Properties

Label 820.2.bo.b.21.6
Level $820$
Weight $2$
Character 820.21
Analytic conductor $6.548$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(21,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.21"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bo (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 21.6
Character \(\chi\) \(=\) 820.21
Dual form 820.2.bo.b.781.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.901610 + 0.901610i) q^{3} +(0.587785 - 0.809017i) q^{5} +(-4.93870e-6 + 9.69274e-6i) q^{7} -1.37420i q^{9} +(2.30019 + 0.364315i) q^{11} +(3.08580 - 1.57229i) q^{13} +(1.25937 - 0.199465i) q^{15} +(-0.986892 + 6.23099i) q^{17} +(-1.02270 - 0.521092i) q^{19} +(-1.31918e-5 + 4.28629e-6i) q^{21} +(2.63248 - 8.10194i) q^{23} +(-0.309017 - 0.951057i) q^{25} +(3.94382 - 3.94382i) q^{27} +(0.446858 + 2.82135i) q^{29} +(2.29721 - 1.66902i) q^{31} +(1.74541 + 2.40235i) q^{33} +(4.93870e-6 + 9.69274e-6i) q^{35} +(6.84323 + 4.97190i) q^{37} +(4.19978 + 1.36459i) q^{39} +(-3.81801 - 5.14031i) q^{41} +(-0.267806 - 0.0870154i) q^{43} +(-1.11175 - 0.807734i) q^{45} +(1.68269 + 3.30246i) q^{47} +(4.11450 + 5.66312i) q^{49} +(-6.50772 + 4.72813i) q^{51} +(1.06518 + 6.72527i) q^{53} +(1.64676 - 1.64676i) q^{55} +(-0.452255 - 1.39190i) q^{57} +(-0.325718 + 1.00246i) q^{59} +(-7.43430 + 2.41555i) q^{61} +(1.33197e-5 + 6.78675e-6i) q^{63} +(0.541776 - 3.42064i) q^{65} +(-10.6530 + 1.68727i) q^{67} +(9.67826 - 4.93132i) q^{69} +(-0.388333 - 0.0615060i) q^{71} -14.0096i q^{73} +(0.578869 - 1.13609i) q^{75} +(-1.48912e-5 + 2.04959e-5i) q^{77} +(-3.38127 - 3.38127i) q^{79} +2.98898 q^{81} +5.94200 q^{83} +(4.46090 + 4.46090i) q^{85} +(-2.14087 + 2.94665i) q^{87} +(-7.18184 + 14.0952i) q^{89} +3.76749e-5i q^{91} +(3.57600 + 0.566382i) q^{93} +(-1.02270 + 0.521092i) q^{95} +(2.31166 - 0.366131i) q^{97} +(0.500641 - 3.16092i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 2 q^{3} - 10 q^{7} + 2 q^{11} + 6 q^{13} - 2 q^{15} + 2 q^{17} + 10 q^{19} - 22 q^{23} + 16 q^{25} + 20 q^{27} - 12 q^{29} + 22 q^{31} + 30 q^{33} + 10 q^{35} + 12 q^{37} + 20 q^{39} - 10 q^{41}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{20}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.901610 + 0.901610i 0.520545 + 0.520545i 0.917736 0.397191i \(-0.130015\pi\)
−0.397191 + 0.917736i \(0.630015\pi\)
\(4\) 0 0
\(5\) 0.587785 0.809017i 0.262866 0.361803i
\(6\) 0 0
\(7\) −4.93870e−6 0 9.69274e-6i −1.86665e−6 0 3.66351e-6i −0.891007 0.453989i \(-0.850001\pi\)
0.891006 + 0.453992i \(0.150001\pi\)
\(8\) 0 0
\(9\) 1.37420i 0.458066i
\(10\) 0 0
\(11\) 2.30019 + 0.364315i 0.693534 + 0.109845i 0.493243 0.869891i \(-0.335811\pi\)
0.200291 + 0.979736i \(0.435811\pi\)
\(12\) 0 0
\(13\) 3.08580 1.57229i 0.855847 0.436076i 0.0297190 0.999558i \(-0.490539\pi\)
0.826128 + 0.563482i \(0.190539\pi\)
\(14\) 0 0
\(15\) 1.25937 0.199465i 0.325168 0.0515016i
\(16\) 0 0
\(17\) −0.986892 + 6.23099i −0.239357 + 1.51124i 0.516378 + 0.856360i \(0.327280\pi\)
−0.755735 + 0.654878i \(0.772720\pi\)
\(18\) 0 0
\(19\) −1.02270 0.521092i −0.234623 0.119547i 0.332727 0.943023i \(-0.392031\pi\)
−0.567350 + 0.823477i \(0.692031\pi\)
\(20\) 0 0
\(21\) −1.31918e−5 0 4.28629e-6i −2.87870e−6 0 9.35345e-7i
\(22\) 0 0
\(23\) 2.63248 8.10194i 0.548910 1.68937i −0.162598 0.986692i \(-0.551987\pi\)
0.711508 0.702678i \(-0.248013\pi\)
\(24\) 0 0
\(25\) −0.309017 0.951057i −0.0618034 0.190211i
\(26\) 0 0
\(27\) 3.94382 3.94382i 0.758989 0.758989i
\(28\) 0 0
\(29\) 0.446858 + 2.82135i 0.0829795 + 0.523912i 0.993807 + 0.111124i \(0.0354450\pi\)
−0.910827 + 0.412788i \(0.864555\pi\)
\(30\) 0 0
\(31\) 2.29721 1.66902i 0.412591 0.299765i −0.362059 0.932155i \(-0.617926\pi\)
0.774650 + 0.632390i \(0.217926\pi\)
\(32\) 0 0
\(33\) 1.74541 + 2.40235i 0.303836 + 0.418195i
\(34\) 0 0
\(35\) 4.93870e−6 0 9.69274e-6i 8.34792e−7 0 1.63837e-6i
\(36\) 0 0
\(37\) 6.84323 + 4.97190i 1.12502 + 0.817375i 0.984962 0.172769i \(-0.0552714\pi\)
0.140057 + 0.990143i \(0.455271\pi\)
\(38\) 0 0
\(39\) 4.19978 + 1.36459i 0.672504 + 0.218510i
\(40\) 0 0
\(41\) −3.81801 5.14031i −0.596273 0.802781i
\(42\) 0 0
\(43\) −0.267806 0.0870154i −0.0408400 0.0132697i 0.288526 0.957472i \(-0.406835\pi\)
−0.329366 + 0.944202i \(0.606835\pi\)
\(44\) 0 0
\(45\) −1.11175 0.807734i −0.165730 0.120410i
\(46\) 0 0
\(47\) 1.68269 + 3.30246i 0.245445 + 0.481713i 0.980557 0.196232i \(-0.0628706\pi\)
−0.735112 + 0.677945i \(0.762871\pi\)
\(48\) 0 0
\(49\) 4.11450 + 5.66312i 0.587785 + 0.809017i
\(50\) 0 0
\(51\) −6.50772 + 4.72813i −0.911263 + 0.662071i
\(52\) 0 0
\(53\) 1.06518 + 6.72527i 0.146314 + 0.923787i 0.946187 + 0.323619i \(0.104900\pi\)
−0.799874 + 0.600168i \(0.795100\pi\)
\(54\) 0 0
\(55\) 1.64676 1.64676i 0.222049 0.222049i
\(56\) 0 0
\(57\) −0.452255 1.39190i −0.0599027 0.184361i
\(58\) 0 0
\(59\) −0.325718 + 1.00246i −0.0424049 + 0.130509i −0.970018 0.243034i \(-0.921857\pi\)
0.927613 + 0.373543i \(0.121857\pi\)
\(60\) 0 0
\(61\) −7.43430 + 2.41555i −0.951865 + 0.309280i −0.743473 0.668766i \(-0.766823\pi\)
−0.208392 + 0.978045i \(0.566823\pi\)
\(62\) 0 0
\(63\) 1.33197e−5 0 6.78675e-6i 1.67813e−6 0 8.55050e-7i
\(64\) 0 0
\(65\) 0.541776 3.42064i 0.0671990 0.424278i
\(66\) 0 0
\(67\) −10.6530 + 1.68727i −1.30147 + 0.206133i −0.768419 0.639947i \(-0.778956\pi\)
−0.533056 + 0.846080i \(0.678956\pi\)
\(68\) 0 0
\(69\) 9.67826 4.93132i 1.16513 0.593661i
\(70\) 0 0
\(71\) −0.388333 0.0615060i −0.0460867 0.00729941i 0.133349 0.991069i \(-0.457427\pi\)
−0.179435 + 0.983770i \(0.557427\pi\)
