Properties

Label 820.2.bo.b.21.8
Level $820$
Weight $2$
Character 820.21
Analytic conductor $6.548$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(21,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.21"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bo (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 21.8
Character \(\chi\) \(=\) 820.21
Dual form 820.2.bo.b.781.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.27233 + 2.27233i) q^{3} +(0.587785 - 0.809017i) q^{5} +(1.91674 - 3.76182i) q^{7} +7.32700i q^{9} +(-3.64371 - 0.577108i) q^{11} +(3.28988 - 1.67628i) q^{13} +(3.17400 - 0.502712i) q^{15} +(0.0641329 - 0.404919i) q^{17} +(6.17966 + 3.14869i) q^{19} +(12.9036 - 4.19263i) q^{21} +(-2.14607 + 6.60491i) q^{23} +(-0.309017 - 0.951057i) q^{25} +(-9.83239 + 9.83239i) q^{27} +(1.02160 + 6.45011i) q^{29} +(6.57947 - 4.78026i) q^{31} +(-6.96835 - 9.59112i) q^{33} +(-1.91674 - 3.76182i) q^{35} +(0.512250 + 0.372171i) q^{37} +(11.2848 + 3.66664i) q^{39} +(-6.19552 - 1.61726i) q^{41} +(-6.50749 - 2.11441i) q^{43} +(5.92767 + 4.30670i) q^{45} +(-5.43784 - 10.6724i) q^{47} +(-6.36291 - 8.75779i) q^{49} +(1.06584 - 0.774380i) q^{51} +(-1.00821 - 6.36559i) q^{53} +(-2.60861 + 2.60861i) q^{55} +(6.88736 + 21.1971i) q^{57} +(-1.43206 + 4.40742i) q^{59} +(-12.5977 + 4.09325i) q^{61} +(27.5629 + 14.0440i) q^{63} +(0.577606 - 3.64686i) q^{65} +(4.92336 - 0.779784i) q^{67} +(-19.8851 + 10.1320i) q^{69} +(5.43321 + 0.860536i) q^{71} +3.15849i q^{73} +(1.45893 - 2.86331i) q^{75} +(-9.15505 + 12.6008i) q^{77} +(-5.88894 - 5.88894i) q^{79} -22.7039 q^{81} -2.45844 q^{83} +(-0.289890 - 0.289890i) q^{85} +(-12.3354 + 16.9782i) q^{87} +(0.951082 - 1.86660i) q^{89} -15.5889i q^{91} +(25.8131 + 4.08839i) q^{93} +(6.17966 - 3.14869i) q^{95} +(-11.3855 + 1.80329i) q^{97} +(4.22847 - 26.6975i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 2 q^{3} - 10 q^{7} + 2 q^{11} + 6 q^{13} - 2 q^{15} + 2 q^{17} + 10 q^{19} - 22 q^{23} + 16 q^{25} + 20 q^{27} - 12 q^{29} + 22 q^{31} + 30 q^{33} + 10 q^{35} + 12 q^{37} + 20 q^{39} - 10 q^{41}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{20}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.27233 + 2.27233i 1.31193 + 1.31193i 0.919990 + 0.391943i \(0.128197\pi\)
0.391943 + 0.919990i \(0.371803\pi\)
\(4\) 0 0
\(5\) 0.587785 0.809017i 0.262866 0.361803i
\(6\) 0 0
\(7\) 1.91674 3.76182i 0.724461 1.42184i −0.174881 0.984590i \(-0.555954\pi\)
0.899342 0.437246i \(-0.144046\pi\)
\(8\) 0 0
\(9\) 7.32700i 2.44233i
\(10\) 0 0
\(11\) −3.64371 0.577108i −1.09862 0.174004i −0.419302 0.907847i \(-0.637725\pi\)
−0.679320 + 0.733843i \(0.737725\pi\)
\(12\) 0 0
\(13\) 3.28988 1.67628i 0.912448 0.464916i 0.0662617 0.997802i \(-0.478893\pi\)
0.846187 + 0.532887i \(0.178893\pi\)
\(14\) 0 0
\(15\) 3.17400 0.502712i 0.819523 0.129800i
\(16\) 0 0
\(17\) 0.0641329 0.404919i 0.0155545 0.0982073i −0.978690 0.205345i \(-0.934168\pi\)
0.994244 + 0.107137i \(0.0341685\pi\)
\(18\) 0 0
\(19\) 6.17966 + 3.14869i 1.41771 + 0.722360i 0.983913 0.178650i \(-0.0571731\pi\)
0.433798 + 0.901010i \(0.357173\pi\)
\(20\) 0 0
\(21\) 12.9036 4.19263i 2.81580 0.914908i
\(22\) 0 0
\(23\) −2.14607 + 6.60491i −0.447486 + 1.37722i 0.432249 + 0.901754i \(0.357720\pi\)
−0.879734 + 0.475465i \(0.842280\pi\)
\(24\) 0 0
\(25\) −0.309017 0.951057i −0.0618034 0.190211i
\(26\) 0 0
\(27\) −9.83239 + 9.83239i −1.89224 + 1.89224i
\(28\) 0 0
\(29\) 1.02160 + 6.45011i 0.189706 + 1.19776i 0.880266 + 0.474481i \(0.157364\pi\)
−0.690560 + 0.723275i \(0.742636\pi\)
\(30\) 0 0
\(31\) 6.57947 4.78026i 1.18171 0.858561i 0.189344 0.981911i \(-0.439364\pi\)
0.992363 + 0.123350i \(0.0393637\pi\)
\(32\) 0 0
\(33\) −6.96835 9.59112i −1.21303 1.66960i
\(34\) 0 0
\(35\) −1.91674 3.76182i −0.323989 0.635864i
\(36\) 0 0
\(37\) 0.512250 + 0.372171i 0.0842134 + 0.0611846i 0.629095 0.777328i \(-0.283426\pi\)
−0.544882 + 0.838513i \(0.683426\pi\)
\(38\) 0 0
\(39\) 11.2848 + 3.66664i 1.80701 + 0.587133i
\(40\) 0 0
\(41\) −6.19552 1.61726i −0.967578 0.252573i
\(42\) 0 0
\(43\) −6.50749 2.11441i −0.992384 0.322445i −0.232566 0.972581i \(-0.574712\pi\)
−0.759818 + 0.650136i \(0.774712\pi\)
\(44\) 0 0
\(45\) 5.92767 + 4.30670i 0.883645 + 0.642005i
\(46\) 0 0
\(47\) −5.43784 10.6724i −0.793191 1.55673i −0.830236 0.557412i \(-0.811795\pi\)
0.0370451 0.999314i \(-0.488205\pi\)
\(48\) 0 0
\(49\) −6.36291 8.75779i −0.908987 1.25111i
\(50\) 0 0
\(51\) 1.06584 0.774380i 0.149248 0.108435i
\(52\) 0 0
\(53\) −1.00821 6.36559i −0.138488 0.874381i −0.954904 0.296916i \(-0.904042\pi\)
0.816415 0.577465i \(-0.195958\pi\)
\(54\) 0 0
\(55\) −2.60861 + 2.60861i −0.351745 + 0.351745i
\(56\) 0 0
\(57\) 6.88736 + 21.1971i 0.912254 + 2.80763i
\(58\) 0 0
\(59\) −1.43206 + 4.40742i −0.186438 + 0.573797i −0.999970 0.00772284i \(-0.997542\pi\)
0.813532 + 0.581520i \(0.197542\pi\)
\(60\) 0 0
\(61\) −12.5977 + 4.09325i −1.61298 + 0.524087i −0.970270 0.242026i \(-0.922188\pi\)
−0.642706 + 0.766113i \(0.722188\pi\)
\(62\) 0 0
\(63\) 27.5629 + 14.0440i 3.47260 + 1.76938i
\(64\) 0 0
\(65\) 0.577606 3.64686i 0.0716432 0.452337i
\(66\) 0 0
\(67\) 4.92336 0.779784i 0.601485 0.0952658i 0.151736 0.988421i \(-0.451514\pi\)
0.449749 + 0.893155i \(0.351514\pi\)
\(68\) 0 0
\(69\) −19.8851 + 10.1320i −2.39389 + 1.21975i
\(70\) 0 0
\(71\) 5.43321 + 0.860536i 0.644803 + 0.102127i 0.470267 0.882524i \(-0.344157\pi\)
0.174536 + 0.984651i \(0.444157\pi\)
