Properties

Label 820.2.bi.a.269.20
Level $820$
Weight $2$
Character 820.269
Analytic conductor $6.548$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(189,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.189"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bi (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.20
Character \(\chi\) \(=\) 820.269
Dual form 820.2.bi.a.189.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.03349 q^{3} +(1.93569 - 1.11942i) q^{5} +(0.0669129 - 0.205937i) q^{7} +6.20209 q^{9} +(-2.13114 + 2.93326i) q^{11} +(-0.699493 - 2.15282i) q^{13} +(5.87191 - 3.39575i) q^{15} +(2.80914 + 2.04096i) q^{17} +(-2.36798 - 0.769403i) q^{19} +(0.202980 - 0.624708i) q^{21} +(-5.90545 + 1.91880i) q^{23} +(2.49381 - 4.33370i) q^{25} +9.71351 q^{27} +(3.38875 + 4.66421i) q^{29} +(-0.260464 - 0.189238i) q^{31} +(-6.46479 + 8.89802i) q^{33} +(-0.101006 - 0.473534i) q^{35} +(-4.68159 - 6.44365i) q^{37} +(-2.12191 - 6.53056i) q^{39} +(1.70127 - 6.17298i) q^{41} +(-5.69152 + 1.84929i) q^{43} +(12.0053 - 6.94273i) q^{45} +(-3.16195 - 9.73150i) q^{47} +(5.62519 + 4.08694i) q^{49} +(8.52152 + 6.19124i) q^{51} +(-8.51902 + 6.18943i) q^{53} +(-0.841683 + 8.06352i) q^{55} +(-7.18325 - 2.33398i) q^{57} +(1.33099 + 4.09637i) q^{59} +(-1.56003 + 4.80128i) q^{61} +(0.415000 - 1.27724i) q^{63} +(-3.76391 - 3.38417i) q^{65} +(-5.42363 + 3.94050i) q^{67} +(-17.9141 + 5.82066i) q^{69} +(9.55669 - 13.1537i) q^{71} +6.64621i q^{73} +(7.56495 - 13.1462i) q^{75} +(0.461465 + 0.635152i) q^{77} -0.296675i q^{79} +10.8596 q^{81} +3.09381i q^{83} +(7.72232 + 0.806068i) q^{85} +(10.2798 + 14.1489i) q^{87} +(-9.05444 - 2.94197i) q^{89} -0.490149 q^{91} +(-0.790117 - 0.574054i) q^{93} +(-5.44496 + 1.16143i) q^{95} +(3.18534 - 2.31429i) q^{97} +(-13.2175 + 18.1923i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 68 q^{9} + 10 q^{15} - 26 q^{21} + 10 q^{25} - 20 q^{29} + 4 q^{31} + 15 q^{35} - 8 q^{39} + 4 q^{41} - 4 q^{45} + 18 q^{49} + 52 q^{51} - 36 q^{59} - 42 q^{61} - 15 q^{65} + 30 q^{69} - 20 q^{75}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.03349 1.75139 0.875694 0.482866i \(-0.160404\pi\)
0.875694 + 0.482866i \(0.160404\pi\)
\(4\) 0 0
\(5\) 1.93569 1.11942i 0.865668 0.500619i
\(6\) 0 0
\(7\) 0.0669129 0.205937i 0.0252907 0.0778368i −0.937615 0.347677i \(-0.886971\pi\)
0.962905 + 0.269840i \(0.0869707\pi\)
\(8\) 0 0
\(9\) 6.20209 2.06736
\(10\) 0 0
\(11\) −2.13114 + 2.93326i −0.642562 + 0.884411i −0.998749 0.0500038i \(-0.984077\pi\)
0.356187 + 0.934415i \(0.384077\pi\)
