 0.487029i \(0.161919\pi\)
0.830455 + 0.557086i \(0.188081\pi\)
\(30\) −1.56012 + 6.49837i −0.284838 + 1.18643i
\(31\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 0 0
\(34\) 0 0
\(35\) 0.899978 11.4353i 0.152124 1.93292i
\(36\) 2.89646 + 0.458754i 0.482743 + 0.0764590i
\(37\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 6.32456i 1.00000i
\(41\) −0.731592 6.36119i −0.114255 0.993451i
\(42\) −15.3318 −2.36574
\(43\) 2.32190 4.55699i 0.354087 0.694935i −0.643419 0.765514i \(-0.722485\pi\)
0.997506 + 0.0705793i \(0.0224848\pi\)
\(44\) 0 0
\(45\) −1.92717 2.65253i −0.287286 0.395415i
\(46\) −0.946117 + 5.97355i −0.139497 + 0.880752i
\(47\) 10.2027 + 0.802973i 1.48822 + 0.117126i 0.796325 0.604869i \(-0.206775\pi\)
0.691898 + 0.721995i \(0.256775\pi\)
\(48\) 8.42737 0.663249i 1.21639 0.0957317i
\(49\) 19.0775 3.02157i 2.72535 0.431653i
\(50\) 5.00000 5.00000i 0.707107 0.707107i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.522499 0.852640i \(-0.325000\pi\)
−0.522499 + 0.852640i \(0.675000\pi\)
\(54\) 3.48561 2.97700i 0.474332 0.405118i
\(55\) 0 0
\(56\) −14.1085 + 3.38715i −1.88533 + 0.452627i
\(57\) 0 0
\(58\) −12.9761 + 7.95174i −1.70384 + 1.04411i
\(59\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(60\) −7.18677 6.13808i −0.927808 0.792423i
\(61\) 13.5717 6.91514i 1.73768 0.885393i 0.768206 0.640203i \(-0.221150\pi\)
0.969475 0.245189i \(-0.0788501\pi\)
\(62\) 0 0
\(63\) 4.88501 5.71961i 0.615453 0.720603i
\(64\) 7.60845 2.47214i 0.951057 0.309017i
\(65\) 0 0
\(66\) 0 0
\(67\) 2.77307 + 11.5507i 0.338784 + 1.41114i 0.838478 + 0.544936i \(0.183446\pi\)
−0.499694 + 0.866202i \(0.666554\pi\)
\(68\) 0 0
\(69\) −5.86969 6.87252i −0.706627 0.827354i
\(70\) 13.8315 + 8.47596i 1.65318 + 1.01307i
\(71\) 0 0 0.233445 0.972370i \(-0.425000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(72\) −2.43770 + 3.35521i −0.287286 + 0.395415i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 0.829061 + 10.5342i 0.0957317 + 1.21639i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(80\) −7.96940 4.06061i −0.891007 0.453990i
\(81\) 11.2489i 1.24987i
\(82\) 8.48528 + 3.16228i 0.937043 + 0.349215i
\(83\) 16.8188 1.84610 0.923052 0.384676i \(-0.125687\pi\)
0.923052 + 0.384676i \(0.125687\pi\)
\(84\) 9.84359 19.3191i 1.07402 2.10789i
\(85\) 0 0
\(86\) 4.25139 + 5.85154i 0.458439 + 0.630987i
\(87\) 3.55769 22.4623i 0.381424 2.40822i
\(88\) 0 0
\(89\) −9.67595 + 0.761514i −1.02565 + 0.0807203i −0.580106 0.814541i \(-0.696989\pi\)
−0.445542 + 0.895261i \(0.646989\pi\)
\(90\) 4.57970 0.725353i 0.482743 0.0764590i
\(91\) 0 0
\(92\) −6.91967 5.02743i −0.721425 0.524146i
\(93\) 0 0
\(94\) −7.56237 + 12.3407i −0.779999 + 1.27284i
\(95\) 0 0
\(96\) −4.57496 + 11.0449i −0.466930 + 1.12727i
\(97\) 0 0 0.972370 0.233445i \(-0.0750000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(98\) −8.44108 + 25.9790i −0.852678 + 2.62427i
\(99\) 0 0
\(100\) 3.09017 + 9.51057i 0.309017 + 0.951057i
\(101\) −5.70642 4.87374i −0.567810 0.484955i 0.318579 0.947896i \(-0.396794\pi\)
−0.886389 + 0.462941i \(0.846794\pi\)
\(102\) 0 0
\(103\) 2.41087 + 4.73160i 0.237550 + 0.466218i 0.978748 0.205069i \(-0.0657418\pi\)
−0.741198 + 0.671287i \(0.765742\pi\)
\(104\) 0 0
\(105\) −23.0552 + 7.49108i −2.24995 + 0.731054i
\(106\) 0 0
\(107\) −15.9771 5.19128i −1.54457 0.501860i −0.591935 0.805986i \(-0.701636\pi\)
−0.952632 + 0.304125i \(0.901636\pi\)
\(108\) 1.51333 + 6.30348i 0.145620 + 0.606553i
\(109\) −19.0255 7.88063i −1.82232 0.754828i −0.974446 0.224623i \(-0.927885\pi\)
−0.847869 0.530205i \(-0.822115\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4.79015 19.9524i 0.452627 1.88533i
\(113\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(114\) 0 0
\(115\) 1.49594 + 9.44501i 0.139497 + 0.880752i
\(116\) −1.68863 21.4561i −0.156786 1.99215i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 12.3486 5.11497i 1.12727 0.466930i
\(121\) 9.80107 + 4.99390i 0.891007 + 0.453990i
\(122\) 21.5412i 1.95024i
\(123\) −11.8285 + 6.57302i −1.06654 + 0.592669i
\(124\) 0 0
\(125\) 5.07577 9.96176i 0.453990 0.891007i
\(126\) 4.07076 + 9.82769i 0.362652 + 0.875520i
\(127\) 12.7252 + 17.5147i 1.12918 + 1.55418i 0.789621 + 0.613595i \(0.210277\pi\)
0.339557 + 0.940585i \(0.389723\pi\)
\(128\) −1.76985 + 11.1744i −0.156434 + 0.987688i
\(129\) −10.7753 0.848035i −0.948712 0.0746653i
\(130\) 0 0
\(131\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −16.3351 3.92171i −1.41114 0.338784i
\(135\) 3.78694 6.17973i 0.325928 0.531867i
