Properties

Label 820.2.bo.b.781.8
Level $820$
Weight $2$
Character 820.781
Analytic conductor $6.548$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(21,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.21"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bo (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 781.8
Character \(\chi\) \(=\) 820.781
Dual form 820.2.bo.b.21.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.27233 - 2.27233i) q^{3} +(0.587785 + 0.809017i) q^{5} +(1.91674 + 3.76182i) q^{7} -7.32700i q^{9} +(-3.64371 + 0.577108i) q^{11} +(3.28988 + 1.67628i) q^{13} +(3.17400 + 0.502712i) q^{15} +(0.0641329 + 0.404919i) q^{17} +(6.17966 - 3.14869i) q^{19} +(12.9036 + 4.19263i) q^{21} +(-2.14607 - 6.60491i) q^{23} +(-0.309017 + 0.951057i) q^{25} +(-9.83239 - 9.83239i) q^{27} +(1.02160 - 6.45011i) q^{29} +(6.57947 + 4.78026i) q^{31} +(-6.96835 + 9.59112i) q^{33} +(-1.91674 + 3.76182i) q^{35} +(0.512250 - 0.372171i) q^{37} +(11.2848 - 3.66664i) q^{39} +(-6.19552 + 1.61726i) q^{41} +(-6.50749 + 2.11441i) q^{43} +(5.92767 - 4.30670i) q^{45} +(-5.43784 + 10.6724i) q^{47} +(-6.36291 + 8.75779i) q^{49} +(1.06584 + 0.774380i) q^{51} +(-1.00821 + 6.36559i) q^{53} +(-2.60861 - 2.60861i) q^{55} +(6.88736 - 21.1971i) q^{57} +(-1.43206 - 4.40742i) q^{59} +(-12.5977 - 4.09325i) q^{61} +(27.5629 - 14.0440i) q^{63} +(0.577606 + 3.64686i) q^{65} +(4.92336 + 0.779784i) q^{67} +(-19.8851 - 10.1320i) q^{69} +(5.43321 - 0.860536i) q^{71} -3.15849i q^{73} +(1.45893 + 2.86331i) q^{75} +(-9.15505 - 12.6008i) q^{77} +(-5.88894 + 5.88894i) q^{79} -22.7039 q^{81} -2.45844 q^{83} +(-0.289890 + 0.289890i) q^{85} +(-12.3354 - 16.9782i) q^{87} +(0.951082 + 1.86660i) q^{89} +15.5889i q^{91} +(25.8131 - 4.08839i) q^{93} +(6.17966 + 3.14869i) q^{95} +(-11.3855 - 1.80329i) q^{97} +(4.22847 + 26.6975i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 2 q^{3} - 10 q^{7} + 2 q^{11} + 6 q^{13} - 2 q^{15} + 2 q^{17} + 10 q^{19} - 22 q^{23} + 16 q^{25} + 20 q^{27} - 12 q^{29} + 22 q^{31} + 30 q^{33} + 10 q^{35} + 12 q^{37} + 20 q^{39} - 10 q^{41}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{13}{20}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.27233 2.27233i 1.31193 1.31193i 0.391943 0.919990i \(-0.371803\pi\)
0.919990 0.391943i \(-0.128197\pi\)
\(4\) 0 0
\(5\) 0.587785 + 0.809017i 0.262866 + 0.361803i
\(6\) 0 0
\(7\) 1.91674 + 3.76182i 0.724461 + 1.42184i 0.899342 + 0.437246i \(0.144046\pi\)
−0.174881 + 0.984590i \(0.555954\pi\)
\(8\) 0 0
\(9\) 7.32700i 2.44233i
\(10\) 0 0
\(11\) −3.64371 + 0.577108i −1.09862 + 0.174004i −0.679320 0.733843i \(-0.737725\pi\)
−0.419302 + 0.907847i \(0.637725\pi\)
\(12\) 0 0
\(13\) 3.28988 + 1.67628i 0.912448 + 0.464916i 0.846187 0.532887i \(-0.178893\pi\)
0.0662617 + 0.997802i \(0.478893\pi\)
\(14\) 0 0
\(15\) 3.17400 + 0.502712i 0.819523 + 0.129800i
\(16\) 0 0
\(17\) 0.0641329 + 0.404919i 0.0155545 + 0.0982073i 0.994244 0.107137i \(-0.0341685\pi\)
−0.978690 + 0.205345i \(0.934168\pi\)
\(18\) 0 0
\(19\) 6.17966 3.14869i 1.41771 0.722360i 0.433798 0.901010i \(-0.357173\pi\)
0.983913 + 0.178650i \(0.0571731\pi\)
\(20\) 0 0
\(21\) 12.9036 + 4.19263i 2.81580 + 0.914908i
\(22\) 0 0
\(23\) −2.14607 6.60491i −0.447486 1.37722i −0.879734 0.475465i \(-0.842280\pi\)
0.432249 0.901754i \(-0.357720\pi\)
\(24\) 0 0
\(25\) −0.309017 + 0.951057i −0.0618034 + 0.190211i
\(26\) 0 0
\(27\) −9.83239 9.83239i −1.89224 1.89224i
\(28\) 0 0
\(29\) 1.02160 6.45011i 0.189706 1.19776i −0.690560 0.723275i \(-0.742636\pi\)
0.880266 0.474481i \(-0.157364\pi\)
\(30\) 0 0
\(31\) 6.57947 + 4.78026i 1.18171 + 0.858561i 0.992363 0.123350i \(-0.0393637\pi\)
0.189344 + 0.981911i \(0.439364\pi\)
\(32\) 0 0
\(33\) −6.96835 + 9.59112i −1.21303 + 1.66960i
\(34\) 0 0
\(35\) −1.91674 + 3.76182i −0.323989 + 0.635864i
\(36\) 0 0
\(37\) 0.512250 0.372171i 0.0842134 0.0611846i −0.544882 0.838513i \(-0.683426\pi\)
0.629095 + 0.777328i \(0.283426\pi\)
\(38\) 0 0
\(39\) 11.2848 3.66664i 1.80701 0.587133i
\(40\) 0 0
\(41\) −6.19552 + 1.61726i −0.967578 + 0.252573i
\(42\) 0 0
\(43\) −6.50749 + 2.11441i −0.992384 + 0.322445i −0.759818 0.650136i \(-0.774712\pi\)
−0.232566 + 0.972581i \(0.574712\pi\)
\(44\) 0 0
\(45\) 5.92767 4.30670i 0.883645 0.642005i
\(46\) 0 0
\(47\) −5.43784 + 10.6724i −0.793191 + 1.55673i 0.0370451 + 0.999314i \(0.488205\pi\)
−0.830236 + 0.557412i \(0.811795\pi\)
\(48\) 0 0
\(49\) −6.36291 + 8.75779i −0.908987 + 1.25111i
\(50\) 0 0
\(51\) 1.06584 + 0.774380i 0.149248 + 0.108435i
\(52\) 0 0
\(53\) −1.00821 + 6.36559i −0.138488 + 0.874381i 0.816415 + 0.577465i \(0.195958\pi\)
−0.954904 + 0.296916i \(0.904042\pi\)
\(54\) 0 0
\(55\) −2.60861 2.60861i −0.351745 0.351745i
\(56\) 0 0
\(57\) 6.88736 21.1971i 0.912254 2.80763i
\(58\) 0 0
\(59\) −1.43206 4.40742i −0.186438 0.573797i 0.813532 0.581520i \(-0.197542\pi\)
−0.999970 + 0.00772284i \(0.997542\pi\)
\(60\) 0 0
\(61\) −12.5977 4.09325i −1.61298 0.524087i −0.642706 0.766113i \(-0.722188\pi\)
−0.970270 + 0.242026i \(0.922188\pi\)
\(62\) 0 0
\(63\) 27.5629 14.0440i 3.47260 1.76938i
\(64\) 0 0
\(65\) 0.577606 + 3.64686i 0.0716432 + 0.452337i
\(66\) 0 0
\(67\) 4.92336 + 0.779784i 0.601485 + 0.0952658i 0.449749 0.893155i \(-0.351514\pi\)
0.151736 + 0.988421i \(0.451514\pi\)
\(68\) 0 0
\(69\) −19.8851 10.1320i −2.39389 1.21975i
\(70\) 0 0
\(71\) 5.43321 0.860536i 0.644803 0.102127i 0.174536 0.984651i \(-0.444157\pi\)