\(12\) 0 0
\(13\) −0.699493 2.15282i −0.194004 0.597084i −0.999987 0.00514462i \(-0.998362\pi\)
0.805982 0.591940i \(-0.201638\pi\)
\(14\) 0 0
\(15\) 5.87191 3.39575i 1.51612 0.876778i
\(16\) 0 0
\(17\) 2.80914 + 2.04096i 0.681317 + 0.495006i 0.873794 0.486296i \(-0.161652\pi\)
−0.192477 + 0.981301i \(0.561652\pi\)
\(18\) 0 0
\(19\) −2.36798 0.769403i −0.543252 0.176513i 0.0245198 0.999699i \(-0.492194\pi\)
−0.567772 + 0.823186i \(0.692194\pi\)
\(20\) 0 0
\(21\) 0.202980 0.624708i 0.0442938 0.136322i
\(22\) 0 0
\(23\) −5.90545 + 1.91880i −1.23137 + 0.400097i −0.851211 0.524824i \(-0.824131\pi\)
−0.380160 + 0.924921i \(0.624131\pi\)
\(24\) 0 0
\(25\) 2.49381 4.33370i 0.498761 0.866739i
\(26\) 0 0
\(27\) 9.71351 1.86937
\(28\) 0 0
\(29\) 3.38875 + 4.66421i 0.629275 + 0.866123i 0.997987 0.0634209i \(-0.0202011\pi\)
−0.368712 + 0.929544i \(0.620201\pi\)
\(30\) 0 0
\(31\) −0.260464 0.189238i −0.0467808 0.0339882i 0.564149 0.825673i \(-0.309204\pi\)
−0.610930 + 0.791685i \(0.709204\pi\)
\(32\) 0 0
\(33\) −6.46479 + 8.89802i −1.12538 + 1.54895i
\(34\) 0 0
\(35\) −0.101006 0.473534i −0.0170732 0.0800418i
\(36\) 0 0
\(37\) −4.68159 6.44365i −0.769648 1.05933i −0.996350 0.0853656i \(-0.972794\pi\)
0.226702 0.973964i \(-0.427206\pi\)
\(38\) 0 0
\(39\) −2.12191 6.53056i −0.339777 1.04573i
\(40\) 0 0
\(41\) 1.70127 6.17298i 0.265694 0.964058i
\(42\) 0 0
\(43\) −5.69152 + 1.84929i −0.867949 + 0.282014i −0.708945 0.705264i \(-0.750828\pi\)
−0.159005 + 0.987278i \(0.550828\pi\)
\(44\) 0 0
\(45\) 12.0053 6.94273i 1.78965 1.03496i
\(46\) 0 0
\(47\) −3.16195 9.73150i −0.461218 1.41948i −0.863677 0.504046i \(-0.831844\pi\)
0.402458 0.915438i \(-0.368156\pi\)
\(48\) 0 0
\(49\) 5.62519 + 4.08694i 0.803598 + 0.583848i
\(50\) 0 0
\(51\) 8.52152 + 6.19124i 1.19325 + 0.866948i
\(52\) 0 0
\(53\) −8.51902 + 6.18943i −1.17018 + 0.850184i −0.991030 0.133639i \(-0.957334\pi\)
−0.179147 + 0.983822i \(0.557334\pi\)
\(54\) 0 0
\(55\) −0.841683 + 8.06352i −0.113493 + 1.08728i
\(56\) 0 0
\(57\) −7.18325 2.33398i −0.951445 0.309143i
\(58\) 0 0
\(59\) 1.33099 + 4.09637i 0.173280 + 0.533302i 0.999551 0.0299716i \(-0.00954167\pi\)
−0.826270 + 0.563274i \(0.809542\pi\)
\(60\) 0 0
\(61\) −1.56003 + 4.80128i −0.199742 + 0.614741i 0.800147 + 0.599804i \(0.204755\pi\)
−0.999888 + 0.0149371i \(0.995245\pi\)
\(62\) 0 0
\(63\) 0.415000 1.27724i 0.0522850 0.160917i
\(64\) 0 0
\(65\) −3.76391 3.38417i −0.466855 0.419754i
\(66\) 0 0
\(67\) −5.42363 + 3.94050i −0.662602 + 0.481408i −0.867540 0.497367i \(-0.834300\pi\)