\(72\) 0 0
\(73\) 3.15849i 0.369674i 0.982769 + 0.184837i \(0.0591757\pi\)
−0.982769 + 0.184837i \(0.940824\pi\)
\(74\) 0 0
\(75\) 1.45893 2.86331i 0.168462 0.330626i
\(76\) 0 0
\(77\) −9.15505 + 12.6008i −1.04331 + 1.43600i
\(78\) 0 0
\(79\) −5.88894 5.88894i −0.662557 0.662557i 0.293425 0.955982i \(-0.405205\pi\)
−0.955982 + 0.293425i \(0.905205\pi\)
\(80\) 0 0
\(81\) −22.7039 −2.52266
\(82\) 0 0
\(83\) −2.45844 −0.269849 −0.134925 0.990856i \(-0.543079\pi\)
−0.134925 + 0.990856i \(0.543079\pi\)
\(84\) 0 0
\(85\) −0.289890 0.289890i −0.0314430 0.0314430i
\(86\) 0 0
\(87\) −12.3354 + 16.9782i −1.32249 + 1.82026i
\(88\) 0 0
\(89\) 0.951082 1.86660i 0.100815 0.197860i −0.835090 0.550113i \(-0.814585\pi\)
0.935905 + 0.352254i \(0.114585\pi\)
\(90\) 0 0
\(91\) 15.5889i 1.63416i
\(92\) 0 0
\(93\) 25.8131 + 4.08839i 2.67669 + 0.423947i
\(94\) 0 0
\(95\) 6.17966 3.14869i 0.634020 0.323049i
\(96\) 0 0
\(97\) −11.3855 + 1.80329i −1.15602 + 0.183096i −0.704861 0.709345i \(-0.748991\pi\)
−0.451163 + 0.892441i \(0.648991\pi\)
\(98\) 0 0
\(99\) 4.22847 26.6975i 0.424977 2.68320i
\(100\) 0 0
\(101\) −2.07375 1.05663i −0.206346 0.105138i 0.347764 0.937582i \(-0.386941\pi\)
−0.554109 + 0.832444i \(0.686941\pi\)
\(102\) 0 0
\(103\) 9.22180 2.99634i 0.908651 0.295238i 0.182848 0.983141i \(-0.441468\pi\)
0.725803 + 0.687903i \(0.241468\pi\)
\(104\) 0 0
\(105\) 4.19263 12.9036i 0.409159 1.25926i
\(106\) 0 0
\(107\) −3.01151 9.26848i −0.291134 0.896018i −0.984493 0.175425i \(-0.943870\pi\)
0.693359 0.720592i \(-0.256130\pi\)
\(108\) 0 0
\(109\) −8.90213 + 8.90213i −0.852669 + 0.852669i −0.990461 0.137792i \(-0.955999\pi\)
0.137792 + 0.990461i \(0.455999\pi\)
\(110\) 0 0
\(111\) 0.318305 + 2.00970i 0.0302122 + 0.190752i
\(112\) 0 0
\(113\) 1.70237 1.23684i 0.160145 0.116352i −0.504827 0.863221i \(-0.668444\pi\)
0.664972 + 0.746869i \(0.268444\pi\)
\(114\) 0 0
\(115\) 4.08206 + 5.61848i 0.380654 + 0.523926i
\(116\) 0 0
\(117\) 12.2821 + 24.1049i 1.13548 + 2.22850i
\(118\) 0 0
\(119\) −1.40031 1.01738i −0.128366 0.0932633i
\(120\) 0 0
\(121\) 2.48198 + 0.806444i 0.225634 + 0.0733131i
\(122\) 0 0
\(123\) −10.4033 17.7532i −0.938038 1.60076i
\(124\) 0 0
\(125\) −0.951057 0.309017i −0.0850651 0.0276393i
\(126\) 0 0
\(127\) 10.3782 + 7.54023i 0.920920 + 0.669088i 0.943753 0.330652i \(-0.107269\pi\)
−0.0228328 + 0.999739i \(0.507269\pi\)
\(128\) 0 0
\(129\) −9.98255 19.5919i −0.878914 1.72497i
\(130\) 0 0
\(131\) 0.421661 + 0.580367i 0.0368407 + 0.0507069i 0.827040 0.562143i \(-0.190023\pi\)
−0.790199 + 0.612850i \(0.790023\pi\)
\(132\) 0 0
\(133\) 23.6897 17.2115i 2.05415 1.49243i
\(134\) 0 0
\(135\) 2.17524 + 13.7339i 0.187215 + 1.18203i
\(136\) 0 0
\(137\) 6.06271 6.06271i 0.517973 0.517973i −0.398985 0.916958i \(-0.630637\pi\)
0.916958 + 0.398985i \(0.130637\pi\)
\(138\) 0 0
\(139\) 1.42063 + 4.37226i 0.120497 + 0.370850i 0.993054 0.117662i \(-0.0375399\pi\)
−0.872557 + 0.488512i \(0.837540\pi\)
\(140\) 0 0
\(141\) 11.8946 36.6078i 1.00171 3.08293i
\(142\) 0 0
\(143\) −12.9548 + 4.20926i −1.08333 + 0.351996i
\(144\) 0 0
\(145\) 5.81873 + 2.96479i 0.483219 + 0.246213i
\(146\) 0 0
\(147\) 5.44197 34.3593i 0.448846 2.83390i
\(148\) 0 0
\(149\) 2.84386 0.450423i 0.232978 0.0369001i −0.0388536 0.999245i \(-0.512371\pi\)
0.271832 + 0.962345i \(0.412371\pi\)
\(150\) 0 0
\(151\) −12.4594 + 6.34838i −1.01393 + 0.516624i −0.880305 0.474408i \(-0.842662\pi\)
−0.133626 + 0.991032i \(0.542662\pi\)
\(152\) 0 0
\(153\) 2.96684 + 0.469902i 0.239855 + 0.0379893i
\(154\) 0 0
\(155\) 8.13267i 0.653232i
\(156\) 0 0
\(157\) 3.99416 7.83898i 0.318769 0.625618i −0.674908 0.737902i \(-0.735817\pi\)
0.993676 + 0.112284i \(0.0358166\pi\)
\(158\) 0 0
\(159\) 12.1738 16.7557i 0.965442 1.32882i
\(160\) 0 0
\(161\) 20.7331 + 20.7331i 1.63399 + 1.63399i
\(162\) 0 0
\(163\) 2.70984 0.212251 0.106125 0.994353i \(-0.466156\pi\)
0.106125 + 0.994353i \(0.466156\pi\)
\(164\) 0 0
\(165\) −11.8553 −0.922932
\(166\) 0 0
\(167\) −14.0294 14.0294i −1.08563 1.08563i −0.995973 0.0896551i \(-0.971424\pi\)
−0.0896551 0.995973i \(-0.528576\pi\)
\(168\) 0 0
\(169\) 0.372191 0.512277i 0.0286301 0.0394060i
\(170\) 0 0
\(171\) −23.0705 + 45.2784i −1.76424 + 3.46252i
\(172\) 0 0
\(173\) 24.3013i 1.84759i 0.382883 + 0.923797i \(0.374931\pi\)
−0.382883 + 0.923797i \(0.625069\pi\)
\(174\) 0 0
\(175\) −4.17001 0.660465i −0.315223 0.0499265i
\(176\) 0 0
\(177\) −13.2692 + 6.76101i −0.997377 + 0.508189i
\(178\) 0 0
\(179\) −7.51613 + 1.19044i −0.561782 + 0.0889776i −0.430866 0.902416i \(-0.641792\pi\)
−0.130916 + 0.991393i \(0.541792\pi\)
\(180\) 0 0
\(181\) −0.637260 + 4.02350i −0.0473672 + 0.299064i −0.999987 0.00509903i \(-0.998377\pi\)
0.952620 + 0.304164i \(0.0983769\pi\)
\(182\) 0 0
\(183\) −37.9275 19.3250i −2.80368 1.42855i
\(184\) 0 0
\(185\) 0.602186 0.195662i 0.0442736 0.0143854i
\(186\) 0 0
\(187\) −0.467364 + 1.43840i −0.0341770 + 0.105186i
\(188\) 0 0
\(189\) 18.1415 + 55.8339i 1.31960 + 4.06132i
\(190\) 0 0
\(191\) 7.73422 7.73422i 0.559629 0.559629i −0.369573 0.929202i \(-0.620496\pi\)
0.929202 + 0.369573i \(0.120496\pi\)
\(192\) 0 0
\(193\) 1.41861 + 8.95673i 0.102113 + 0.644719i 0.984659 + 0.174492i \(0.0558282\pi\)
−0.882545 + 0.470228i \(0.844172\pi\)
\(194\) 0 0
\(195\) 9.59939 6.97437i 0.687427 0.499445i
\(196\) 0 0
\(197\) 9.31438 + 12.8201i 0.663622 + 0.913397i 0.999595 0.0284747i \(-0.00906499\pi\)