\(136\) 0 0
\(137\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(138\) 12.4285 2.98381i 1.05798 0.253999i
\(139\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(140\) −19.5607 + 11.9868i −1.65318 + 1.01307i
\(141\) −6.68364 20.5701i −0.562864 1.73232i
\(142\) 0 0
\(143\) 0 0
\(144\) −2.66271 5.22586i −0.221893 0.435489i
\(145\) −15.6276 + 18.2975i −1.29780 + 1.51953i
\(146\) 0 0
\(147\) −21.3284 34.8048i −1.75914 2.87065i
\(148\) 0 0
\(149\) 1.17953 + 4.91308i 0.0966306 + 0.402495i 0.999632 0.0271432i \(-0.00864100\pi\)
−0.903001 + 0.429638i \(0.858641\pi\)
\(150\) −13.8062 5.71870i −1.12727 0.466930i
\(151\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 10.2333 7.43496i 0.809017 0.587785i
\(161\) −20.2683 + 8.39539i −1.59736 + 0.661650i
\(162\) −14.1744 7.22221i −1.11365 0.567431i
\(163\) 6.65248i 0.521062i 0.965465 + 0.260531i \(0.0838976\pi\)
−0.965465 + 0.260531i \(0.916102\pi\)
\(164\) −9.43259 + 8.66177i −0.736561 + 0.676371i
\(165\) 0 0
\(166\) −10.7983 + 21.1929i −0.838113 + 1.64489i
\(167\) 8.88713 + 21.4554i 0.687707 + 1.66027i 0.749351 + 0.662173i \(0.230366\pi\)
−0.0616444 + 0.998098i \(0.519634\pi\)
\(168\) 18.0236 + 24.8073i 1.39055 + 1.91392i
\(169\) 2.03365 12.8399i 0.156434 0.987688i
\(170\) 0 0
\(171\) 0 0
\(172\) −10.1029 + 1.60015i −0.770341 + 0.122010i
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 26.0200 + 18.9047i 1.97257 + 1.43316i
\(175\) 24.9405 + 5.98769i 1.88533 + 0.452627i
\(176\) 0 0
\(177\) 0 0
\(178\) 5.25278 12.6813i 0.393712 0.950506i
\(179\) 0 0 0.972370 0.233445i \(-0.0750000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(180\) −2.02635 + 6.23647i −0.151035 + 0.464839i
\(181\) 16.1553 9.89995i 1.20081 0.735858i 0.229416 0.973328i \(-0.426318\pi\)
0.971395 + 0.237471i \(0.0763184\pi\)
\(182\) 0 0
\(183\) −24.4778 20.9060i −1.80945 1.54542i
\(184\) 10.7776 5.49148i 0.794538 0.404837i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −10.6948 17.4523i −0.779999 1.27284i
\(189\) 15.8135 + 5.13813i 1.15027 + 0.373744i
\(190\) 0 0
\(191\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(192\) −10.9801 12.8561i −0.792423 0.927808i
\(193\) 0 0 −0.852640 0.522499i \(-0.825000\pi\)
0.852640 + 0.522499i \(0.175000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −27.3159 27.3159i −1.95114 1.95114i
\(197\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(198\) 0 0
\(199\) 0 0 0.0784591 0.996917i \(-0.475000\pi\)
−0.0784591 + 0.996917i \(0.525000\pi\)
\(200\) −13.9680 2.21232i −0.987688 0.156434i
\(201\) 20.3098 14.7559i 1.43254 1.04080i
\(202\) 9.80502 4.06137i 0.689879 0.285757i
\(203\) −49.1866 25.0618i −3.45222 1.75900i
\(204\) 0 0
\(205\) 14.3048 + 0.609385i 0.999094 + 0.0425613i
\(206\) −7.51004 −0.523249
\(207\) −2.84683 + 5.58722i −0.197868 + 0.388339i
\(208\) 0 0
\(209\) 0 0
\(210\) 5.36302 33.8608i 0.370083 2.33661i
\(211\) 0 0 −0.996917 0.0784591i \(-0.975000\pi\)
0.996917 + 0.0784591i \(0.0250000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 16.7993 16.7993i 1.14838 1.14838i
\(215\) 9.25209 + 6.72204i 0.630987 + 0.458439i
\(216\) −8.91447 2.14017i −0.606553 0.145620i
\(217\) 0 0
\(218\) 22.1453 18.9139i 1.49987 1.28101i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −6.85024 21.0829i −0.458726 1.41181i −0.866705 0.498822i \(-0.833766\pi\)
0.407979 0.912991i \(-0.366234\pi\)
\(224\) 22.0660 + 18.8462i 1.47435 + 1.25921i
\(225\) 6.53233 3.32839i 0.435489 0.221893i
\(226\) 0 0
\(227\) 12.4006 14.5193i 0.823058 0.963677i −0.176730 0.984259i \(-0.556552\pi\)
0.999788 + 0.0205821i \(0.00655195\pi\)
\(228\) 0 0
\(229\) −8.39244 13.6952i −0.554588 0.905005i −0.999953 0.00965614i \(-0.996926\pi\)
0.445366 0.895349i \(-0.353074\pi\)
\(230\) −12.8619 4.17907i −0.848086 0.275560i
\(231\) 0 0
\(232\) 28.1205 + 11.6479i 1.84620 + 0.764721i
\(233\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(234\) 0 0
\(235\) −5.34230 + 22.2523i −0.348493 + 1.45158i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(240\) −1.48307 + 18.8442i −0.0957317 + 1.21639i
\(241\) −8.76185 1.38774i −0.564400 0.0893922i −0.132287 0.991211i \(-0.542232\pi\)
−0.432113 + 0.901819i \(0.642232\pi\)
\(242\) −12.5854 + 9.14379i −0.809017 + 0.587785i
\(243\) 12.9796 5.37631i 0.832640 0.344891i
\(244\) −27.1434 13.8303i −1.73768 0.885393i
\(245\) 43.1902i 2.75932i
\(246\) −0.688137 19.1249i −0.0438740 1.21936i
\(247\) 0 0
\(248\) 0 0
\(249\) −13.6022 32.8385i −0.862002 2.08106i
\(250\) 9.29370 + 12.7917i 0.587785 + 0.809017i