0.204939 + 0.978775i \(0.434300\pi\)
\(68\) 0 0
\(69\) −17.9141 + 5.82066i −2.15661 + 0.700725i
\(70\) 0 0
\(71\) 9.55669 13.1537i 1.13417 1.56105i 0.354275 0.935141i \(-0.384728\pi\)
0.779895 0.625910i \(-0.215272\pi\)
\(72\) 0 0
\(73\) 6.64621i 0.777880i 0.921263 + 0.388940i \(0.127159\pi\)
−0.921263 + 0.388940i \(0.872841\pi\)
\(74\) 0 0
\(75\) 7.56495 13.1462i 0.873525 1.51800i
\(76\) 0 0
\(77\) 0.461465 + 0.635152i 0.0525888 + 0.0723823i
\(78\) 0 0
\(79\) 0.296675i 0.0333786i −0.999861 0.0166893i \(-0.994687\pi\)
0.999861 0.0166893i \(-0.00531261\pi\)
\(80\) 0 0
\(81\) 10.8596 1.20662
\(82\) 0 0
\(83\) 3.09381i 0.339590i 0.985479 + 0.169795i \(0.0543105\pi\)
−0.985479 + 0.169795i \(0.945690\pi\)
\(84\) 0 0
\(85\) 7.72232 + 0.806068i 0.837604 + 0.0874304i
\(86\) 0 0
\(87\) 10.2798 + 14.1489i 1.10211 + 1.51692i
\(88\) 0 0
\(89\) −9.05444 2.94197i −0.959769 0.311848i −0.213090 0.977033i \(-0.568353\pi\)
−0.746679 + 0.665185i \(0.768353\pi\)
\(90\) 0 0
\(91\) −0.490149 −0.0513816
\(92\) 0 0
\(93\) −0.790117 0.574054i −0.0819314 0.0595266i
\(94\) 0 0
\(95\) −5.44496 + 1.16143i −0.558641 + 0.119160i
\(96\) 0 0
\(97\) 3.18534 2.31429i 0.323423 0.234980i −0.414212 0.910180i \(-0.635943\pi\)
0.737635 + 0.675200i \(0.235943\pi\)
\(98\) 0 0
\(99\) −13.2175 + 18.1923i −1.32841 + 1.82840i
\(100\) 0 0
\(101\) 12.4684 + 4.05121i 1.24065 + 0.403111i 0.854561 0.519352i \(-0.173827\pi\)
0.386087 + 0.922462i \(0.373827\pi\)
\(102\) 0 0
\(103\) −3.95669 1.28561i −0.389864 0.126675i 0.107524 0.994202i \(-0.465708\pi\)
−0.497388 + 0.867528i \(0.665708\pi\)
\(104\) 0 0
\(105\) −0.306403 1.43646i −0.0299018 0.140184i
\(106\) 0 0
\(107\) −2.64208 0.858463i −0.255419 0.0829907i 0.178509 0.983938i \(-0.442873\pi\)
−0.433928 + 0.900948i \(0.642873\pi\)
\(108\) 0 0
\(109\) 0.107588i 0.0103050i 0.999987 + 0.00515251i \(0.00164010\pi\)
−0.999987 + 0.00515251i \(0.998360\pi\)
\(110\) 0 0
\(111\) −14.2016 19.5468i −1.34795 1.85530i
\(112\) 0 0
\(113\) −4.68542 + 6.44892i −0.440767 + 0.606664i −0.970382 0.241574i \(-0.922336\pi\)
0.529615 + 0.848238i \(0.322336\pi\)
\(114\) 0 0
\(115\) −9.28319 + 10.3249i −0.865662 + 0.962798i
\(116\) 0 0
\(117\) −4.33831 13.3520i −0.401077 1.23439i
\(118\) 0 0
\(119\) 0.608277 0.441939i 0.0557606 0.0405125i
\(120\) 0 0
\(121\) −0.663075 2.04074i −0.0602796 0.185521i
\(122\) 0 0
\(123\) 5.16079 18.7257i 0.465333 1.68844i
\(124\) 0 0
\(125\) −0.0239750 11.1803i −0.00214439 0.999998i
\(126\) 0 0
\(127\) 3.76949 + 5.18825i 0.334488 + 0.460383i 0.942821 0.333299i \(-0.108162\pi\)
