Properties

Label 820.2.cc.a.19.1
Level $820$
Weight $2$
Character 820.19
Analytic conductor $6.548$
Analytic rank $0$
Dimension $16$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(19,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 20, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.cc (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{40})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{40}]$

Embedding invariants

Embedding label 19.1
Root \(-0.987688 + 0.156434i\) of defining polynomial
Character \(\chi\) \(=\) 820.19
Dual form 820.2.cc.a.259.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.26007 - 0.642040i) q^{2} +(0.749049 + 1.80837i) q^{3} +(1.17557 - 1.61803i) q^{4} +(-2.20854 + 0.349798i) q^{5} +(2.10490 + 1.79775i) q^{6} +(3.90076 - 3.33156i) q^{7} +(0.442463 - 2.79360i) q^{8} +(-0.587789 + 0.587789i) q^{9} +(-2.55834 + 1.85874i) q^{10} +(3.80656 + 0.913873i) q^{12} +(2.77625 - 6.70246i) q^{14} +(-2.28687 - 3.73183i) q^{15} +(-1.23607 - 3.80423i) q^{16} +(-0.363274 + 1.11804i) q^{18} +(-2.03031 + 3.98470i) q^{20} +(8.94655 + 4.55849i) q^{21} +(-1.50894 - 0.490285i) q^{23} +(5.38328 - 1.29241i) q^{24} +(4.75528 - 1.54508i) q^{25} +(3.92187 + 1.62449i) q^{27} +(-0.804965 - 10.2281i) q^{28} +(-0.874538 + 3.64271i) q^{29} +(-5.27760 - 3.23412i) q^{30} +(-4.00000 - 4.00000i) q^{32} +(-7.44961 + 8.72237i) q^{35} +(0.260075 + 1.64205i) q^{36} +6.32456i q^{40} +(4.33089 + 4.71629i) q^{41} +14.2000 q^{42} +(-11.6418 + 5.93180i) q^{43} +(1.09255 - 1.50376i) q^{45} +(-2.21616 + 0.351005i) q^{46} +(10.3743 + 8.86045i) q^{47} +(5.95355 - 5.08482i) q^{48} +(3.02157 - 19.0775i) q^{49} +(5.00000 - 5.00000i) q^{50} +(5.98484 - 0.471017i) q^{54} +(-7.58113 - 12.3713i) q^{56} +(1.23678 + 5.15157i) q^{58} +(-8.72660 - 0.686798i) q^{60} +(4.67048 - 9.16634i) q^{61} +(-0.334568 + 4.25108i) q^{63} +(-7.60845 - 2.47214i) q^{64} +(-12.2645 + 7.51567i) q^{67} +(-0.243658 - 3.09597i) q^{69} +(-3.78695 + 15.7738i) q^{70} +(1.38198 + 1.90213i) q^{72} +(6.35602 + 7.44194i) q^{75} +(4.06061 + 7.96940i) q^{80} +10.8028i q^{81} +(8.48528 + 3.16228i) q^{82} -1.46878 q^{83} +(17.8931 - 9.11699i) q^{84} +(-10.8611 + 14.9490i) q^{86} +(-7.24243 + 1.14709i) q^{87} +(-13.2027 + 11.2761i) q^{89} +(0.411215 - 2.59631i) q^{90} +(-2.56717 + 1.86515i) q^{92} +(18.7611 + 4.50414i) q^{94} +(4.23726 - 10.2297i) q^{96} +(-8.44108 - 25.9790i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} - 12 q^{3} + 20 q^{6} + 16 q^{7} + 8 q^{8} + 12 q^{9} - 16 q^{12} + 20 q^{15} + 16 q^{16} + 4 q^{18} + 4 q^{21} + 8 q^{24} - 48 q^{27} + 8 q^{28} - 80 q^{30} - 64 q^{32} - 20 q^{35} + 24 q^{36}+ \cdots - 104 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{9}{40}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26007 0.642040i 0.891007 0.453990i
\(3\) 0.749049 + 1.80837i 0.432464 + 1.04406i 0.978490 + 0.206292i \(0.0661398\pi\)
−0.546027 + 0.837768i \(0.683860\pi\)
\(4\) 1.17557 1.61803i 0.587785 0.809017i
\(5\) −2.20854 + 0.349798i −0.987688 + 0.156434i
\(6\) 2.10490 + 1.79775i 0.859322 + 0.733930i
\(7\) 3.90076 3.33156i 1.47435 1.25921i 0.577869 0.816130i \(-0.303885\pi\)
0.896480 0.443083i \(-0.146115\pi\)
\(8\) 0.442463 2.79360i 0.156434 0.987688i
\(9\) −0.587789 + 0.587789i −0.195930 + 0.195930i
\(10\) −2.55834 + 1.85874i −0.809017 + 0.587785i
\(11\) 0 0 0.522499 0.852640i \(-0.325000\pi\)
−0.522499 + 0.852640i \(0.675000\pi\)
\(12\) 3.80656 + 0.913873i 1.09886 + 0.263813i
\(13\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(14\) 2.77625 6.70246i 0.741984 1.79131i
\(15\) −2.28687 3.73183i −0.590467 0.963554i
\(16\) −1.23607 3.80423i −0.309017 0.951057i
\(17\) 0 0 −0.233445 0.972370i \(-0.575000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(18\) −0.363274 + 1.11804i −0.0856245 + 0.263525i
\(19\) 0 0 −0.996917 0.0784591i \(-0.975000\pi\)
0.996917 + 0.0784591i \(0.0250000\pi\)
\(20\) −2.03031 + 3.98470i −0.453990 + 0.891007i
\(21\) 8.94655 + 4.55849i 1.95230 + 0.994745i
\(22\) 0 0
\(23\) −1.50894 0.490285i −0.314636 0.102231i 0.147442 0.989071i \(-0.452896\pi\)
−0.462078 + 0.886839i \(0.652896\pi\)
\(24\) 5.38328 1.29241i 1.09886 0.263813i
\(25\) 4.75528 1.54508i 0.951057 0.309017i
\(26\) 0 0
\(27\) 3.92187 + 1.62449i 0.754765 + 0.312634i
\(28\) −0.804965 10.2281i −0.152124 1.93292i
\(29\) −0.874538 + 3.64271i −0.162398 + 0.676435i 0.830455 + 0.557086i \(0.188081\pi\)
−0.992852 + 0.119349i \(0.961919\pi\)
\(30\) −5.27760 3.23412i −0.963554 0.590467i
\(31\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 0 0
\(34\) 0 0
\(35\) −7.44961 + 8.72237i −1.25921 + 1.47435i
\(36\) 0.260075 + 1.64205i 0.0433459 + 0.273675i
\(37\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 6.32456i 1.00000i
\(41\) 4.33089 + 4.71629i 0.676371 + 0.736561i
\(42\) 14.2000 2.19111
\(43\) −11.6418 + 5.93180i −1.77536 + 0.904591i −0.848485 + 0.529220i \(0.822485\pi\)
−0.926875 + 0.375371i \(0.877515\pi\)
\(44\) 0 0
\(45\) 1.09255 1.50376i 0.162867 0.224168i
\(46\) −2.21616 + 0.351005i −0.326755 + 0.0517529i
\(47\) 10.3743 + 8.86045i 1.51324 + 1.29243i 0.821343 + 0.570435i \(0.193225\pi\)
