L(s) = 1 | + (0.901 + 0.901i)3-s + (0.587 − 0.809i)5-s + (−4.93e−6 + 9.69e−6i)7-s − 1.37i·9-s + (2.30 + 0.364i)11-s + (3.08 − 1.57i)13-s + (1.25 − 0.199i)15-s + (−0.986 + 6.23i)17-s + (−1.02 − 0.521i)19-s + (−1.31e−5 + 4.28e−6i)21-s + (2.63 − 8.10i)23-s + (−0.309 − 0.951i)25-s + (3.94 − 3.94i)27-s + (0.446 + 2.82i)29-s + (2.29 − 1.66i)31-s + ⋯ |
L(s) = 1 | + (0.520 + 0.520i)3-s + (0.262 − 0.361i)5-s + (−1.86e−6 + 3.66e−6i)7-s − 0.458i·9-s + (0.693 + 0.109i)11-s + (0.855 − 0.436i)13-s + (0.325 − 0.0515i)15-s + (−0.239 + 1.51i)17-s + (−0.234 − 0.119i)19-s − 2.87e − 6·21-s + (0.548 − 1.68i)23-s + (−0.0618 − 0.190i)25-s + (0.758 − 0.758i)27-s + (0.0829 + 0.523i)29-s + (0.412 − 0.299i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0226i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0226i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.06644 + 0.0234129i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.06644 + 0.0234129i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.587 + 0.809i)T \) |
| 41 | \( 1 + (3.81 + 5.14i)T \) |
good | 3 | \( 1 + (-0.901 - 0.901i)T + 3iT^{2} \) |
| 7 | \( 1 + (4.93e-6 - 9.69e-6i)T + (-4.11 - 5.66i)T^{2} \) |
| 11 | \( 1 + (-2.30 - 0.364i)T + (10.4 + 3.39i)T^{2} \) |
| 13 | \( 1 + (-3.08 + 1.57i)T + (7.64 - 10.5i)T^{2} \) |
| 17 | \( 1 + (0.986 - 6.23i)T + (-16.1 - 5.25i)T^{2} \) |
| 19 | \( 1 + (1.02 + 0.521i)T + (11.1 + 15.3i)T^{2} \) |
| 23 | \( 1 + (-2.63 + 8.10i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-0.446 - 2.82i)T + (-27.5 + 8.96i)T^{2} \) |
| 31 | \( 1 + (-2.29 + 1.66i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-6.84 - 4.97i)T + (11.4 + 35.1i)T^{2} \) |
| 43 | \( 1 + (0.267 + 0.0870i)T + (34.7 + 25.2i)T^{2} \) |
| 47 | \( 1 + (-1.68 - 3.30i)T + (-27.6 + 38.0i)T^{2} \) |
| 53 | \( 1 + (-1.06 - 6.72i)T + (-50.4 + 16.3i)T^{2} \) |
| 59 | \( 1 + (0.325 - 1.00i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (7.43 - 2.41i)T + (49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + (10.6 - 1.68i)T + (63.7 - 20.7i)T^{2} \) |
| 71 | \( 1 + (0.388 + 0.0615i)T + (67.5 + 21.9i)T^{2} \) |
| 73 | \( 1 + 14.0iT - 73T^{2} \) |
| 79 | \( 1 + (3.38 + 3.38i)T + 79iT^{2} \) |
| 83 | \( 1 - 5.94T + 83T^{2} \) |
| 89 | \( 1 + (7.18 - 14.0i)T + (-52.3 - 72.0i)T^{2} \) |
| 97 | \( 1 + (-2.31 + 0.366i)T + (92.2 - 29.9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33297308613111661578346545889, −9.104060463114557067374488481155, −8.819672172606339826099473698468, −7.960262710287356029692703903350, −6.50527730849519825611236655767, −6.05621563666436508609508980840, −4.57397639563066571170452860409, −3.91332072123984375134409445050, −2.78345458736561269118047188517, −1.21803359428788332954828901360,
1.39851408125496142894514529573, 2.56137669513947499261311801709, 3.61708777866798886091321181784, 4.87653281671326883889782480270, 5.97743921311921735354739022544, 6.94217841707013423862551252525, 7.54879100640209237215901933929, 8.592236693956554388892959976922, 9.275342902731181921058207603952, 10.11949841047966612949051022026