−0.608334 + 0.793681i \(0.708162\pi\)
\(128\) 0 0
\(129\) −17.2652 + 5.60981i −1.52012 + 0.493916i
\(130\) 0 0
\(131\) 16.6441 + 12.0926i 1.45420 + 1.05654i 0.984828 + 0.173535i \(0.0555189\pi\)
0.469370 + 0.883002i \(0.344481\pi\)
\(132\) 0 0
\(133\) −0.316897 + 0.436171i −0.0274784 + 0.0378208i
\(134\) 0 0
\(135\) 18.8024 10.8735i 1.61825 0.935840i
\(136\) 0 0
\(137\) 15.3781 1.31384 0.656918 0.753962i \(-0.271860\pi\)
0.656918 + 0.753962i \(0.271860\pi\)
\(138\) 0 0
\(139\) 1.01205 3.11478i 0.0858412 0.264192i −0.898918 0.438118i \(-0.855645\pi\)
0.984759 + 0.173926i \(0.0556453\pi\)
\(140\) 0 0
\(141\) −9.59177 29.5204i −0.807773 2.48607i
\(142\) 0 0
\(143\) 7.80549 + 2.53616i 0.652728 + 0.212084i
\(144\) 0 0
\(145\) 11.7808 + 5.23505i 0.978341 + 0.434748i
\(146\) 0 0
\(147\) 17.0640 + 12.3977i 1.40741 + 1.02254i
\(148\) 0 0
\(149\) 3.39798 + 4.67691i 0.278373 + 0.383148i 0.925194 0.379494i \(-0.123902\pi\)
−0.646821 + 0.762642i \(0.723902\pi\)
\(150\) 0 0
\(151\) −8.27772 + 2.68960i −0.673632 + 0.218876i −0.625805 0.779980i \(-0.715229\pi\)
−0.0478265 + 0.998856i \(0.515229\pi\)
\(152\) 0 0
\(153\) 17.4225 + 12.6582i 1.40853 + 1.02336i
\(154\) 0 0
\(155\) −0.716016 0.0747389i −0.0575118 0.00600317i
\(156\) 0 0
\(157\) 5.42870 16.7078i 0.433258 1.33343i −0.461604 0.887086i \(-0.652726\pi\)
0.894862 0.446344i \(-0.147274\pi\)
\(158\) 0 0
\(159\) −25.8424 + 18.7756i −2.04944 + 1.48900i
\(160\) 0 0
\(161\) 1.34454i 0.105965i
\(162\) 0 0
\(163\) 7.59370i 0.594784i −0.954755 0.297392i \(-0.903883\pi\)
0.954755 0.297392i \(-0.0961169\pi\)
\(164\) 0 0
\(165\) −2.55324 + 24.4606i −0.198770 + 1.90426i
\(166\) 0 0
\(167\) −7.87999 −0.609772 −0.304886 0.952389i \(-0.598618\pi\)
−0.304886 + 0.952389i \(0.598618\pi\)
\(168\) 0 0
\(169\) 6.37189 4.62945i 0.490145 0.356111i
\(170\) 0 0
\(171\) −14.6864 4.77190i −1.12310 0.364917i
\(172\) 0 0
\(173\) 13.9308i 1.05914i −0.848265 0.529571i \(-0.822353\pi\)
0.848265 0.529571i \(-0.177647\pi\)
\(174\) 0 0
\(175\) −0.725599 0.803547i −0.0548502 0.0607424i
\(176\) 0 0
\(177\) 4.03756 + 12.4263i 0.303481 + 0.934019i
\(178\) 0 0
\(179\) −8.17015 11.2452i −0.610665 0.840509i 0.385967 0.922513i \(-0.373868\pi\)
−0.996632 + 0.0820040i \(0.973868\pi\)
\(180\) 0 0
\(181\) −4.82223 + 6.63723i −0.358434 + 0.493342i −0.949712 0.313126i \(-0.898624\pi\)
0.591278 + 0.806468i \(0.298624\pi\)
\(182\) 0 0
\(183\) −4.73234 + 14.5647i −0.349825 + 1.07665i
\(184\) 0 0
\(185\) −16.2753 7.23227i −1.19658 0.531727i
\(186\) 0 0