0.691898 + 0.721995i \(0.256775\pi\)
\(48\) 5.95355 5.08482i 0.859322 0.733930i
\(49\) 3.02157 19.0775i 0.431653 2.72535i
\(50\) 5.00000 5.00000i 0.707107 0.707107i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.972370 0.233445i \(-0.925000\pi\)
0.972370 + 0.233445i \(0.0750000\pi\)
\(54\) 5.98484 0.471017i 0.814433 0.0640973i
\(55\) 0 0
\(56\) −7.58113 12.3713i −1.01307 1.65318i
\(57\) 0 0
\(58\) 1.23678 + 5.15157i 0.162398 + 0.676435i
\(59\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(60\) −8.72660 0.686798i −1.12660 0.0886653i
\(61\) 4.67048 9.16634i 0.597994 1.17363i −0.371481 0.928441i \(-0.621150\pi\)
0.969475 0.245189i \(-0.0788501\pi\)
\(62\) 0 0
\(63\) −0.334568 + 4.25108i −0.0421516 + 0.535586i
\(64\) −7.60845 2.47214i −0.951057 0.309017i
\(65\) 0 0
\(66\) 0 0
\(67\) −12.2645 + 7.51567i −1.49834 + 0.918185i −0.499694 + 0.866202i \(0.666554\pi\)
−0.998648 + 0.0519829i \(0.983446\pi\)
\(68\) 0 0
\(69\) −0.243658 3.09597i −0.0293330 0.372711i
\(70\) −3.78695 + 15.7738i −0.452627 + 1.88533i
\(71\) 0 0 −0.852640 0.522499i \(-0.825000\pi\)
0.852640 + 0.522499i \(0.175000\pi\)
\(72\) 1.38198 + 1.90213i 0.162867 + 0.224168i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 6.35602 + 7.44194i 0.733930 + 0.859322i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(80\) 4.06061 + 7.96940i 0.453990 + 0.891007i
\(81\) 10.8028i 1.20031i
\(82\) 8.48528 + 3.16228i 0.937043 + 0.349215i
\(83\) −1.46878 −0.161220 −0.0806100 0.996746i \(-0.525687\pi\)
−0.0806100 + 0.996746i \(0.525687\pi\)
\(84\) 17.8931 9.11699i 1.95230 0.994745i
\(85\) 0 0
\(86\) −10.8611 + 14.9490i −1.17118 + 1.61199i
\(87\) −7.24243 + 1.14709i −0.776470 + 0.122981i
\(88\) 0 0
\(89\) −13.2027 + 11.2761i −1.39948 + 1.19527i −0.445542 + 0.895261i \(0.646989\pi\)
−0.953937 + 0.300007i \(0.903011\pi\)
\(90\) 0.411215 2.59631i 0.0433459 0.273675i
\(91\) 0 0
\(92\) −2.56717 + 1.86515i −0.267646 + 0.194456i
\(93\) 0 0
\(94\) 18.7611 + 4.50414i 1.93506 + 0.464566i
\(95\) 0 0
\(96\) 4.23726 10.2297i 0.432464 1.04406i
\(97\) 0 0 −0.522499 0.852640i \(-0.675000\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(98\) −8.44108 25.9790i −0.852678 2.62427i
\(99\) 0 0
\(100\) 3.09017 9.51057i 0.309017 0.951057i
\(101\) 4.87372 + 0.383570i 0.484953 + 0.0381666i 0.318579 0.947896i \(-0.396794\pi\)
0.166374 + 0.986063i \(0.446794\pi\)
\(102\) 0 0
\(103\) −18.0633 9.20373i −1.77983 0.906871i −0.912360 0.409389i \(-0.865742\pi\)
−0.867475 0.497482i \(-0.834258\pi\)
\(104\) 0 0
\(105\) −21.3533 6.93812i −2.08387 0.677091i
\(106\) 0 0
\(107\) −19.6754 + 6.39291i −1.90209 + 0.618026i −0.949456 + 0.313900i \(0.898364\pi\)
−0.952632 + 0.304125i \(0.901636\pi\)
\(108\) 7.23893 4.43602i 0.696566 0.426856i
\(109\) 13.5167 + 5.59881i 1.29467 + 0.536269i 0.920373 0.391041i \(-0.127885\pi\)
0.374294 + 0.927310i \(0.377885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −17.4956 10.7213i −1.65318 1.01307i
\(113\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(114\) 0 0
\(115\) 3.50406 + 0.554988i 0.326755 + 0.0517529i
\(116\) 4.86595 + 5.69730i 0.451792 + 0.528981i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −11.4371 + 4.73740i −1.04406 + 0.432464i
\(121\) −4.99390 9.80107i −0.453990 0.891007i
\(122\) 14.5489i 1.31720i
\(123\) −5.28474 + 11.3646i −0.476509 + 1.02471i
\(124\) 0 0
\(125\) −9.96176 + 5.07577i −0.891007 + 0.453990i
\(126\) 2.30778 + 5.57148i 0.205594 + 0.496347i
\(127\) 8.12891 11.1885i 0.721324 0.992818i −0.278155 0.960536i \(-0.589723\pi\)
0.999479 0.0322812i \(-0.0102772\pi\)
\(128\) −11.1744 + 1.76985i −0.987688 + 0.156434i
\(129\) −19.4471 16.6094i −1.71223 1.46238i
\(130\) 0 0
\(131\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −10.6288 + 17.3446i −0.918185 + 1.49834i
\(135\) −9.22985 2.21589i −0.794379 0.190714i
\(136\) 0 0
\(137\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(138\) −2.29476 3.74471i −0.195343 0.318771i
\(139\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(140\) 5.35555 + 22.3075i 0.452627 + 1.88533i
\(141\) −8.25210 + 25.3974i −0.694953 + 2.13884i
\(142\) 0 0
\(143\) 0 0
\(144\) 2.96263 + 1.50954i 0.246886 + 0.125795i
\(145\) 0.657236 8.35098i 0.0545805 0.693511i
\(146\) 0 0
\(147\) 36.7623 8.82585i 3.03210 0.727944i
\(148\) 0 0
\(149\) −4.30812 + 2.64002i −0.352935 + 0.216279i −0.687653 0.726039i \(-0.741359\pi\)
0.334718 + 0.942318i \(0.391359\pi\)
\(150\) 12.7871 + 5.29658i 1.04406 + 0.432464i
\(151\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 10.2333 + 7.43496i 0.809017 + 0.587785i
\(161\) −7.51944 + 3.11465i −0.592615 + 0.245469i
\(162\) 6.93582 + 13.6123i 0.544929 + 1.06948i
\(163\) 6.65248i 0.521062i 0.965465 + 0.260531i \(0.0838976\pi\)
−0.965465 + 0.260531i \(0.916102\pi\)
\(164\) 12.7224 1.46318i 0.993451 0.114255i
\(165\) 0 0
\(166\) −1.85078 + 0.943017i −0.143648 + 0.0731923i
\(167\) −4.63820 11.1976i −0.358914 0.866496i −0.995453 0.0952515i \(-0.969634\pi\)
0.636539 0.771245i \(-0.280366\pi\)
\(168\) 16.6932 22.9762i 1.28790 1.77265i