\(72\) 0 0
\(73\) 14.0096i 1.63970i −0.572578 0.819850i \(-0.694057\pi\)
0.572578 0.819850i \(-0.305943\pi\)
\(74\) 0 0
\(75\) 0.578869 1.13609i 0.0668421 0.131185i
\(76\) 0 0
\(77\) −1.48912e−5 0 2.04959e-5i −1.69701e−6 0 2.33573e-6i
\(78\) 0 0
\(79\) −3.38127 3.38127i −0.380423 0.380423i 0.490832 0.871254i \(-0.336693\pi\)
−0.871254 + 0.490832i \(0.836693\pi\)
\(80\) 0 0
\(81\) 2.98898 0.332109
\(82\) 0 0
\(83\) 5.94200 0.652219 0.326109 0.945332i \(-0.394262\pi\)
0.326109 + 0.945332i \(0.394262\pi\)
\(84\) 0 0
\(85\) 4.46090 + 4.46090i 0.483852 + 0.483852i
\(86\) 0 0
\(87\) −2.14087 + 2.94665i −0.229525 + 0.315914i
\(88\) 0 0
\(89\) −7.18184 + 14.0952i −0.761274 + 1.49408i 0.104977 + 0.994475i \(0.466523\pi\)
−0.866251 + 0.499609i \(0.833477\pi\)
\(90\) 0 0
\(91\) 0 3.76749e-5i 0 3.94941e-6i
\(92\) 0 0
\(93\) 3.57600 + 0.566382i 0.370814 + 0.0587311i
\(94\) 0 0
\(95\) −1.02270 + 0.521092i −0.104927 + 0.0534629i
\(96\) 0 0
\(97\) 2.31166 0.366131i 0.234713 0.0371750i −0.0379695 0.999279i \(-0.512089\pi\)
0.272683 + 0.962104i \(0.412089\pi\)
\(98\) 0 0
\(99\) 0.500641 3.16092i 0.0503163 0.317685i
\(100\) 0 0
\(101\) 8.65902 + 4.41199i 0.861604 + 0.439009i 0.828200 0.560433i \(-0.189365\pi\)
0.0334042 + 0.999442i \(0.489365\pi\)
\(102\) 0 0
\(103\) −6.04370 + 1.96372i −0.595503 + 0.193491i −0.591234 0.806500i \(-0.701359\pi\)
−0.00426940 + 0.999991i \(0.501359\pi\)
\(104\) 0 0
\(105\) −4.28629e−6 0 1.31918e-5i −4.18299e−7 0 1.28739e-6i
\(106\) 0 0
\(107\) 2.21776 + 6.82558i 0.214399 + 0.659853i 0.999196 + 0.0400996i \(0.0127675\pi\)
−0.784796 + 0.619754i \(0.787232\pi\)
\(108\) 0 0
\(109\) −1.86474 + 1.86474i −0.178609 + 0.178609i −0.790749 0.612140i \(-0.790309\pi\)
0.612140 + 0.790749i \(0.290309\pi\)
\(110\) 0 0
\(111\) 1.68721 + 10.6526i 0.160143 + 1.01110i
\(112\) 0 0
\(113\) 8.06278 5.85795i 0.758483 0.551070i −0.139962 0.990157i \(-0.544698\pi\)
0.898445 + 0.439087i \(0.144698\pi\)
\(114\) 0 0
\(115\) −5.00727 6.89192i −0.466931 0.642675i
\(116\) 0 0
\(117\) −2.16064 4.24050i −0.199752 0.392035i
\(118\) 0 0
\(119\) −5.55214e−5 0 4.03387e-5i −5.08964e−6 0 3.69784e-6i
\(120\) 0 0
\(121\) −5.30346 1.72320i −0.482132 0.156654i
\(122\) 0 0
\(123\) 1.19220 8.07691i 0.107497 0.728271i
\(124\) 0 0
\(125\) −0.951057 0.309017i −0.0850651 0.0276393i
\(126\) 0 0
\(127\) −7.68351 5.58240i −0.681801 0.495358i 0.192153 0.981365i \(-0.438453\pi\)
−0.873955 + 0.486007i \(0.838453\pi\)
\(128\) 0 0
\(129\) −0.163003 0.319910i −0.0143516 0.0281665i
\(130\) 0 0
\(131\) −9.65337 13.2867i −0.843419 1.16087i −0.985275 0.170979i \(-0.945307\pi\)
0.141856 0.989887i \(-0.454693\pi\)
\(132\) 0 0
\(133\) 1.01016e−5 0 7.33925e-6i 8.75920e−7 0 6.36393e-7i
\(134\) 0 0
\(135\) −0.872498 5.50874i −0.0750927 0.474117i
\(136\) 0 0
\(137\) −10.6699 + 10.6699i −0.911588 + 0.911588i −0.996397 0.0848094i \(-0.972972\pi\)
0.0848094 + 0.996397i \(0.472972\pi\)
\(138\) 0 0
\(139\) −7.14003 21.9748i −0.605610 1.86388i −0.492543 0.870288i \(-0.663933\pi\)
−0.113066 0.993587i \(-0.536067\pi\)
\(140\) 0 0
\(141\) −1.46040 + 4.49466i −0.122988 + 0.378518i
\(142\) 0 0
\(143\) 7.67075 2.49238i 0.641460 0.208423i
\(144\) 0 0
\(145\) 2.54518 + 1.29683i 0.211366 + 0.107696i
\(146\) 0 0
\(147\) −1.39625 + 8.81560i −0.115161 + 0.727098i
\(148\) 0 0
\(149\) −18.2315 + 2.88759i −1.49358 + 0.236560i −0.849171 0.528118i \(-0.822898\pi\)
−0.644412 + 0.764679i \(0.722898\pi\)
\(150\) 0 0
\(151\) −8.59238 + 4.37803i −0.699238 + 0.356279i −0.767200 0.641409i \(-0.778350\pi\)
0.0679619 + 0.997688i \(0.478350\pi\)
\(152\) 0 0
\(153\) 8.56262 + 1.35619i 0.692247 + 0.109641i
\(154\) 0 0
\(155\) 2.83951i 0.228075i
\(156\) 0 0
\(157\) 6.41636 12.5928i 0.512081 1.00502i −0.479743 0.877409i \(-0.659270\pi\)
0.991825 0.127608i \(-0.0407298\pi\)
\(158\) 0 0
\(159\) −5.10320 + 7.02395i −0.404710 + 0.557035i
\(160\) 0 0
\(161\) 6.55289e−5 0 6.55289e-5i 5.16440e−6 0 5.16440e-6i
\(162\) 0 0
\(163\) 2.37069 0.185687 0.0928436 0.995681i \(-0.470404\pi\)
0.0928436 + 0.995681i \(0.470404\pi\)
\(164\) 0 0
\(165\) 2.96946 0.231173
\(166\) 0 0
\(167\) −5.51446 5.51446i −0.426721 0.426721i 0.460789 0.887510i \(-0.347567\pi\)
−0.887510 + 0.460789i \(0.847567\pi\)
\(168\) 0 0
\(169\) −0.591151 + 0.813650i −0.0454732 + 0.0625884i
\(170\) 0 0
\(171\) −0.716083 + 1.40539i −0.0547603 + 0.107473i
\(172\) 0 0
\(173\) 13.6231i 1.03575i −0.855457 0.517873i \(-0.826724\pi\)
0.855457 0.517873i \(-0.173276\pi\)
\(174\) 0 0
\(175\) 1.07445e−5 0 1.70176e-6i 8.12206e−7 0 1.28641e-7i
\(176\) 0 0
\(177\) −1.19750 + 0.610155i −0.0900094 + 0.0458621i
\(178\) 0 0
\(179\) 0.497029 0.0787217i 0.0371497 0.00588394i −0.137832 0.990456i \(-0.544013\pi\)
0.174982 + 0.984572i \(0.444013\pi\)
\(180\) 0 0
\(181\) −2.88304 + 18.2028i −0.214295 + 1.35300i 0.612487 + 0.790481i \(0.290169\pi\)
−0.826781 + 0.562523i \(0.809831\pi\)
\(182\) 0 0
\(183\) −8.88073 4.52496i −0.656482 0.334494i
\(184\) 0 0
\(185\) 8.04470 2.61388i 0.591458 0.192176i
\(186\) 0 0
\(187\) −4.54009 + 13.9730i −0.332004 + 1.02180i
\(188\) 0 0
\(189\) 1.87491e−5 0 5.77038e-5i 1.36380e−6 0 4.19733e-6i
\(190\) 0 0
\(191\) −16.1176 + 16.1176i −1.16623 + 1.16623i −0.183140 + 0.983087i \(0.558626\pi\)
−0.983087 + 0.183140i \(0.941374\pi\)
\(192\) 0 0
\(193\) −1.94325 12.2692i −0.139878 0.883156i −0.953419 0.301649i \(-0.902463\pi\)
0.813541 0.581508i \(-0.197537\pi\)
\(194\) 0 0
\(195\) 3.57255 2.59561i 0.255836 0.185875i
\(196\) 0 0
\(197\) 8.60874 + 11.8489i 0.613348 + 0.844201i 0.996848 0.0793403i \(-0.0252814\pi\)
−0.383500 + 0.923541i \(0.625281\pi\)