0.470267 + 0.882524i \(0.344157\pi\)
\(72\) 0 0
\(73\) 3.15849i 0.369674i −0.982769 0.184837i \(-0.940824\pi\)
0.982769 0.184837i \(-0.0591757\pi\)
\(74\) 0 0
\(75\) 1.45893 + 2.86331i 0.168462 + 0.330626i
\(76\) 0 0
\(77\) −9.15505 12.6008i −1.04331 1.43600i
\(78\) 0 0
\(79\) −5.88894 + 5.88894i −0.662557 + 0.662557i −0.955982 0.293425i \(-0.905205\pi\)
0.293425 + 0.955982i \(0.405205\pi\)
\(80\) 0 0
\(81\) −22.7039 −2.52266
\(82\) 0 0
\(83\) −2.45844 −0.269849 −0.134925 0.990856i \(-0.543079\pi\)
−0.134925 + 0.990856i \(0.543079\pi\)
\(84\) 0 0
\(85\) −0.289890 + 0.289890i −0.0314430 + 0.0314430i
\(86\) 0 0
\(87\) −12.3354 16.9782i −1.32249 1.82026i
\(88\) 0 0
\(89\) 0.951082 + 1.86660i 0.100815 + 0.197860i 0.935905 0.352254i \(-0.114585\pi\)
−0.835090 + 0.550113i \(0.814585\pi\)
\(90\) 0 0
\(91\) 15.5889i 1.63416i
\(92\) 0 0
\(93\) 25.8131 4.08839i 2.67669 0.423947i
\(94\) 0 0
\(95\) 6.17966 + 3.14869i 0.634020 + 0.323049i
\(96\) 0 0
\(97\) −11.3855 1.80329i −1.15602 0.183096i −0.451163 0.892441i \(-0.648991\pi\)
−0.704861 + 0.709345i \(0.748991\pi\)
\(98\) 0 0
\(99\) 4.22847 + 26.6975i 0.424977 + 2.68320i
\(100\) 0 0
\(101\) −2.07375 + 1.05663i −0.206346 + 0.105138i −0.554109 0.832444i \(-0.686941\pi\)
0.347764 + 0.937582i \(0.386941\pi\)
\(102\) 0 0
\(103\) 9.22180 + 2.99634i 0.908651 + 0.295238i 0.725803 0.687903i \(-0.241468\pi\)
0.182848 + 0.983141i \(0.441468\pi\)
\(104\) 0 0
\(105\) 4.19263 + 12.9036i 0.409159 + 1.25926i
\(106\) 0 0
\(107\) −3.01151 + 9.26848i −0.291134 + 0.896018i 0.693359 + 0.720592i \(0.256130\pi\)
−0.984493 + 0.175425i \(0.943870\pi\)
\(108\) 0 0
\(109\) −8.90213 8.90213i −0.852669 0.852669i 0.137792 0.990461i \(-0.455999\pi\)
−0.990461 + 0.137792i \(0.955999\pi\)
\(110\) 0 0
\(111\) 0.318305 2.00970i 0.0302122 0.190752i
\(112\) 0 0
\(113\) 1.70237 + 1.23684i 0.160145 + 0.116352i 0.664972 0.746869i \(-0.268444\pi\)
−0.504827 + 0.863221i \(0.668444\pi\)
\(114\) 0 0
\(115\) 4.08206 5.61848i 0.380654 0.523926i
\(116\) 0 0
\(117\) 12.2821 24.1049i 1.13548 2.22850i
\(118\) 0 0
\(119\) −1.40031 + 1.01738i −0.128366 + 0.0932633i
\(120\) 0 0
\(121\) 2.48198 0.806444i 0.225634 0.0733131i
\(122\) 0 0
\(123\) −10.4033 + 17.7532i −0.938038 + 1.60076i
\(124\) 0 0
\(125\) −0.951057 + 0.309017i −0.0850651 + 0.0276393i
\(126\) 0 0
\(127\) 10.3782 7.54023i 0.920920 0.669088i −0.0228328 0.999739i \(-0.507269\pi\)
0.943753 + 0.330652i \(0.107269\pi\)
\(128\) 0 0
\(129\) −9.98255 + 19.5919i −0.878914 + 1.72497i
\(130\) 0 0
\(131\) 0.421661 0.580367i 0.0368407 0.0507069i −0.790199 0.612850i \(-0.790023\pi\)
0.827040 + 0.562143i \(0.190023\pi\)
\(132\) 0 0
\(133\) 23.6897 + 17.2115i 2.05415 + 1.49243i
\(134\) 0 0
\(135\) 2.17524 13.7339i 0.187215 1.18203i
\(136\) 0 0
\(137\) 6.06271 + 6.06271i 0.517973 + 0.517973i 0.916958 0.398985i \(-0.130637\pi\)
−0.398985 + 0.916958i \(0.630637\pi\)
\(138\) 0 0
\(139\) 1.42063 4.37226i 0.120497 0.370850i −0.872557 0.488512i \(-0.837540\pi\)
0.993054 + 0.117662i \(0.0375399\pi\)
\(140\) 0 0
\(141\) 11.8946 + 36.6078i 1.00171 + 3.08293i
\(142\) 0 0
\(143\) −12.9548 4.20926i −1.08333 0.351996i
\(144\) 0 0
\(145\) 5.81873 2.96479i 0.483219 0.246213i
\(146\) 0 0
\(147\) 5.44197 + 34.3593i 0.448846 + 2.83390i
\(148\) 0 0
\(149\) 2.84386 + 0.450423i 0.232978 + 0.0369001i 0.271832 0.962345i \(-0.412371\pi\)
−0.0388536 + 0.999245i \(0.512371\pi\)
\(150\) 0 0
\(151\) −12.4594 6.34838i −1.01393 0.516624i −0.133626 0.991032i \(-0.542662\pi\)
−0.880305 + 0.474408i \(0.842662\pi\)
\(152\) 0 0
\(153\) 2.96684 0.469902i 0.239855 0.0379893i
\(154\) 0 0
\(155\) 8.13267i 0.653232i
\(156\) 0 0
\(157\) 3.99416 + 7.83898i 0.318769 + 0.625618i 0.993676 0.112284i \(-0.0358166\pi\)
−0.674908 + 0.737902i \(0.735817\pi\)
\(158\) 0 0
\(159\) 12.1738 + 16.7557i 0.965442 + 1.32882i
\(160\) 0 0
\(161\) 20.7331 20.7331i 1.63399 1.63399i
\(162\) 0 0
\(163\) 2.70984 0.212251 0.106125 0.994353i \(-0.466156\pi\)
0.106125 + 0.994353i \(0.466156\pi\)
\(164\) 0 0
\(165\) −11.8553 −0.922932
\(166\) 0 0
\(167\) −14.0294 + 14.0294i −1.08563 + 1.08563i −0.0896551 + 0.995973i \(0.528576\pi\)
−0.995973 + 0.0896551i \(0.971424\pi\)
\(168\) 0 0
\(169\) 0.372191 + 0.512277i 0.0286301 + 0.0394060i
\(170\) 0 0
\(171\) −23.0705 45.2784i −1.76424 3.46252i
\(172\) 0 0
\(173\) 24.3013i 1.84759i −0.382883 0.923797i \(-0.625069\pi\)
0.382883 0.923797i \(-0.374931\pi\)
\(174\) 0 0
\(175\) −4.17001 + 0.660465i −0.315223 + 0.0499265i
\(176\) 0 0
\(177\) −13.2692 6.76101i −0.997377 0.508189i
\(178\) 0 0
\(179\) −7.51613 1.19044i −0.561782 0.0889776i −0.130916 0.991393i \(-0.541792\pi\)
−0.430866 + 0.902416i \(0.641792\pi\)
\(180\) 0 0
\(181\) −0.637260 4.02350i −0.0473672 0.299064i 0.952620 0.304164i \(-0.0983769\pi\)
−0.999987 + 0.00509903i \(0.998377\pi\)
\(182\) 0 0
\(183\) −37.9275 + 19.3250i −2.80368 + 1.42855i
\(184\) 0 0
\(185\) 0.602186 + 0.195662i 0.0442736 + 0.0143854i
\(186\) 0 0
\(187\) −0.467364 1.43840i −0.0341770 0.105186i
\(188\) 0 0
\(189\) 18.1415 55.8339i 1.31960 4.06132i
\(190\) 0 0
\(191\) 7.73422 + 7.73422i 0.559629 + 0.559629i 0.929202 0.369573i \(-0.120496\pi\)
−0.369573 + 0.929202i \(0.620496\pi\)
\(192\) 0 0
\(193\) 1.41861 8.95673i 0.102113 0.644719i −0.882545 0.470228i \(-0.844172\pi\)
0.984659 0.174492i \(-0.0558282\pi\)
\(194\) 0 0
\(195\) 9.59939 + 6.97437i 0.687427 + 0.499445i
\(196\) 0 0
\(197\) 9.31438 12.8201i 0.663622 0.913397i −0.335973 0.941872i \(-0.609065\pi\)