\(251\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(252\) −14.9972 1.18031i −0.944735 0.0743522i
\(253\) 0 0
\(254\) −30.2399 + 4.78953i −1.89742 + 0.300522i
\(255\) 0 0
\(256\) −12.9443 9.40456i −0.809017 0.587785i
\(257\) 0 0 −0.972370 0.233445i \(-0.925000\pi\)
0.972370 + 0.233445i \(0.0750000\pi\)
\(258\) 7.98676 13.0332i 0.497234 0.811412i
\(259\) 0 0
\(260\) 0 0
\(261\) −15.3430 + 3.68353i −0.949709 + 0.228005i
\(262\) 0 0
\(263\) −1.36985 + 0.839447i −0.0844688 + 0.0517625i −0.564092 0.825712i \(-0.690774\pi\)
0.479623 + 0.877475i \(0.340774\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 9.31224 + 18.2763i 0.569900 + 1.11849i
\(268\) 15.4294 18.0655i 0.942502 1.10353i
\(269\) 15.1366 4.91817i 0.922893 0.299866i 0.191240 0.981543i \(-0.438749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 5.35555 + 8.73946i 0.325928 + 0.531867i
\(271\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −4.21974 + 17.5765i −0.253999 + 1.05798i
\(277\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −2.54552 32.3439i −0.152124 1.93292i
\(281\) −2.16850 + 27.5534i −0.129362 + 1.64370i 0.499594 + 0.866260i \(0.333483\pi\)
−0.628956 + 0.777441i \(0.716517\pi\)
\(282\) 30.2111 + 4.78496i 1.79904 + 0.284940i
\(283\) 25.7318 18.6953i 1.52960 1.11132i 0.573137 0.819459i \(-0.305726\pi\)
0.956461 0.291859i \(-0.0942738\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.30165 + 32.2369i 0.371975 + 1.90288i
\(288\) 8.29454 0.488760
\(289\) 7.71784 15.1471i 0.453990 0.891007i
\(290\) −13.0227 31.4396i −0.764721 1.84620i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.996917 0.0784591i \(-0.975000\pi\)
0.996917 + 0.0784591i \(0.0250000\pi\)
\(294\) 57.5503 4.52931i 3.35640 0.264155i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −6.94815 1.66810i −0.402495 0.0966306i
\(299\) 0 0
\(300\) 16.0701 13.7252i 0.927808 0.792423i
\(301\) −10.0402 + 24.2391i −0.578705 + 1.39712i
\(302\) 0 0
\(303\) −4.90087 + 15.0833i −0.281548 + 0.866515i
\(304\) 0 0
\(305\) 10.5250 + 32.3926i 0.602659 + 1.85479i
\(306\) 0 0
\(307\) −1.11480 + 0.568021i −0.0636253 + 0.0324187i −0.485514 0.874229i \(-0.661367\pi\)
0.421888 + 0.906648i \(0.361367\pi\)
\(308\) 0 0
\(309\) 7.28861 8.53386i 0.414634 0.485474i
\(310\) 0 0
\(311\) 0 0 −0.522499 0.852640i \(-0.675000\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(312\) 0 0
\(313\) 0 0 −0.233445 0.972370i \(-0.575000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(314\) 0 0
\(315\) 10.9232 + 12.7894i 0.615453 + 0.720603i
\(316\) 0 0
\(317\) 0 0 0.233445 0.972370i \(-0.425000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 2.79838 + 17.6683i 0.156434 + 0.987688i
\(321\) 2.78554 + 35.3936i 0.155473 + 1.97548i
\(322\) 2.43422 30.9297i 0.135654 1.72364i
\(323\) 0 0
\(324\) 18.2010 13.2238i 1.01117 0.734657i
\(325\) 0 0
\(326\) −8.38261 4.27115i −0.464270 0.236557i
\(327\) 43.5206i 2.40669i
\(328\) −4.85837 17.4470i −0.268259 0.963347i
\(329\) −52.5003 −2.89443
\(330\) 0 0
\(331\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(332\) −19.7717 27.2134i −1.08511 1.49353i
\(333\) 0 0
\(334\) −32.7413 2.57680i −1.79152 0.140996i
\(335\) −26.4801 + 2.08403i −1.44676 + 0.113863i
\(336\) −42.8309 + 6.78374i −2.33661 + 0.370083i
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 14.8736 + 10.8063i 0.809017 + 0.587785i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −61.4298 + 14.7480i −3.31690 + 0.796316i
\(344\) 4.47018 13.7578i 0.241016 0.741770i
\(345\) 17.2314 10.5594i 0.927709 0.568501i
\(346\) 0 0
\(347\) −4.58353 3.91471i −0.246057 0.210152i 0.517863 0.855464i \(-0.326728\pi\)
−0.763920 + 0.645311i \(0.776728\pi\)
\(348\) −40.5272 + 20.6496i −2.17248 + 1.10694i
\(349\) 13.8784 + 27.2379i 0.742893 + 1.45801i 0.883740 + 0.467978i \(0.155017\pi\)
−0.140848 + 0.990031i \(0.544983\pi\)
\(350\) −23.5577 + 27.5825i −1.25921 + 1.47435i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 12.6069 + 14.7608i 0.668165 + 0.782321i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(360\) −6.55741 6.55741i −0.345606 0.345606i
\(361\) 2.97225 + 18.7661i 0.156434 + 0.987688i
\(362\) 2.10236 + 26.7130i 0.110497 + 1.40400i
\(363\) 1.82393 23.1753i 0.0957317 1.21639i
\(364\) 0 0
\(365\) 0 0
\(366\) 42.0589 17.4213i 2.19845 0.910628i
\(367\) 31.4861 + 16.0430i 1.64356 + 0.837437i 0.997230 + 0.0743821i \(0.0236984\pi\)
0.646333 + 0.763055i \(0.276302\pi\)
\(368\) 17.1064i 0.891731i
\(369\) 7.35392 + 5.83687i 0.382830 + 0.303855i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(374\) 0 0