\(198\) 0 0
\(199\) 8.44530 + 16.5748i 0.598671 + 1.17496i 0.969232 + 0.246150i \(0.0791656\pi\)
−0.370561 + 0.928808i \(0.620834\pi\)
\(200\) 0 0
\(201\) −11.1261 8.08362i −0.784778 0.570174i
\(202\) 0 0
\(203\) −2.95535e−5 0 9.60252e-6i −2.07425e−6 0 6.73965e-7i
\(204\) 0 0
\(205\) −6.40277 + 0.0674385i −0.447189 + 0.00471011i
\(206\) 0 0
\(207\) −11.1337 3.61755i −0.773843 0.251437i
\(208\) 0 0
\(209\) −2.16257 1.57120i −0.149588 0.108682i
\(210\) 0 0
\(211\) −8.25858 16.2084i −0.568544 1.11583i −0.978983 0.203943i \(-0.934624\pi\)
0.410438 0.911888i \(-0.365376\pi\)
\(212\) 0 0
\(213\) −0.294671 0.405580i −0.0201905 0.0277899i
\(214\) 0 0
\(215\) −0.227809 + 0.165513i −0.0155365 + 0.0112879i
\(216\) 0 0
\(217\) 4.83216e−6 0 3.05091e-5i 3.28028e−7 0 2.07109e-6i
\(218\) 0 0
\(219\) 12.6312 12.6312i 0.853538 0.853538i
\(220\) 0 0
\(221\) 6.75160 + 20.7793i 0.454162 + 1.39777i
\(222\) 0 0
\(223\) 7.24009 22.2827i 0.484832 1.49216i −0.347391 0.937720i \(-0.612932\pi\)
0.832224 0.554440i \(-0.187068\pi\)
\(224\) 0 0
\(225\) −1.30694 + 0.424651i −0.0871294 + 0.0283100i
\(226\) 0 0
\(227\) −12.0991 6.16481i −0.803047 0.409173i 0.00375662 0.999993i \(-0.498804\pi\)
−0.806803 + 0.590820i \(0.798804\pi\)
\(228\) 0 0
\(229\) −0.463349 + 2.92547i −0.0306190 + 0.193320i −0.998257 0.0590233i \(-0.981201\pi\)
0.967638 + 0.252344i \(0.0812014\pi\)
\(230\) 0 0
\(231\) −3.19054e−5 0 5.05331e-6i −2.09922e−6 0 3.32484e-7i
\(232\) 0 0
\(233\) −18.3209 + 9.33499i −1.20024 + 0.611555i −0.935693 0.352816i \(-0.885224\pi\)
−0.264552 + 0.964371i \(0.585224\pi\)
\(234\) 0 0
\(235\) 3.66080 + 0.579814i 0.238804 + 0.0378229i
\(236\) 0 0
\(237\) 6.09718i 0.396054i
\(238\) 0 0
\(239\) −1.88496 + 3.69945i −0.121928 + 0.239297i −0.943901 0.330230i \(-0.892874\pi\)
0.821972 + 0.569527i \(0.192874\pi\)
\(240\) 0 0
\(241\) 1.30796 1.80025i 0.0842528 0.115964i −0.764810 0.644256i \(-0.777167\pi\)
0.849063 + 0.528292i \(0.177167\pi\)
\(242\) 0 0
\(243\) −9.13657 9.13657i −0.586111 0.586111i
\(244\) 0 0
\(245\) 7.00000 0.447214
\(246\) 0 0
\(247\) −3.97516 −0.252933
\(248\) 0 0
\(249\) 5.35736 + 5.35736i 0.339509 + 0.339509i
\(250\) 0 0
\(251\) −17.5167 + 24.1097i −1.10564 + 1.52179i −0.277960 + 0.960593i \(0.589658\pi\)
−0.827683 + 0.561195i \(0.810342\pi\)
\(252\) 0 0
\(253\) 9.00687 17.6770i 0.566257 1.11134i
\(254\) 0 0
\(255\) 8.04398i 0.503734i
\(256\) 0 0
\(257\) −3.35955 0.532100i −0.209563 0.0331915i 0.0507703 0.998710i \(-0.483832\pi\)
−0.260333 + 0.965519i \(0.583832\pi\)
\(258\) 0 0
\(259\) −8.19879e−5 0 4.17749e-5i −5.09448e−6 0 2.59577e-6i
\(260\) 0 0
\(261\) 3.87710 0.614072i 0.239986 0.0380101i
\(262\) 0 0
\(263\) −3.06634 + 19.3601i −0.189079 + 1.19380i 0.692379 + 0.721534i \(0.256563\pi\)
−0.881458 + 0.472263i \(0.843437\pi\)
\(264\) 0 0
\(265\) 6.06696 + 3.09127i 0.372690 + 0.189895i
\(266\) 0 0
\(267\) −19.1836 + 6.23312i −1.17401 + 0.381460i
\(268\) 0 0
\(269\) −4.33524 + 13.3425i −0.264324 + 0.813506i 0.727524 + 0.686082i \(0.240671\pi\)
−0.991848 + 0.127424i \(0.959329\pi\)
\(270\) 0 0
\(271\) 3.89698 + 11.9937i 0.236725 + 0.728563i 0.996888 + 0.0788313i \(0.0251188\pi\)
−0.760163 + 0.649732i \(0.774881\pi\)
\(272\) 0 0
\(273\) −3.39681e−5 0 3.39681e-5i −2.05584e−6 0 2.05584e-6i
\(274\) 0 0
\(275\) −0.364315 2.30019i −0.0219690 0.138707i
\(276\) 0 0
\(277\) 10.9492 7.95508i 0.657876 0.477975i −0.208069 0.978114i \(-0.566718\pi\)
0.865945 + 0.500139i \(0.166718\pi\)
\(278\) 0 0
\(279\) −2.29357 3.15683i −0.137312 0.188994i
\(280\) 0 0
\(281\) 12.1064 + 23.7602i 0.722209 + 1.41741i 0.901129 + 0.433551i \(0.142740\pi\)
−0.178920 + 0.983864i \(0.557260\pi\)
\(282\) 0 0
\(283\) −0.469995 0.341471i −0.0279383 0.0202984i 0.573728 0.819046i \(-0.305496\pi\)
−0.601667 + 0.798747i \(0.705496\pi\)
\(284\) 0 0
\(285\) −1.39190 0.452255i −0.0824489 0.0267893i
\(286\) 0 0
\(287\) 6.86797e−5 0 1.16206e-5i 4.05403e−6 0 6.85940e-7i
\(288\) 0 0
\(289\) −21.6834 7.04535i −1.27549 0.414433i
\(290\) 0 0
\(291\) 2.41432 + 1.75411i 0.141530 + 0.102828i
\(292\) 0 0
\(293\) 1.69300 + 3.32271i 0.0989063 + 0.194115i 0.935158 0.354232i \(-0.115258\pi\)
−0.836251 + 0.548346i \(0.815258\pi\)
\(294\) 0 0
\(295\) 0.619553 + 0.852742i 0.0360718 + 0.0496485i
\(296\) 0 0
\(297\) 10.5083 7.63476i 0.609756 0.443014i
\(298\) 0 0
\(299\) −4.61532 29.1400i −0.266911 1.68521i
\(300\) 0 0
\(301\) 2.16603e−6 0 2.16603e-6i 1.24848e−7 0 1.24848e-7i
\(302\) 0 0
\(303\) 3.82916 + 11.7849i 0.219980 + 0.677028i
\(304\) 0 0
\(305\) −2.41555 + 7.43430i −0.138314 + 0.425687i
\(306\) 0 0
\(307\) 11.4813 3.73051i 0.655275 0.212912i 0.0375362 0.999295i \(-0.488049\pi\)
0.617738 + 0.786384i \(0.288049\pi\)
\(308\) 0 0
\(309\) −7.21957 3.67855i −0.410707 0.209266i
\(310\) 0 0
\(311\) −0.631071 + 3.98442i −0.0357847 + 0.225936i −0.999099 0.0424399i \(-0.986487\pi\)
0.963314 + 0.268376i \(0.0864869\pi\)
\(312\) 0 0
\(313\) 24.6748 3.90810i 1.39470 0.220899i 0.586569 0.809899i \(-0.300478\pi\)
0.808133 + 0.589000i \(0.200478\pi\)
\(314\) 0 0
\(315\) 1.33197e−5 0 6.78675e-6i 7.50483e−7 0 3.82390e-7i
\(316\) 0 0
\(317\) 23.4754 + 3.71814i 1.31851 + 0.208831i 0.775741 0.631051i \(-0.217376\pi\)
0.542768 + 0.839883i \(0.317376\pi\)
\(318\) 0 0
\(319\) 6.65246i 0.372466i
\(320\) 0 0
\(321\) −4.15445 + 8.15357i −0.231879 + 0.455088i
\(322\) 0 0
\(323\) 4.25621 5.85818i 0.236822 0.325958i
\(324\) 0 0
\(325\) −2.44891 2.44891i −0.135841 0.135841i
\(326\) 0 0
\(327\) −3.36253 −0.185948
\(328\) 0 0
\(329\) −4.03201e−5 0 −2.22292e−6 0
\(330\) 0 0