0.999595 + 0.0284747i \(0.00906499\pi\)
\(198\) 0 0
\(199\) −9.48628 + 18.6179i −0.672464 + 1.31979i 0.262461 + 0.964942i \(0.415466\pi\)
−0.934926 + 0.354843i \(0.884534\pi\)
\(200\) 0 0
\(201\) 12.9595 9.41560i 0.914090 0.664125i
\(202\) 0 0
\(203\) 26.2223 8.52015i 1.84045 0.597997i
\(204\) 0 0
\(205\) −4.95002 4.06168i −0.345725 0.283680i
\(206\) 0 0
\(207\) −48.3942 + 15.7242i −3.36363 + 1.09291i
\(208\) 0 0
\(209\) −20.6998 + 15.0393i −1.43183 + 1.04029i
\(210\) 0 0
\(211\) −6.13155 + 12.0338i −0.422113 + 0.828444i 0.577811 + 0.816170i \(0.303907\pi\)
−0.999925 + 0.0122739i \(0.996093\pi\)
\(212\) 0 0
\(213\) 10.3906 14.3015i 0.711955 0.979922i
\(214\) 0 0
\(215\) −5.53561 4.02185i −0.377525 0.274288i
\(216\) 0 0
\(217\) −5.37135 + 33.9133i −0.364631 + 2.30219i
\(218\) 0 0
\(219\) −7.17715 7.17715i −0.484987 0.484987i
\(220\) 0 0
\(221\) −0.467767 + 1.43964i −0.0314654 + 0.0968406i
\(222\) 0 0
\(223\) −2.79750 8.60982i −0.187334 0.576556i 0.812646 0.582757i \(-0.198026\pi\)
−0.999981 + 0.00620111i \(0.998026\pi\)
\(224\) 0 0
\(225\) 6.96839 + 2.26417i 0.464559 + 0.150945i
\(226\) 0 0
\(227\) 5.17182 2.63517i 0.343266 0.174903i −0.273855 0.961771i \(-0.588299\pi\)
0.617121 + 0.786868i \(0.288299\pi\)
\(228\) 0 0
\(229\) 4.17130 + 26.3365i 0.275647 + 1.74037i 0.605059 + 0.796180i \(0.293149\pi\)
−0.329412 + 0.944186i \(0.606851\pi\)
\(230\) 0 0
\(231\) −49.4366 7.82999i −3.25269 0.515176i
\(232\) 0 0
\(233\) 6.51369 + 3.31889i 0.426726 + 0.217428i 0.654145 0.756369i \(-0.273029\pi\)
−0.227419 + 0.973797i \(0.573029\pi\)
\(234\) 0 0
\(235\) −11.8304 + 1.87375i −0.771731 + 0.122230i
\(236\) 0 0
\(237\) 26.7633i 1.73846i
\(238\) 0 0
\(239\) 5.06444 + 9.93953i 0.327592 + 0.642935i 0.994790 0.101945i \(-0.0325066\pi\)
−0.667198 + 0.744880i \(0.732507\pi\)
\(240\) 0 0
\(241\) −13.5734 18.6821i −0.874338 1.20342i −0.977957 0.208805i \(-0.933042\pi\)
0.103620 0.994617i \(-0.466958\pi\)
\(242\) 0 0
\(243\) −22.0937 + 22.0937i −1.41731 + 1.41731i
\(244\) 0 0
\(245\) −10.8252 −0.691598
\(246\) 0 0
\(247\) 25.6084 1.62942
\(248\) 0 0
\(249\) −5.58640 + 5.58640i −0.354024 + 0.354024i
\(250\) 0 0
\(251\) 8.43729 + 11.6129i 0.532557 + 0.733002i 0.987517 0.157510i \(-0.0503465\pi\)
−0.454960 + 0.890512i \(0.650347\pi\)
\(252\) 0 0
\(253\) 11.6314 + 22.8279i 0.731260 + 1.43518i
\(254\) 0 0
\(255\) 1.31745i 0.0825021i
\(256\) 0 0
\(257\) −19.2823 + 3.05401i −1.20280 + 0.190504i −0.725490 0.688233i \(-0.758387\pi\)
−0.477306 + 0.878737i \(0.658387\pi\)
\(258\) 0 0
\(259\) 2.38190 + 1.21364i 0.148004 + 0.0754117i
\(260\) 0 0
\(261\) −47.2600 7.48525i −2.92532 0.463325i
\(262\) 0 0
\(263\) −1.03565 6.53882i −0.0638607 0.403201i −0.998825 0.0484593i \(-0.984569\pi\)
0.934964 0.354741i \(-0.115431\pi\)
\(264\) 0 0
\(265\) −5.74248 + 2.92594i −0.352758 + 0.179739i
\(266\) 0 0
\(267\) 6.40272 + 2.08037i 0.391840 + 0.127317i
\(268\) 0 0
\(269\) −8.25958 25.4204i −0.503596 1.54991i −0.803119 0.595819i \(-0.796828\pi\)
0.299523 0.954089i \(-0.403172\pi\)
\(270\) 0 0
\(271\) −3.74087 + 11.5132i −0.227242 + 0.699379i 0.770814 + 0.637060i \(0.219850\pi\)
−0.998056 + 0.0623190i \(0.980150\pi\)
\(272\) 0 0
\(273\) 35.4233 + 35.4233i 2.14391 + 2.14391i
\(274\) 0 0
\(275\) 0.577108 3.64371i 0.0348009 0.219724i
\(276\) 0 0
\(277\) 7.00313 + 5.08807i 0.420777 + 0.305712i 0.777950 0.628326i \(-0.216259\pi\)
−0.357173 + 0.934038i \(0.616259\pi\)
\(278\) 0 0
\(279\) 35.0250 48.2078i 2.09689 2.88612i
\(280\) 0 0
\(281\) 2.79157 5.47877i 0.166531 0.326836i −0.792627 0.609707i \(-0.791287\pi\)
0.959158 + 0.282871i \(0.0912870\pi\)
\(282\) 0 0
\(283\) 12.5306 9.10403i 0.744869 0.541179i −0.149364 0.988782i \(-0.547722\pi\)
0.894232 + 0.447604i \(0.147722\pi\)
\(284\) 0 0
\(285\) 21.1971 6.88736i 1.25561 0.407972i
\(286\) 0 0
\(287\) −17.9591 20.2066i −1.06009 1.19276i
\(288\) 0 0
\(289\) 16.0081 5.20135i 0.941654 0.305962i
\(290\) 0 0
\(291\) −29.9694 + 21.7740i −1.75684 + 1.27642i
\(292\) 0 0
\(293\) 3.61686 7.09848i 0.211299 0.414698i −0.760895 0.648875i \(-0.775240\pi\)
0.972194 + 0.234177i \(0.0752397\pi\)
\(294\) 0 0
\(295\) 2.72393 3.74917i 0.158594 0.218285i
\(296\) 0 0
\(297\) 41.5008 + 30.1521i 2.40812 + 1.74960i
\(298\) 0 0
\(299\) 4.01137 25.3268i 0.231983 1.46468i
\(300\) 0 0
\(301\) −20.4273 20.4273i −1.17741 1.17741i
\(302\) 0 0
\(303\) −2.31124 + 7.11325i −0.132777 + 0.408646i
\(304\) 0 0
\(305\) −4.09325 12.5977i −0.234379 0.721345i
\(306\) 0 0
\(307\) 16.3856 + 5.32399i 0.935173 + 0.303856i 0.736677 0.676245i \(-0.236394\pi\)
0.198497 + 0.980102i \(0.436394\pi\)
\(308\) 0 0
\(309\) 27.7637 14.1463i 1.57942 0.804755i
\(310\) 0 0
\(311\) −2.53328 15.9945i −0.143649 0.906964i −0.949254 0.314511i \(-0.898160\pi\)
0.805605 0.592453i \(-0.201840\pi\)
\(312\) 0 0
\(313\) −25.3553 4.01588i −1.43316 0.226991i −0.608922 0.793230i \(-0.708398\pi\)
−0.824241 + 0.566239i \(0.808398\pi\)
\(314\) 0 0
\(315\) 27.5629 + 14.0440i 1.55299 + 0.791289i
\(316\) 0 0
\(317\) 6.31800 1.00067i 0.354854 0.0562034i 0.0235374 0.999723i \(-0.492507\pi\)
0.331317 + 0.943520i \(0.392507\pi\)
\(318\) 0 0
\(319\) 24.0919i 1.34889i
\(320\) 0 0
\(321\) 14.2179 + 27.9042i 0.793567 + 1.55746i
\(322\) 0 0
\(323\) 1.67128 + 2.30033i 0.0929928 + 0.127994i
\(324\) 0 0
\(325\) −2.61086 + 2.61086i −0.144825 + 0.144825i
\(326\) 0 0
\(327\) −40.4572 −2.23729
\(328\) 0 0
\(329\) −50.5705 −2.78804
\(330\) 0 0