\(169\) 12.8399 2.03365i 0.987688 0.156434i
\(170\) 0 0
\(171\) 0 0
\(172\) −4.08792 + 25.8101i −0.311701 + 1.96800i
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) −8.38951 + 6.09534i −0.636007 + 0.462086i
\(175\) 13.4017 21.8695i 1.01307 1.65318i
\(176\) 0 0
\(177\) 0 0
\(178\) −9.39660 + 22.6854i −0.704305 + 1.70034i
\(179\) 0 0 −0.522499 0.852640i \(-0.675000\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(180\) −1.14877 3.53556i −0.0856245 0.263525i
\(181\) 0.956919 + 3.98585i 0.0711272 + 0.296266i 0.996584 0.0825874i \(-0.0263184\pi\)
−0.925457 + 0.378854i \(0.876318\pi\)
\(182\) 0 0
\(183\) 20.0745 + 1.57990i 1.48395 + 0.116789i
\(184\) −2.03731 + 3.99845i −0.150193 + 0.294770i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 26.5322 6.36981i 1.93506 0.464566i
\(189\) 20.7104 6.72922i 1.50646 0.489479i
\(190\) 0 0
\(191\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(192\) −1.22858 15.6106i −0.0886653 1.12660i
\(193\) 0 0 0.233445 0.972370i \(-0.425000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −27.3159 27.3159i −1.95114 1.95114i
\(197\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(198\) 0 0
\(199\) 0 0 0.649448 0.760406i \(-0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(200\) −2.21232 13.9680i −0.156434 0.987688i
\(201\) −22.7778 16.5490i −1.60662 1.16728i
\(202\) 6.38751 2.64579i 0.449424 0.186157i
\(203\) 8.72457 + 17.1229i 0.612345 + 1.20179i
\(204\) 0 0
\(205\) −11.2147 8.90118i −0.783267 0.621685i
\(206\) −28.6703 −1.99755
\(207\) 1.17512 0.598756i 0.0816768 0.0416164i
\(208\) 0 0
\(209\) 0 0
\(210\) −31.3613 + 4.96715i −2.16414 + 0.342766i
\(211\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −20.6879 + 20.6879i −1.41419 + 1.41419i
\(215\) 23.6365 17.1729i 1.61199 1.17118i
\(216\) 6.27348 10.2374i 0.426856 0.696566i
\(217\) 0 0
\(218\) 20.6267 1.62336i 1.39702 0.109948i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −7.99900 + 24.6184i −0.535653 + 1.64857i 0.206581 + 0.978429i \(0.433766\pi\)
−0.742234 + 0.670141i \(0.766234\pi\)
\(224\) −28.9293 2.27679i −1.93292 0.152124i
\(225\) −1.88692 + 3.70329i −0.125795 + 0.246886i
\(226\) 0 0
\(227\) 1.27652 16.2198i 0.0847259 1.07655i −0.796748 0.604312i \(-0.793448\pi\)
0.881474 0.472233i \(-0.156552\pi\)
\(228\) 0 0
\(229\) 27.2966 6.55333i 1.80381 0.433056i 0.814655 0.579946i \(-0.196926\pi\)
0.989153 + 0.146890i \(0.0469263\pi\)
\(230\) 4.77169 1.55042i 0.314636 0.102231i
\(231\) 0 0
\(232\) 9.78935 + 4.05488i 0.642702 + 0.266216i
\(233\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(234\) 0 0
\(235\) −26.0113 15.9398i −1.69679 1.03979i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(240\) −11.3700 + 13.3126i −0.733930 + 0.859322i
\(241\) 3.99792 + 25.2418i 0.257528 + 1.62597i 0.689642 + 0.724151i \(0.257768\pi\)
−0.432113 + 0.901819i \(0.642232\pi\)
\(242\) −12.5854 9.14379i −0.809017 0.587785i
\(243\) −7.76976 + 3.21834i −0.498430 + 0.206457i
\(244\) −9.34097 18.3327i −0.597994 1.17363i
\(245\) 43.1902i 2.75932i
\(246\) 0.637342 + 17.7132i 0.0406354 + 1.12935i
\(247\) 0 0
\(248\) 0 0
\(249\) −1.10019 2.65610i −0.0697218 0.168323i
\(250\) −9.29370 + 12.7917i −0.587785 + 0.809017i
\(251\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(252\) 6.48509 + 5.53879i 0.408522 + 0.348911i
\(253\) 0 0
\(254\) 3.05957 19.3174i 0.191975 1.21208i
\(255\) 0 0
\(256\) −12.9443 + 9.40456i −0.809017 + 0.587785i
\(257\) 0 0 0.522499 0.852640i \(-0.325000\pi\)
−0.522499 + 0.852640i \(0.675000\pi\)
\(258\) −35.1688 8.44327i −2.18951 0.525655i
\(259\) 0 0
\(260\) 0 0
\(261\) −1.62710 2.65519i −0.100715 0.164352i
\(262\) 0 0
\(263\) 7.30817 + 30.4407i 0.450641 + 1.87705i 0.479623 + 0.877475i \(0.340774\pi\)
−0.0289818 + 0.999580i \(0.509226\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −30.2808 15.4288i −1.85316 0.944230i
\(268\) −2.25713 + 28.6795i −0.137876 + 1.75188i
\(269\) 28.2798 + 9.18868i 1.72425 + 0.560244i 0.992600 0.121434i \(-0.0387492\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) −13.0530 + 3.13374i −0.794379 + 0.190714i
\(271\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −5.29582 3.24528i −0.318771 0.195343i
\(277\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 21.0707 + 24.6706i 1.25921 + 1.47435i
\(281\) 17.2678 20.2180i 1.03011 1.20611i 0.0518675 0.998654i \(-0.483483\pi\)
0.978245 0.207453i \(-0.0665174\pi\)
\(282\) 5.90785 + 37.3007i 0.351808 + 2.22123i
\(283\) 16.3928 + 11.9101i 0.974450 + 0.707979i 0.956461 0.291859i \(-0.0942738\pi\)
0.0179883 + 0.999838i \(0.494274\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 32.6064 + 3.96851i 1.92469 + 0.234254i
\(288\) 4.70231 0.277087
\(289\) −15.1471 + 7.71784i −0.891007 + 0.453990i
\(290\) −4.53349 10.9448i −0.266216 0.642702i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(294\) 40.6567 34.7241i 2.37115 2.02515i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −3.73355 + 6.09261i −0.216279 + 0.352935i
\(299\) 0 0
\(300\) 19.5133 1.53573i 1.12660 0.0886653i
\(301\) −25.6498 + 61.9240i −1.47843 + 3.56924i
\(302\) 0 0