\(375\) −23.5552 1.85384i −1.21639 0.0957317i
\(376\) 28.8577 2.27115i 1.48822 0.117126i
\(377\) 0 0
\(378\) −16.6273 + 16.6273i −0.855218 + 0.855218i
\(379\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(380\) 0 0
\(381\) 23.9058 39.0108i 1.22473 1.99858i
\(382\) 0 0
\(383\) 0.745673 1.80021i 0.0381021 0.0919866i −0.903683 0.428202i \(-0.859147\pi\)
0.941785 + 0.336216i \(0.109147\pi\)
\(384\) 23.2493 5.58166i 1.18643 0.284838i
\(385\) 0 0
\(386\) 0 0
\(387\) 2.31738 + 7.13216i 0.117799 + 0.362548i
\(388\) 0 0
\(389\) 35.1351 17.9022i 1.78142 0.907680i 0.879020 0.476785i \(-0.158198\pi\)
0.902402 0.430895i \(-0.141802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 51.9579 16.8822i 2.62427 0.852678i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 11.7557 16.1803i 0.587785 0.809017i
\(401\) −16.5287 16.5287i −0.825406 0.825406i 0.161472 0.986877i \(-0.448376\pi\)
−0.986877 + 0.161472i \(0.948376\pi\)
\(402\) 5.55387 + 35.0658i 0.277002 + 1.74892i
\(403\) 0 0
\(404\) −1.17758 + 14.9626i −0.0585869 + 0.744417i
\(405\) −24.8435 3.93483i −1.23449 0.195523i
\(406\) 63.1595 45.8881i 3.13455 2.27739i
\(407\) 0 0
\(408\) 0 0
\(409\) 34.0464i 1.68348i 0.539880 + 0.841742i \(0.318470\pi\)
−0.539880 + 0.841742i \(0.681530\pi\)
\(410\) −9.95215 + 17.6339i −0.491501 + 0.870877i
\(411\) 0 0
\(412\) 4.82174 9.46320i 0.237550 0.466218i
\(413\) 0 0
\(414\) −5.21253 7.17443i −0.256182 0.352604i
\(415\) −5.88318 + 37.1450i −0.288794 + 1.82337i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) 39.2238 + 28.4977i 1.91392 + 1.39055i
\(421\) 39.8717 + 9.57236i 1.94323 + 0.466528i 0.980814 + 0.194948i \(0.0624538\pi\)
0.962416 + 0.271580i \(0.0875462\pi\)
\(422\) 0 0
\(423\) −11.4109 + 9.74585i −0.554818 + 0.473859i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −66.6229 + 40.8266i −3.22411 + 1.97574i
\(428\) 10.3826 + 31.9543i 0.501860 + 1.54457i
\(429\) 0 0
\(430\) −14.4105 + 7.34250i −0.694935 + 0.354087i
\(431\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(432\) 8.42022 9.85881i 0.405118 0.474332i
\(433\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(434\) 0 0
\(435\) 48.3645 + 15.7146i 2.31890 + 0.753456i
\(436\) 9.61472 + 40.0482i 0.460462 + 1.91796i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.852640 0.522499i \(-0.825000\pi\)
0.852640 + 0.522499i \(0.175000\pi\)
\(440\) 0 0
\(441\) −16.6470 + 22.9127i −0.792715 + 1.09108i
\(442\) 0 0
\(443\) −6.56889 41.4743i −0.312097 1.97051i −0.225367 0.974274i \(-0.572358\pi\)
−0.0867309 0.996232i \(-0.527642\pi\)
\(444\) 0 0
\(445\) 1.70280 21.6361i 0.0807203 1.02565i
\(446\) 30.9641 + 4.90423i 1.46619 + 0.232222i
\(447\) 8.63879 6.27645i 0.408601 0.296866i
\(448\) −37.9148 + 15.7048i −1.79131 + 0.741984i
\(449\) 37.6610 + 19.1892i 1.77733 + 0.905595i 0.921554 + 0.388250i \(0.126920\pi\)
0.855777 + 0.517345i \(0.173080\pi\)
\(450\) 10.3682i 0.488760i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 10.3336 + 24.9476i 0.484982 + 1.17085i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.996917 0.0784591i \(-0.975000\pi\)
0.996917 + 0.0784591i \(0.0250000\pi\)
\(458\) 22.6452 1.78222i 1.05814 0.0832776i
\(459\) 0 0
\(460\) 13.5238 13.5238i 0.630549 0.630549i
\(461\) −25.8263 18.7639i −1.20285 0.873922i −0.208288 0.978068i \(-0.566789\pi\)
−0.994562 + 0.104146i \(0.966789\pi\)
\(462\) 0 0
\(463\) −19.0069 + 31.0164i −0.883326 + 1.44146i 0.0139095 + 0.999903i \(0.495572\pi\)
−0.897235 + 0.441553i \(0.854428\pi\)
\(464\) −32.7316 + 27.9555i −1.51953 + 1.29780i
\(465\) 0 0
\(466\) 0 0
\(467\) 12.9486 39.8516i 0.599189 1.84411i 0.0665285 0.997785i \(-0.478808\pi\)
0.532660 0.846329i \(-0.321192\pi\)
\(468\) 0 0
\(469\) −18.8305 57.9543i −0.869511 2.67608i
\(470\) −24.6095 21.0185i −1.13515 0.969512i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(480\) −22.7929 13.9675i −1.04035 0.637525i
\(481\) 0 0
\(482\) 7.37411 10.1496i 0.335881 0.462301i
\(483\) 32.7838 + 32.7838i 1.49172 + 1.49172i
\(484\) −3.44156 21.7291i −0.156434 0.987688i
\(485\) 0 0
\(486\) −1.55885 + 19.8070i −0.0707107 + 0.898464i
\(487\) 43.5289 + 6.89430i 1.97248 + 0.312411i 0.994706 + 0.102762i \(0.0327679\pi\)
0.977777 + 0.209649i \(0.0672321\pi\)
\(488\) 34.8543 25.3231i 1.57778 1.14633i
\(489\) 12.9889 5.38017i 0.587377 0.243300i
\(490\) −54.4229 27.7298i −2.45857 1.25271i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 24.5406 + 11.4118i 1.10637 + 0.514485i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 50.1121 + 3.94390i 2.24557 + 0.176731i