\(331\) 11.8848 11.8848i 0.653248 0.653248i −0.300526 0.953774i \(-0.597162\pi\)
0.953774 + 0.300526i \(0.0971622\pi\)
\(332\) 0 0
\(333\) −2.72690 3.75326i −0.149433 0.205677i
\(334\) 0 0
\(335\) 2.26302 + 4.44143i 0.123642 + 0.242661i
\(336\) 0 0
\(337\) 10.2602i 0.558909i −0.960159 0.279455i \(-0.909846\pi\)
0.960159 0.279455i \(-0.0901537\pi\)
\(338\) 0 0
\(339\) 6.67886 1.05783i 0.362746 0.0574533i
\(340\) 0 0
\(341\) −26.7324 13.6209i −1.44764 0.737611i
\(342\) 0 0
\(343\) −15.9512 2.52643i −0.861285 0.136414i
\(344\) 0 0
\(345\) −3.49125 22.0429i −0.187962 1.18675i
\(346\) 0 0
\(347\) 20.9223 10.6604i 1.12317 0.572282i 0.209119 0.977890i \(-0.432940\pi\)
0.914047 + 0.405609i \(0.132940\pi\)
\(348\) 0 0
\(349\) −14.2515 4.63060i −0.762866 0.247870i −0.0983576 0.995151i \(-0.531359\pi\)
−0.664508 + 0.747281i \(0.731359\pi\)
\(350\) 0 0
\(351\) −15.8656 48.8292i −0.846841 2.60631i
\(352\) 0 0
\(353\) 0.402375 1.23838i 0.0214163 0.0659125i −0.939777 0.341788i \(-0.888968\pi\)
0.961193 + 0.275875i \(0.0889676\pi\)
\(354\) 0 0
\(355\) 3.88975 + 3.88975i 0.206446 + 0.206446i
\(356\) 0 0
\(357\) −0.870132 + 5.49380i −0.0460523 + 0.290763i
\(358\) 0 0
\(359\) 27.5627 + 20.0255i 1.45470 + 1.05690i 0.984703 + 0.174239i \(0.0557464\pi\)
0.470001 + 0.882666i \(0.344254\pi\)
\(360\) 0 0
\(361\) 17.1060 23.5444i 0.900315 1.23918i
\(362\) 0 0
\(363\) 3.80737 7.47239i 0.199835 0.392199i
\(364\) 0 0
\(365\) 2.55528 1.85652i 0.133749 0.0971745i
\(366\) 0 0
\(367\) 7.78450 2.52934i 0.406348 0.132030i −0.0987095 0.995116i \(-0.531471\pi\)
0.505057 + 0.863086i \(0.331471\pi\)
\(368\) 0 0
\(369\) 11.8496 + 45.3946i 0.616867 + 2.36315i
\(370\) 0 0
\(371\) −25.8787 + 8.40850i −1.34356 + 0.436548i
\(372\) 0 0
\(373\) 9.95850 7.23528i 0.515632 0.374628i −0.299324 0.954152i \(-0.596761\pi\)
0.814956 + 0.579523i \(0.196761\pi\)
\(374\) 0 0
\(375\) −1.45893 + 2.86331i −0.0753387 + 0.147861i
\(376\) 0 0
\(377\) 14.1731 19.5076i 0.729952 1.00469i
\(378\) 0 0
\(379\) −2.32363 1.68822i −0.119357 0.0867179i 0.526505 0.850172i \(-0.323502\pi\)
−0.645862 + 0.763454i \(0.723502\pi\)
\(380\) 0 0
\(381\) 6.44890 40.7168i 0.330387 2.08598i
\(382\) 0 0
\(383\) 3.72754 + 3.72754i 0.190468 + 0.190468i 0.795898 0.605430i \(-0.206999\pi\)
−0.605430 + 0.795898i \(0.706999\pi\)
\(384\) 0 0
\(385\) 4.81309 14.8132i 0.245298 0.754949i
\(386\) 0 0
\(387\) 15.4923 + 47.6804i 0.787518 + 2.42373i
\(388\) 0 0
\(389\) −25.6732 8.34171i −1.30168 0.422942i −0.425515 0.904951i \(-0.639907\pi\)
−0.876166 + 0.482010i \(0.839907\pi\)
\(390\) 0 0
\(391\) 2.53682 1.29258i 0.128293 0.0653683i
\(392\) 0 0
\(393\) −0.360632 2.27694i −0.0181915 0.114857i
\(394\) 0 0
\(395\) −8.22568 1.30282i −0.413879 0.0655520i
\(396\) 0 0
\(397\) 27.7456 + 14.1371i 1.39251 + 0.709520i 0.979545 0.201226i \(-0.0644926\pi\)
0.412967 + 0.910746i \(0.364493\pi\)
\(398\) 0 0
\(399\) 92.9411 14.7204i 4.65288 0.736943i
\(400\) 0 0
\(401\) 14.5533i 0.726757i 0.931642 + 0.363379i \(0.118377\pi\)
−0.931642 + 0.363379i \(0.881623\pi\)
\(402\) 0 0
\(403\) 13.6326 + 26.7555i 0.679089 + 1.33279i
\(404\) 0 0
\(405\) −13.3450 18.3679i −0.663120 0.912707i
\(406\) 0 0
\(407\) −1.65171 + 1.65171i −0.0818722 + 0.0818722i
\(408\) 0 0
\(409\) −6.76561 −0.334538 −0.167269 0.985911i \(-0.553495\pi\)
−0.167269 + 0.985911i \(0.553495\pi\)
\(410\) 0 0
\(411\) 27.5530 1.35909
\(412\) 0 0
\(413\) 13.8350 13.8350i 0.680778 0.680778i
\(414\) 0 0
\(415\) −1.44504 1.98892i −0.0709340 0.0976323i
\(416\) 0 0
\(417\) −6.70708 13.1634i −0.328447 0.644614i
\(418\) 0 0
\(419\) 16.2325i 0.793008i 0.918033 + 0.396504i \(0.129777\pi\)
−0.918033 + 0.396504i \(0.870223\pi\)
\(420\) 0 0
\(421\) 25.4488 4.03070i 1.24030 0.196444i 0.498396 0.866950i \(-0.333923\pi\)
0.741905 + 0.670505i \(0.233923\pi\)
\(422\) 0 0
\(423\) 78.1965 + 39.8431i 3.80204 + 1.93724i
\(424\) 0 0
\(425\) −0.404919 0.0641329i −0.0196415 0.00311090i
\(426\) 0 0
\(427\) −8.74855 55.2362i −0.423372 2.67307i
\(428\) 0 0
\(429\) −39.0024 + 19.8727i −1.88305 + 0.959464i
\(430\) 0 0
\(431\) −1.79076 0.581854i −0.0862580 0.0280269i 0.265570 0.964092i \(-0.414440\pi\)
−0.351828 + 0.936065i \(0.614440\pi\)
\(432\) 0 0
\(433\) 3.22537 + 9.92667i 0.155001 + 0.477045i 0.998161 0.0606180i \(-0.0193071\pi\)
−0.843160 + 0.537663i \(0.819307\pi\)
\(434\) 0 0
\(435\) 6.48510 19.9591i 0.310937 0.956966i
\(436\) 0 0
\(437\) −34.0588 34.0588i −1.62925 1.62925i
\(438\) 0 0
\(439\) −4.01237 + 25.3331i −0.191500 + 1.20908i 0.685311 + 0.728250i \(0.259666\pi\)
−0.876812 + 0.480834i \(0.840334\pi\)
\(440\) 0 0
\(441\) 64.1683 + 46.6210i 3.05563 + 2.22005i
\(442\) 0 0
\(443\) −10.5671 + 14.5443i −0.502056 + 0.691021i −0.982555 0.185975i \(-0.940456\pi\)
0.480498 + 0.876996i \(0.340456\pi\)
\(444\) 0 0
\(445\) −0.951082 + 1.86660i −0.0450856 + 0.0884855i
\(446\) 0 0
\(447\) 7.48571 5.43869i 0.354062 0.257241i
\(448\) 0 0
\(449\) 11.1010 3.60694i 0.523889 0.170222i −0.0351205 0.999383i \(-0.511181\pi\)
0.559010 + 0.829161i \(0.311181\pi\)
\(450\) 0 0
\(451\) 21.6414 9.46830i 1.01905 0.445845i
\(452\) 0 0
\(453\) −42.7375 + 13.8863i −2.00799 + 0.652434i
\(454\) 0 0
\(455\) −12.6117 + 9.16295i −0.591246 + 0.429566i
\(456\) 0 0
\(457\) 15.6379 30.6912i 0.731512 1.43567i −0.162073 0.986779i \(-0.551818\pi\)
0.893585 0.448894i \(-0.148182\pi\)
\(458\) 0 0
\(459\) 3.35074 4.61190i 0.156399 0.215265i
\(460\) 0 0
\(461\) −4.74767 3.44939i −0.221121 0.160654i 0.471710 0.881754i \(-0.343637\pi\)