\(303\) 2.95702 + 9.10077i 0.169876 + 0.522826i
\(304\) 0 0
\(305\) −7.10857 + 21.8779i −0.407036 + 1.25273i
\(306\) 0 0
\(307\) 15.2963 30.0208i 0.873009 1.71338i 0.191599 0.981473i \(-0.438633\pi\)
0.681409 0.731903i \(-0.261367\pi\)
\(308\) 0 0
\(309\) 3.11337 39.5592i 0.177114 2.25044i
\(310\) 0 0
\(311\) 0 0 0.972370 0.233445i \(-0.0750000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(312\) 0 0
\(313\) 0 0 0.852640 0.522499i \(-0.175000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(314\) 0 0
\(315\) −0.748116 9.50571i −0.0421516 0.535586i
\(316\) 0 0
\(317\) 0 0 −0.852640 0.522499i \(-0.825000\pi\)
0.852640 + 0.522499i \(0.175000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 17.6683 + 2.79838i 0.987688 + 0.156434i
\(321\) −26.2985 30.7916i −1.46784 1.71862i
\(322\) −7.47531 + 8.75247i −0.416583 + 0.487756i
\(323\) 0 0
\(324\) 17.4793 + 12.6994i 0.971071 + 0.705524i
\(325\) 0 0
\(326\) 4.27115 + 8.38261i 0.236557 + 0.464270i
\(327\) 28.6370i 1.58363i
\(328\) 15.0917 10.0120i 0.833301 0.552820i
\(329\) 69.9867 3.85849
\(330\) 0 0
\(331\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(332\) −1.72666 + 2.37654i −0.0947627 + 0.130430i
\(333\) 0 0
\(334\) −13.0338 11.1319i −0.713176 0.609110i
\(335\) 24.4576 20.8887i 1.33626 1.14127i
\(336\) 6.28300 39.6693i 0.342766 2.16414i
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 14.8736 10.8063i 0.809017 0.587785i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −33.0090 53.8658i −1.78232 2.90848i
\(344\) 11.4200 + 35.1472i 0.615726 + 1.89501i
\(345\) 1.62109 + 6.75233i 0.0872766 + 0.363533i
\(346\) 0 0
\(347\) −26.4048 2.07811i −1.41749 0.111559i −0.653566 0.756870i \(-0.726728\pi\)
−0.763920 + 0.645311i \(0.776728\pi\)
\(348\) −6.65796 + 13.0670i −0.356904 + 0.700463i
\(349\) −26.6210 13.5641i −1.42499 0.726069i −0.439891 0.898051i \(-0.644983\pi\)
−0.985100 + 0.171982i \(0.944983\pi\)
\(350\) 2.84598 36.1616i 0.152124 1.93292i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2.72451 + 34.6182i 0.144399 + 1.83476i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(360\) −3.71751 3.71751i −0.195930 0.195930i
\(361\) 18.7661 + 2.97225i 0.987688 + 0.156434i
\(362\) 3.76486 + 4.40809i 0.197877 + 0.231684i
\(363\) 13.9832 16.3723i 0.733930 0.859322i
\(364\) 0 0
\(365\) 0 0
\(366\) 26.3097 10.8978i 1.37523 0.569639i
\(367\) 16.9303 + 33.2275i 0.883753 + 1.73446i 0.646333 + 0.763055i \(0.276302\pi\)
0.237419 + 0.971407i \(0.423698\pi\)
\(368\) 6.34638i 0.330828i
\(369\) −5.31784 0.226539i −0.276835 0.0117932i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(374\) 0 0
\(375\) −16.6407 14.2125i −0.859322 0.733930i
\(376\) 29.3428 25.0611i 1.51324 1.29243i
\(377\) 0 0
\(378\) 21.7762 21.7762i 1.12005 1.12005i
\(379\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(380\) 0 0
\(381\) 26.3218 + 6.31931i 1.34851 + 0.323748i
\(382\) 0 0
\(383\) −9.39650 + 22.6852i −0.480139 + 1.15916i 0.479404 + 0.877594i \(0.340853\pi\)
−0.959543 + 0.281563i \(0.909147\pi\)
\(384\) −11.5707 18.8817i −0.590467 0.963554i
\(385\) 0 0
\(386\) 0 0
\(387\) 3.35628 10.3296i 0.170610 0.525082i
\(388\) 0 0
\(389\) −5.09350 + 9.99655i −0.258251 + 0.506845i −0.983332 0.181818i \(-0.941802\pi\)
0.725082 + 0.688663i \(0.241802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −51.9579 16.8822i −2.62427 0.852678i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −11.7557 16.1803i −0.587785 0.809017i
\(401\) −26.9778 26.9778i −1.34721 1.34721i −0.888679 0.458531i \(-0.848376\pi\)
−0.458531 0.888679i \(-0.651624\pi\)
\(402\) −39.3268 6.22875i −1.96144 0.310662i
\(403\) 0 0
\(404\) 6.35003 7.43493i 0.315926 0.369901i
\(405\) −3.77879 23.8584i −0.187770 1.18553i
\(406\) 21.9872 + 15.9746i 1.09121 + 0.792808i
\(407\) 0 0
\(408\) 0 0
\(409\) 14.7087i 0.727300i −0.931536 0.363650i \(-0.881530\pi\)
0.931536 0.363650i \(-0.118470\pi\)
\(410\) −19.8462 4.01588i −0.980135 0.198330i
\(411\) 0 0
\(412\) −36.1267 + 18.4075i −1.77983 + 0.906871i
\(413\) 0 0
\(414\) 1.09632 1.50895i 0.0538811 0.0741610i
\(415\) 3.24386 0.513778i 0.159235 0.0252204i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) −36.3285 + 26.3942i −1.77265 + 1.28790i
\(421\) 7.42420 12.1152i 0.361834 0.590459i −0.618980 0.785407i \(-0.712454\pi\)
0.980814 + 0.194948i \(0.0624538\pi\)
\(422\) 0 0
\(423\) −11.3060 + 0.889798i −0.549715 + 0.0432635i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −12.3198 51.3157i −0.596198 2.48334i
\(428\) −12.7858 + 39.3507i −0.618026 + 1.90209i
\(429\) 0 0
\(430\) 18.7580 36.8146i 0.904591 1.77536i
\(431\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(432\) 1.33224 16.9277i 0.0640973 0.814433i
\(433\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(434\) 0 0
\(435\) 15.5939 5.06677i 0.747672 0.242933i
\(436\) 24.9489 15.2887i 1.19484 0.732197i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.233445 0.972370i \(-0.425000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(440\) 0 0
\(441\) 9.43748 + 12.9896i 0.449404 + 0.618551i
\(442\) 0 0
\(443\) −15.5914 2.46944i −0.740770 0.117326i −0.225367 0.974274i \(-0.572358\pi\)