\(331\) −7.74845 7.74845i −0.425893 0.425893i 0.461333 0.887227i \(-0.347371\pi\)
−0.887227 + 0.461333i \(0.847371\pi\)
\(332\) 0 0
\(333\) 6.83237 9.40395i 0.374412 0.515333i
\(334\) 0 0
\(335\) −4.89666 + 9.61024i −0.267533 + 0.525063i
\(336\) 0 0
\(337\) 5.76908i 0.314262i −0.987578 0.157131i \(-0.949776\pi\)
0.987578 0.157131i \(-0.0502244\pi\)
\(338\) 0 0
\(339\) 12.5511 + 1.98789i 0.681681 + 0.107968i
\(340\) 0 0
\(341\) 5.89208 3.00217i 0.319074 0.162576i
\(342\) 0 0
\(343\) −0.000150423 0 2.38246e-5i −8.12206e−6 0 1.28641e-6i
\(344\) 0 0
\(345\) 1.69922 10.7284i 0.0914827 0.577599i
\(346\) 0 0
\(347\) −22.8730 11.6544i −1.22789 0.625641i −0.284930 0.958548i \(-0.591970\pi\)
−0.942959 + 0.332908i \(0.891970\pi\)
\(348\) 0 0
\(349\) −6.01795 + 1.95535i −0.322134 + 0.104668i −0.465620 0.884985i \(-0.654169\pi\)
0.143486 + 0.989652i \(0.454169\pi\)
\(350\) 0 0
\(351\) 5.96900 18.3707i 0.318602 0.980555i
\(352\) 0 0
\(353\) 8.33205 + 25.6434i 0.443470 + 1.36486i 0.884153 + 0.467198i \(0.154736\pi\)
−0.440683 + 0.897663i \(0.645264\pi\)
\(354\) 0 0
\(355\) −0.278016 + 0.278016i −0.0147556 + 0.0147556i
\(356\) 0 0
\(357\) −1.36889e−5 0 8.64284e-5i −7.24494e−7 0 4.57428e-6i
\(358\) 0 0
\(359\) 19.6380 14.2679i 1.03646 0.753029i 0.0668655 0.997762i \(-0.478700\pi\)
0.969591 + 0.244732i \(0.0787001\pi\)
\(360\) 0 0
\(361\) −10.3935 14.3055i −0.547028 0.752920i
\(362\) 0 0
\(363\) −3.22800 6.33530i −0.169426 0.332517i
\(364\) 0 0
\(365\) −11.3340 8.23464i −0.593249 0.431021i
\(366\) 0 0
\(367\) 21.2026 + 6.88914i 1.10677 + 0.359610i 0.804703 0.593678i \(-0.202325\pi\)
0.302064 + 0.953288i \(0.402325\pi\)
\(368\) 0 0
\(369\) −7.06381 + 5.24671i −0.367727 + 0.273133i
\(370\) 0 0
\(371\) −7.04469e−5 0 2.28896e-5i −3.65742e−6 0 1.18837e-6i
\(372\) 0 0
\(373\) 9.69979 + 7.04731i 0.502236 + 0.364896i 0.809871 0.586609i \(-0.199537\pi\)
−0.307634 + 0.951505i \(0.599537\pi\)
\(374\) 0 0
\(375\) −0.578869 1.13609i −0.0298927 0.0586677i
\(376\) 0 0
\(377\) 5.81491 + 8.00354i 0.299483 + 0.412203i
\(378\) 0 0
\(379\) 28.0413 20.3732i 1.44038 1.04650i 0.452421 0.891804i \(-0.350560\pi\)
0.987962 0.154696i \(-0.0494397\pi\)
\(380\) 0 0
\(381\) −1.89439 11.9607i −0.0970523 0.612764i
\(382\) 0 0
\(383\) 7.44908 7.44908i 0.380630 0.380630i −0.490699 0.871329i \(-0.663259\pi\)
0.871329 + 0.490699i \(0.163259\pi\)
\(384\) 0 0
\(385\) 7.82875e−6 0 2.40944e-5i 3.98990e−7 0 1.22796e-6i
\(386\) 0 0
\(387\) −0.119576 + 0.368018i −0.00607841 + 0.0187074i
\(388\) 0 0
\(389\) 19.0004 6.17359i 0.963356 0.313013i 0.215225 0.976564i \(-0.430951\pi\)
0.748131 + 0.663551i \(0.230951\pi\)
\(390\) 0 0
\(391\) 47.8851 + 24.3987i 2.42166 + 1.23390i
\(392\) 0 0
\(393\) 3.27587 20.6830i 0.165246 1.04332i
\(394\) 0 0
\(395\) −4.72297 + 0.748045i −0.237638 + 0.0376382i
\(396\) 0 0
\(397\) 6.44121 3.28196i 0.323275 0.164717i −0.284820 0.958581i \(-0.591934\pi\)
0.608095 + 0.793864i \(0.291934\pi\)
\(398\) 0 0
\(399\) 1.57249e−5 0 2.49057e-6i 7.87227e−7 0 1.24685e-7i
\(400\) 0 0
\(401\) 15.4651i 0.772291i 0.922438 + 0.386146i \(0.126194\pi\)
−0.922438 + 0.386146i \(0.873806\pi\)
\(402\) 0 0
\(403\) 4.46454 8.76216i 0.222395 0.436474i
\(404\) 0 0
\(405\) 1.75688 2.41814i 0.0873001 0.120158i
\(406\) 0 0
\(407\) 13.9294 + 13.9294i 0.690455 + 0.690455i
\(408\) 0 0
\(409\) −37.1371 −1.83631 −0.918156 0.396220i \(-0.870322\pi\)
−0.918156 + 0.396220i \(0.870322\pi\)
\(410\) 0 0
\(411\) −19.2401 −0.949045
\(412\) 0 0
\(413\) −8.10794e−6 0 8.10794e-6i −3.98966e−7 0 3.98966e-7i
\(414\) 0 0
\(415\) 3.49262 4.80718i 0.171446 0.235975i
\(416\) 0 0
\(417\) 13.3751 26.2502i 0.654984 1.28548i
\(418\) 0 0
\(419\) 23.3890i 1.14263i 0.820732 + 0.571314i \(0.193566\pi\)
−0.820732 + 0.571314i \(0.806434\pi\)
\(420\) 0 0
\(421\) −11.5003 1.82147i −0.560492 0.0887732i −0.130241 0.991482i \(-0.541575\pi\)
−0.430251 + 0.902709i \(0.641575\pi\)
\(422\) 0 0
\(423\) 4.53823 2.31235i 0.220656 0.112430i
\(424\) 0 0
\(425\) 6.23099 0.986892i 0.302248 0.0478713i
\(426\) 0 0
\(427\) 1.33025e−5 0 8.39884e-5i 6.43751e−7 0 4.06448e-6i
\(428\) 0 0
\(429\) 9.16318 + 4.66887i 0.442402 + 0.225415i
\(430\) 0 0
\(431\) 20.7245 6.73379i 0.998263 0.324355i 0.236092 0.971731i \(-0.424133\pi\)
0.762171 + 0.647375i \(0.224133\pi\)
\(432\) 0 0
\(433\) −4.60496 + 14.1726i −0.221300 + 0.681092i 0.777346 + 0.629073i \(0.216565\pi\)
−0.998646 + 0.0520184i \(0.983435\pi\)
\(434\) 0 0
\(435\) 1.12552 + 3.46400i 0.0539646 + 0.166086i
\(436\) 0 0
\(437\) −6.91409 + 6.91409i −0.330746 + 0.330746i
\(438\) 0 0
\(439\) 0.525516 + 3.31798i 0.0250815 + 0.158358i 0.997050 0.0767518i \(-0.0244549\pi\)
−0.971969 + 0.235110i \(0.924455\pi\)
\(440\) 0 0
\(441\) 7.78225 5.65414i 0.370583 0.269245i
\(442\) 0 0
\(443\) 16.4174 + 22.5966i 0.780015 + 1.07360i 0.995280 + 0.0970428i \(0.0309384\pi\)
−0.215265 + 0.976556i \(0.569062\pi\)
\(444\) 0 0
\(445\) 7.18184 + 14.0952i 0.340452 + 0.668175i
\(446\) 0 0
\(447\) −19.0412 13.8342i −0.900617 0.654336i
\(448\) 0 0
\(449\) 21.2447 + 6.90281i 1.00260 + 0.325764i 0.763903 0.645331i \(-0.223280\pi\)
0.238695 + 0.971095i \(0.423280\pi\)
\(450\) 0 0
\(451\) −6.90948 13.2147i −0.325354 0.622254i
\(452\) 0 0
\(453\) −11.6943 3.79969i −0.549444 0.178525i
\(454\) 0 0
\(455\) 3.04797e−5 0 2.21448e-5i 1.42891e−6 0 1.03816e-6i
\(456\) 0 0
\(457\) 4.55314 + 8.93603i 0.212987 + 0.418010i 0.972640 0.232319i \(-0.0746312\pi\)
−0.759653 + 0.650329i \(0.774631\pi\)
\(458\) 0 0
\(459\) 20.6818 + 28.4661i 0.965344 + 1.32868i
\(460\) 0 0
\(461\) −13.7696 + 10.0042i −0.641316 + 0.465943i −0.860302 0.509785i \(-0.829725\pi\)