\(499\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(500\) −22.0854 + 3.49798i −0.987688 + 0.156434i
\(501\) 34.7040 34.7040i 1.55046 1.55046i
\(502\) 0 0
\(503\) −31.5276 7.56910i −1.40574 0.337489i −0.541559 0.840663i \(-0.682166\pi\)
−0.864185 + 0.503174i \(0.832166\pi\)
\(504\) 11.1161 18.1398i 0.495149 0.808010i
\(505\) 12.7599 10.8980i 0.567810 0.484955i
\(506\) 0 0
\(507\) −26.7146 + 6.41360i −1.18643 + 0.284838i
\(508\) 13.3801 41.1796i 0.593644 1.82705i
\(509\) 37.1864 22.7879i 1.64826 1.01005i 0.690143 0.723673i \(-0.257548\pi\)
0.958116 0.286381i \(-0.0924523\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 20.1612 10.2726i 0.891007 0.453990i
\(513\) 0 0
\(514\) 0 0
\(515\) −11.2932 + 3.66939i −0.497639 + 0.161693i
\(516\) 11.2950 + 18.4317i 0.497234 + 0.811412i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.47118 3.96554i −0.283507 0.173734i 0.373473 0.927641i \(-0.378167\pi\)
−0.656981 + 0.753907i \(0.728167\pi\)
\(522\) 5.20930 21.6983i 0.228005 0.949709i
\(523\) −26.8011 + 36.8885i −1.17193 + 1.61302i −0.522346 + 0.852734i \(0.674943\pi\)
−0.649584 + 0.760290i \(0.725057\pi\)
\(524\) 0 0
\(525\) −8.47968 53.5386i −0.370083 2.33661i
\(526\) −0.178265 2.26507i −0.00777273 0.0987619i
\(527\) 0 0
\(528\) 0 0
\(529\) −3.81110 + 2.76893i −0.165700 + 0.120388i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) −29.0083 −1.25531
\(535\) 17.0539 33.4702i 0.737305 1.44704i
\(536\) 12.8576 + 31.0410i 0.555364 + 1.34077i
\(537\) 0 0
\(538\) −3.52102 + 22.2308i −0.151802 + 0.958440i
\(539\) 0 0
\(540\) −14.4508 + 1.13731i −0.621865 + 0.0489418i
\(541\) −0.619908 + 0.0981838i −0.0266519 + 0.00422125i −0.169746 0.985488i \(-0.554295\pi\)
0.143094 + 0.989709i \(0.454295\pi\)
\(542\) 0 0
\(543\) −32.3951 23.5364i −1.39020 1.01004i
\(544\) 0 0
\(545\) 24.0598 39.2620i 1.03061 1.68180i
\(546\) 0 0
\(547\) 17.7095 42.7544i 0.757202 1.82805i 0.244014 0.969772i \(-0.421536\pi\)
0.513188 0.858276i \(-0.328464\pi\)
\(548\) 0 0
\(549\) −6.90166 + 21.2411i −0.294556 + 0.906549i
\(550\) 0 0
\(551\) 0 0
\(552\) −19.4384 16.6020i −0.827354 0.706627i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.522499 0.852640i \(-0.675000\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 42.3901 + 17.5585i 1.79131 + 0.741984i
\(561\) 0 0
\(562\) −33.3271 20.4229i −1.40582 0.861487i
\(563\) 8.20578 34.1795i 0.345833 1.44050i −0.480342 0.877081i \(-0.659487\pi\)
0.826174 0.563415i \(-0.190513\pi\)
\(564\) −25.4261 + 34.9960i −1.07063 + 1.47360i
\(565\) 0 0
\(566\) 7.03656 + 44.4271i 0.295769 + 1.86741i
\(567\) −4.52747 57.5270i −0.190136 2.41591i
\(568\) 0 0
\(569\) −18.4186 2.91722i −0.772147 0.122296i −0.242085 0.970255i \(-0.577831\pi\)
−0.530062 + 0.847959i \(0.677831\pi\)
\(570\) 0 0
\(571\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −44.6667 12.7568i −1.86435 0.532458i
\(575\) −21.3829 −0.891731
\(576\) −5.32542 + 10.4517i −0.221893 + 0.435489i
\(577\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(578\) 14.1313 + 19.4501i 0.587785 + 0.809017i
\(579\) 0 0
\(580\) 47.9774 + 3.77590i 1.99215 + 0.156786i
\(581\) −86.0118 + 6.76928i −3.56837 + 0.280837i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 33.3153 28.4540i 1.37507 1.17442i 0.410108 0.912037i \(-0.365491\pi\)
0.964963 0.262384i \(-0.0845089\pi\)
\(588\) −31.2423 + 75.4256i −1.28841 + 3.11050i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.56292 7.68419i 0.268828 0.314757i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(600\) 6.97707 + 29.0616i 0.284838 + 1.18643i
\(601\) 9.66925 + 4.00513i 0.394417 + 0.163373i 0.571072 0.820900i \(-0.306528\pi\)
−0.176655 + 0.984273i \(0.556528\pi\)
\(602\) −24.0969 28.2138i −0.982115 1.14991i
\(603\) −14.8511 9.10076i −0.604783 0.370612i
\(604\) 0 0
\(605\) −14.4576 + 19.8992i −0.587785 + 0.809017i
\(606\) −15.8596 15.8596i −0.644251 0.644251i
\(607\) 1.11057 + 7.01185i 0.0450766 + 0.284602i 0.999922 0.0125012i \(-0.00397937\pi\)
−0.954845 + 0.297103i \(0.903979\pi\)
\(608\) 0 0
\(609\) −9.15340 + 116.305i −0.370914 + 4.71291i
\(610\) −47.5745 7.53506i −1.92623 0.305085i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(614\) 1.76943i 0.0714083i
\(615\) −10.3792 28.4229i −0.418529 1.14612i
\(616\) 0 0
\(617\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(618\) 6.07372 + 14.6633i 0.244321 + 0.589843i
\(619\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(620\) 0 0
\(621\) −13.8190 1.08758i −0.554536 0.0436429i
\(622\) 0 0
\(623\) 49.1766 7.78880i 1.97022 0.312052i
\(624\) 0 0