−0.692831 + 0.721100i \(0.743637\pi\)
\(462\) 0 0
\(463\) −0.672543 + 4.24627i −0.0312557 + 0.197341i −0.998375 0.0569815i \(-0.981852\pi\)
0.967120 + 0.254322i \(0.0818524\pi\)
\(464\) 0 0
\(465\) 18.4801 + 18.4801i 0.856996 + 0.856996i
\(466\) 0 0
\(467\) −7.10554 + 21.8686i −0.328805 + 1.01196i 0.640888 + 0.767634i \(0.278566\pi\)
−0.969694 + 0.244324i \(0.921434\pi\)
\(468\) 0 0
\(469\) 6.50342 + 20.0155i 0.300300 + 0.924229i
\(470\) 0 0
\(471\) 26.8888 + 8.73671i 1.23897 + 0.402566i
\(472\) 0 0
\(473\) 22.4912 11.4598i 1.03415 0.526924i
\(474\) 0 0
\(475\) 1.08497 + 6.85020i 0.0497816 + 0.314309i
\(476\) 0 0
\(477\) 46.6407 + 7.38716i 2.13553 + 0.338235i
\(478\) 0 0
\(479\) −22.6718 11.5519i −1.03590 0.527819i −0.148548 0.988905i \(-0.547460\pi\)
−0.887355 + 0.461086i \(0.847460\pi\)
\(480\) 0 0
\(481\) 2.30910 0.365726i 0.105286 0.0166757i
\(482\) 0 0
\(483\) 94.2248i 4.28738i
\(484\) 0 0
\(485\) −5.23335 10.2710i −0.237634 0.466383i
\(486\) 0 0
\(487\) −13.1505 18.1001i −0.595904 0.820192i 0.399421 0.916767i \(-0.369211\pi\)
−0.995326 + 0.0965756i \(0.969211\pi\)
\(488\) 0 0
\(489\) 6.15765 6.15765i 0.278459 0.278459i
\(490\) 0 0
\(491\) 43.4585 1.96126 0.980628 0.195880i \(-0.0627564\pi\)
0.980628 + 0.195880i \(0.0627564\pi\)
\(492\) 0 0
\(493\) 2.67729 0.120579
\(494\) 0 0
\(495\) −19.1133 + 19.1133i −0.859079 + 0.859079i
\(496\) 0 0
\(497\) 13.6513 + 18.7893i 0.612343 + 0.842817i
\(498\) 0 0
\(499\) 20.0752 + 39.3998i 0.898690 + 1.76378i 0.576484 + 0.817109i \(0.304424\pi\)
0.322206 + 0.946670i \(0.395576\pi\)
\(500\) 0 0
\(501\) 63.7590i 2.84854i
\(502\) 0 0
\(503\) −2.28970 + 0.362653i −0.102093 + 0.0161699i −0.207272 0.978283i \(-0.566458\pi\)
0.105179 + 0.994453i \(0.466458\pi\)
\(504\) 0 0
\(505\) −2.07375 1.05663i −0.0922805 0.0470193i
\(506\) 0 0
\(507\) 2.00981 + 0.318322i 0.0892587 + 0.0141372i
\(508\) 0 0
\(509\) 1.36666 + 8.62877i 0.0605762 + 0.382463i 0.999287 + 0.0377573i \(0.0120214\pi\)
−0.938711 + 0.344706i \(0.887979\pi\)
\(510\) 0 0
\(511\) 11.8817 6.05403i 0.525615 0.267814i
\(512\) 0 0
\(513\) −91.7200 29.8016i −4.04954 1.31577i
\(514\) 0 0
\(515\) 2.99634 + 9.22180i 0.132035 + 0.406361i
\(516\) 0 0
\(517\) 13.6548 42.0253i 0.600539 1.84827i
\(518\) 0 0
\(519\) −55.2207 55.2207i −2.42392 2.42392i
\(520\) 0 0
\(521\) 1.73654 10.9641i 0.0760791 0.480344i −0.920003 0.391911i \(-0.871814\pi\)
0.996082 0.0884331i \(-0.0281859\pi\)
\(522\) 0 0
\(523\) 18.2536 + 13.2621i 0.798176 + 0.579909i 0.910379 0.413776i \(-0.135790\pi\)
−0.112202 + 0.993685i \(0.535790\pi\)
\(524\) 0 0
\(525\) −7.97486 + 10.9765i −0.348052 + 0.479052i
\(526\) 0 0
\(527\) −1.51366 + 2.97072i −0.0659361 + 0.129407i
\(528\) 0 0
\(529\) −20.4119 + 14.8301i −0.887474 + 0.644787i
\(530\) 0 0
\(531\) −32.2932 + 10.4927i −1.40140 + 0.455344i
\(532\) 0 0
\(533\) −23.0935 5.06483i −1.00029 0.219382i
\(534\) 0 0
\(535\) −9.26848 + 3.01151i −0.400711 + 0.130199i
\(536\) 0 0
\(537\) −19.7842 + 14.3741i −0.853753 + 0.620288i
\(538\) 0 0
\(539\) 18.1304 35.5830i 0.780933 1.53267i
\(540\) 0 0
\(541\) −4.48873 + 6.17821i −0.192986 + 0.265622i −0.894534 0.447000i \(-0.852492\pi\)
0.701548 + 0.712622i \(0.252492\pi\)
\(542\) 0 0
\(543\) −10.5908 7.69467i −0.454495 0.330210i
\(544\) 0 0
\(545\) 1.96943 12.4345i 0.0843612 0.532636i
\(546\) 0 0
\(547\) −21.6382 21.6382i −0.925183 0.925183i 0.0722070 0.997390i \(-0.476996\pi\)
−0.997390 + 0.0722070i \(0.976996\pi\)
\(548\) 0 0
\(549\) −29.9913 + 92.3036i −1.28000 + 3.93942i
\(550\) 0 0
\(551\) −13.9963 43.0762i −0.596263 1.83511i
\(552\) 0 0
\(553\) −33.4407 10.8656i −1.42205 0.462050i
\(554\) 0 0
\(555\) 1.81298 0.923758i 0.0769566 0.0392113i
\(556\) 0 0
\(557\) 1.57446 + 9.94075i 0.0667120 + 0.421203i 0.998330 + 0.0577647i \(0.0183973\pi\)
−0.931618 + 0.363438i \(0.881603\pi\)
\(558\) 0 0
\(559\) −24.9532 3.95220i −1.05541 0.167160i
\(560\) 0 0
\(561\) −4.33053 2.20651i −0.182835 0.0931591i
\(562\) 0 0
\(563\) 17.3837 2.75331i 0.732637 0.116038i 0.221041 0.975264i \(-0.429054\pi\)
0.511596 + 0.859226i \(0.329054\pi\)
\(564\) 0 0
\(565\) 2.10424i 0.0885260i
\(566\) 0 0
\(567\) −43.5176 85.4082i −1.82757 3.58681i
\(568\) 0 0
\(569\) −21.4876 29.5751i −0.900805 1.23985i −0.970210 0.242264i \(-0.922110\pi\)
0.0694049 0.997589i \(-0.477890\pi\)
\(570\) 0 0
\(571\) −7.82512 + 7.82512i −0.327471 + 0.327471i −0.851624 0.524153i \(-0.824382\pi\)
0.524153 + 0.851624i \(0.324382\pi\)
\(572\) 0 0
\(573\) 35.1495 1.46839
\(574\) 0 0
\(575\) 6.94482 0.289619
\(576\) 0 0
\(577\) 3.60766 3.60766i 0.150189 0.150189i −0.628014 0.778202i \(-0.716132\pi\)
0.778202 + 0.628014i \(0.216132\pi\)
\(578\) 0 0
\(579\) −17.1291 23.5762i −0.711862 0.979794i
\(580\) 0 0
\(581\) −4.71221 9.24822i −0.195495 0.383681i
\(582\) 0 0
\(583\) 23.7762i 0.984711i
\(584\) 0 0
\(585\) 26.7205 4.23212i 1.10476 0.174977i
\(586\) 0 0
\(587\) 4.64215 + 2.36529i 0.191602 + 0.0976261i 0.547160 0.837028i \(-0.315709\pi\)
−0.355558 + 0.934654i \(0.615709\pi\)
\(588\) 0 0
\(589\) 55.7105 + 8.82367i 2.29551 + 0.363573i
\(590\) 0 0
\(591\) −7.96626 50.2970i −0.327688 2.06894i
\(592\) 0 0
\(593\) −13.7216 + 6.99150i −0.563478 + 0.287107i −0.712436 0.701737i \(-0.752408\pi\)
0.148958 + 0.988844i \(0.452408\pi\)
\(594\) 0 0
\(595\) −1.64616 0.534870i −0.0674860 0.0219275i
\(596\) 0 0
\(597\) 20.7500 + 63.8620i 0.849242 + 2.61370i
\(598\) 0 0