\(187\) −11.9733 + 3.89037i −0.875577 + 0.284492i
\(188\) 0 0
\(189\) 0.649959 2.00037i 0.0472776 0.145505i
\(190\) 0 0
\(191\) 15.8216i 1.14481i 0.819970 + 0.572406i \(0.193990\pi\)
−0.819970 + 0.572406i \(0.806010\pi\)
\(192\) 0 0
\(193\) −17.3526 + 12.6074i −1.24907 + 0.907502i −0.998168 0.0605111i \(-0.980727\pi\)
−0.250901 + 0.968013i \(0.580727\pi\)
\(194\) 0 0
\(195\) −11.4178 10.2659i −0.817645 0.735153i
\(196\) 0 0
\(197\) 13.9828 19.2457i 0.996233 1.37120i 0.0686245 0.997643i \(-0.478139\pi\)
0.927608 0.373554i \(-0.121861\pi\)
\(198\) 0 0
\(199\) −18.9316 + 6.15125i −1.34203 + 0.436050i −0.890002 0.455956i \(-0.849297\pi\)
−0.452023 + 0.892006i \(0.649297\pi\)
\(200\) 0 0
\(201\) −16.4525 + 11.9535i −1.16047 + 0.843133i
\(202\) 0 0
\(203\) 1.18728 0.385772i 0.0833310 0.0270759i
\(204\) 0 0
\(205\) −3.61701 13.8534i −0.252623 0.967565i
\(206\) 0 0
\(207\) −36.6261 + 11.9005i −2.54569 + 0.827144i
\(208\) 0 0
\(209\) 7.30335 5.30619i 0.505183 0.367037i
\(210\) 0 0
\(211\) −23.7692 + 7.72308i −1.63634 + 0.531679i −0.975716 0.219040i \(-0.929708\pi\)
−0.660622 + 0.750718i \(0.729708\pi\)
\(212\) 0 0
\(213\) 28.9902 39.9015i 1.98637 2.73401i
\(214\) 0 0
\(215\) −8.94691 + 9.95085i −0.610174 + 0.678642i
\(216\) 0 0
\(217\) −0.0563996 + 0.0409767i −0.00382865 + 0.00278168i
\(218\) 0 0
\(219\) 20.1612i 1.36237i
\(220\) 0 0
\(221\) 2.42884 7.47521i 0.163382 0.502837i
\(222\) 0 0
\(223\) 3.38854 1.10100i 0.226913 0.0737286i −0.193354 0.981129i \(-0.561936\pi\)
0.420267 + 0.907401i \(0.361936\pi\)
\(224\) 0 0
\(225\) 15.4668 26.8780i 1.03112 1.79186i
\(226\) 0 0
\(227\) −8.63058 + 26.5622i −0.572832 + 1.76300i 0.0706139 + 0.997504i \(0.477504\pi\)
−0.643446 + 0.765492i \(0.722496\pi\)
\(228\) 0 0
\(229\) −1.63343 + 2.24823i −0.107940 + 0.148567i −0.859570 0.511019i \(-0.829268\pi\)
0.751629 + 0.659586i \(0.229268\pi\)
\(230\) 0 0
\(231\) 1.39985 + 1.92673i 0.0921035 + 0.126770i
\(232\) 0 0
\(233\) 2.55997 + 7.87877i 0.167709 + 0.516155i 0.999226 0.0393445i \(-0.0125270\pi\)
−0.831517 + 0.555500i \(0.812527\pi\)
\(234\) 0 0
\(235\) −17.0142 15.2976i −1.10988 0.997907i
\(236\) 0 0
\(237\) 0.899963i 0.0584589i
\(238\) 0 0
\(239\) 18.6883 + 6.07219i 1.20885 + 0.392778i 0.843008 0.537901i \(-0.180783\pi\)
0.365837 + 0.930679i \(0.380783\pi\)
\(240\) 0 0
\(241\) −15.6811 + 11.3930i −1.01011 + 0.733888i −0.964232 0.265059i \(-0.914608\pi\)
−0.0458777 + 0.998947i \(0.514608\pi\)
\(242\) 0 0
\(243\) 3.80204 0.243901
\(244\) 0 0
\(245\) 15.4636 + 1.61412i 0.987934 + 0.103122i
\(246\) 0 0