\(625\) 20.2254 + 14.6946i 0.809017 + 0.587785i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −23.1288 + 5.55273i −0.921472 + 0.221226i
\(631\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −43.1332 + 21.9775i −1.71169 + 0.872149i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −24.0600 7.81758i −0.951057 0.309017i
\(641\) −3.69373 15.3855i −0.145894 0.607691i −0.996625 0.0820899i \(-0.973841\pi\)
0.850731 0.525601i \(-0.176159\pi\)
\(642\) −46.3869 19.2141i −1.83075 0.758320i
\(643\) −32.8281 38.4367i −1.29461 1.51580i −0.709015 0.705193i \(-0.750860\pi\)
−0.585597 0.810602i \(-0.699140\pi\)
\(644\) 37.4108 + 22.9254i 1.47419 + 0.903386i
\(645\) 5.64210 23.5010i 0.222157 0.925352i
\(646\) 0 0
\(647\) 30.2321 + 30.2321i 1.18855 + 1.18855i 0.977469 + 0.211079i \(0.0676977\pi\)
0.211079 + 0.977469i \(0.432302\pi\)
\(648\) 4.97721 + 31.4249i 0.195523 + 1.23449i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 10.7639 7.82045i 0.421548 0.306273i
\(653\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(654\) −54.8391 27.9419i −2.14438 1.09262i
\(655\) 0 0
\(656\) 25.1037 + 5.07973i 0.980135 + 0.198330i
\(657\) 0 0
\(658\) 33.7073 66.1542i 1.31405 2.57896i
\(659\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(660\) 0 0
\(661\) −7.75077 + 48.9364i −0.301470 + 1.90341i 0.113440 + 0.993545i \(0.463813\pi\)
−0.414910 + 0.909862i \(0.636187\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 46.9851 7.44171i 1.82337 0.288794i
\(665\) 0 0
\(666\) 0 0
\(667\) 44.7498 + 10.7435i 1.73272 + 0.415989i
\(668\) 24.2682 39.6020i 0.938964 1.53225i
\(669\) −35.6239 + 30.4257i −1.37730 + 1.17633i
\(670\) 14.3752 34.7049i 0.555364 1.34077i
\(671\) 0 0
\(672\) 18.9511 58.3255i 0.731054 2.24995i
\(673\) 0 0 0.852640 0.522499i \(-0.175000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(674\) 0 0
\(675\) 12.3235 + 10.5253i 0.474332 + 0.405118i
\(676\) −23.1662 + 11.8038i −0.891007 + 0.453990i
\(677\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −38.3777 12.4697i −1.47063 0.477838i
\(682\) 0 0
\(683\) 42.4416 + 17.5799i 1.62398 + 0.672676i 0.994539 0.104370i \(-0.0332826\pi\)
0.629444 + 0.777046i \(0.283283\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 20.8568 86.8748i 0.796316 3.31690i
\(687\) −19.9524 + 27.4621i −0.761231 + 1.04774i
\(688\) 14.4658 + 14.4658i 0.551503 + 0.551503i
\(689\) 0 0
\(690\) 2.24240 + 28.4924i 0.0853669 + 1.08469i
\(691\) 0 0 0.0784591 0.996917i \(-0.475000\pi\)
−0.0784591 + 0.996917i \(0.525000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 7.87563 3.26219i 0.298955 0.123831i
\(695\) 0 0
\(696\) 64.3251i 2.43824i
\(697\) 0 0
\(698\) −43.2322 −1.63636
\(699\) 0 0
\(700\) −19.6310 47.3935i −0.741984 1.79131i
\(701\) −10.6564 14.6673i −0.402486 0.553975i 0.558879 0.829249i \(-0.311231\pi\)
−0.961366 + 0.275274i \(0.911231\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 47.7679 7.56569i 1.79904 0.284940i
\(706\) 0 0
\(707\) 31.1444 + 22.6277i 1.17130 + 0.851003i
\(708\) 0 0
\(709\) −16.8401 + 27.4806i −0.632444 + 1.03205i 0.362535 + 0.931970i \(0.381911\pi\)
−0.994979 + 0.100085i \(0.968089\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −26.6938 + 6.40862i −1.00039 + 0.240173i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.649448 0.760406i \(-0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(720\) 12.4729 4.05270i 0.464839 0.151035i
\(721\) −14.2336 23.2272i −0.530088 0.865026i
\(722\) −25.5549 8.30330i −0.951057 0.309017i
\(723\) 4.37657 + 18.2297i 0.162766 + 0.677971i
\(724\) −35.0101 14.5017i −1.30114 0.538950i
\(725\) −34.9443 40.9145i −1.29780 1.51953i
\(726\) 28.0315 + 17.1777i 1.04035 + 0.637525i
\(727\) 12.4342 51.7921i 0.461158 1.92086i 0.0786754 0.996900i \(-0.474931\pi\)
0.382483 0.923963i \(-0.375069\pi\)
\(728\) 0 0
\(729\) 2.86807 + 2.86807i 0.106225 + 0.106225i
\(730\) 0 0
\(731\) 0 0
\(732\) −5.05127 + 64.1824i −0.186700 + 2.37225i
\(733\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(734\) −40.4307 + 29.3746i −1.49232 + 1.08424i
\(735\) 84.3284 34.9300i 3.11050 1.28841i
\(736\) −21.5553 10.9830i −0.794538 0.404837i
\(737\) 0 0
\(738\) −12.0764 + 5.51898i −0.444538 + 0.203157i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.99086 18.8835i 0.109724 0.692769i −0.870095 0.492883i \(-0.835943\pi\)
0.979819 0.199886i \(-0.0640571\pi\)
\(744\) 0 0
\(745\) −11.2633 + 0.886443i −0.412656 + 0.0324768i
\(746\) 0 0
\(747\) −17.4380 + 17.4380i −0.638024 + 0.638024i
\(748\) 0 0
\(749\) 83.7968 + 20.1178i 3.06187 + 0.735090i