0.218986 + 0.975728i \(0.429725\pi\)
\(462\) 0 0
\(463\) 0.291925 + 1.84314i 0.0135669 + 0.0856579i 0.993543 0.113458i \(-0.0361929\pi\)
−0.979976 + 0.199116i \(0.936193\pi\)
\(464\) 0 0
\(465\) 2.56013 2.56013i 0.118723 0.118723i
\(466\) 0 0
\(467\) −11.9055 36.6415i −0.550922 1.69557i −0.706476 0.707737i \(-0.749716\pi\)
0.155553 0.987828i \(-0.450284\pi\)
\(468\) 0 0
\(469\) 3.62578e−5 0 0.000111590i 1.67423e−6 0 5.15275e-6i
\(470\) 0 0
\(471\) 17.1389 5.56876i 0.789718 0.256595i
\(472\) 0 0
\(473\) −0.584304 0.297718i −0.0268663 0.0136891i
\(474\) 0 0
\(475\) −0.179556 + 1.13367i −0.00823859 + 0.0520164i
\(476\) 0 0
\(477\) 9.24186 1.46377i 0.423156 0.0670213i
\(478\) 0 0
\(479\) 10.2379 5.21647i 0.467781 0.238347i −0.204179 0.978934i \(-0.565452\pi\)
0.671960 + 0.740587i \(0.265452\pi\)
\(480\) 0 0
\(481\) 28.9341 + 4.58271i 1.31928 + 0.208954i
\(482\) 0 0
\(483\) 0 0.000118163i 0 5.37661e-6i
\(484\) 0 0
\(485\) 1.06255 2.08538i 0.0482481 0.0946922i
\(486\) 0 0
\(487\) −21.6385 + 29.7829i −0.980536 + 1.34959i −0.0439956 + 0.999032i \(0.514009\pi\)
−0.936540 + 0.350560i \(0.885991\pi\)
\(488\) 0 0
\(489\) 2.13744 + 2.13744i 0.0966585 + 0.0966585i
\(490\) 0 0
\(491\) 24.9509 1.12602 0.563008 0.826451i \(-0.309644\pi\)
0.563008 + 0.826451i \(0.309644\pi\)
\(492\) 0 0
\(493\) −18.0208 −0.811618
\(494\) 0 0
\(495\) −2.26297 2.26297i −0.101713 0.101713i
\(496\) 0 0
\(497\) 2.51402e−6 0 3.46025e-6i 1.12769e−7 0 1.55214e-7i
\(498\) 0 0
\(499\) 4.25690 8.35464i 0.190565 0.374005i −0.775879 0.630882i \(-0.782693\pi\)
0.966444 + 0.256876i \(0.0826933\pi\)
\(500\) 0 0
\(501\) 9.94378i 0.444255i
\(502\) 0 0
\(503\) 6.71008 + 1.06277i 0.299187 + 0.0473866i 0.304224 0.952601i \(-0.401603\pi\)
−0.00503604 + 0.999987i \(0.501603\pi\)
\(504\) 0 0
\(505\) 8.65902 4.41199i 0.385321 0.196331i
\(506\) 0 0
\(507\) −1.26658 + 0.200607i −0.0562509 + 0.00890927i
\(508\) 0 0
\(509\) −0.841871 + 5.31536i −0.0373153 + 0.235599i −0.999296 0.0375182i \(-0.988055\pi\)
0.961981 + 0.273117i \(0.0880548\pi\)
\(510\) 0 0
\(511\) 0.000135791 0 6.91892e-5i 6.00706e−6 0 3.06075e-6i
\(512\) 0 0
\(513\) −6.08844 + 1.97825i −0.268811 + 0.0873420i
\(514\) 0 0
\(515\) −1.96372 + 6.04370i −0.0865317 + 0.266317i
\(516\) 0 0
\(517\) 2.66737 + 8.20932i 0.117311 + 0.361045i
\(518\) 0 0
\(519\) 12.2827 12.2827i 0.539153 0.539153i
\(520\) 0 0
\(521\) −2.06522 13.0393i −0.0904790 0.571262i −0.990725 0.135881i \(-0.956614\pi\)
0.900246 0.435381i \(-0.143386\pi\)
\(522\) 0 0
\(523\) 5.95290 4.32504i 0.260302 0.189121i −0.449978 0.893040i \(-0.648568\pi\)
0.710280 + 0.703919i \(0.248568\pi\)
\(524\) 0 0
\(525\) 8.15301e−6 0 1.12217e-5i 3.55826e−7 0 4.89753e-7i
\(526\) 0 0
\(527\) 8.13257 + 15.9611i 0.354260 + 0.695275i
\(528\) 0 0
\(529\) −40.1040 29.1373i −1.74365 1.26684i
\(530\) 0 0
\(531\) 1.37758 + 0.447602i 0.0597817 + 0.0194243i
\(532\) 0 0
\(533\) −19.8637 9.85893i −0.860392 0.427038i
\(534\) 0 0
\(535\) 6.82558 + 2.21776i 0.295095 + 0.0958823i
\(536\) 0 0
\(537\) 0.519103 + 0.377150i 0.0224009 + 0.0162752i
\(538\) 0 0
\(539\) 7.40098 + 14.5252i 0.318783 + 0.625646i
\(540\) 0 0
\(541\) −2.07618 2.85761i −0.0892618 0.122858i 0.762051 0.647518i \(-0.224193\pi\)
−0.851312 + 0.524659i \(0.824193\pi\)
\(542\) 0 0
\(543\) −19.0112 + 13.8125i −0.815849 + 0.592749i
\(544\) 0 0
\(545\) 0.412539 + 2.60467i 0.0176712 + 0.111572i
\(546\) 0 0
\(547\) −9.15743 + 9.15743i −0.391543 + 0.391543i −0.875237 0.483694i \(-0.839295\pi\)
0.483694 + 0.875237i \(0.339295\pi\)
\(548\) 0 0
\(549\) 3.31945 + 10.2162i 0.141671 + 0.436017i
\(550\) 0 0
\(551\) 1.01318 3.11825i 0.0431630 0.132842i
\(552\) 0 0
\(553\) 4.94729e−5 0 1.60747e-5i 2.10380e−6 0 6.83566e-7i
\(554\) 0 0
\(555\) 9.60988 + 4.89648i 0.407917 + 0.207844i
\(556\) 0 0
\(557\) 3.86053 24.3744i 0.163576 1.03278i −0.760157 0.649739i \(-0.774878\pi\)
0.923733 0.383037i \(-0.125122\pi\)
\(558\) 0 0
\(559\) −0.963209 + 0.152557i −0.0407394 + 0.00645249i
\(560\) 0 0
\(561\) −16.6915 + 8.50477i −0.704717 + 0.359071i
\(562\) 0 0
\(563\) 35.8375 + 5.67611i 1.51037 + 0.239219i 0.856009 0.516961i \(-0.172937\pi\)
0.654363 + 0.756181i \(0.272937\pi\)
\(564\) 0 0
\(565\) 9.96615i 0.419279i
\(566\) 0 0
\(567\) −1.47617e−5 0 2.89714e-5i −6.19932e−7 0 1.21669e-6i
\(568\) 0 0
\(569\) −1.36999 + 1.88563i −0.0574329 + 0.0790496i −0.836767 0.547559i \(-0.815557\pi\)
0.779334 + 0.626608i \(0.215557\pi\)
\(570\) 0 0
\(571\) −6.90664 6.90664i −0.289034 0.289034i 0.547664 0.836698i \(-0.315517\pi\)
−0.836698 + 0.547664i \(0.815517\pi\)
\(572\) 0 0
\(573\) −29.0635 −1.21415
\(574\) 0 0
\(575\) −8.51888 −0.355262
\(576\) 0 0
\(577\) 3.78061 + 3.78061i 0.157389 + 0.157389i 0.781409 0.624020i \(-0.214502\pi\)
−0.624020 + 0.781409i \(0.714502\pi\)
\(578\) 0 0
\(579\) 9.30998 12.8141i 0.386909 0.532535i
\(580\) 0 0
\(581\) −2.93457e−5 0 5.75942e-5i −1.21747e−6 0 2.38941e-6i
\(582\) 0 0
\(583\) 15.8575i 0.656750i
\(584\) 0 0
\(585\) −4.70063 0.744507i −0.194347 0.0307816i
\(586\) 0 0
\(587\) 11.2140 5.71384i 0.462853 0.235835i −0.206983 0.978345i \(-0.566364\pi\)
0.669836 + 0.742509i \(0.266364\pi\)
\(588\) 0 0
\(589\) −3.21907 + 0.509851i −0.132640 + 0.0210080i
\(590\) 0 0
\(591\) −2.92138 + 18.4448i −0.120169 + 0.758719i
\(592\) 0 0
\(593\) −19.2951 9.83134i −0.792354 0.403725i 0.0104663 0.999945i \(-0.496668\pi\)
−0.802821 + 0.596220i \(0.796668\pi\)
\(594\) 0 0
\(595\) −6.52693e−5 0 2.12073e-5i −2.67578e−6 0 8.69414e-7i
\(596\) 0 0
\(597\) −7.32967 + 22.5584i −0.299983 + 0.923254i
\(598\) 0 0