−0.335973 + 0.941872i \(0.609065\pi\)
\(198\) 0 0
\(199\) −9.48628 18.6179i −0.672464 1.31979i −0.934926 0.354843i \(-0.884534\pi\)
0.262461 0.964942i \(-0.415466\pi\)
\(200\) 0 0
\(201\) 12.9595 + 9.41560i 0.914090 + 0.664125i
\(202\) 0 0
\(203\) 26.2223 + 8.52015i 1.84045 + 0.597997i
\(204\) 0 0
\(205\) −4.95002 + 4.06168i −0.345725 + 0.283680i
\(206\) 0 0
\(207\) −48.3942 15.7242i −3.36363 1.09291i
\(208\) 0 0
\(209\) −20.6998 15.0393i −1.43183 1.04029i
\(210\) 0 0
\(211\) −6.13155 12.0338i −0.422113 0.828444i −0.999925 0.0122739i \(-0.996093\pi\)
0.577811 0.816170i \(-0.303907\pi\)
\(212\) 0 0
\(213\) 10.3906 + 14.3015i 0.711955 + 0.979922i
\(214\) 0 0
\(215\) −5.53561 + 4.02185i −0.377525 + 0.274288i
\(216\) 0 0
\(217\) −5.37135 33.9133i −0.364631 2.30219i
\(218\) 0 0
\(219\) −7.17715 + 7.17715i −0.484987 + 0.484987i
\(220\) 0 0
\(221\) −0.467767 1.43964i −0.0314654 0.0968406i
\(222\) 0 0
\(223\) −2.79750 + 8.60982i −0.187334 + 0.576556i −0.999981 0.00620111i \(-0.998026\pi\)
0.812646 + 0.582757i \(0.198026\pi\)
\(224\) 0 0
\(225\) 6.96839 2.26417i 0.464559 0.150945i
\(226\) 0 0
\(227\) 5.17182 + 2.63517i 0.343266 + 0.174903i 0.617121 0.786868i \(-0.288299\pi\)
−0.273855 + 0.961771i \(0.588299\pi\)
\(228\) 0 0
\(229\) 4.17130 26.3365i 0.275647 1.74037i −0.329412 0.944186i \(-0.606851\pi\)
0.605059 0.796180i \(-0.293149\pi\)
\(230\) 0 0
\(231\) −49.4366 + 7.82999i −3.25269 + 0.515176i
\(232\) 0 0
\(233\) 6.51369 3.31889i 0.426726 0.217428i −0.227419 0.973797i \(-0.573029\pi\)
0.654145 + 0.756369i \(0.273029\pi\)
\(234\) 0 0
\(235\) −11.8304 1.87375i −0.771731 0.122230i
\(236\) 0 0
\(237\) 26.7633i 1.73846i
\(238\) 0 0
\(239\) 5.06444 9.93953i 0.327592 0.642935i −0.667198 0.744880i \(-0.732507\pi\)
0.994790 + 0.101945i \(0.0325066\pi\)
\(240\) 0 0
\(241\) −13.5734 + 18.6821i −0.874338 + 1.20342i 0.103620 + 0.994617i \(0.466958\pi\)
−0.977957 + 0.208805i \(0.933042\pi\)
\(242\) 0 0
\(243\) −22.0937 22.0937i −1.41731 1.41731i
\(244\) 0 0
\(245\) −10.8252 −0.691598
\(246\) 0 0
\(247\) 25.6084 1.62942
\(248\) 0 0
\(249\) −5.58640 5.58640i −0.354024 0.354024i
\(250\) 0 0
\(251\) 8.43729 11.6129i 0.532557 0.733002i −0.454960 0.890512i \(-0.650347\pi\)
0.987517 + 0.157510i \(0.0503465\pi\)
\(252\) 0 0
\(253\) 11.6314 22.8279i 0.731260 1.43518i
\(254\) 0 0
\(255\) 1.31745i 0.0825021i
\(256\) 0 0
\(257\) −19.2823 3.05401i −1.20280 0.190504i −0.477306 0.878737i \(-0.658387\pi\)
−0.725490 + 0.688233i \(0.758387\pi\)
\(258\) 0 0
\(259\) 2.38190 1.21364i 0.148004 0.0754117i
\(260\) 0 0
\(261\) −47.2600 + 7.48525i −2.92532 + 0.463325i
\(262\) 0 0
\(263\) −1.03565 + 6.53882i −0.0638607 + 0.403201i 0.934964 + 0.354741i \(0.115431\pi\)
−0.998825 + 0.0484593i \(0.984569\pi\)
\(264\) 0 0
\(265\) −5.74248 2.92594i −0.352758 0.179739i
\(266\) 0 0
\(267\) 6.40272 2.08037i 0.391840 0.127317i
\(268\) 0 0
\(269\) −8.25958 + 25.4204i −0.503596 + 1.54991i 0.299523 + 0.954089i \(0.403172\pi\)
−0.803119 + 0.595819i \(0.796828\pi\)
\(270\) 0 0
\(271\) −3.74087 11.5132i −0.227242 0.699379i −0.998056 0.0623190i \(-0.980150\pi\)
0.770814 0.637060i \(-0.219850\pi\)
\(272\) 0 0
\(273\) 35.4233 35.4233i 2.14391 2.14391i
\(274\) 0 0
\(275\) 0.577108 + 3.64371i 0.0348009 + 0.219724i
\(276\) 0 0
\(277\) 7.00313 5.08807i 0.420777 0.305712i −0.357173 0.934038i \(-0.616259\pi\)
0.777950 + 0.628326i \(0.216259\pi\)
\(278\) 0 0
\(279\) 35.0250 + 48.2078i 2.09689 + 2.88612i
\(280\) 0 0
\(281\) 2.79157 + 5.47877i 0.166531 + 0.326836i 0.959158 0.282871i \(-0.0912870\pi\)
−0.792627 + 0.609707i \(0.791287\pi\)
\(282\) 0 0
\(283\) 12.5306 + 9.10403i 0.744869 + 0.541179i 0.894232 0.447604i \(-0.147722\pi\)
−0.149364 + 0.988782i \(0.547722\pi\)
\(284\) 0 0
\(285\) 21.1971 + 6.88736i 1.25561 + 0.407972i
\(286\) 0 0
\(287\) −17.9591 + 20.2066i −1.06009 + 1.19276i
\(288\) 0 0
\(289\) 16.0081 + 5.20135i 0.941654 + 0.305962i
\(290\) 0 0
\(291\) −29.9694 21.7740i −1.75684 1.27642i
\(292\) 0 0
\(293\) 3.61686 + 7.09848i 0.211299 + 0.414698i 0.972194 0.234177i \(-0.0752397\pi\)
−0.760895 + 0.648875i \(0.775240\pi\)
\(294\) 0 0
\(295\) 2.72393 + 3.74917i 0.158594 + 0.218285i
\(296\) 0 0
\(297\) 41.5008 30.1521i 2.40812 1.74960i
\(298\) 0 0
\(299\) 4.01137 + 25.3268i 0.231983 + 1.46468i
\(300\) 0 0
\(301\) −20.4273 + 20.4273i −1.17741 + 1.17741i
\(302\) 0 0
\(303\) −2.31124 7.11325i −0.132777 0.408646i
\(304\) 0 0
\(305\) −4.09325 + 12.5977i −0.234379 + 0.721345i
\(306\) 0 0
\(307\) 16.3856 5.32399i 0.935173 0.303856i 0.198497 0.980102i \(-0.436394\pi\)
0.736677 + 0.676245i \(0.236394\pi\)
\(308\) 0 0
\(309\) 27.7637 + 14.1463i 1.57942 + 0.804755i
\(310\) 0 0
\(311\) −2.53328 + 15.9945i −0.143649 + 0.906964i 0.805605 + 0.592453i \(0.201840\pi\)
−0.949254 + 0.314511i \(0.898160\pi\)
\(312\) 0 0
\(313\) −25.3553 + 4.01588i −1.43316 + 0.226991i −0.824241 0.566239i \(-0.808398\pi\)
−0.608922 + 0.793230i \(0.708398\pi\)
\(314\) 0 0
\(315\) 27.5629 14.0440i 1.55299 0.791289i
\(316\) 0 0
\(317\) 6.31800 + 1.00067i 0.354854 + 0.0562034i 0.331317 0.943520i \(-0.392507\pi\)
0.0235374 + 0.999723i \(0.492507\pi\)
\(318\) 0 0
\(319\) 24.0919i 1.34889i
\(320\) 0 0
\(321\) 14.2179 27.9042i 0.793567 1.55746i
\(322\) 0 0
\(323\) 1.67128 2.30033i 0.0929928 0.127994i
\(324\) 0 0
\(325\) −2.61086 2.61086i −0.144825 0.144825i
\(326\) 0 0
\(327\) −40.4572 −2.23729
\(328\) 0 0
\(329\) −50.5705 −2.78804
\(330\) 0 0