\(247\) 5.63602i 0.358611i
\(248\) 0 0
\(249\) 9.38505i 0.594753i
\(250\) 0 0
\(251\) −0.306537 + 0.222712i −0.0193485 + 0.0140575i −0.597417 0.801930i \(-0.703806\pi\)
0.578069 + 0.815988i \(0.303806\pi\)
\(252\) 0 0
\(253\) 6.95699 21.4114i 0.437382 1.34612i
\(254\) 0 0
\(255\) 23.4256 + 2.44520i 1.46697 + 0.153125i
\(256\) 0 0
\(257\) −19.4489 14.1305i −1.21319 0.881435i −0.217675 0.976021i \(-0.569847\pi\)
−0.995517 + 0.0945859i \(0.969847\pi\)
\(258\) 0 0
\(259\) −1.64024 + 0.532947i −0.101920 + 0.0331157i
\(260\) 0 0
\(261\) 21.0173 + 28.9279i 1.30094 + 1.79059i
\(262\) 0 0
\(263\) −23.2139 16.8659i −1.43143 1.03999i −0.989748 0.142823i \(-0.954382\pi\)
−0.441682 0.897172i \(-0.645618\pi\)
\(264\) 0 0
\(265\) −9.56164 + 21.5172i −0.587367 + 1.32179i
\(266\) 0 0
\(267\) −27.4666 8.92444i −1.68093 0.546167i
\(268\) 0 0
\(269\) −4.56554 14.0513i −0.278366 0.856722i −0.988309 0.152463i \(-0.951279\pi\)
0.709943 0.704259i \(-0.248721\pi\)
\(270\) 0 0
\(271\) 4.94944 15.2328i 0.300657 0.925327i −0.680605 0.732650i \(-0.738283\pi\)
0.981262 0.192677i \(-0.0617169\pi\)
\(272\) 0 0
\(273\) −1.48686 −0.0899892
\(274\) 0 0
\(275\) 7.39721 + 16.5507i 0.446069 + 0.998044i
\(276\) 0 0
\(277\) 11.0870 15.2600i 0.666154 0.916882i −0.333511 0.942746i \(-0.608234\pi\)
0.999665 + 0.0258637i \(0.00823359\pi\)
\(278\) 0 0
\(279\) −1.61542 1.17367i −0.0967128 0.0702660i
\(280\) 0 0
\(281\) 18.5113 6.01469i 1.10429 0.358806i 0.300540 0.953769i \(-0.402833\pi\)
0.803753 + 0.594963i \(0.202833\pi\)
\(282\) 0 0
\(283\) 13.2502 + 18.2374i 0.787645 + 1.08410i 0.994397 + 0.105706i \(0.0337104\pi\)
−0.206753 + 0.978393i \(0.566290\pi\)
\(284\) 0 0
\(285\) −16.5173 + 3.52319i −0.978398 + 0.208696i
\(286\) 0 0
\(287\) −1.15741 0.763406i −0.0683195 0.0450624i
\(288\) 0 0
\(289\) −1.52753 4.70126i −0.0898548 0.276545i
\(290\) 0 0
\(291\) 9.66272 7.02038i 0.566439 0.411542i
\(292\) 0 0
\(293\) −0.460758 1.41807i −0.0269178 0.0828444i 0.936695 0.350146i \(-0.113868\pi\)
−0.963613 + 0.267302i \(0.913868\pi\)
\(294\) 0 0
\(295\) 7.16194 + 6.43938i 0.416984 + 0.374915i
\(296\) 0 0
\(297\) −20.7008 + 28.4922i −1.20118 + 1.65329i
\(298\) 0 0
\(299\) 8.26163 + 11.3712i 0.477783 + 0.657611i
\(300\) 0 0
\(301\) 1.29584i 0.0746907i
\(302\) 0 0
\(303\) 37.8227 + 12.2893i 2.17286 + 0.706004i
\(304\) 0 0
\(305\) 2.35490 + 11.0401i 0.134841 + 0.632156i
\(306\) 0 0
\(307\) 23.8434 + 7.74721i 1.36082 + 0.442156i 0.896316 0.443416i \(-0.146234\pi\)
0.464502 + 0.885572i \(0.346234\pi\)
\(308\) 0 0
\(309\) −12.0026 3.89988i −0.682804 0.221856i