\(599\) −3.71599 + 11.4366i −0.151831 + 0.467288i −0.997826 0.0659027i \(-0.979007\pi\)
0.845995 + 0.533191i \(0.179007\pi\)
\(600\) 0 0
\(601\) −7.25146 7.25146i −0.295793 0.295793i 0.543570 0.839364i \(-0.317072\pi\)
−0.839364 + 0.543570i \(0.817072\pi\)
\(602\) 0 0
\(603\) 5.71348 36.0735i 0.232671 1.46903i
\(604\) 0 0
\(605\) 2.11130 + 1.53395i 0.0858364 + 0.0623638i
\(606\) 0 0
\(607\) 6.91662 9.51991i 0.280737 0.386401i −0.645241 0.763979i \(-0.723243\pi\)
0.925978 + 0.377578i \(0.123243\pi\)
\(608\) 0 0
\(609\) 40.2253 78.9465i 1.63001 3.19907i
\(610\) 0 0
\(611\) −35.7797 + 25.9955i −1.44749 + 1.05166i
\(612\) 0 0
\(613\) −9.55967 + 3.10612i −0.386111 + 0.125455i −0.495639 0.868529i \(-0.665066\pi\)
0.109528 + 0.993984i \(0.465066\pi\)
\(614\) 0 0
\(615\) −20.4776 + 2.01861i −0.825737 + 0.0813981i
\(616\) 0 0
\(617\) −40.2350 + 13.0731i −1.61980 + 0.526305i −0.971894 0.235417i \(-0.924354\pi\)
−0.647904 + 0.761722i \(0.724354\pi\)
\(618\) 0 0
\(619\) −23.6995 + 17.2187i −0.952563 + 0.692078i −0.951412 0.307921i \(-0.900367\pi\)
−0.00115171 + 0.999999i \(0.500367\pi\)
\(620\) 0 0
\(621\) −43.8411 + 86.0430i −1.75928 + 3.45279i
\(622\) 0 0
\(623\) −5.19885 + 7.15561i −0.208288 + 0.286683i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 0 0
\(627\) −12.8626 + 81.2110i −0.513681 + 3.24326i
\(628\) 0 0
\(629\) 0.183551 + 0.183551i 0.00731867 + 0.00731867i
\(630\) 0 0
\(631\) 0.561861 1.72923i 0.0223673 0.0688395i −0.939250 0.343234i \(-0.888478\pi\)
0.961617 + 0.274395i \(0.0884775\pi\)
\(632\) 0 0
\(633\) 13.4120 + 41.2779i 0.533079 + 1.64065i
\(634\) 0 0
\(635\) 12.2004 + 3.96414i 0.484156 + 0.157312i
\(636\) 0 0
\(637\) −35.6137 + 18.1461i −1.41107 + 0.718974i
\(638\) 0 0
\(639\) −6.30515 39.8091i −0.249428 1.57482i
\(640\) 0 0
\(641\) 6.64091 + 1.05182i 0.262300 + 0.0415442i 0.286199 0.958170i \(-0.407608\pi\)
−0.0238992 + 0.999714i \(0.507608\pi\)
\(642\) 0 0
\(643\) 24.1798 + 12.3202i 0.953559 + 0.485863i 0.860305 0.509780i \(-0.170273\pi\)
0.0932540 + 0.995642i \(0.470273\pi\)
\(644\) 0 0
\(645\) −21.7177 + 3.43975i −0.855135 + 0.135440i
\(646\) 0 0
\(647\) 42.9895i 1.69009i −0.534695 0.845045i \(-0.679573\pi\)
0.534695 0.845045i \(-0.320427\pi\)
\(648\) 0 0
\(649\) 7.76156 + 15.2329i 0.304668 + 0.597944i
\(650\) 0 0
\(651\) 64.8569 + 89.2679i 2.54194 + 3.49869i
\(652\) 0 0
\(653\) 6.00403 6.00403i 0.234956 0.234956i −0.579802 0.814758i \(-0.696870\pi\)
0.814758 + 0.579802i \(0.196870\pi\)
\(654\) 0 0
\(655\) 0.717373 0.0280301
\(656\) 0 0
\(657\) −23.1423 −0.902867
\(658\) 0 0
\(659\) 6.87859 6.87859i 0.267952 0.267952i −0.560323 0.828275i \(-0.689323\pi\)
0.828275 + 0.560323i \(0.189323\pi\)
\(660\) 0 0
\(661\) 5.72943 + 7.88588i 0.222849 + 0.306725i 0.905772 0.423765i \(-0.139292\pi\)
−0.682923 + 0.730490i \(0.739292\pi\)
\(662\) 0 0
\(663\) 2.20842 + 4.33426i 0.0857678 + 0.168329i
\(664\) 0 0
\(665\) 29.2820i 1.13551i
\(666\) 0 0
\(667\) −44.7949 + 7.09481i −1.73446 + 0.274712i
\(668\) 0 0
\(669\) −25.9212 13.2075i −1.00217 0.510632i
\(670\) 0 0
\(671\) 48.2648 + 7.64440i 1.86324 + 0.295109i
\(672\) 0 0
\(673\) −3.95044 24.9421i −0.152278 0.961446i −0.938945 0.344068i \(-0.888195\pi\)
0.786667 0.617378i \(-0.211805\pi\)
\(674\) 0 0
\(675\) 12.3895 6.31278i 0.476873 0.242979i
\(676\) 0 0
\(677\) 25.0321 + 8.13344i 0.962063 + 0.312593i 0.747608 0.664140i \(-0.231202\pi\)
0.214456 + 0.976734i \(0.431202\pi\)
\(678\) 0 0
\(679\) −15.0395 46.2868i −0.577162 1.77632i
\(680\) 0 0
\(681\) 5.76410 17.7401i 0.220881 0.679802i
\(682\) 0 0
\(683\) −24.3441 24.3441i −0.931502 0.931502i 0.0662979 0.997800i \(-0.478881\pi\)
−0.997800 + 0.0662979i \(0.978881\pi\)
\(684\) 0 0
\(685\) −1.34126 + 8.46841i −0.0512471 + 0.323561i
\(686\) 0 0
\(687\) 69.3239 + 50.3668i 2.64487 + 1.92161i
\(688\) 0 0
\(689\) −13.9874 + 19.2520i −0.532877 + 0.733442i
\(690\) 0 0
\(691\) 18.5908 36.4865i 0.707228 1.38801i −0.205177 0.978725i \(-0.565777\pi\)
0.912405 0.409288i \(-0.134223\pi\)
\(692\) 0 0
\(693\) −92.3264 + 67.0790i −3.50719 + 2.54812i
\(694\) 0 0
\(695\) 4.37226 1.42063i 0.165849 0.0538877i
\(696\) 0 0
\(697\) −1.05219 2.40497i −0.0398547 0.0910946i
\(698\) 0 0
\(699\) 22.3429 7.25964i 0.845086 0.274585i
\(700\) 0 0
\(701\) −0.363350 + 0.263989i −0.0137235 + 0.00997073i −0.594626 0.804003i \(-0.702700\pi\)
0.580902 + 0.813973i \(0.302700\pi\)
\(702\) 0 0
\(703\) 1.99368 3.91281i 0.0751929 0.147574i
\(704\) 0 0
\(705\) −22.6249 + 31.1404i −0.852101 + 1.17282i
\(706\) 0 0
\(707\) −7.94969 5.77578i −0.298979 0.217221i
\(708\) 0 0
\(709\) −0.0782035 + 0.493757i −0.00293699 + 0.0185435i −0.989113 0.147156i \(-0.952988\pi\)
0.986176 + 0.165699i \(0.0529881\pi\)
\(710\) 0 0
\(711\) 43.1483 + 43.1483i 1.61819 + 1.61819i
\(712\) 0 0
\(713\) 17.4533 53.7156i 0.653630 2.01166i
\(714\) 0 0
\(715\) −4.20926 12.9548i −0.157417 0.484481i
\(716\) 0 0
\(717\) 34.0940 + 11.0778i 1.27327 + 0.413709i
\(718\) 0 0
\(719\) 14.1999 7.23521i 0.529567 0.269828i −0.168697 0.985668i \(-0.553956\pi\)
0.698264 + 0.715840i \(0.253956\pi\)
\(720\) 0 0
\(721\) 6.40412 + 40.4340i 0.238502 + 1.50584i
\(722\) 0 0
\(723\) −73.2953 11.6088i −2.72588 0.431737i
\(724\) 0 0
\(725\) 5.81873 + 2.96479i 0.216102 + 0.110110i
\(726\) 0 0
\(727\) 21.6988 3.43675i 0.804764 0.127462i 0.259518 0.965738i \(-0.416436\pi\)
0.545246 + 0.838276i \(0.316436\pi\)
\(728\) 0 0
\(729\) 32.2969i 1.19618i
\(730\) 0 0
\(731\) −1.27351 2.49941i −0.0471025 0.0924438i