\(331\) 11.8848 + 11.8848i 0.653248 + 0.653248i 0.953774 0.300526i \(-0.0971622\pi\)
−0.300526 + 0.953774i \(0.597162\pi\)
\(332\) 0 0
\(333\) −2.72690 + 3.75326i −0.149433 + 0.205677i
\(334\) 0 0
\(335\) 2.26302 4.44143i 0.123642 0.242661i
\(336\) 0 0
\(337\) 10.2602i 0.558909i 0.960159 + 0.279455i \(0.0901537\pi\)
−0.960159 + 0.279455i \(0.909846\pi\)
\(338\) 0 0
\(339\) 6.67886 + 1.05783i 0.362746 + 0.0574533i
\(340\) 0 0
\(341\) −26.7324 + 13.6209i −1.44764 + 0.737611i
\(342\) 0 0
\(343\) −15.9512 + 2.52643i −0.861285 + 0.136414i
\(344\) 0 0
\(345\) −3.49125 + 22.0429i −0.187962 + 1.18675i
\(346\) 0 0
\(347\) 20.9223 + 10.6604i 1.12317 + 0.572282i 0.914047 0.405609i \(-0.132940\pi\)
0.209119 + 0.977890i \(0.432940\pi\)
\(348\) 0 0
\(349\) −14.2515 + 4.63060i −0.762866 + 0.247870i −0.664508 0.747281i \(-0.731359\pi\)
−0.0983576 + 0.995151i \(0.531359\pi\)
\(350\) 0 0
\(351\) −15.8656 + 48.8292i −0.846841 + 2.60631i
\(352\) 0 0
\(353\) 0.402375 + 1.23838i 0.0214163 + 0.0659125i 0.961193 0.275875i \(-0.0889676\pi\)
−0.939777 + 0.341788i \(0.888968\pi\)
\(354\) 0 0
\(355\) 3.88975 3.88975i 0.206446 0.206446i
\(356\) 0 0
\(357\) −0.870132 5.49380i −0.0460523 0.290763i
\(358\) 0 0
\(359\) 27.5627 20.0255i 1.45470 1.05690i 0.470001 0.882666i \(-0.344254\pi\)
0.984703 0.174239i \(-0.0557464\pi\)
\(360\) 0 0
\(361\) 17.1060 + 23.5444i 0.900315 + 1.23918i
\(362\) 0 0
\(363\) 3.80737 + 7.47239i 0.199835 + 0.392199i
\(364\) 0 0
\(365\) 2.55528 + 1.85652i 0.133749 + 0.0971745i
\(366\) 0 0
\(367\) 7.78450 + 2.52934i 0.406348 + 0.132030i 0.505057 0.863086i \(-0.331471\pi\)
−0.0987095 + 0.995116i \(0.531471\pi\)
\(368\) 0 0
\(369\) 11.8496 45.3946i 0.616867 2.36315i
\(370\) 0 0
\(371\) −25.8787 8.40850i −1.34356 0.436548i
\(372\) 0 0
\(373\) 9.95850 + 7.23528i 0.515632 + 0.374628i 0.814956 0.579523i \(-0.196761\pi\)
−0.299324 + 0.954152i \(0.596761\pi\)
\(374\) 0 0
\(375\) −1.45893 2.86331i −0.0753387 0.147861i
\(376\) 0 0
\(377\) 14.1731 + 19.5076i 0.729952 + 1.00469i
\(378\) 0 0
\(379\) −2.32363 + 1.68822i −0.119357 + 0.0867179i −0.645862 0.763454i \(-0.723502\pi\)
0.526505 + 0.850172i \(0.323502\pi\)
\(380\) 0 0
\(381\) 6.44890 + 40.7168i 0.330387 + 2.08598i
\(382\) 0 0
\(383\) 3.72754 3.72754i 0.190468 0.190468i −0.605430 0.795898i \(-0.706999\pi\)
0.795898 + 0.605430i \(0.206999\pi\)
\(384\) 0 0
\(385\) 4.81309 + 14.8132i 0.245298 + 0.754949i
\(386\) 0 0
\(387\) 15.4923 47.6804i 0.787518 2.42373i
\(388\) 0 0
\(389\) −25.6732 + 8.34171i −1.30168 + 0.422942i −0.876166 0.482010i \(-0.839907\pi\)
−0.425515 + 0.904951i \(0.639907\pi\)
\(390\) 0 0
\(391\) 2.53682 + 1.29258i 0.128293 + 0.0653683i
\(392\) 0 0
\(393\) −0.360632 + 2.27694i −0.0181915 + 0.114857i
\(394\) 0 0
\(395\) −8.22568 + 1.30282i −0.413879 + 0.0655520i
\(396\) 0 0
\(397\) 27.7456 14.1371i 1.39251 0.709520i 0.412967 0.910746i \(-0.364493\pi\)
0.979545 + 0.201226i \(0.0644926\pi\)
\(398\) 0 0
\(399\) 92.9411 + 14.7204i 4.65288 + 0.736943i
\(400\) 0 0
\(401\) 14.5533i 0.726757i −0.931642 0.363379i \(-0.881623\pi\)
0.931642 0.363379i \(-0.118377\pi\)
\(402\) 0 0
\(403\) 13.6326 26.7555i 0.679089 1.33279i
\(404\) 0 0
\(405\) −13.3450 + 18.3679i −0.663120 + 0.912707i
\(406\) 0 0
\(407\) −1.65171 1.65171i −0.0818722 0.0818722i
\(408\) 0 0
\(409\) −6.76561 −0.334538 −0.167269 0.985911i \(-0.553495\pi\)
−0.167269 + 0.985911i \(0.553495\pi\)
\(410\) 0 0
\(411\) 27.5530 1.35909
\(412\) 0 0
\(413\) 13.8350 + 13.8350i 0.680778 + 0.680778i
\(414\) 0 0
\(415\) −1.44504 + 1.98892i −0.0709340 + 0.0976323i
\(416\) 0 0
\(417\) −6.70708 + 13.1634i −0.328447 + 0.644614i
\(418\) 0 0
\(419\) 16.2325i 0.793008i −0.918033 0.396504i \(-0.870223\pi\)
0.918033 0.396504i \(-0.129777\pi\)
\(420\) 0 0
\(421\) 25.4488 + 4.03070i 1.24030 + 0.196444i 0.741905 0.670505i \(-0.233923\pi\)
0.498396 + 0.866950i \(0.333923\pi\)
\(422\) 0 0
\(423\) 78.1965 39.8431i 3.80204 1.93724i
\(424\) 0 0
\(425\) −0.404919 + 0.0641329i −0.0196415 + 0.00311090i
\(426\) 0 0
\(427\) −8.74855 + 55.2362i −0.423372 + 2.67307i
\(428\) 0 0
\(429\) −39.0024 19.8727i −1.88305 0.959464i
\(430\) 0 0
\(431\) −1.79076 + 0.581854i −0.0862580 + 0.0280269i −0.351828 0.936065i \(-0.614440\pi\)
0.265570 + 0.964092i \(0.414440\pi\)
\(432\) 0 0
\(433\) 3.22537 9.92667i 0.155001 0.477045i −0.843160 0.537663i \(-0.819307\pi\)
0.998161 + 0.0606180i \(0.0193071\pi\)
\(434\) 0 0
\(435\) 6.48510 + 19.9591i 0.310937 + 0.956966i
\(436\) 0 0
\(437\) −34.0588 + 34.0588i −1.62925 + 1.62925i
\(438\) 0 0
\(439\) −4.01237 25.3331i −0.191500 1.20908i −0.876812 0.480834i \(-0.840334\pi\)
0.685311 0.728250i \(-0.259666\pi\)
\(440\) 0 0
\(441\) 64.1683 46.6210i 3.05563 2.22005i
\(442\) 0 0
\(443\) −10.5671 14.5443i −0.502056 0.691021i 0.480498 0.876996i \(-0.340456\pi\)
−0.982555 + 0.185975i \(0.940456\pi\)
\(444\) 0 0
\(445\) −0.951082 1.86660i −0.0450856 0.0884855i
\(446\) 0 0
\(447\) 7.48571 + 5.43869i 0.354062 + 0.257241i
\(448\) 0 0
\(449\) 11.1010 + 3.60694i 0.523889 + 0.170222i 0.559010 0.829161i \(-0.311181\pi\)
−0.0351205 + 0.999383i \(0.511181\pi\)
\(450\) 0 0
\(451\) 21.6414 + 9.46830i 1.01905 + 0.445845i
\(452\) 0 0
\(453\) −42.7375 13.8863i −2.00799 0.652434i
\(454\) 0 0
\(455\) −12.6117 9.16295i −0.591246 0.429566i
\(456\) 0 0
\(457\) 15.6379 + 30.6912i 0.731512 + 1.43567i 0.893585 + 0.448894i \(0.148182\pi\)
−0.162073 + 0.986779i \(0.551818\pi\)
\(458\) 0 0
\(459\) 3.35074 + 4.61190i 0.156399 + 0.215265i
\(460\) 0 0