−0.515404 + 0.856948i \(0.672358\pi\)
\(444\) 0 0
\(445\) 25.2142 29.5220i 1.19527 1.39948i
\(446\) 5.72665 + 36.1567i 0.271165 + 1.71207i
\(447\) −8.00112 5.81316i −0.378440 0.274953i
\(448\) −37.9148 + 15.7048i −1.79131 + 0.741984i
\(449\) −7.25537 14.2395i −0.342402 0.672002i 0.654024 0.756474i \(-0.273080\pi\)
−0.996426 + 0.0844719i \(0.973080\pi\)
\(450\) 5.87789i 0.277087i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −8.80523 21.2577i −0.413250 0.997674i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(458\) 30.1882 25.7831i 1.41060 1.20477i
\(459\) 0 0
\(460\) 5.01726 5.01726i 0.233931 0.233931i
\(461\) 14.1181 10.2574i 0.657545 0.477734i −0.208288 0.978068i \(-0.566789\pi\)
0.865833 + 0.500333i \(0.166789\pi\)
\(462\) 0 0
\(463\) 15.4744 + 3.71507i 0.719156 + 0.172654i 0.576475 0.817115i \(-0.304428\pi\)
0.142681 + 0.989769i \(0.454428\pi\)
\(464\) 14.9387 1.17570i 0.693511 0.0545805i
\(465\) 0 0
\(466\) 0 0
\(467\) −12.3994 38.1615i −0.573777 1.76590i −0.640306 0.768120i \(-0.721192\pi\)
0.0665285 0.997785i \(-0.478808\pi\)
\(468\) 0 0
\(469\) −22.8018 + 70.1767i −1.05289 + 3.24046i
\(470\) −43.0101 3.38497i −1.98391 0.156137i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(480\) −5.77984 + 24.0748i −0.263813 + 1.09886i
\(481\) 0 0
\(482\) 21.2439 + 29.2398i 0.967634 + 1.33183i
\(483\) −11.2649 11.2649i −0.512569 0.512569i
\(484\) −21.7291 3.44156i −0.987688 0.156434i
\(485\) 0 0
\(486\) −7.72417 + 9.04384i −0.350375 + 0.410237i
\(487\) −5.79720 36.6021i −0.262696 1.65860i −0.667809 0.744332i \(-0.732768\pi\)
0.405113 0.914267i \(-0.367232\pi\)
\(488\) −23.5406 17.1033i −1.06563 0.774228i
\(489\) −12.0301 + 4.98303i −0.544020 + 0.225341i
\(490\) 27.7298 + 54.4229i 1.25271 + 2.45857i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 12.1757 + 21.9107i 0.548921 + 0.987812i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −3.09164 2.64051i −0.138540 0.118324i
\(499\) 0 0 0.760406 0.649448i \(-0.225000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(500\) −3.49798 + 22.0854i −0.156434 + 0.987688i
\(501\) 16.7751 16.7751i 0.749457 0.749457i
\(502\) 0 0
\(503\) 10.1674 16.5916i 0.453340 0.739783i −0.541559 0.840663i \(-0.682166\pi\)
0.994899 + 0.100879i \(0.0321657\pi\)
\(504\) 11.7278 + 2.81560i 0.522398 + 0.125417i
\(505\) −10.8980 + 0.857688i −0.484953 + 0.0381666i
\(506\) 0 0
\(507\) 13.2953 + 21.6960i 0.590467 + 0.963554i
\(508\) −8.54724 26.3057i −0.379223 1.16713i
\(509\) −10.1813 42.4082i −0.451279 1.87971i −0.474988 0.879992i \(-0.657548\pi\)
0.0237097 0.999719i \(-0.492452\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −10.2726 + 20.1612i −0.453990 + 0.891007i
\(513\) 0 0
\(514\) 0 0
\(515\) 43.1130 + 14.0083i 1.89979 + 0.617278i
\(516\) −49.7361 + 11.9406i −2.18951 + 0.525655i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.5418 43.9099i 0.461846 1.92373i 0.0883730 0.996087i \(-0.471833\pi\)
0.373473 0.927641i \(-0.378167\pi\)
\(522\) −3.75501 2.30107i −0.164352 0.100715i
\(523\) 26.8011 + 36.8885i 1.17193 + 1.61302i 0.649584 + 0.760290i \(0.274943\pi\)
0.522346 + 0.852734i \(0.325057\pi\)
\(524\) 0 0
\(525\) 49.5866 + 7.85375i 2.16414 + 0.342766i
\(526\) 28.7530 + 33.6654i 1.25369 + 1.46788i
\(527\) 0 0
\(528\) 0 0
\(529\) −16.5709 12.0394i −0.720472 0.523454i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) −48.0620 −2.07985
\(535\) 41.2175 21.0014i 1.78199 0.907969i
\(536\) 15.5692 + 37.5874i 0.672488 + 1.62353i
\(537\) 0 0
\(538\) 41.5342 6.57837i 1.79067 0.283614i
\(539\) 0 0
\(540\) −14.4357 + 12.3293i −0.621215 + 0.530568i
\(541\) 6.89001 43.5018i 0.296225 1.87029i −0.169746 0.985488i \(-0.554295\pi\)
0.465971 0.884800i \(-0.345705\pi\)
\(542\) 0 0
\(543\) −6.49110 + 4.71606i −0.278560 + 0.202386i
\(544\) 0 0
\(545\) −31.8107 7.63706i −1.36262 0.327136i
\(546\) 0 0
\(547\) −12.7945 + 30.8887i −0.547054 + 1.32071i 0.372606 + 0.927990i \(0.378464\pi\)
−0.919660 + 0.392716i \(0.871536\pi\)
\(548\) 0 0
\(549\) 2.64262 + 8.13314i 0.112784 + 0.347114i
\(550\) 0 0
\(551\) 0 0
\(552\) −8.75671 0.689168i −0.372711 0.0293330i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.972370 0.233445i \(-0.0750000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 42.3901 + 17.5585i 1.79131 + 0.741984i
\(561\) 0 0
\(562\) 8.77796 36.5628i 0.370276 1.54231i
\(563\) 40.2250 + 24.6499i 1.69528 + 1.03887i 0.904140 + 0.427236i \(0.140513\pi\)
0.791141 + 0.611634i \(0.209487\pi\)
\(564\) 31.3929 + 43.2086i 1.32188 + 1.81941i
\(565\) 0 0
\(566\) 28.3028 + 4.48273i 1.18966 + 0.188423i
\(567\) 35.9902 + 42.1391i 1.51145 + 1.76968i
\(568\) 0 0
\(569\) 6.39776 + 40.3939i 0.268208 + 1.69340i 0.642659 + 0.766153i \(0.277831\pi\)
−0.374451 + 0.927247i \(0.622169\pi\)
\(570\) 0 0
\(571\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 43.6344 15.9340i 1.82126 0.665071i
\(575\) −7.93298 −0.330828
\(576\) 5.92526 3.01907i 0.246886 0.125795i
\(577\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(578\) −14.1313 + 19.4501i −0.587785 + 0.809017i
\(579\) 0 0