\(732\) 0 0
\(733\) 14.2820 + 19.6575i 0.527518 + 0.726067i 0.986750 0.162250i \(-0.0518751\pi\)
−0.459231 + 0.888317i \(0.651875\pi\)
\(734\) 0 0
\(735\) −24.5985 + 24.5985i −0.907330 + 0.907330i
\(736\) 0 0
\(737\) −18.3894 −0.677381
\(738\) 0 0
\(739\) −25.6217 −0.942509 −0.471255 0.881997i \(-0.656199\pi\)
−0.471255 + 0.881997i \(0.656199\pi\)
\(740\) 0 0
\(741\) 58.1908 58.1908i 2.13769 2.13769i
\(742\) 0 0
\(743\) −14.3477 19.7479i −0.526364 0.724479i 0.460206 0.887812i \(-0.347775\pi\)
−0.986571 + 0.163333i \(0.947775\pi\)
\(744\) 0 0
\(745\) 1.30718 + 2.56548i 0.0478913 + 0.0939921i
\(746\) 0 0
\(747\) 18.0130i 0.659061i
\(748\) 0 0
\(749\) −40.6387 + 6.43653i −1.48490 + 0.235186i
\(750\) 0 0
\(751\) 18.4311 + 9.39112i 0.672561 + 0.342687i 0.756695 0.653768i \(-0.226813\pi\)
−0.0841347 + 0.996454i \(0.526813\pi\)
\(752\) 0 0
\(753\) 45.5608 + 7.21612i 1.66033 + 0.262970i
\(754\) 0 0
\(755\) −2.18750 13.8113i −0.0796114 0.502646i
\(756\) 0 0
\(757\) 35.9492 18.3170i 1.30660 0.665744i 0.344585 0.938755i \(-0.388020\pi\)
0.962011 + 0.273012i \(0.0880197\pi\)
\(758\) 0 0
\(759\) 78.3030 + 25.4422i 2.84222 + 0.923493i
\(760\) 0 0
\(761\) 1.77525 + 5.46367i 0.0643529 + 0.198058i 0.978063 0.208308i \(-0.0667957\pi\)
−0.913710 + 0.406366i \(0.866796\pi\)
\(762\) 0 0
\(763\) 16.4251 50.5513i 0.594629 1.83008i
\(764\) 0 0
\(765\) 2.12402 + 2.12402i 0.0767943 + 0.0767943i
\(766\) 0 0
\(767\) 2.67676 16.9004i 0.0966522 0.610238i
\(768\) 0 0
\(769\) −37.2880 27.0913i −1.34464 0.976937i −0.999260 0.0384734i \(-0.987751\pi\)
−0.345379 0.938463i \(-0.612249\pi\)
\(770\) 0 0
\(771\) −36.8760 + 50.7555i −1.32806 + 1.82792i
\(772\) 0 0
\(773\) −6.76644 + 13.2799i −0.243372 + 0.477644i −0.980090 0.198556i \(-0.936375\pi\)
0.736718 + 0.676201i \(0.236375\pi\)
\(774\) 0 0
\(775\) −6.57947 + 4.78026i −0.236342 + 0.171712i
\(776\) 0 0
\(777\) 8.17025 2.65467i 0.293106 0.0952359i
\(778\) 0 0
\(779\) −33.1940 + 29.5019i −1.18930 + 1.05701i
\(780\) 0 0
\(781\) −19.3004 + 6.27109i −0.690624 + 0.224397i
\(782\) 0 0
\(783\) −73.4648 + 53.3753i −2.62542 + 1.90748i
\(784\) 0 0
\(785\) −3.99416 + 7.83898i −0.142558 + 0.279785i
\(786\) 0 0
\(787\) −2.72667 + 3.75294i −0.0971953 + 0.133778i −0.854845 0.518884i \(-0.826348\pi\)
0.757649 + 0.652662i \(0.226348\pi\)
\(788\) 0 0
\(789\) −17.2117 12.5050i −0.612753 0.445191i
\(790\) 0 0
\(791\) −1.38978 + 8.77471i −0.0494148 + 0.311993i
\(792\) 0 0
\(793\) −34.5836 34.5836i −1.22810 1.22810i
\(794\) 0 0
\(795\) −6.40012 + 19.6976i −0.226989 + 0.698600i
\(796\) 0 0
\(797\) 8.11775 + 24.9839i 0.287545 + 0.884974i 0.985624 + 0.168953i \(0.0540385\pi\)
−0.698079 + 0.716021i \(0.745962\pi\)
\(798\) 0 0
\(799\) −4.67019 1.51744i −0.165219 0.0536831i
\(800\) 0 0
\(801\) 13.6766 6.96858i 0.483239 0.246223i
\(802\) 0 0
\(803\) 1.82279 + 11.5087i 0.0643249 + 0.406131i
\(804\) 0 0
\(805\) 28.9600 + 4.58681i 1.02071 + 0.161664i
\(806\) 0 0
\(807\) −76.5321 38.9951i −2.69406 1.37269i
\(808\) 0 0
\(809\) 7.20014 1.14039i 0.253143 0.0400940i −0.0285730 0.999592i \(-0.509096\pi\)
0.281716 + 0.959498i \(0.409096\pi\)
\(810\) 0 0
\(811\) 34.9205i 1.22623i 0.789996 + 0.613113i \(0.210083\pi\)
−0.789996 + 0.613113i \(0.789917\pi\)
\(812\) 0 0
\(813\) 17.6614 + 34.6624i 0.619412 + 1.21566i
\(814\) 0 0
\(815\) 1.59280 + 2.19230i 0.0557934 + 0.0767931i
\(816\) 0 0
\(817\) −33.5565 + 33.5565i −1.17399 + 1.17399i
\(818\) 0 0
\(819\) 114.220 3.99118
\(820\) 0 0
\(821\) 50.5976 1.76587 0.882934 0.469497i \(-0.155565\pi\)
0.882934 + 0.469497i \(0.155565\pi\)
\(822\) 0 0
\(823\) 7.77724 7.77724i 0.271098 0.271098i −0.558444 0.829542i \(-0.688602\pi\)
0.829542 + 0.558444i \(0.188602\pi\)
\(824\) 0 0
\(825\) −6.96835 9.59112i −0.242607 0.333920i
\(826\) 0 0
\(827\) 3.57390 + 7.01418i 0.124277 + 0.243907i 0.944759 0.327764i \(-0.106295\pi\)
−0.820483 + 0.571671i \(0.806295\pi\)
\(828\) 0 0
\(829\) 29.8851i 1.03795i −0.854789 0.518976i \(-0.826314\pi\)
0.854789 0.518976i \(-0.173686\pi\)
\(830\) 0 0
\(831\) 27.4752 4.35165i 0.953105 0.150957i
\(832\) 0 0
\(833\) −3.95427 2.01480i −0.137007 0.0698087i
\(834\) 0 0
\(835\) −19.5963 3.10375i −0.678158 0.107410i
\(836\) 0 0
\(837\) −17.6905 111.693i −0.611473 3.86069i
\(838\) 0 0
\(839\) −5.07517 + 2.58593i −0.175214 + 0.0892761i −0.539398 0.842051i \(-0.681348\pi\)
0.364184 + 0.931327i \(0.381348\pi\)
\(840\) 0 0
\(841\) −12.9797 4.21735i −0.447575 0.145426i
\(842\) 0 0
\(843\) −6.10621 18.7930i −0.210309 0.647264i
\(844\) 0 0
\(845\) −0.195673 + 0.602218i −0.00673134 + 0.0207169i
\(846\) 0 0
\(847\) 7.79102 + 7.79102i 0.267702 + 0.267702i
\(848\) 0 0
\(849\) 7.78636 49.1612i 0.267227 1.68721i
\(850\) 0 0
\(851\) −3.55748 2.58466i −0.121949 0.0886011i
\(852\) 0 0
\(853\) 8.69633 11.9695i 0.297756 0.409827i −0.633758 0.773532i \(-0.718488\pi\)
0.931514 + 0.363705i \(0.118488\pi\)
\(854\) 0 0
\(855\) 23.0705 45.2784i 0.788994 1.54849i
\(856\) 0 0
\(857\) −25.0954 + 18.2328i −0.857241 + 0.622822i −0.927133 0.374733i \(-0.877735\pi\)
0.0698921 + 0.997555i \(0.477735\pi\)
\(858\) 0 0
\(859\) −38.8258 + 12.6153i −1.32472 + 0.430428i −0.884113 0.467272i \(-0.845237\pi\)
−0.440607 + 0.897700i \(0.645237\pi\)
\(860\) 0 0
\(861\) −86.7251 5.10712i −2.95558 0.174050i
\(862\) 0 0
\(863\) 29.5131 9.58938i 1.00464 0.326426i 0.239920 0.970793i \(-0.422879\pi\)
0.764717 + 0.644366i \(0.222879\pi\)
\(864\) 0 0
\(865\) 19.6602 14.2839i 0.668466 0.485669i