\(461\) −4.74767 + 3.44939i −0.221121 + 0.160654i −0.692831 0.721100i \(-0.743637\pi\)
0.471710 + 0.881754i \(0.343637\pi\)
\(462\) 0 0
\(463\) −0.672543 4.24627i −0.0312557 0.197341i 0.967120 0.254322i \(-0.0818524\pi\)
−0.998375 + 0.0569815i \(0.981852\pi\)
\(464\) 0 0
\(465\) 18.4801 18.4801i 0.856996 0.856996i
\(466\) 0 0
\(467\) −7.10554 21.8686i −0.328805 1.01196i −0.969694 0.244324i \(-0.921434\pi\)
0.640888 0.767634i \(-0.278566\pi\)
\(468\) 0 0
\(469\) 6.50342 20.0155i 0.300300 0.924229i
\(470\) 0 0
\(471\) 26.8888 8.73671i 1.23897 0.402566i
\(472\) 0 0
\(473\) 22.4912 + 11.4598i 1.03415 + 0.526924i
\(474\) 0 0
\(475\) 1.08497 6.85020i 0.0497816 0.314309i
\(476\) 0 0
\(477\) 46.6407 7.38716i 2.13553 0.338235i
\(478\) 0 0
\(479\) −22.6718 + 11.5519i −1.03590 + 0.527819i −0.887355 0.461086i \(-0.847460\pi\)
−0.148548 + 0.988905i \(0.547460\pi\)
\(480\) 0 0
\(481\) 2.30910 + 0.365726i 0.105286 + 0.0166757i
\(482\) 0 0
\(483\) 94.2248i 4.28738i
\(484\) 0 0
\(485\) −5.23335 + 10.2710i −0.237634 + 0.466383i
\(486\) 0 0
\(487\) −13.1505 + 18.1001i −0.595904 + 0.820192i −0.995326 0.0965756i \(-0.969211\pi\)
0.399421 + 0.916767i \(0.369211\pi\)
\(488\) 0 0
\(489\) 6.15765 + 6.15765i 0.278459 + 0.278459i
\(490\) 0 0
\(491\) 43.4585 1.96126 0.980628 0.195880i \(-0.0627564\pi\)
0.980628 + 0.195880i \(0.0627564\pi\)
\(492\) 0 0
\(493\) 2.67729 0.120579
\(494\) 0 0
\(495\) −19.1133 19.1133i −0.859079 0.859079i
\(496\) 0 0
\(497\) 13.6513 18.7893i 0.612343 0.842817i
\(498\) 0 0
\(499\) 20.0752 39.3998i 0.898690 1.76378i 0.322206 0.946670i \(-0.395576\pi\)
0.576484 0.817109i \(-0.304424\pi\)
\(500\) 0 0
\(501\) 63.7590i 2.84854i
\(502\) 0 0
\(503\) −2.28970 0.362653i −0.102093 0.0161699i 0.105179 0.994453i \(-0.466458\pi\)
−0.207272 + 0.978283i \(0.566458\pi\)
\(504\) 0 0
\(505\) −2.07375 + 1.05663i −0.0922805 + 0.0470193i
\(506\) 0 0
\(507\) 2.00981 0.318322i 0.0892587 0.0141372i
\(508\) 0 0
\(509\) 1.36666 8.62877i 0.0605762 0.382463i −0.938711 0.344706i \(-0.887979\pi\)
0.999287 0.0377573i \(-0.0120214\pi\)
\(510\) 0 0
\(511\) 11.8817 + 6.05403i 0.525615 + 0.267814i
\(512\) 0 0
\(513\) −91.7200 + 29.8016i −4.04954 + 1.31577i
\(514\) 0 0
\(515\) 2.99634 9.22180i 0.132035 0.406361i
\(516\) 0 0
\(517\) 13.6548 + 42.0253i 0.600539 + 1.84827i
\(518\) 0 0
\(519\) −55.2207 + 55.2207i −2.42392 + 2.42392i
\(520\) 0 0
\(521\) 1.73654 + 10.9641i 0.0760791 + 0.480344i 0.996082 + 0.0884331i \(0.0281859\pi\)
−0.920003 + 0.391911i \(0.871814\pi\)
\(522\) 0 0
\(523\) 18.2536 13.2621i 0.798176 0.579909i −0.112202 0.993685i \(-0.535790\pi\)
0.910379 + 0.413776i \(0.135790\pi\)
\(524\) 0 0
\(525\) −7.97486 10.9765i −0.348052 0.479052i
\(526\) 0 0
\(527\) −1.51366 2.97072i −0.0659361 0.129407i
\(528\) 0 0
\(529\) −20.4119 14.8301i −0.887474 0.644787i
\(530\) 0 0
\(531\) −32.2932 10.4927i −1.40140 0.455344i
\(532\) 0 0
\(533\) −23.0935 + 5.06483i −1.00029 + 0.219382i
\(534\) 0 0
\(535\) −9.26848 3.01151i −0.400711 0.130199i
\(536\) 0 0
\(537\) −19.7842 14.3741i −0.853753 0.620288i
\(538\) 0 0
\(539\) 18.1304 + 35.5830i 0.780933 + 1.53267i
\(540\) 0 0
\(541\) −4.48873 6.17821i −0.192986 0.265622i 0.701548 0.712622i \(-0.252492\pi\)
−0.894534 + 0.447000i \(0.852492\pi\)
\(542\) 0 0
\(543\) −10.5908 + 7.69467i −0.454495 + 0.330210i
\(544\) 0 0
\(545\) 1.96943 + 12.4345i 0.0843612 + 0.532636i
\(546\) 0 0
\(547\) −21.6382 + 21.6382i −0.925183 + 0.925183i −0.997390 0.0722070i \(-0.976996\pi\)
0.0722070 + 0.997390i \(0.476996\pi\)
\(548\) 0 0
\(549\) −29.9913 92.3036i −1.28000 3.93942i
\(550\) 0 0
\(551\) −13.9963 + 43.0762i −0.596263 + 1.83511i
\(552\) 0 0
\(553\) −33.4407 + 10.8656i −1.42205 + 0.462050i
\(554\) 0 0
\(555\) 1.81298 + 0.923758i 0.0769566 + 0.0392113i
\(556\) 0 0
\(557\) 1.57446 9.94075i 0.0667120 0.421203i −0.931618 0.363438i \(-0.881603\pi\)
0.998330 0.0577647i \(-0.0183973\pi\)
\(558\) 0 0
\(559\) −24.9532 + 3.95220i −1.05541 + 0.167160i
\(560\) 0 0
\(561\) −4.33053 + 2.20651i −0.182835 + 0.0931591i
\(562\) 0 0
\(563\) 17.3837 + 2.75331i 0.732637 + 0.116038i 0.511596 0.859226i \(-0.329054\pi\)
0.221041 + 0.975264i \(0.429054\pi\)
\(564\) 0 0
\(565\) 2.10424i 0.0885260i
\(566\) 0 0
\(567\) −43.5176 + 85.4082i −1.82757 + 3.58681i
\(568\) 0 0
\(569\) −21.4876 + 29.5751i −0.900805 + 1.23985i 0.0694049 + 0.997589i \(0.477890\pi\)
−0.970210 + 0.242264i \(0.922110\pi\)
\(570\) 0 0
\(571\) −7.82512 7.82512i −0.327471 0.327471i 0.524153 0.851624i \(-0.324382\pi\)
−0.851624 + 0.524153i \(0.824382\pi\)
\(572\) 0 0
\(573\) 35.1495 1.46839
\(574\) 0 0
\(575\) 6.94482 0.289619
\(576\) 0 0
\(577\) 3.60766 + 3.60766i 0.150189 + 0.150189i 0.778202 0.628014i \(-0.216132\pi\)
−0.628014 + 0.778202i \(0.716132\pi\)
\(578\) 0 0
\(579\) −17.1291 + 23.5762i −0.711862 + 0.979794i
\(580\) 0 0
\(581\) −4.71221 + 9.24822i −0.195495 + 0.383681i
\(582\) 0 0
\(583\) 23.7762i 0.984711i
\(584\) 0 0
\(585\) 26.7205 + 4.23212i 1.10476 + 0.174977i
\(586\) 0 0
\(587\) 4.64215 2.36529i 0.191602 0.0976261i −0.355558 0.934654i \(-0.615709\pi\)
0.547160 + 0.837028i \(0.315709\pi\)
\(588\) 0 0
\(589\) 55.7105 8.82367i 2.29551 0.363573i
\(590\) 0 0
\(591\) −7.96626 + 50.2970i −0.327688 + 2.06894i
\(592\) 0 0
\(593\) −13.7216 6.99150i −0.563478 0.287107i 0.148958 0.988844i \(-0.452408\pi\)
−0.712436 + 0.701737i \(0.752408\pi\)
\(594\) 0 0
\(595\) −1.64616 + 0.534870i −0.0674860 + 0.0219275i
\(596\) 0 0