\(580\) −12.7395 10.8806i −0.528981 0.451792i
\(581\) −5.72937 + 4.89335i −0.237694 + 0.203010i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −33.1226 + 2.60680i −1.36711 + 0.107594i −0.740669 0.671871i \(-0.765491\pi\)
−0.626446 + 0.779465i \(0.715491\pi\)
\(588\) 28.9362 69.8581i 1.19331 2.88090i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.996917 0.0784591i \(-0.975000\pi\)
0.996917 + 0.0784591i \(0.0250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.792859 + 10.0742i −0.0324768 + 0.412656i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(600\) 23.6022 14.4634i 0.963554 0.590467i
\(601\) 9.66925 + 4.00513i 0.394417 + 0.163373i 0.571072 0.820900i \(-0.306528\pi\)
−0.176655 + 0.984273i \(0.556528\pi\)
\(602\) 7.43707 + 94.4969i 0.303112 + 3.85141i
\(603\) 2.79129 11.6265i 0.113670 0.473470i
\(604\) 0 0
\(605\) 14.4576 + 19.8992i 0.587785 + 0.809017i
\(606\) 9.56912 + 9.56912i 0.388719 + 0.388719i
\(607\) −33.9806 5.38200i −1.37923 0.218449i −0.577626 0.816302i \(-0.696021\pi\)
−0.801606 + 0.597853i \(0.796021\pi\)
\(608\) 0 0
\(609\) −24.4294 + 28.6031i −0.989928 + 1.15906i
\(610\) 5.08918 + 32.1318i 0.206055 + 1.30098i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(614\) 47.6492i 1.92297i
\(615\) 7.69624 26.9477i 0.310342 1.08663i
\(616\) 0 0
\(617\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(618\) −21.4755 51.8464i −0.863870 2.08557i
\(619\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(620\) 0 0
\(621\) −5.12142 4.37410i −0.205515 0.175527i
\(622\) 0 0
\(623\) −13.9332 + 87.9710i −0.558224 + 3.52448i
\(624\) 0 0
\(625\) 20.2254 14.6946i 0.809017 0.587785i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −7.04572 11.4976i −0.280708 0.458074i
\(631\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −14.0393 + 27.5537i −0.557133 + 1.09343i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 24.0600 7.81758i 0.951057 0.309017i
\(641\) −35.0209 + 21.4608i −1.38324 + 0.847652i −0.997197 0.0748272i \(-0.976159\pi\)
−0.386046 + 0.922479i \(0.626159\pi\)
\(642\) −52.9075 21.9150i −2.08809 0.864916i
\(643\) −3.39830 43.1795i −0.134016 1.70283i −0.585597 0.810602i \(-0.699140\pi\)
0.451581 0.892230i \(-0.350860\pi\)
\(644\) −3.80002 + 15.8282i −0.149742 + 0.623719i
\(645\) 48.7597 + 29.8800i 1.91991 + 1.17652i
\(646\) 0 0
\(647\) −9.19770 9.19770i −0.361599 0.361599i 0.502803 0.864401i \(-0.332302\pi\)
−0.864401 + 0.502803i \(0.832302\pi\)
\(648\) 30.1787 + 4.77984i 1.18553 + 0.187770i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 10.7639 + 7.82045i 0.421548 + 0.306273i
\(653\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(654\) 18.3861 + 36.0847i 0.718952 + 1.41102i
\(655\) 0 0
\(656\) 12.5886 22.3053i 0.491501 0.870877i
\(657\) 0 0
\(658\) 88.1884 44.9342i 3.43794 1.75172i
\(659\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(660\) 0 0
\(661\) −2.20318 + 0.348950i −0.0856938 + 0.0135726i −0.199134 0.979972i \(-0.563813\pi\)
0.113440 + 0.993545i \(0.463813\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −0.649883 + 4.10320i −0.0252204 + 0.159235i
\(665\) 0 0
\(666\) 0 0
\(667\) 3.10559 5.06787i 0.120249 0.196229i
\(668\) −23.5706 5.65881i −0.911975 0.218946i
\(669\) −50.5107 + 3.97528i −1.95286 + 0.153693i
\(670\) 17.4069 42.0240i 0.672488 1.62353i
\(671\) 0 0
\(672\) −17.5522 54.0202i −0.677091 2.08387i
\(673\) 0 0 −0.233445 0.972370i \(-0.575000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(674\) 0 0
\(675\) 21.1596 + 1.66530i 0.814433 + 0.0640973i
\(676\) 11.8038 23.1662i 0.453990 0.891007i
\(677\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 30.2875 9.84100i 1.16062 0.377108i
\(682\) 0 0
\(683\) −47.8757 19.8308i −1.83191 0.758803i −0.965967 0.258665i \(-0.916717\pi\)
−0.865946 0.500138i \(-0.833283\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −76.1778 46.6818i −2.90848 1.78232i
\(687\) 32.2973 + 44.4534i 1.23222 + 1.69600i
\(688\) 36.9560 + 36.9560i 1.40893 + 1.40893i
\(689\) 0 0
\(690\) 6.37796 + 7.46763i 0.242805 + 0.284288i
\(691\) 0 0 0.649448 0.760406i \(-0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −34.6063 + 14.3344i −1.31364 + 0.544126i
\(695\) 0 0
\(696\) 20.7400i 0.786148i
\(697\) 0 0
\(698\) −42.2531 −1.59930
\(699\) 0 0
\(700\) −19.6310 47.3935i −0.741984 1.79131i
\(701\) 10.6564 14.6673i 0.402486 0.553975i −0.558879 0.829249i \(-0.688769\pi\)
0.961366 + 0.275274i \(0.0887686\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 9.34114 58.9776i 0.351808 2.22123i
\(706\) 0 0
\(707\) 20.2891 14.7409i 0.763050 0.554388i
\(708\) 0 0
\(709\) −31.3395 7.52394i −1.17698 0.282568i −0.402652 0.915353i \(-0.631911\pi\)
−0.774327 + 0.632786i \(0.781911\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 25.6594 + 41.8723i 0.961626 + 1.56923i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.0784591 0.996917i \(-0.475000\pi\)
−0.0784591 + 0.996917i \(0.525000\pi\)
\(720\) −7.07112 2.29755i −0.263525 0.0856245i
\(721\) −101.124 + 24.2776i −3.76604 + 0.904146i
\(722\) 25.5549 8.30330i 0.951057 0.309017i
\(723\) −42.6518 + 26.1371i −1.58624 + 0.972048i