\(750\) 17.4594 28.4911i 0.637525 1.04035i
\(751\) 0 0 0.760406 0.649448i \(-0.225000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(752\) −15.6660 + 37.8210i −0.571279 + 1.37919i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −10.2763 31.6271i −0.373744 1.15027i
\(757\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −48.4518 + 15.7429i −1.75638 + 0.570681i −0.996815 0.0797547i \(-0.974586\pi\)
−0.759561 + 0.650436i \(0.774586\pi\)
\(762\) 33.8079 + 55.1696i 1.22473 + 1.99858i
\(763\) 100.469 + 32.6443i 3.63722 + 1.18180i
\(764\) 0 0
\(765\) 0 0
\(766\) 1.78965 + 2.09541i 0.0646627 + 0.0757103i
\(767\) 0 0
\(768\) −7.89366 + 32.8794i −0.284838 + 1.18643i
\(769\) 3.19313 4.39497i 0.115147 0.158487i −0.747553 0.664202i \(-0.768771\pi\)
0.862700 + 0.505715i \(0.168771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.0784591 0.996917i \(-0.475000\pi\)
−0.0784591 + 0.996917i \(0.525000\pi\)
\(774\) −10.4749 1.65906i −0.376512 0.0596337i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 55.7668i 1.99934i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −20.5022 28.2188i −0.732687 1.00846i
\(784\) −12.0863 + 76.3098i −0.431653 + 2.72535i
\(785\) 0 0
\(786\) 0 0
\(787\) −6.64486 + 1.05244i −0.236864 + 0.0375155i −0.273738 0.961804i \(-0.588260\pi\)
0.0368739 + 0.999320i \(0.488260\pi\)
\(788\) 0 0
\(789\) 2.74688 + 1.99572i 0.0977913 + 0.0710496i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 12.8408 + 25.2015i 0.453990 + 0.891007i
\(801\) 9.24264 10.8217i 0.326573 0.382367i
\(802\) 31.4395 10.2153i 1.11017 0.360715i
\(803\) 0 0
\(804\) −47.7512 15.5153i −1.68406 0.547183i
\(805\) −11.4517 47.7000i −0.403621 1.68120i
\(806\) 0 0
\(807\) −21.8443 25.5764i −0.768956 0.900332i
\(808\) −18.0979 11.0904i −0.636683 0.390160i
\(809\) −12.9304 + 53.8589i −0.454608 + 1.89358i −0.00573251 + 0.999984i \(0.501825\pi\)
−0.448875 + 0.893594i \(0.648175\pi\)
\(810\) 20.9087 28.7784i 0.734657 1.01117i
\(811\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(812\) 17.2714 + 109.048i 0.606109 + 3.82682i
\(813\) 0 0
\(814\) 0 0
\(815\) −14.6922 2.32702i −0.514647 0.0815121i
\(816\) 0 0
\(817\) 0 0
\(818\) −42.9009 21.8591i −1.50000 0.764286i
\(819\) 0 0
\(820\) −15.8304 23.8621i −0.552820 0.833301i
\(821\) 20.4322 0.713090 0.356545 0.934278i \(-0.383955\pi\)
0.356545 + 0.934278i \(0.383955\pi\)
\(822\) 0 0
\(823\) 7.68811 + 18.5607i 0.267991 + 0.646987i 0.999389 0.0349641i \(-0.0111317\pi\)
−0.731398 + 0.681951i \(0.761132\pi\)
\(824\) 8.82858 + 12.1515i 0.307558 + 0.423317i
\(825\) 0 0
\(826\) 0 0
\(827\) −55.3685 + 4.35759i −1.92535 + 0.151528i −0.983062 0.183274i \(-0.941331\pi\)
−0.942289 + 0.334802i \(0.891331\pi\)
\(828\) 12.3870 1.96190i 0.430477 0.0681808i
\(829\) −9.52428 + 9.52428i −0.330792 + 0.330792i −0.852887 0.522095i \(-0.825151\pi\)
0.522095 + 0.852887i \(0.325151\pi\)
\(830\) −43.0282 31.2618i −1.49353 1.08511i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −50.4938 + 12.1225i −1.74741 + 0.419516i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(840\) −61.0925 + 31.1282i −2.10789 + 1.07402i
\(841\) 39.4083 + 77.3431i 1.35891 + 2.66700i
\(842\) −37.6611 + 44.0955i −1.29789 + 1.51963i
\(843\) 55.5515 18.0498i 1.91330 0.621668i
\(844\) 0 0
\(845\) 27.6462 + 8.98278i 0.951057 + 0.309017i
\(846\) −4.95422 20.6358i −0.170330 0.709474i
\(847\) −52.1329 21.5942i −1.79131 0.741984i
\(848\) 0 0
\(849\) −57.3128 35.1213i −1.96697 1.20536i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(854\) −8.66994 110.162i −0.296679 3.76967i
\(855\) 0 0
\(856\) −46.9307 7.43310i −1.60406 0.254058i
\(857\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(858\) 0 0
\(859\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(860\) 22.8724i 0.779943i
\(861\) 57.8456 38.3754i 1.97137 1.30783i
\(862\) 0 0
\(863\) −4.30693 + 8.45283i −0.146610 + 0.287738i −0.952620 0.304164i \(-0.901623\pi\)
0.806010 + 0.591902i \(0.201623\pi\)
\(864\) 7.01671 + 16.9398i 0.238713 + 0.576305i
\(865\) 0 0
\(866\) 0 0
\(867\) −35.8163 2.81881i −1.21639 0.0957317i
\(868\) 0 0
\(869\) 0 0
\(870\) −50.8534 + 50.8534i −1.72409 + 1.72409i
\(871\) 0 0
\(872\) −56.6367 13.5973i −1.91796 0.460462i
\(873\) 0 0
\(874\) 0 0
\(875\) −21.9482 + 52.9876i −0.741984 + 1.79131i
\(876\) 0 0
\(877\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 49.4908 25.2168i 1.66739 0.849576i 0.673497 0.739190i \(-0.264791\pi\)
0.993889 0.110386i \(-0.0352087\pi\)
\(882\) −18.1836 35.6873i −0.612273 1.20165i