\(597\) 20.7500 63.8620i 0.849242 2.61370i
\(598\) 0 0
\(599\) −3.71599 11.4366i −0.151831 0.467288i 0.845995 0.533191i \(-0.179007\pi\)
−0.997826 + 0.0659027i \(0.979007\pi\)
\(600\) 0 0
\(601\) −7.25146 + 7.25146i −0.295793 + 0.295793i −0.839364 0.543570i \(-0.817072\pi\)
0.543570 + 0.839364i \(0.317072\pi\)
\(602\) 0 0
\(603\) 5.71348 + 36.0735i 0.232671 + 1.46903i
\(604\) 0 0
\(605\) 2.11130 1.53395i 0.0858364 0.0623638i
\(606\) 0 0
\(607\) 6.91662 + 9.51991i 0.280737 + 0.386401i 0.925978 0.377578i \(-0.123243\pi\)
−0.645241 + 0.763979i \(0.723243\pi\)
\(608\) 0 0
\(609\) 40.2253 + 78.9465i 1.63001 + 3.19907i
\(610\) 0 0
\(611\) −35.7797 25.9955i −1.44749 1.05166i
\(612\) 0 0
\(613\) −9.55967 3.10612i −0.386111 0.125455i 0.109528 0.993984i \(-0.465066\pi\)
−0.495639 + 0.868529i \(0.665066\pi\)
\(614\) 0 0
\(615\) −20.4776 2.01861i −0.825737 0.0813981i
\(616\) 0 0
\(617\) −40.2350 13.0731i −1.61980 0.526305i −0.647904 0.761722i \(-0.724354\pi\)
−0.971894 + 0.235417i \(0.924354\pi\)
\(618\) 0 0
\(619\) −23.6995 17.2187i −0.952563 0.692078i −0.00115171 0.999999i \(-0.500367\pi\)
−0.951412 + 0.307921i \(0.900367\pi\)
\(620\) 0 0
\(621\) −43.8411 86.0430i −1.75928 3.45279i
\(622\) 0 0
\(623\) −5.19885 7.15561i −0.208288 0.286683i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) −12.8626 81.2110i −0.513681 3.24326i
\(628\) 0 0
\(629\) 0.183551 0.183551i 0.00731867 0.00731867i
\(630\) 0 0
\(631\) 0.561861 + 1.72923i 0.0223673 + 0.0688395i 0.961617 0.274395i \(-0.0884775\pi\)
−0.939250 + 0.343234i \(0.888478\pi\)
\(632\) 0 0
\(633\) 13.4120 41.2779i 0.533079 1.64065i
\(634\) 0 0
\(635\) 12.2004 3.96414i 0.484156 0.157312i
\(636\) 0 0
\(637\) −35.6137 18.1461i −1.41107 0.718974i
\(638\) 0 0
\(639\) −6.30515 + 39.8091i −0.249428 + 1.57482i
\(640\) 0 0
\(641\) 6.64091 1.05182i 0.262300 0.0415442i −0.0238992 0.999714i \(-0.507608\pi\)
0.286199 + 0.958170i \(0.407608\pi\)
\(642\) 0 0
\(643\) 24.1798 12.3202i 0.953559 0.485863i 0.0932540 0.995642i \(-0.470273\pi\)
0.860305 + 0.509780i \(0.170273\pi\)
\(644\) 0 0
\(645\) −21.7177 3.43975i −0.855135 0.135440i
\(646\) 0 0
\(647\) 42.9895i 1.69009i 0.534695 + 0.845045i \(0.320427\pi\)
−0.534695 + 0.845045i \(0.679573\pi\)
\(648\) 0 0
\(649\) 7.76156 15.2329i 0.304668 0.597944i
\(650\) 0 0
\(651\) 64.8569 89.2679i 2.54194 3.49869i
\(652\) 0 0
\(653\) 6.00403 + 6.00403i 0.234956 + 0.234956i 0.814758 0.579802i \(-0.196870\pi\)
−0.579802 + 0.814758i \(0.696870\pi\)
\(654\) 0 0
\(655\) 0.717373 0.0280301
\(656\) 0 0
\(657\) −23.1423 −0.902867
\(658\) 0 0
\(659\) 6.87859 + 6.87859i 0.267952 + 0.267952i 0.828275 0.560323i \(-0.189323\pi\)
−0.560323 + 0.828275i \(0.689323\pi\)
\(660\) 0 0
\(661\) 5.72943 7.88588i 0.222849 0.306725i −0.682923 0.730490i \(-0.739292\pi\)
0.905772 + 0.423765i \(0.139292\pi\)
\(662\) 0 0
\(663\) 2.20842 4.33426i 0.0857678 0.168329i
\(664\) 0 0
\(665\) 29.2820i 1.13551i
\(666\) 0 0
\(667\) −44.7949 7.09481i −1.73446 0.274712i
\(668\) 0 0
\(669\) −25.9212 + 13.2075i −1.00217 + 0.510632i
\(670\) 0 0
\(671\) 48.2648 7.64440i 1.86324 0.295109i
\(672\) 0 0
\(673\) −3.95044 + 24.9421i −0.152278 + 0.961446i 0.786667 + 0.617378i \(0.211805\pi\)
−0.938945 + 0.344068i \(0.888195\pi\)
\(674\) 0 0
\(675\) 12.3895 + 6.31278i 0.476873 + 0.242979i
\(676\) 0 0
\(677\) 25.0321 8.13344i 0.962063 0.312593i 0.214456 0.976734i \(-0.431202\pi\)
0.747608 + 0.664140i \(0.231202\pi\)
\(678\) 0 0
\(679\) −15.0395 + 46.2868i −0.577162 + 1.77632i
\(680\) 0 0
\(681\) 5.76410 + 17.7401i 0.220881 + 0.679802i
\(682\) 0 0
\(683\) −24.3441 + 24.3441i −0.931502 + 0.931502i −0.997800 0.0662979i \(-0.978881\pi\)
0.0662979 + 0.997800i \(0.478881\pi\)
\(684\) 0 0
\(685\) −1.34126 8.46841i −0.0512471 0.323561i
\(686\) 0 0
\(687\) 69.3239 50.3668i 2.64487 1.92161i
\(688\) 0 0
\(689\) −13.9874 19.2520i −0.532877 0.733442i
\(690\) 0 0
\(691\) 18.5908 + 36.4865i 0.707228 + 1.38801i 0.912405 + 0.409288i \(0.134223\pi\)
−0.205177 + 0.978725i \(0.565777\pi\)
\(692\) 0 0
\(693\) −92.3264 67.0790i −3.50719 2.54812i
\(694\) 0 0
\(695\) 4.37226 + 1.42063i 0.165849 + 0.0538877i
\(696\) 0 0
\(697\) −1.05219 + 2.40497i −0.0398547 + 0.0910946i
\(698\) 0 0
\(699\) 22.3429 + 7.25964i 0.845086 + 0.274585i
\(700\) 0 0
\(701\) −0.363350 0.263989i −0.0137235 0.00997073i 0.580902 0.813973i \(-0.302700\pi\)
−0.594626 + 0.804003i \(0.702700\pi\)
\(702\) 0 0
\(703\) 1.99368 + 3.91281i 0.0751929 + 0.147574i
\(704\) 0 0
\(705\) −22.6249 31.1404i −0.852101 1.17282i
\(706\) 0 0
\(707\) −7.94969 + 5.77578i −0.298979 + 0.217221i
\(708\) 0 0
\(709\) −0.0782035 0.493757i −0.00293699 0.0185435i 0.986176 0.165699i \(-0.0529881\pi\)
−0.989113 + 0.147156i \(0.952988\pi\)
\(710\) 0 0
\(711\) 43.1483 43.1483i 1.61819 1.61819i
\(712\) 0 0
\(713\) 17.4533 + 53.7156i 0.653630 + 2.01166i
\(714\) 0 0
\(715\) −4.20926 + 12.9548i −0.157417 + 0.484481i
\(716\) 0 0
\(717\) 34.0940 11.0778i 1.27327 0.413709i
\(718\) 0 0
\(719\) 14.1999 + 7.23521i 0.529567 + 0.269828i 0.698264 0.715840i \(-0.253956\pi\)
−0.168697 + 0.985668i \(0.553956\pi\)
\(720\) 0 0
\(721\) 6.40412 40.4340i 0.238502 1.50584i
\(722\) 0 0
\(723\) −73.2953 + 11.6088i −2.72588 + 0.431737i
\(724\) 0 0
\(725\) 5.81873 2.96479i 0.216102 0.110110i
\(726\) 0 0
\(727\) 21.6988 + 3.43675i 0.804764 + 0.127462i 0.545246 0.838276i \(-0.316436\pi\)
0.259518 + 0.965738i \(0.416436\pi\)
\(728\) 0 0
\(729\) 32.2969i 1.19618i
\(730\) 0 0