\(599\) 8.97179 + 27.6123i 0.366578 + 1.12821i 0.948987 + 0.315314i \(0.102110\pi\)
−0.582410 + 0.812895i \(0.697890\pi\)
\(600\) 0 0
\(601\) 22.7305 22.7305i 0.927198 0.927198i −0.0703257 0.997524i \(-0.522404\pi\)
0.997524 + 0.0703257i \(0.0224038\pi\)
\(602\) 0 0
\(603\) 2.31865 + 14.6394i 0.0944227 + 0.596162i
\(604\) 0 0
\(605\) −4.51139 + 3.27772i −0.183414 + 0.133258i
\(606\) 0 0
\(607\) 6.11656 + 8.41872i 0.248263 + 0.341705i 0.914902 0.403676i \(-0.132268\pi\)
−0.666639 + 0.745381i \(0.732268\pi\)
\(608\) 0 0
\(609\) −1.79880e−5 0 3.53035e-5i −7.28912e−7 0 1.43057e-6i
\(610\) 0 0
\(611\) 10.3849 + 7.54505i 0.420127 + 0.305240i
\(612\) 0 0
\(613\) −20.1479 6.54646i −0.813768 0.264409i −0.127575 0.991829i \(-0.540719\pi\)
−0.686193 + 0.727420i \(0.740719\pi\)
\(614\) 0 0
\(615\) −5.83360 5.71200i −0.235234 0.230330i
\(616\) 0 0
\(617\) −13.7384 4.46387i −0.553087 0.179709i 0.0191216 0.999817i \(-0.493913\pi\)
−0.572208 + 0.820108i \(0.693913\pi\)
\(618\) 0 0
\(619\) −36.2448 26.3334i −1.45680 1.05843i −0.984181 0.177164i \(-0.943308\pi\)
−0.472622 0.881265i \(-0.656692\pi\)
\(620\) 0 0
\(621\) −21.5706 42.3346i −0.865597 1.69883i
\(622\) 0 0
\(623\) −0.000101152 0 0.000139223i −4.05256e−6 0 5.57787e-6i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) −0.533185 3.36640i −0.0212934 0.134441i
\(628\) 0 0
\(629\) −37.7334 + 37.7334i −1.50453 + 1.50453i
\(630\) 0 0
\(631\) 3.54293 + 10.9040i 0.141042 + 0.434082i 0.996481 0.0838215i \(-0.0267125\pi\)
−0.855439 + 0.517904i \(0.826713\pi\)
\(632\) 0 0
\(633\) 7.16762 22.0597i 0.284887 0.876793i
\(634\) 0 0
\(635\) −9.03251 + 2.93484i −0.358444 + 0.116466i
\(636\) 0 0
\(637\) 21.6006 + 11.0061i 0.855847 + 0.436076i
\(638\) 0 0
\(639\) −0.0845214 + 0.533647i −0.00334362 + 0.0211108i
\(640\) 0 0
\(641\) −26.5737 + 4.20885i −1.04960 + 0.166240i −0.657323 0.753609i \(-0.728311\pi\)
−0.392273 + 0.919849i \(0.628311\pi\)
\(642\) 0 0
\(643\) 3.48186 1.77410i 0.137311 0.0699635i −0.383985 0.923339i \(-0.625449\pi\)
0.521296 + 0.853376i \(0.325449\pi\)
\(644\) 0 0
\(645\) −0.354623 0.0561668i −0.0139633 0.00221157i
\(646\) 0 0
\(647\) 11.0015i 0.432512i 0.976337 + 0.216256i \(0.0693845\pi\)
−0.976337 + 0.216256i \(0.930615\pi\)
\(648\) 0 0
\(649\) −1.11443 + 2.18718i −0.0437450 + 0.0858545i
\(650\) 0 0
\(651\) −2.31506e−5 0 3.18640e-5i −9.07342e−7 0 1.24885e-6i
\(652\) 0 0
\(653\) 13.7335 + 13.7335i 0.537432 + 0.537432i 0.922774 0.385342i \(-0.125916\pi\)
−0.385342 + 0.922774i \(0.625916\pi\)
\(654\) 0 0
\(655\) −16.4233 −0.641711
\(656\) 0 0
\(657\) −19.2520 −0.751091
\(658\) 0 0
\(659\) −8.08834 8.08834i −0.315077 0.315077i 0.531796 0.846873i \(-0.321517\pi\)
−0.846873 + 0.531796i \(0.821517\pi\)
\(660\) 0 0
\(661\) 12.4458 17.1301i 0.484084 0.666284i −0.495199 0.868779i \(-0.664905\pi\)
0.979283 + 0.202495i \(0.0649050\pi\)
\(662\) 0 0
\(663\) −12.6475 + 24.8221i −0.491188 + 0.964012i
\(664\) 0 0
\(665\) 0 1.24863e-5i 0 4.84197e-7i
\(666\) 0 0
\(667\) 24.0348 + 3.80673i 0.930630 + 0.147397i
\(668\) 0 0
\(669\) 26.6181 13.5626i 1.02911 0.524359i
\(670\) 0 0
\(671\) −17.9804 + 2.84781i −0.694124 + 0.109938i
\(672\) 0 0
\(673\) −6.74228 + 42.5691i −0.259896 + 1.64092i 0.419938 + 0.907553i \(0.362052\pi\)
−0.679834 + 0.733366i \(0.737948\pi\)
\(674\) 0 0
\(675\) −4.96950 2.53209i −0.191276 0.0974602i
\(676\) 0 0
\(677\) −11.9692 + 3.88901i −0.460012 + 0.149467i −0.529850 0.848091i \(-0.677752\pi\)
0.0698380 + 0.997558i \(0.477752\pi\)
\(678\) 0 0
\(679\) −7.86777e−6 0 2.42145e-5i −3.01937e−7 0 9.29268e-7i
\(680\) 0 0
\(681\) −5.35043 16.4669i −0.205029 0.631014i
\(682\) 0 0
\(683\) 13.8942 13.8942i 0.531645 0.531645i −0.389417 0.921062i \(-0.627323\pi\)
0.921062 + 0.389417i \(0.127323\pi\)
\(684\) 0 0
\(685\) 2.36051 + 14.9037i 0.0901905 + 0.569441i
\(686\) 0 0
\(687\) −3.05539 + 2.21987i −0.116570 + 0.0846934i
\(688\) 0 0
\(689\) 13.8610 + 19.0781i 0.528063 + 0.726817i
\(690\) 0 0
\(691\) −13.4210 26.3402i −0.510559 1.00203i −0.992082 0.125595i \(-0.959916\pi\)
0.481523 0.876434i \(-0.340084\pi\)
\(692\) 0 0
\(693\) 2.81655e−5 0 2.04634e-5i 1.06992e−6 0 7.77341e-7i
\(694\) 0 0
\(695\) −21.9748 7.14003i −0.833550 0.270837i
\(696\) 0 0
\(697\) 35.7972 18.7171i 1.35592 0.708960i
\(698\) 0 0
\(699\) −24.9349 8.10183i −0.943123 0.306439i
\(700\) 0 0
\(701\) −32.2279 23.4150i −1.21723 0.884371i −0.221365 0.975191i \(-0.571051\pi\)
−0.995867 + 0.0908201i \(0.971051\pi\)
\(702\) 0 0
\(703\) −4.40775 8.65071i −0.166242 0.326268i
\(704\) 0 0
\(705\) 2.77785 + 3.82338i 0.104620 + 0.143997i
\(706\) 0 0
\(707\) −8.55285e−5 0 6.21401e-5i −3.21663e−6 0 2.33702e-6i
\(708\) 0 0
\(709\) −2.55392 16.1248i −0.0959144 0.605580i −0.988088 0.153888i \(-0.950821\pi\)
0.892174 0.451692i \(-0.149179\pi\)
\(710\) 0 0
\(711\) −4.64654 + 4.64654i −0.174259 + 0.174259i
\(712\) 0 0
\(713\) −7.47495 23.0055i −0.279939 0.861564i
\(714\) 0 0
\(715\) 2.49238 7.67075i 0.0932096 0.286870i
\(716\) 0 0
\(717\) −5.03496 + 1.63596i −0.188034 + 0.0610959i
\(718\) 0 0
\(719\) −1.63576 0.833463i −0.0610037 0.0310829i 0.423223 0.906026i \(-0.360899\pi\)
−0.484226 + 0.874943i \(0.660899\pi\)
\(720\) 0 0
\(721\) 1.08142e−5 0 6.82782e-5i 4.02742e−7 0 2.54281e-6i
\(722\) 0 0
\(723\) 2.80239 0.443854i 0.104222 0.0165071i
\(724\) 0 0
\(725\) 2.54518 1.29683i 0.0945256 0.0481632i
\(726\) 0 0
\(727\) 31.4494 + 4.98110i 1.16640 + 0.184739i 0.709450 0.704756i \(-0.248943\pi\)
0.456945 + 0.889495i \(0.348943\pi\)
\(728\) 0 0
\(729\) 25.4422i 0.942303i
\(730\) 0 0
\(731\) 0.806488 1.58282i 0.0298290 0.0585428i
\(732\) 0 0