\(883\) −26.9895 + 31.6006i −0.908269 + 1.06345i 0.0894534 + 0.995991i \(0.471488\pi\)
−0.997722 + 0.0674553i \(0.978512\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 56.4782 + 18.3509i 1.89742 + 0.616510i
\(887\) −3.60881 15.0318i −0.121172 0.504717i −0.999638 0.0269122i \(-0.991433\pi\)
0.878466 0.477805i \(-0.158567\pi\)
\(888\) 0 0
\(889\) −72.1263 84.4491i −2.41904 2.83233i
\(890\) 26.1698 + 16.0369i 0.877213 + 0.537557i
\(891\) 0 0
\(892\) −26.0599 + 35.8683i −0.872549 + 1.20096i
\(893\) 0 0
\(894\) 2.36234 + 14.9152i 0.0790086 + 0.498840i
\(895\) 0 0
\(896\) 4.55357 57.8586i 0.152124 1.93292i
\(897\) 0 0
\(898\) −48.3597 + 35.1353i −1.61378 + 1.17248i
\(899\) 0 0
\(900\) −13.0647 6.65678i −0.435489 0.221893i
\(901\) 0 0
\(902\) 0 0
\(903\) 55.4465 1.84514
\(904\) 0 0
\(905\) 16.2133 + 39.1425i 0.538950 + 1.30114i
\(906\) 0 0
\(907\) −4.85846 + 30.6751i −0.161322 + 1.01855i 0.765606 + 0.643310i \(0.222439\pi\)
−0.926928 + 0.375239i \(0.877561\pi\)
\(908\) −38.0705 2.99621i −1.26341 0.0994327i
\(909\) 10.9697 0.863334i 0.363842 0.0286350i
\(910\) 0 0
\(911\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 54.7340 46.7473i 1.80945 1.54542i
\(916\) −12.2934 + 29.6789i −0.406186 + 0.980619i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.852640 0.522499i \(-0.175000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(920\) 8.35815 + 25.7237i 0.275560 + 0.848086i
\(921\) 2.01065 + 1.71726i 0.0662532 + 0.0565856i
\(922\) 40.2254 20.4959i 1.32475 0.674995i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −26.8798 43.8639i −0.883326 1.44146i
\(927\) −7.40543 2.40617i −0.243226 0.0790290i
\(928\) −14.2109 59.1928i −0.466497 1.94310i
\(929\) −4.61156 1.91017i −0.151300 0.0626706i 0.305748 0.952112i \(-0.401093\pi\)
−0.457049 + 0.889442i \(0.651093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 41.9025 + 41.9025i 1.37109 + 1.37109i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.0784591 0.996917i \(-0.475000\pi\)
−0.0784591 + 0.996917i \(0.525000\pi\)
\(938\) 85.1166 + 13.4811i 2.77915 + 0.440175i
\(939\) 0 0
\(940\) 42.2852 17.5151i 1.37919 0.571279i
\(941\) −51.4337 26.2068i −1.67669 0.854316i −0.992109 0.125379i \(-0.959985\pi\)
−0.684580 0.728937i \(-0.740015\pi\)
\(942\) 0 0
\(943\) −11.3822 24.9059i −0.370654 0.811048i
\(944\) 0 0
\(945\) −16.8793 + 33.1275i −0.549084 + 1.07764i
\(946\) 0 0
\(947\) −29.2177 40.2148i −0.949449 1.30680i −0.951772 0.306808i \(-0.900739\pi\)
0.00232231 0.999997i \(-0.499261\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 32.2340 19.7530i 1.04035 0.637525i
\(961\) −9.57953 29.4828i −0.309017 0.951057i
\(962\) 0 0
\(963\) 21.9478 11.1829i 0.707257 0.360365i
\(964\) 8.05476 + 15.8084i 0.259426 + 0.509153i
\(965\) 0 0
\(966\) −62.3585 + 20.2615i −2.00635 + 0.651903i
\(967\) 10.5131 + 17.1558i 0.338079 + 0.551695i 0.975825 0.218552i \(-0.0701332\pi\)
−0.637746 + 0.770246i \(0.720133\pi\)
\(968\) 29.5899 + 9.61435i 0.951057 + 0.309017i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(972\) −23.9575 14.6811i −0.768436 0.470898i
\(973\) 0 0
\(974\) −36.6346 + 50.4232i −1.17385 + 1.61566i
\(975\) 0 0
\(976\) 9.53118 + 60.1775i 0.305085 + 1.92623i
\(977\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(978\) −1.55996 + 19.8212i −0.0498822 + 0.633813i
\(979\) 0 0
\(980\) 69.8833 50.7732i 2.23234 1.62189i
\(981\) 27.8968 11.5552i 0.890676 0.368930i
\(982\) 0 0
\(983\) 40.4345i 1.28966i −0.764327 0.644829i \(-0.776928\pi\)
0.764327 0.644829i \(-0.223072\pi\)
\(984\) −30.1358 + 23.5961i −0.960693 + 0.752216i
\(985\) 0 0
\(986\) 0 0
\(987\) 42.4595 + 102.506i 1.35150 + 3.26281i
\(988\) 0 0
\(989\) 3.42158 21.6030i 0.108800 0.686937i
\(990\) 0 0
\(991\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) −37.1435 + 60.6127i −1.17694 + 1.92059i
\(997\) 0 0 0.760406 0.649448i \(-0.225000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.cc.a.539.1 yes 16
4.3 odd 2 820.2.cc.f.539.1 yes 16
5.4 even 2 820.2.cc.f.539.1 yes 16
20.19 odd 2 CM 820.2.cc.a.539.1 yes 16
41.7 odd 40 inner 820.2.cc.a.499.1 16
164.7 even 40 820.2.cc.f.499.1 yes 16
205.89 odd 40 820.2.cc.f.499.1 yes 16
820.499 even 40 inner 820.2.cc.a.499.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.cc.a.499.1 16 41.7 odd 40 inner
820.2.cc.a.499.1 16 820.499 even 40 inner
820.2.cc.a.539.1 yes 16 1.1 even 1 trivial
820.2.cc.a.539.1 yes 16 20.19 odd 2 CM
820.2.cc.f.499.1 yes 16 164.7 even 40
820.2.cc.f.499.1 yes 16 205.89 odd 40
820.2.cc.f.539.1 yes 16 4.3 odd 2
820.2.cc.f.539.1 yes 16 5.4 even 2