\(310\) 0 0
\(311\) 13.7018 18.8590i 0.776960 1.06939i −0.218651 0.975803i \(-0.570165\pi\)
0.995611 0.0935907i \(-0.0298345\pi\)
\(312\) 0 0
\(313\) −1.81588 + 1.31932i −0.102640 + 0.0745722i −0.637921 0.770102i \(-0.720206\pi\)
0.535282 + 0.844674i \(0.320206\pi\)
\(314\) 0 0
\(315\) −0.626451 2.93690i −0.0352965 0.165475i
\(316\) 0 0
\(317\) 11.6186 + 8.44142i 0.652567 + 0.474118i 0.864145 0.503244i \(-0.167860\pi\)
−0.211578 + 0.977361i \(0.567860\pi\)
\(318\) 0 0
\(319\) −20.9032 −1.17036
\(320\) 0 0
\(321\) −8.01472 2.60414i −0.447338 0.145349i
\(322\) 0 0
\(323\) −5.08167 6.99432i −0.282752 0.389174i
\(324\) 0 0
\(325\) −11.0741 2.33732i −0.614278 0.129651i
\(326\) 0 0
\(327\) 0.326366i 0.0180481i
\(328\) 0 0
\(329\) −2.21565 −0.122153
\(330\) 0 0
\(331\) 7.60835i 0.418193i −0.977895 0.209096i \(-0.932948\pi\)
0.977895 0.209096i \(-0.0670522\pi\)
\(332\) 0 0
\(333\) −29.0356 39.9641i −1.59114 2.19002i
\(334\) 0 0
\(335\) −6.08741 + 13.6989i −0.332591 + 0.748450i
\(336\) 0 0
\(337\) 22.8389i 1.24411i −0.782972 0.622057i \(-0.786297\pi\)
0.782972 0.622057i \(-0.213703\pi\)
\(338\) 0 0
\(339\) −14.2132 + 19.5628i −0.771954 + 1.06250i
\(340\) 0 0
\(341\) 1.11017 0.360716i 0.0601191 0.0195339i
\(342\) 0 0
\(343\) 2.44431 1.77589i 0.131980 0.0958893i
\(344\) 0 0
\(345\) −28.1605 + 31.3204i −1.51611 + 1.68623i
\(346\) 0 0
\(347\) 1.85432 5.70702i 0.0995453 0.306369i −0.888866 0.458167i \(-0.848506\pi\)
0.988412 + 0.151798i \(0.0485063\pi\)
\(348\) 0 0
\(349\) −3.00764 + 9.25656i −0.160995 + 0.495492i −0.998719 0.0506020i \(-0.983886\pi\)
0.837724 + 0.546094i \(0.183886\pi\)
\(350\) 0 0
\(351\) −6.79453 20.9114i −0.362665 1.11617i
\(352\) 0 0
\(353\) 20.8449 + 6.77291i 1.10946 + 0.360486i 0.805737 0.592274i \(-0.201770\pi\)
0.303725 + 0.952760i \(0.401770\pi\)
\(354\) 0 0
\(355\) 3.77437 36.1594i 0.200323 1.91914i
\(356\) 0 0
\(357\) 1.84520 1.34062i 0.0976586 0.0709531i
\(358\) 0 0
\(359\) 16.5684 + 12.0376i 0.874447 + 0.635323i 0.931776 0.363033i \(-0.118259\pi\)
−0.0573298 + 0.998355i \(0.518259\pi\)
\(360\) 0 0
\(361\) −10.3560 7.52406i −0.545051 0.396003i
\(362\) 0 0
\(363\) −2.01144 6.19056i −0.105573 0.324920i
\(364\) 0 0
\(365\) 7.43989 + 12.8650i 0.389422 + 0.673386i
\(366\) 0 0
\(367\) 6.95645 2.26029i 0.363124 0.117986i −0.121772 0.992558i \(-0.538858\pi\)
0.484896 + 0.874572i \(0.338858\pi\)
\(368\) 0 0
\(369\) 10.5514 38.2854i 0.549285 1.99306i
\(370\) 0 0
\(371\) 0.704599 + 2.16853i 0.0365809 + 0.112585i
\(372\) 0 0