\(733\) −20.8429 + 28.6878i −0.769849 + 1.05961i 0.226481 + 0.974016i \(0.427278\pi\)
−0.996330 + 0.0855911i \(0.972722\pi\)
\(734\) 0 0
\(735\) 6.31127 + 6.31127i 0.232795 + 0.232795i
\(736\) 0 0
\(737\) −25.1187 −0.925260
\(738\) 0 0
\(739\) −2.15732 −0.0793582 −0.0396791 0.999212i \(-0.512634\pi\)
−0.0396791 + 0.999212i \(0.512634\pi\)
\(740\) 0 0
\(741\) −3.58404 3.58404i −0.131663 0.131663i
\(742\) 0 0
\(743\) −29.6150 + 40.7616i −1.08647 + 1.49540i −0.234276 + 0.972170i \(0.575272\pi\)
−0.852193 + 0.523227i \(0.824728\pi\)
\(744\) 0 0
\(745\) −8.38010 + 16.4469i −0.307023 + 0.602567i
\(746\) 0 0
\(747\) 8.16548i 0.298759i
\(748\) 0 0
\(749\) −7.71114e−5 0 1.22132e-5i −2.81759e−6 0 4.46262e-7i
\(750\) 0 0
\(751\) 20.5231 10.4571i 0.748900 0.381584i −0.0375037 0.999296i \(-0.511941\pi\)
0.786404 + 0.617713i \(0.211941\pi\)
\(752\) 0 0
\(753\) −37.5307 + 5.94428i −1.36770 + 0.216622i
\(754\) 0 0
\(755\) −1.50857 + 9.52472i −0.0549024 + 0.346640i
\(756\) 0 0
\(757\) −11.2659 5.74029i −0.409468 0.208634i 0.237109 0.971483i \(-0.423800\pi\)
−0.646577 + 0.762849i \(0.723800\pi\)
\(758\) 0 0
\(759\) 24.0584 7.81705i 0.873265 0.283741i
\(760\) 0 0
\(761\) 4.77234 14.6878i 0.172997 0.532431i −0.826539 0.562879i \(-0.809694\pi\)
0.999536 + 0.0304484i \(0.00969353\pi\)
\(762\) 0 0
\(763\) −8.86504e−6 0 2.72838e-5i −3.20936e−7 0 9.87739e-7i
\(764\) 0 0
\(765\) 6.13016 6.13016i 0.221636 0.221636i
\(766\) 0 0
\(767\) 0.571057 + 3.60551i 0.0206197 + 0.130187i
\(768\) 0 0
\(769\) 11.1339 8.08925i 0.401499 0.291706i −0.368653 0.929567i \(-0.620181\pi\)
0.770151 + 0.637862i \(0.220181\pi\)
\(770\) 0 0
\(771\) −2.54925 3.50875i −0.0918092 0.126364i
\(772\) 0 0
\(773\) 14.3511 + 28.1657i 0.516175 + 1.01305i 0.991112 + 0.133031i \(0.0424708\pi\)
−0.474937 + 0.880020i \(0.657529\pi\)
\(774\) 0 0
\(775\) −2.29721 1.66902i −0.0825183 0.0599530i
\(776\) 0 0
\(777\) −0.000111586 0 3.62564e-5i −4.00312e−6 0 1.30069e-6i
\(778\) 0 0
\(779\) 1.22611 + 7.24653i 0.0439299 + 0.259634i
\(780\) 0 0
\(781\) −0.870834 0.282951i −0.0311609 0.0101248i
\(782\) 0 0
\(783\) 12.8892 + 9.36458i 0.460624 + 0.334663i
\(784\) 0 0
\(785\) −6.41636 12.5928i −0.229010 0.449457i
\(786\) 0 0
\(787\) 11.2359 + 15.4649i 0.400518 + 0.551265i 0.960874 0.276987i \(-0.0893358\pi\)
−0.560356 + 0.828252i \(0.689336\pi\)
\(788\) 0 0
\(789\) −20.2199 + 14.6906i −0.719849 + 0.523001i
\(790\) 0 0
\(791\) 1.69600e−5 0 0.000107081i 6.03027e−7 0 3.80736e-6i
\(792\) 0 0
\(793\) −19.1428 + 19.1428i −0.679782 + 0.679782i
\(794\) 0 0
\(795\) 2.68291 + 8.25715i 0.0951530 + 0.292851i
\(796\) 0 0
\(797\) 12.2599 37.7320i 0.434267 1.33654i −0.459569 0.888142i \(-0.651996\pi\)
0.893836 0.448394i \(-0.148004\pi\)
\(798\) 0 0
\(799\) −22.2382 + 7.22564i −0.786732 + 0.255625i
\(800\) 0 0
\(801\) 19.3695 + 9.86928i 0.684389 + 0.348714i
\(802\) 0 0
\(803\) 5.10391 32.2248i 0.180113 1.13719i
\(804\) 0 0
\(805\) 9.15309e−5 0 1.44971e-5i 3.22604e−6 0 5.10955e-7i
\(806\) 0 0
\(807\) −15.9384 + 8.12103i −0.561059 + 0.285874i
\(808\) 0 0
\(809\) −10.8611 1.72023i −0.381856 0.0604800i −0.0374440 0.999299i \(-0.511922\pi\)
−0.344412 + 0.938819i \(0.611922\pi\)
\(810\) 0 0
\(811\) 44.1060i 1.54877i −0.632713 0.774386i \(-0.718059\pi\)
0.632713 0.774386i \(-0.281941\pi\)
\(812\) 0 0
\(813\) −7.30005 + 14.3272i −0.256024 + 0.502475i
\(814\) 0 0
\(815\) 1.39346 1.91793i 0.0488108 0.0671822i
\(816\) 0 0
\(817\) 0.228542 + 0.228542i 0.00799568 + 0.00799568i
\(818\) 0 0
\(819\) 5.17728e−5 0 1.80909e−6 0
\(820\) 0 0
\(821\) 12.4025 0.432852 0.216426 0.976299i \(-0.430560\pi\)
0.216426 + 0.976299i \(0.430560\pi\)
\(822\) 0 0
\(823\) 0.441578 + 0.441578i 0.0153924 + 0.0153924i 0.714761 0.699369i \(-0.246535\pi\)
−0.699369 + 0.714761i \(0.746535\pi\)
\(824\) 0 0
\(825\) 1.74541 2.40235i 0.0607673 0.0836390i
\(826\) 0 0
\(827\) 5.68865 11.1646i 0.197814 0.388232i −0.770697 0.637201i \(-0.780092\pi\)
0.968511 + 0.248970i \(0.0800920\pi\)
\(828\) 0 0
\(829\) 12.1114i 0.420647i −0.977632 0.210323i \(-0.932548\pi\)
0.977632 0.210323i \(-0.0674517\pi\)
\(830\) 0 0
\(831\) 17.0443 + 2.69956i 0.591261 + 0.0936465i
\(832\) 0 0
\(833\) −39.3474 + 20.0485i −1.36331 + 0.694640i
\(834\) 0 0
\(835\) −7.70260 + 1.21997i −0.266560 + 0.0422189i
\(836\) 0 0
\(837\) 2.47747 15.6421i 0.0856338 0.540671i
\(838\) 0 0
\(839\) 17.4004 + 8.86594i 0.600728 + 0.306086i 0.727781 0.685810i \(-0.240552\pi\)
−0.127053 + 0.991896i \(0.540552\pi\)
\(840\) 0 0
\(841\) 19.8203 6.44000i 0.683458 0.222069i
\(842\) 0 0
\(843\) −10.5072 + 32.3377i −0.361886 + 1.11377i
\(844\) 0 0
\(845\) 0.310787 + 0.956503i 0.0106914 + 0.0329047i
\(846\) 0 0
\(847\) 4.28947e−5 0 4.28947e-5i 1.47388e−6 0 1.47388e-6i
\(848\) 0 0
\(849\) −0.115878 0.731626i −0.00397693 0.0251093i
\(850\) 0 0
\(851\) 58.2966 42.3550i 1.99838 1.45191i
\(852\) 0 0
\(853\) −8.14895 11.2161i −0.279015 0.384031i 0.646392 0.763005i \(-0.276277\pi\)
−0.925407 + 0.378974i \(0.876277\pi\)
\(854\) 0 0
\(855\) 0.716083 + 1.40539i 0.0244895 + 0.0480634i
\(856\) 0 0
\(857\) 7.16572 + 5.20620i 0.244776 + 0.177840i 0.703409 0.710786i \(-0.251660\pi\)
−0.458632 + 0.888626i \(0.651660\pi\)
\(858\) 0 0
\(859\) −6.12452 1.98998i −0.208966 0.0678971i 0.202664 0.979248i \(-0.435040\pi\)
−0.411629 + 0.911351i \(0.635040\pi\)
\(860\) 0 0
\(861\) 7.23995e−5 0 5.14451e-5i 2.46737e−6 0 1.75324e-6i
\(862\) 0 0
\(863\) 12.7974 + 4.15814i 0.435630 + 0.141545i 0.518619 0.855006i \(-0.326446\pi\)
−0.0829885 + 0.996551i \(0.526446\pi\)
\(864\) 0 0
\(865\) −11.0213 8.00747i −0.374737 0.272262i