\(731\) −1.27351 + 2.49941i −0.0471025 + 0.0924438i
\(732\) 0 0
\(733\) 14.2820 19.6575i 0.527518 0.726067i −0.459231 0.888317i \(-0.651875\pi\)
0.986750 + 0.162250i \(0.0518751\pi\)
\(734\) 0 0
\(735\) −24.5985 24.5985i −0.907330 0.907330i
\(736\) 0 0
\(737\) −18.3894 −0.677381
\(738\) 0 0
\(739\) −25.6217 −0.942509 −0.471255 0.881997i \(-0.656199\pi\)
−0.471255 + 0.881997i \(0.656199\pi\)
\(740\) 0 0
\(741\) 58.1908 + 58.1908i 2.13769 + 2.13769i
\(742\) 0 0
\(743\) −14.3477 + 19.7479i −0.526364 + 0.724479i −0.986571 0.163333i \(-0.947775\pi\)
0.460206 + 0.887812i \(0.347775\pi\)
\(744\) 0 0
\(745\) 1.30718 2.56548i 0.0478913 0.0939921i
\(746\) 0 0
\(747\) 18.0130i 0.659061i
\(748\) 0 0
\(749\) −40.6387 6.43653i −1.48490 0.235186i
\(750\) 0 0
\(751\) 18.4311 9.39112i 0.672561 0.342687i −0.0841347 0.996454i \(-0.526813\pi\)
0.756695 + 0.653768i \(0.226813\pi\)
\(752\) 0 0
\(753\) 45.5608 7.21612i 1.66033 0.262970i
\(754\) 0 0
\(755\) −2.18750 + 13.8113i −0.0796114 + 0.502646i
\(756\) 0 0
\(757\) 35.9492 + 18.3170i 1.30660 + 0.665744i 0.962011 0.273012i \(-0.0880197\pi\)
0.344585 + 0.938755i \(0.388020\pi\)
\(758\) 0 0
\(759\) 78.3030 25.4422i 2.84222 0.923493i
\(760\) 0 0
\(761\) 1.77525 5.46367i 0.0643529 0.198058i −0.913710 0.406366i \(-0.866796\pi\)
0.978063 + 0.208308i \(0.0667957\pi\)
\(762\) 0 0
\(763\) 16.4251 + 50.5513i 0.594629 + 1.83008i
\(764\) 0 0
\(765\) 2.12402 2.12402i 0.0767943 0.0767943i
\(766\) 0 0
\(767\) 2.67676 + 16.9004i 0.0966522 + 0.610238i
\(768\) 0 0
\(769\) −37.2880 + 27.0913i −1.34464 + 0.976937i −0.345379 + 0.938463i \(0.612249\pi\)
−0.999260 + 0.0384734i \(0.987751\pi\)
\(770\) 0 0
\(771\) −36.8760 50.7555i −1.32806 1.82792i
\(772\) 0 0
\(773\) −6.76644 13.2799i −0.243372 0.477644i 0.736718 0.676201i \(-0.236375\pi\)
−0.980090 + 0.198556i \(0.936375\pi\)
\(774\) 0 0
\(775\) −6.57947 4.78026i −0.236342 0.171712i
\(776\) 0 0
\(777\) 8.17025 + 2.65467i 0.293106 + 0.0952359i
\(778\) 0 0
\(779\) −33.1940 29.5019i −1.18930 1.05701i
\(780\) 0 0
\(781\) −19.3004 6.27109i −0.690624 0.224397i
\(782\) 0 0
\(783\) −73.4648 53.3753i −2.62542 1.90748i
\(784\) 0 0
\(785\) −3.99416 7.83898i −0.142558 0.279785i
\(786\) 0 0
\(787\) −2.72667 3.75294i −0.0971953 0.133778i 0.757649 0.652662i \(-0.226348\pi\)
−0.854845 + 0.518884i \(0.826348\pi\)
\(788\) 0 0
\(789\) −17.2117 + 12.5050i −0.612753 + 0.445191i
\(790\) 0 0
\(791\) −1.38978 8.77471i −0.0494148 0.311993i
\(792\) 0 0
\(793\) −34.5836 + 34.5836i −1.22810 + 1.22810i
\(794\) 0 0
\(795\) −6.40012 19.6976i −0.226989 0.698600i
\(796\) 0 0
\(797\) 8.11775 24.9839i 0.287545 0.884974i −0.698079 0.716021i \(-0.745962\pi\)
0.985624 0.168953i \(-0.0540385\pi\)
\(798\) 0 0
\(799\) −4.67019 + 1.51744i −0.165219 + 0.0536831i
\(800\) 0 0
\(801\) 13.6766 + 6.96858i 0.483239 + 0.246223i
\(802\) 0 0
\(803\) 1.82279 11.5087i 0.0643249 0.406131i
\(804\) 0 0
\(805\) 28.9600 4.58681i 1.02071 0.161664i
\(806\) 0 0
\(807\) −76.5321 + 38.9951i −2.69406 + 1.37269i
\(808\) 0 0
\(809\) 7.20014 + 1.14039i 0.253143 + 0.0400940i 0.281716 0.959498i \(-0.409096\pi\)
−0.0285730 + 0.999592i \(0.509096\pi\)
\(810\) 0 0
\(811\) 34.9205i 1.22623i −0.789996 0.613113i \(-0.789917\pi\)
0.789996 0.613113i \(-0.210083\pi\)
\(812\) 0 0
\(813\) 17.6614 34.6624i 0.619412 1.21566i
\(814\) 0 0
\(815\) 1.59280 2.19230i 0.0557934 0.0767931i
\(816\) 0 0
\(817\) −33.5565 33.5565i −1.17399 1.17399i
\(818\) 0 0
\(819\) 114.220 3.99118
\(820\) 0 0
\(821\) 50.5976 1.76587 0.882934 0.469497i \(-0.155565\pi\)
0.882934 + 0.469497i \(0.155565\pi\)
\(822\) 0 0
\(823\) 7.77724 + 7.77724i 0.271098 + 0.271098i 0.829542 0.558444i \(-0.188602\pi\)
−0.558444 + 0.829542i \(0.688602\pi\)
\(824\) 0 0
\(825\) −6.96835 + 9.59112i −0.242607 + 0.333920i
\(826\) 0 0
\(827\) 3.57390 7.01418i 0.124277 0.243907i −0.820483 0.571671i \(-0.806295\pi\)
0.944759 + 0.327764i \(0.106295\pi\)
\(828\) 0 0
\(829\) 29.8851i 1.03795i 0.854789 + 0.518976i \(0.173686\pi\)
−0.854789 + 0.518976i \(0.826314\pi\)
\(830\) 0 0
\(831\) 27.4752 + 4.35165i 0.953105 + 0.150957i
\(832\) 0 0
\(833\) −3.95427 + 2.01480i −0.137007 + 0.0698087i
\(834\) 0 0
\(835\) −19.5963 + 3.10375i −0.678158 + 0.107410i
\(836\) 0 0
\(837\) −17.6905 + 111.693i −0.611473 + 3.86069i
\(838\) 0 0
\(839\) −5.07517 2.58593i −0.175214 0.0892761i 0.364184 0.931327i \(-0.381348\pi\)
−0.539398 + 0.842051i \(0.681348\pi\)
\(840\) 0 0
\(841\) −12.9797 + 4.21735i −0.447575 + 0.145426i
\(842\) 0 0
\(843\) −6.10621 + 18.7930i −0.210309 + 0.647264i
\(844\) 0 0
\(845\) −0.195673 0.602218i −0.00673134 0.0207169i
\(846\) 0 0
\(847\) 7.79102 7.79102i 0.267702 0.267702i
\(848\) 0 0
\(849\) 7.78636 + 49.1612i 0.267227 + 1.68721i
\(850\) 0 0
\(851\) −3.55748 + 2.58466i −0.121949 + 0.0886011i
\(852\) 0 0
\(853\) 8.69633 + 11.9695i 0.297756 + 0.409827i 0.931514 0.363705i \(-0.118488\pi\)
−0.633758 + 0.773532i \(0.718488\pi\)
\(854\) 0 0
\(855\) 23.0705 + 45.2784i 0.788994 + 1.54849i
\(856\) 0 0
\(857\) −25.0954 18.2328i −0.857241 0.622822i 0.0698921 0.997555i \(-0.477735\pi\)
−0.927133 + 0.374733i \(0.877735\pi\)
\(858\) 0 0
\(859\) −38.8258 12.6153i −1.32472 0.430428i −0.440607 0.897700i \(-0.645237\pi\)
−0.884113 + 0.467272i \(0.845237\pi\)
\(860\) 0 0
\(861\) −86.7251 + 5.10712i −2.95558 + 0.174050i
\(862\) 0 0
\(863\) 29.5131 + 9.58938i 1.00464 + 0.326426i 0.764717 0.644366i \(-0.222879\pi\)
0.239920 + 0.970793i \(0.422879\pi\)
\(864\) 0 0