\(866\) 0 0
\(867\) 24.5566 48.1950i 0.833985 1.63679i
\(868\) 0 0
\(869\) 18.0591 24.8562i 0.612612 0.843188i
\(870\) 0 0
\(871\) 14.8901 + 10.8183i 0.504533 + 0.366565i
\(872\) 0 0
\(873\) −13.2127 + 83.4217i −0.447182 + 2.82340i
\(874\) 0 0
\(875\) −2.98540 2.98540i −0.100925 0.100925i
\(876\) 0 0
\(877\) 6.70806 20.6453i 0.226515 0.697142i −0.771619 0.636085i \(-0.780553\pi\)
0.998134 0.0610571i \(-0.0194472\pi\)
\(878\) 0 0
\(879\) −7.91141 24.3488i −0.266845 0.821266i
\(880\) 0 0
\(881\) 1.81516 + 0.589782i 0.0611544 + 0.0198703i 0.339434 0.940630i \(-0.389764\pi\)
−0.278280 + 0.960500i \(0.589764\pi\)
\(882\) 0 0
\(883\) −25.5826 + 13.0350i −0.860924 + 0.438663i −0.827955 0.560794i \(-0.810496\pi\)
−0.0329683 + 0.999456i \(0.510496\pi\)
\(884\) 0 0
\(885\) −2.32969 14.7091i −0.0783116 0.494440i
\(886\) 0 0
\(887\) 32.9819 + 5.22381i 1.10742 + 0.175398i 0.683251 0.730183i \(-0.260565\pi\)
0.424171 + 0.905582i \(0.360565\pi\)
\(888\) 0 0
\(889\) 48.2575 + 24.5884i 1.61850 + 0.824669i
\(890\) 0 0
\(891\) 82.7266 13.1026i 2.77145 0.438954i
\(892\) 0 0
\(893\) 83.0737i 2.77996i
\(894\) 0 0
\(895\) −3.45479 6.78040i −0.115481 0.226644i
\(896\) 0 0
\(897\) −48.4357 66.6660i −1.61722 2.22591i
\(898\) 0 0
\(899\) 37.5548 37.5548i 1.25252 1.25252i
\(900\) 0 0
\(901\) −2.64221 −0.0880247
\(902\) 0 0
\(903\) −92.8351 −3.08936
\(904\) 0 0
\(905\) 2.88051 2.88051i 0.0957514 0.0957514i
\(906\) 0 0
\(907\) −11.0044 15.1463i −0.365396 0.502924i 0.586247 0.810133i \(-0.300605\pi\)
−0.951642 + 0.307209i \(0.900605\pi\)
\(908\) 0 0
\(909\) 7.74190 + 15.1943i 0.256783 + 0.503965i
\(910\) 0 0
\(911\) 26.6553i 0.883129i 0.897230 + 0.441564i \(0.145576\pi\)
−0.897230 + 0.441564i \(0.854424\pi\)
\(912\) 0 0
\(913\) 8.95786 1.41879i 0.296462 0.0469549i
\(914\) 0 0
\(915\) −37.9275 19.3250i −1.25384 0.638866i
\(916\) 0 0
\(917\) 2.99145 + 0.473800i 0.0987865 + 0.0156462i
\(918\) 0 0
\(919\) 0.614022 + 3.87678i 0.0202547 + 0.127883i 0.995744 0.0921646i \(-0.0293786\pi\)
−0.975489 + 0.220048i \(0.929379\pi\)
\(920\) 0 0
\(921\) 49.3313 25.1356i 1.62552 0.828245i
\(922\) 0 0
\(923\) 19.3171 + 6.27651i 0.635830 + 0.206594i
\(924\) 0 0
\(925\) 0.195662 + 0.602186i 0.00643333 + 0.0197998i
\(926\) 0 0
\(927\) 21.9542 67.5681i 0.721071 2.21923i
\(928\) 0 0
\(929\) 40.8411 + 40.8411i 1.33995 + 1.33995i 0.896099 + 0.443855i \(0.146389\pi\)
0.443855 + 0.896099i \(0.353611\pi\)
\(930\) 0 0
\(931\) −11.7450 + 74.1550i −0.384927 + 2.43033i
\(932\) 0 0
\(933\) −42.1012 30.5883i −1.37833 1.00142i
\(934\) 0 0
\(935\) 0.888979 1.22357i 0.0290727 0.0400152i
\(936\) 0 0
\(937\) −0.542268 + 1.06426i −0.0177151 + 0.0347679i −0.899694 0.436520i \(-0.856211\pi\)
0.881979 + 0.471288i \(0.156211\pi\)
\(938\) 0 0
\(939\) −66.7410 + 48.4902i −2.17801 + 1.58242i
\(940\) 0 0
\(941\) −56.2849 + 18.2881i −1.83484 + 0.596175i −0.835960 + 0.548790i \(0.815088\pi\)
−0.998877 + 0.0473842i \(0.984912\pi\)
\(942\) 0 0
\(943\) 23.9778 + 37.4501i 0.780826 + 1.21954i
\(944\) 0 0
\(945\) 55.8339 18.1415i 1.81628 0.590144i
\(946\) 0 0
\(947\) 35.9036 26.0855i 1.16671 0.847664i 0.176098 0.984373i \(-0.443652\pi\)
0.990611 + 0.136708i \(0.0436523\pi\)
\(948\) 0 0
\(949\) 5.29451 10.3911i 0.171867 0.337308i
\(950\) 0 0
\(951\) 12.0827 16.6305i 0.391810 0.539280i
\(952\) 0 0
\(953\) −34.6106 25.1461i −1.12115 0.814561i −0.136765 0.990604i \(-0.543670\pi\)
−0.984383 + 0.176043i \(0.943670\pi\)
\(954\) 0 0
\(955\) −1.71106 + 10.8032i −0.0553685 + 0.349583i
\(956\) 0 0
\(957\) 54.7449 + 54.7449i 1.76965 + 1.76965i
\(958\) 0 0
\(959\) −11.1862 + 34.4275i −0.361221 + 1.11172i
\(960\) 0 0
\(961\) 10.8590 + 33.4205i 0.350289 + 1.07808i
\(962\) 0 0
\(963\) 67.9101 + 22.0653i 2.18837 + 0.711046i
\(964\) 0 0
\(965\) 8.07998 4.11695i 0.260104 0.132529i
\(966\) 0 0
\(967\) 5.73376 + 36.2015i 0.184385 + 1.16416i 0.890133 + 0.455700i \(0.150611\pi\)
−0.705748 + 0.708463i \(0.749389\pi\)
\(968\) 0 0
\(969\) 9.02483 + 1.42939i 0.289919 + 0.0459187i
\(970\) 0 0
\(971\) −5.35736 2.72971i −0.171926 0.0876006i 0.365910 0.930650i \(-0.380758\pi\)
−0.537836 + 0.843050i \(0.680758\pi\)
\(972\) 0 0
\(973\) 19.1707 3.03633i 0.614583 0.0973404i
\(974\) 0 0
\(975\) 11.8655i 0.380000i
\(976\) 0 0
\(977\) 7.53287 + 14.7841i 0.240998 + 0.472985i 0.979547 0.201214i \(-0.0644888\pi\)
−0.738549 + 0.674199i \(0.764489\pi\)
\(978\) 0 0
\(979\) −4.54270 6.25250i −0.145185 0.199831i
\(980\) 0 0
\(981\) −65.2259 + 65.2259i −2.08250 + 2.08250i
\(982\) 0 0
\(983\) 43.0090 1.37177 0.685887 0.727708i \(-0.259414\pi\)
0.685887 + 0.727708i \(0.259414\pi\)
\(984\) 0 0
\(985\) 15.8466 0.504913
\(986\) 0 0
\(987\) −114.913 + 114.913i −3.65772 + 3.65772i
\(988\) 0 0
\(989\) 27.9310 + 38.4438i 0.888155 + 1.22244i
\(990\) 0 0
\(991\) −12.5058 24.5440i −0.397260 0.779666i 0.602571 0.798065i \(-0.294143\pi\)
−0.999831 + 0.0183994i \(0.994143\pi\)
\(992\) 0 0
\(993\) 54.0124i 1.71403i
\(994\) 0 0
\(995\) −20.6381 + 3.26875i −0.654271 + 0.103626i
\(996\) 0 0
\(997\) 31.7331 + 16.1688i 1.00500 + 0.512072i 0.877403 0.479754i \(-0.159274\pi\)
0.127595 + 0.991826i \(0.459274\pi\)
\(998\) 0 0
\(999\) −8.69598 1.37731i −0.275129 0.0435761i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bo.b.781.8 yes 64
41.21 even 20 inner 820.2.bo.b.21.8 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bo.b.21.8 64 41.21 even 20 inner
820.2.bo.b.781.8 yes 64 1.1 even 1 trivial