\(724\) 7.57417 + 3.13733i 0.281492 + 0.116598i
\(725\) 1.46963 + 18.6734i 0.0545805 + 0.693511i
\(726\) 7.10827 29.6081i 0.263813 1.09886i
\(727\) −20.8653 12.7863i −0.773851 0.474217i 0.0786754 0.996900i \(-0.474931\pi\)
−0.852527 + 0.522684i \(0.824931\pi\)
\(728\) 0 0
\(729\) 11.2763 + 11.2763i 0.417641 + 0.417641i
\(730\) 0 0
\(731\) 0 0
\(732\) 26.1553 30.6240i 0.966729 1.13189i
\(733\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(734\) 42.6668 + 30.9992i 1.57486 + 1.14420i
\(735\) −78.1037 + 32.3516i −2.88090 + 1.19331i
\(736\) 4.07463 + 7.99691i 0.150193 + 0.294770i
\(737\) 0 0
\(738\) −6.84631 + 3.12880i −0.252016 + 0.115173i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −42.1217 + 6.67142i −1.54530 + 0.244751i −0.870095 0.492883i \(-0.835943\pi\)
−0.675201 + 0.737634i \(0.735943\pi\)
\(744\) 0 0
\(745\) 8.59118 7.33756i 0.314757 0.268828i
\(746\) 0 0
\(747\) 0.863335 0.863335i 0.0315878 0.0315878i
\(748\) 0 0
\(749\) −55.4505 + 90.4869i −2.02612 + 3.30632i
\(750\) −30.0935 7.22480i −1.09886 0.263813i
\(751\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(752\) 20.8839 50.4181i 0.761557 1.83856i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 13.4584 41.4208i 0.489479 1.50646i
\(757\) 0 0 −0.996917 0.0784591i \(-0.975000\pi\)
0.996917 + 0.0784591i \(0.0250000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −51.0382 16.5833i −1.85013 0.601145i −0.996815 0.0797547i \(-0.974586\pi\)
−0.853319 0.521390i \(-0.825414\pi\)
\(762\) 37.2247 8.93685i 1.34851 0.323748i
\(763\) 71.3783 23.1922i 2.58407 0.839615i
\(764\) 0 0
\(765\) 0 0
\(766\) 2.72449 + 34.6179i 0.0984397 + 1.25080i
\(767\) 0 0
\(768\) −26.7028 16.3635i −0.963554 0.590467i
\(769\) 29.8682 + 41.1101i 1.07708 + 1.48247i 0.862700 + 0.505715i \(0.168771\pi\)
0.214375 + 0.976751i \(0.431229\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.649448 0.760406i \(-0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(774\) −2.40283 15.1709i −0.0863681 0.545307i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 15.8666i 0.568846i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −9.34739 + 12.8656i −0.334048 + 0.459778i
\(784\) −76.3098 + 12.0863i −2.72535 + 0.431653i
\(785\) 0 0
\(786\) 0 0
\(787\) −8.61249 + 54.3771i −0.307002 + 1.93834i 0.0368739 + 0.999320i \(0.488260\pi\)
−0.343876 + 0.939015i \(0.611740\pi\)
\(788\) 0 0
\(789\) −49.5737 + 36.0174i −1.76487 + 1.28225i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −25.2015 12.8408i −0.891007 0.453990i
\(801\) 1.13239 14.3884i 0.0400110 0.508388i
\(802\) −51.3149 16.6732i −1.81199 0.588752i
\(803\) 0 0
\(804\) −53.5537 + 17.4007i −1.88869 + 0.613674i
\(805\) 15.5175 9.50912i 0.546919 0.335152i
\(806\) 0 0
\(807\) 4.56651 + 58.0231i 0.160749 + 2.04251i
\(808\) 3.22798 13.4455i 0.113560 0.473012i
\(809\) 4.08264 + 2.50184i 0.143538 + 0.0879602i 0.592413 0.805634i \(-0.298175\pi\)
−0.448875 + 0.893594i \(0.648175\pi\)
\(810\) −20.0796 27.6372i −0.705524 0.971071i
\(811\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(812\) 37.9618 + 6.01256i 1.33220 + 0.211000i
\(813\) 0 0
\(814\) 0 0
\(815\) −2.32702 14.6922i −0.0815121 0.514647i
\(816\) 0 0
\(817\) 0 0
\(818\) −9.44359 18.5341i −0.330187 0.648029i
\(819\) 0 0
\(820\) −27.5861 + 7.68176i −0.963347 + 0.268259i
\(821\) 57.2334 1.99746 0.998730 0.0503864i \(-0.0160453\pi\)
0.998730 + 0.0503864i \(0.0160453\pi\)
\(822\) 0 0
\(823\) −18.3087 44.2011i −0.638201 1.54075i −0.829074 0.559139i \(-0.811132\pi\)
0.190872 0.981615i \(-0.438868\pi\)
\(824\) −33.7040 + 46.3895i −1.17413 + 1.61606i
\(825\) 0 0
\(826\) 0 0
\(827\) −27.4874 + 23.4764i −0.955830 + 0.816356i −0.983062 0.183274i \(-0.941331\pi\)
0.0272324 + 0.999629i \(0.491331\pi\)
\(828\) 0.412634 2.60527i 0.0143400 0.0905394i
\(829\) 30.9751 30.9751i 1.07581 1.07581i 0.0789305 0.996880i \(-0.474849\pi\)
0.996880 0.0789305i \(-0.0251505\pi\)
\(830\) 3.75764 2.73009i 0.130430 0.0947627i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 14.1605 + 23.1079i 0.490046 + 0.799682i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.996917 0.0784591i \(-0.975000\pi\)
0.996917 + 0.0784591i \(0.0250000\pi\)
\(840\) −28.8304 + 56.5829i −0.994745 + 1.95230i
\(841\) 13.3347 + 6.79434i 0.459816 + 0.234288i
\(842\) 1.57661 20.0327i 0.0543334 0.690371i
\(843\) 49.4960 + 16.0822i 1.70473 + 0.553902i
\(844\) 0 0
\(845\) −27.6462 + 8.98278i −0.951057 + 0.309017i
\(846\) −13.6751 + 8.38008i −0.470158 + 0.288113i
\(847\) −52.1329 21.5942i −1.79131 0.741984i
\(848\) 0 0
\(849\) −9.25872 + 38.5654i −0.317758 + 1.32356i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(854\) −48.4706 56.7518i −1.65863 1.94201i
\(855\) 0 0
\(856\) 9.15363 + 57.7938i 0.312865 + 1.97535i
\(857\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(858\) 0 0
\(859\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(860\) 58.4325i 1.99253i
\(861\) 17.2473 + 61.9369i 0.587786 + 2.11080i
\(862\) 0 0
\(863\) 8.45283 4.30693i 0.287738 0.146610i −0.304164 0.952620i \(-0.598377\pi\)
0.591902 + 0.806010i \(0.298377\pi\)