\(865\) 19.6602 + 14.2839i 0.668466 + 0.485669i
\(866\) 0 0
\(867\) 24.5566 + 48.1950i 0.833985 + 1.63679i
\(868\) 0 0
\(869\) 18.0591 + 24.8562i 0.612612 + 0.843188i
\(870\) 0 0
\(871\) 14.8901 10.8183i 0.504533 0.366565i
\(872\) 0 0
\(873\) −13.2127 83.4217i −0.447182 2.82340i
\(874\) 0 0
\(875\) −2.98540 + 2.98540i −0.100925 + 0.100925i
\(876\) 0 0
\(877\) 6.70806 + 20.6453i 0.226515 + 0.697142i 0.998134 + 0.0610571i \(0.0194472\pi\)
−0.771619 + 0.636085i \(0.780553\pi\)
\(878\) 0 0
\(879\) −7.91141 + 24.3488i −0.266845 + 0.821266i
\(880\) 0 0
\(881\) 1.81516 0.589782i 0.0611544 0.0198703i −0.278280 0.960500i \(-0.589764\pi\)
0.339434 + 0.940630i \(0.389764\pi\)
\(882\) 0 0
\(883\) −25.5826 13.0350i −0.860924 0.438663i −0.0329683 0.999456i \(-0.510496\pi\)
−0.827955 + 0.560794i \(0.810496\pi\)
\(884\) 0 0
\(885\) −2.32969 + 14.7091i −0.0783116 + 0.494440i
\(886\) 0 0
\(887\) 32.9819 5.22381i 1.10742 0.175398i 0.424171 0.905582i \(-0.360565\pi\)
0.683251 + 0.730183i \(0.260565\pi\)
\(888\) 0 0
\(889\) 48.2575 24.5884i 1.61850 0.824669i
\(890\) 0 0
\(891\) 82.7266 + 13.1026i 2.77145 + 0.438954i
\(892\) 0 0
\(893\) 83.0737i 2.77996i
\(894\) 0 0
\(895\) −3.45479 + 6.78040i −0.115481 + 0.226644i
\(896\) 0 0
\(897\) −48.4357 + 66.6660i −1.61722 + 2.22591i
\(898\) 0 0
\(899\) 37.5548 + 37.5548i 1.25252 + 1.25252i
\(900\) 0 0
\(901\) −2.64221 −0.0880247
\(902\) 0 0
\(903\) −92.8351 −3.08936
\(904\) 0 0
\(905\) 2.88051 + 2.88051i 0.0957514 + 0.0957514i
\(906\) 0 0
\(907\) −11.0044 + 15.1463i −0.365396 + 0.502924i −0.951642 0.307209i \(-0.900605\pi\)
0.586247 + 0.810133i \(0.300605\pi\)
\(908\) 0 0
\(909\) 7.74190 15.1943i 0.256783 0.503965i
\(910\) 0 0
\(911\) 26.6553i 0.883129i −0.897230 0.441564i \(-0.854424\pi\)
0.897230 0.441564i \(-0.145576\pi\)
\(912\) 0 0
\(913\) 8.95786 + 1.41879i 0.296462 + 0.0469549i
\(914\) 0 0
\(915\) −37.9275 + 19.3250i −1.25384 + 0.638866i
\(916\) 0 0
\(917\) 2.99145 0.473800i 0.0987865 0.0156462i
\(918\) 0 0
\(919\) 0.614022 3.87678i 0.0202547 0.127883i −0.975489 0.220048i \(-0.929379\pi\)
0.995744 + 0.0921646i \(0.0293786\pi\)
\(920\) 0 0
\(921\) 49.3313 + 25.1356i 1.62552 + 0.828245i
\(922\) 0 0
\(923\) 19.3171 6.27651i 0.635830 0.206594i
\(924\) 0 0
\(925\) 0.195662 0.602186i 0.00643333 0.0197998i
\(926\) 0 0
\(927\) 21.9542 + 67.5681i 0.721071 + 2.21923i
\(928\) 0 0
\(929\) 40.8411 40.8411i 1.33995 1.33995i 0.443855 0.896099i \(-0.353611\pi\)
0.896099 0.443855i \(-0.146389\pi\)
\(930\) 0 0
\(931\) −11.7450 74.1550i −0.384927 2.43033i
\(932\) 0 0
\(933\) −42.1012 + 30.5883i −1.37833 + 1.00142i
\(934\) 0 0
\(935\) 0.888979 + 1.22357i 0.0290727 + 0.0400152i
\(936\) 0 0
\(937\) −0.542268 1.06426i −0.0177151 0.0347679i 0.881979 0.471288i \(-0.156211\pi\)
−0.899694 + 0.436520i \(0.856211\pi\)
\(938\) 0 0
\(939\) −66.7410 48.4902i −2.17801 1.58242i
\(940\) 0 0
\(941\) −56.2849 18.2881i −1.83484 0.596175i −0.998877 0.0473842i \(-0.984912\pi\)
−0.835960 0.548790i \(-0.815088\pi\)
\(942\) 0 0
\(943\) 23.9778 37.4501i 0.780826 1.21954i
\(944\) 0 0
\(945\) 55.8339 + 18.1415i 1.81628 + 0.590144i
\(946\) 0 0
\(947\) 35.9036 + 26.0855i 1.16671 + 0.847664i 0.990611 0.136708i \(-0.0436523\pi\)
0.176098 + 0.984373i \(0.443652\pi\)
\(948\) 0 0
\(949\) 5.29451 + 10.3911i 0.171867 + 0.337308i
\(950\) 0 0
\(951\) 12.0827 + 16.6305i 0.391810 + 0.539280i
\(952\) 0 0
\(953\) −34.6106 + 25.1461i −1.12115 + 0.814561i −0.984383 0.176043i \(-0.943670\pi\)
−0.136765 + 0.990604i \(0.543670\pi\)
\(954\) 0 0
\(955\) −1.71106 10.8032i −0.0553685 0.349583i
\(956\) 0 0
\(957\) 54.7449 54.7449i 1.76965 1.76965i
\(958\) 0 0
\(959\) −11.1862 34.4275i −0.361221 1.11172i
\(960\) 0 0
\(961\) 10.8590 33.4205i 0.350289 1.07808i
\(962\) 0 0
\(963\) 67.9101 22.0653i 2.18837 0.711046i
\(964\) 0 0
\(965\) 8.07998 + 4.11695i 0.260104 + 0.132529i
\(966\) 0 0
\(967\) 5.73376 36.2015i 0.184385 1.16416i −0.705748 0.708463i \(-0.749389\pi\)
0.890133 0.455700i \(-0.150611\pi\)
\(968\) 0 0
\(969\) 9.02483 1.42939i 0.289919 0.0459187i
\(970\) 0 0
\(971\) −5.35736 + 2.72971i −0.171926 + 0.0876006i −0.537836 0.843050i \(-0.680758\pi\)
0.365910 + 0.930650i \(0.380758\pi\)
\(972\) 0 0
\(973\) 19.1707 + 3.03633i 0.614583 + 0.0973404i
\(974\) 0 0
\(975\) 11.8655i 0.380000i
\(976\) 0 0
\(977\) 7.53287 14.7841i 0.240998 0.472985i −0.738549 0.674199i \(-0.764489\pi\)
0.979547 + 0.201214i \(0.0644888\pi\)
\(978\) 0 0
\(979\) −4.54270 + 6.25250i −0.145185 + 0.199831i
\(980\) 0 0
\(981\) −65.2259 65.2259i −2.08250 2.08250i
\(982\) 0 0
\(983\) 43.0090 1.37177 0.685887 0.727708i \(-0.259414\pi\)
0.685887 + 0.727708i \(0.259414\pi\)
\(984\) 0 0
\(985\) 15.8466 0.504913
\(986\) 0 0
\(987\) −114.913 114.913i −3.65772 3.65772i
\(988\) 0 0
\(989\) 27.9310 38.4438i 0.888155 1.22244i
\(990\) 0 0
\(991\) −12.5058 + 24.5440i −0.397260 + 0.779666i −0.999831 0.0183994i \(-0.994143\pi\)
0.602571 + 0.798065i \(0.294143\pi\)
\(992\) 0 0
\(993\) 54.0124i 1.71403i
\(994\) 0 0
\(995\) −20.6381 3.26875i −0.654271 0.103626i
\(996\) 0 0
\(997\) 31.7331 16.1688i 1.00500 0.512072i 0.127595 0.991826i \(-0.459274\pi\)
0.877403 + 0.479754i \(0.159274\pi\)
\(998\) 0 0
\(999\) −8.69598 + 1.37731i −0.275129 + 0.0435761i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bo.b.21.8 64
41.2 even 20 inner 820.2.bo.b.781.8 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bo.b.21.8 64 1.1 even 1 trivial
820.2.bo.b.781.8 yes 64 41.2 even 20 inner