\(866\) 0 0
\(867\) −13.1978 25.9021i −0.448220 0.879682i
\(868\) 0 0
\(869\) −6.54573 9.00943i −0.222049 0.305624i
\(870\) 0 0
\(871\) −30.2202 + 21.9563i −1.02397 + 0.743960i
\(872\) 0 0
\(873\) −0.503137 3.17668i −0.0170286 0.107514i
\(874\) 0 0
\(875\) 7.69220e−6 0 7.69220e-6i 2.60044e−7 0 2.60044e-7i
\(876\) 0 0
\(877\) 3.80199 + 11.7013i 0.128384 + 0.395125i 0.994502 0.104714i \(-0.0333926\pi\)
−0.866118 + 0.499839i \(0.833393\pi\)
\(878\) 0 0
\(879\) −1.46936 + 4.52221i −0.0495602 + 0.152530i
\(880\) 0 0
\(881\) 19.7024 6.40171i 0.663792 0.215679i 0.0423065 0.999105i \(-0.486529\pi\)
0.621486 + 0.783426i \(0.286529\pi\)
\(882\) 0 0
\(883\) −28.5401 14.5419i −0.960451 0.489374i −0.0978182 0.995204i \(-0.531186\pi\)
−0.862633 + 0.505830i \(0.831186\pi\)
\(884\) 0 0
\(885\) −0.210245 + 1.32744i −0.00706732 + 0.0446213i
\(886\) 0 0
\(887\) −42.0552 + 6.66090i −1.41208 + 0.223651i −0.815431 0.578854i \(-0.803500\pi\)
−0.596646 + 0.802505i \(0.703500\pi\)
\(888\) 0 0
\(889\) 9.20552e−5 0 4.69045e-5i 3.08743e−6 0 1.57313e-6i
\(890\) 0 0
\(891\) 6.87524 + 1.08893i 0.230329 + 0.0364806i
\(892\) 0 0
\(893\) 4.25426i 0.142363i
\(894\) 0 0
\(895\) 0.228459 0.448377i 0.00763655 0.0149876i
\(896\) 0 0
\(897\) 22.1117 30.4341i 0.738288 1.01617i
\(898\) 0 0
\(899\) 5.73543 + 5.73543i 0.191287 + 0.191287i
\(900\) 0 0
\(901\) −42.9563 −1.43108
\(902\) 0 0
\(903\) 3.90583e−6 0 1.29978e−7 0
\(904\) 0 0
\(905\) 13.0318 + 13.0318i 0.433191 + 0.433191i
\(906\) 0 0
\(907\) −25.8966 + 35.6436i −0.859882 + 1.18353i 0.121716 + 0.992565i \(0.461160\pi\)
−0.981598 + 0.190961i \(0.938840\pi\)
\(908\) 0 0
\(909\) 6.06295 11.8992i 0.201095 0.394672i
\(910\) 0 0
\(911\) 55.1976i 1.82878i −0.404836 0.914389i \(-0.632671\pi\)
0.404836 0.914389i \(-0.367329\pi\)
\(912\) 0 0
\(913\) 13.6677 + 2.16476i 0.452336 + 0.0716430i
\(914\) 0 0
\(915\) −8.88073 + 4.52496i −0.293588 + 0.149590i
\(916\) 0 0
\(917\) 0.000176460 0 2.79485e-5i 5.82721e−6 0 9.22940e-7i
\(918\) 0 0
\(919\) −2.92807 + 18.4871i −0.0965881 + 0.609833i 0.891150 + 0.453710i \(0.149900\pi\)
−0.987738 + 0.156123i \(0.950100\pi\)
\(920\) 0 0
\(921\) 13.7152 + 6.98822i 0.451930 + 0.230270i
\(922\) 0 0
\(923\) −1.29502 + 0.420779i −0.0426263 + 0.0138501i
\(924\) 0 0
\(925\) 2.61388 8.04470i 0.0859438 0.264508i
\(926\) 0 0
\(927\) 2.69854 + 8.30524i 0.0886316 + 0.272780i
\(928\) 0 0
\(929\) −17.5578 + 17.5578i −0.576053 + 0.576053i −0.933813 0.357761i \(-0.883540\pi\)
0.357761 + 0.933813i \(0.383540\pi\)
\(930\) 0 0
\(931\) −1.25689 7.93570i −0.0411930 0.260082i
\(932\) 0 0
\(933\) −4.16138 + 3.02342i −0.136237 + 0.0989822i
\(934\) 0 0
\(935\) 8.63576 + 11.8861i 0.282420 + 0.388717i
\(936\) 0 0
\(937\) −4.10045 8.04758i −0.133956 0.262903i 0.814279 0.580474i \(-0.197133\pi\)
−0.948234 + 0.317571i \(0.897133\pi\)
\(938\) 0 0
\(939\) 25.7706 + 18.7235i 0.840993 + 0.611017i
\(940\) 0 0
\(941\) 18.1330 + 5.89178i 0.591120 + 0.192067i 0.589276 0.807932i \(-0.299413\pi\)
0.00184405 + 0.999998i \(0.499413\pi\)
\(942\) 0 0
\(943\) −51.6973 + 17.4015i −1.68350 + 0.566672i
\(944\) 0 0
\(945\) 5.77038e−5 0 1.87491e-5i 1.87710e−6 0 6.09908e-7i
\(946\) 0 0
\(947\) −29.1060 21.1468i −0.945818 0.687177i 0.00399584 0.999992i \(-0.498728\pi\)
−0.949814 + 0.312815i \(0.898728\pi\)
\(948\) 0 0
\(949\) −22.0272 43.2309i −0.715034 1.40333i
\(950\) 0 0
\(951\) 17.8133 + 24.5180i 0.577637 + 0.795049i
\(952\) 0 0
\(953\) −7.66971 + 5.57237i −0.248446 + 0.180507i −0.705038 0.709170i \(-0.749070\pi\)
0.456592 + 0.889676i \(0.349070\pi\)
\(954\) 0 0
\(955\) 3.56572 + 22.5131i 0.115384 + 0.728505i
\(956\) 0 0
\(957\) −5.99792 + 5.99792i −0.193885 + 0.193885i
\(958\) 0 0
\(959\) −5.07250e−5 0 0.000156115i −1.63799e−6 0 5.04123e-6i
\(960\) 0 0
\(961\) −7.08798 + 21.8146i −0.228644 + 0.703695i
\(962\) 0 0
\(963\) 9.37970 3.04765i 0.302257 0.0982091i
\(964\) 0 0
\(965\) −11.0682 5.63953i −0.356298 0.181543i
\(966\) 0 0
\(967\) −4.81429 + 30.3962i −0.154817 + 0.977477i 0.780882 + 0.624678i \(0.214770\pi\)
−0.935699 + 0.352798i \(0.885230\pi\)
\(968\) 0 0
\(969\) 9.11924 1.44435i 0.292952 0.0463990i
\(970\) 0 0
\(971\) 42.9764 21.8975i 1.37918 0.702726i 0.402097 0.915597i \(-0.368282\pi\)
0.977080 + 0.212871i \(0.0682815\pi\)
\(972\) 0 0
\(973\) 0.000248258 0 3.93202e-5i 7.95879e−6 0 1.26055e-6i
\(974\) 0 0
\(975\) 4.41592i 0.141422i
\(976\) 0 0
\(977\) −17.5600 + 34.4634i −0.561793 + 1.10258i 0.419083 + 0.907948i \(0.362352\pi\)
−0.980876 + 0.194633i \(0.937648\pi\)
\(978\) 0 0
\(979\) −21.6547 + 29.8051i −0.692087 + 0.952576i
\(980\) 0 0
\(981\) 2.56252 + 2.56252i 0.0818150 + 0.0818150i
\(982\) 0 0
\(983\) 8.94642 0.285347 0.142673 0.989770i \(-0.454430\pi\)
0.142673 + 0.989770i \(0.454430\pi\)
\(984\) 0 0
\(985\) 14.6461 0.466663
\(986\) 0 0
\(987\) −3.63530e−5 0 3.63530e-5i −1.15713e−6 0 1.15713e-6i
\(988\) 0 0
\(989\) −1.40999 + 1.94068i −0.0448350 + 0.0617100i
\(990\) 0 0
\(991\) −7.94721 + 15.5973i −0.252451 + 0.495464i −0.982100 0.188358i \(-0.939683\pi\)
0.729649 + 0.683822i \(0.239683\pi\)
\(992\) 0 0
\(993\) 13.9722i 0.443393i
\(994\) 0 0
\(995\) 18.3733 + 2.91005i 0.582474 + 0.0922548i
\(996\) 0 0
\(997\) 45.1209 22.9902i 1.42899 0.728109i 0.443255 0.896395i \(-0.353823\pi\)
0.985738 + 0.168287i \(0.0538235\pi\)
\(998\) 0 0
\(999\) 46.5967 7.38020i 1.47426 0.233499i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bo.b.21.6 64
41.2 even 20 inner 820.2.bo.b.781.6 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bo.b.21.6 64 1.1 even 1 trivial
820.2.bo.b.781.6 yes 64 41.2 even 20 inner