\(864\) −9.18952 22.1855i −0.312634 0.754765i
\(865\) 0 0
\(866\) 0 0
\(867\) −25.3026 21.6105i −0.859322 0.733930i
\(868\) 0 0
\(869\) 0 0
\(870\) 16.3964 16.3964i 0.555891 0.555891i
\(871\) 0 0
\(872\) 21.6215 35.2831i 0.732197 1.19484i
\(873\) 0 0
\(874\) 0 0
\(875\) −21.9482 + 52.9876i −0.741984 + 1.79131i
\(876\) 0 0
\(877\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.25188 2.45696i 0.0421770 0.0827771i −0.868956 0.494889i \(-0.835209\pi\)
0.911133 + 0.412112i \(0.135209\pi\)
\(882\) 20.2317 + 10.3086i 0.681238 + 0.347108i
\(883\) 3.26057 41.4295i 0.109727 1.39421i −0.657798 0.753194i \(-0.728512\pi\)
0.767525 0.641019i \(-0.221488\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −21.2318 + 6.89863i −0.713296 + 0.231764i
\(887\) 50.7199 31.0812i 1.70301 1.04360i 0.824543 0.565800i \(-0.191433\pi\)
0.878466 0.477805i \(-0.158567\pi\)
\(888\) 0 0
\(889\) −5.56623 70.7256i −0.186685 2.37206i
\(890\) 12.8174 53.3885i 0.429641 1.78959i
\(891\) 0 0
\(892\) 30.4300 + 41.8833i 1.01887 + 1.40236i
\(893\) 0 0
\(894\) −13.8143 2.18797i −0.462019 0.0731765i
\(895\) 0 0
\(896\) −37.6924 + 44.1321i −1.25921 + 1.47435i
\(897\) 0 0
\(898\) −18.2846 13.2845i −0.610165 0.443311i
\(899\) 0 0
\(900\) 3.77384 + 7.40658i 0.125795 + 0.246886i
\(901\) 0 0
\(902\) 0 0
\(903\) −131.194 −4.36587
\(904\) 0 0
\(905\) −3.50764 8.46818i −0.116598 0.281492i
\(906\) 0 0
\(907\) 54.7779 8.67597i 1.81887 0.288081i 0.848410 0.529340i \(-0.177561\pi\)
0.970461 + 0.241260i \(0.0775605\pi\)
\(908\) −24.7435 21.1330i −0.821143 0.701322i
\(909\) −3.09018 + 2.63926i −0.102495 + 0.0875387i
\(910\) 0 0
\(911\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −44.8880 + 3.53276i −1.48395 + 0.116789i
\(916\) 21.4855 51.8707i 0.709902 1.71386i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.233445 0.972370i \(-0.575000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(920\) 3.10083 9.54339i 0.102231 0.314636i
\(921\) 65.7462 + 5.17434i 2.16641 + 0.170500i
\(922\) 11.2042 21.9894i 0.368990 0.724183i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 21.8841 5.25391i 0.719156 0.172654i
\(927\) 16.0273 5.20759i 0.526406 0.171040i
\(928\) 18.0690 11.0727i 0.593144 0.363479i
\(929\) 51.9574 + 21.5215i 1.70467 + 0.706096i 0.999994 0.00343511i \(-0.00109343\pi\)
0.704674 + 0.709532i \(0.251093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −40.1254 40.1254i −1.31294 1.31294i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.649448 0.760406i \(-0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(938\) 16.3243 + 103.067i 0.533006 + 3.36527i
\(939\) 0 0
\(940\) −56.3692 + 23.3489i −1.83856 + 0.761557i
\(941\) −26.7467 52.4933i −0.871917 1.71123i −0.684580 0.728937i \(-0.740015\pi\)
−0.187336 0.982296i \(-0.559985\pi\)
\(942\) 0 0
\(943\) −4.22273 9.23998i −0.137511 0.300895i
\(944\) 0 0
\(945\) −43.3858 + 22.1062i −1.41134 + 0.719114i
\(946\) 0 0
\(947\) 29.2177 40.2148i 0.949449 1.30680i −0.00232231 0.999997i \(-0.500739\pi\)
0.951772 0.306808i \(-0.0992608\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 8.17393 + 34.0469i 0.263813 + 1.09886i
\(961\) −9.57953 + 29.4828i −0.309017 + 0.951057i
\(962\) 0 0
\(963\) 7.80728 15.3226i 0.251586 0.493765i
\(964\) 45.5420 + 23.2048i 1.46681 + 0.747376i
\(965\) 0 0
\(966\) −21.4270 6.96207i −0.689404 0.224001i
\(967\) 19.5649 4.69712i 0.629165 0.151049i 0.0936918 0.995601i \(-0.470133\pi\)
0.535473 + 0.844552i \(0.320133\pi\)
\(968\) −29.5899 + 9.61435i −0.951057 + 0.309017i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(972\) −3.92652 + 16.3551i −0.125943 + 0.524591i
\(973\) 0 0
\(974\) −30.8049 42.3993i −0.987052 1.35856i
\(975\) 0 0
\(976\) −40.6439 6.43736i −1.30098 0.206055i
\(977\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(978\) −11.9595 + 14.0028i −0.382423 + 0.447760i
\(979\) 0 0
\(980\) 69.8833 + 50.7732i 2.23234 + 1.62189i
\(981\) −11.2359 + 4.65406i −0.358735 + 0.148593i
\(982\) 0 0
\(983\) 33.0869i 1.05531i 0.849459 + 0.527655i \(0.176928\pi\)
−0.849459 + 0.527655i \(0.823072\pi\)
\(984\) 29.4098 + 19.7919i 0.937550 + 0.630942i
\(985\) 0 0
\(986\) 0 0
\(987\) 52.4235 + 126.561i 1.66866 + 4.02850i
\(988\) 0 0
\(989\) 20.4751 3.24294i 0.651070 0.103119i
\(990\) 0 0
\(991\) 0 0 0.760406 0.649448i \(-0.225000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) −5.59101 1.34228i −0.177158 0.0425318i
\(997\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.cc.a.19.1 16
4.3 odd 2 820.2.cc.f.19.1 yes 16
5.4 even 2 820.2.cc.f.19.1 yes 16
20.19 odd 2 CM 820.2.cc.a.19.1 16
41.13 odd 40 inner 820.2.cc.a.259.1 yes 16
164.95 even 40 820.2.cc.f.259.1 yes 16
205.54 odd 40 820.2.cc.f.259.1 yes 16
820.259 even 40 inner 820.2.cc.a.259.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.cc.a.19.1 16 1.1 even 1 trivial
820.2.cc.a.19.1 16 20.19 odd 2 CM
820.2.cc.a.259.1 yes 16 41.13 odd 40 inner
820.2.cc.a.259.1 yes 16 820.259 even 40 inner
820.2.cc.f.19.1 yes 16 4.3 odd 2
820.2.cc.f.19.1 yes 16 5.4 even 2
820.2.cc.f.259.1 yes 16 164.95 even 40
820.2.cc.f.259.1 yes 16 205.54 odd 40