\(373\) 5.00847 + 6.89357i 0.259329 + 0.356936i 0.918751 0.394837i \(-0.129199\pi\)
−0.659422 + 0.751773i \(0.729199\pi\)
\(374\) 0 0
\(375\) −0.0727280 33.9154i −0.00375566 1.75138i
\(376\) 0 0
\(377\) 7.67080 10.5579i 0.395066 0.543762i
\(378\) 0 0
\(379\) −20.5006 14.8946i −1.05304 0.765082i −0.0802558 0.996774i \(-0.525574\pi\)
−0.972789 + 0.231692i \(0.925574\pi\)
\(380\) 0 0
\(381\) 11.4347 + 15.7385i 0.585818 + 0.806310i
\(382\) 0 0
\(383\) 32.7360 1.67273 0.836366 0.548172i \(-0.184676\pi\)
0.836366 + 0.548172i \(0.184676\pi\)
\(384\) 0 0
\(385\) 1.60426 + 0.712887i 0.0817604 + 0.0363321i
\(386\) 0 0
\(387\) −35.2993 + 11.4694i −1.79437 + 0.583025i
\(388\) 0 0
\(389\) −0.117127 + 0.360481i −0.00593860 + 0.0182771i −0.953982 0.299864i \(-0.903059\pi\)
0.948043 + 0.318141i \(0.103059\pi\)
\(390\) 0 0
\(391\) −20.5054 6.66262i −1.03700 0.336943i
\(392\) 0 0
\(393\) 50.4896 + 36.6829i 2.54687 + 1.85041i
\(394\) 0 0
\(395\) −0.332104 0.574272i −0.0167100 0.0288948i
\(396\) 0 0
\(397\) 12.0907 + 37.2112i 0.606813 + 1.86758i 0.483812 + 0.875172i \(0.339252\pi\)
0.123001 + 0.992407i \(0.460748\pi\)
\(398\) 0 0
\(399\) −0.961304 + 1.32312i −0.0481254 + 0.0662390i
\(400\) 0 0
\(401\) 32.5757 1.62675 0.813377 0.581737i \(-0.197627\pi\)
0.813377 + 0.581737i \(0.197627\pi\)
\(402\) 0 0
\(403\) −0.225203 + 0.693103i −0.0112182 + 0.0345259i
\(404\) 0 0
\(405\) 21.0209 12.1564i 1.04454 0.604058i
\(406\) 0 0
\(407\) 28.8780 1.43143
\(408\) 0 0
\(409\) −7.90131 −0.390695 −0.195347 0.980734i \(-0.562583\pi\)
−0.195347 + 0.980734i \(0.562583\pi\)
\(410\) 0 0
\(411\) 46.6493 2.30104
\(412\) 0 0
\(413\) 0.932654 0.0458929
\(414\) 0 0
\(415\) 3.46326 + 5.98866i 0.170005 + 0.293972i
\(416\) 0 0
\(417\) 3.07005 9.44866i 0.150341 0.462703i
\(418\) 0 0
\(419\) 7.27081 0.355202 0.177601 0.984103i \(-0.443166\pi\)
0.177601 + 0.984103i \(0.443166\pi\)
\(420\) 0 0
\(421\) 10.1349 13.9495i 0.493945 0.679858i −0.487164 0.873310i \(-0.661969\pi\)
0.981110 + 0.193453i \(0.0619686\pi\)
\(422\) 0 0
\(423\) −19.6107 60.3556i −0.953506 2.93459i
\(424\) 0 0
\(425\) 15.8504 7.08421i 0.768856 0.343635i
\(426\) 0 0
\(427\) 0.884374 + 0.642535i 0.0427979 + 0.0310945i
\(428\) 0 0
\(429\) 23.6779 + 7.69342i 1.14318 + 0.371442i
\(430\) 0 0
\(431\) 5.95343 18.3228i 0.286767 0.882577i −0.699097 0.715027i \(-0.746414\pi\)
0.985864 0.167550i \(-0.0535856\pi\)
\(432\) 0 0
\(433\) 10.6175 3.44984i 0.510246 0.165789i −0.0425684 0.999094i \(-0.513554\pi\)
0.552814 + 0.833305i \(0.313554\pi\)
\(434\) 0 0
\(435\) 35.7369 + 15.8805i 1.71345 + 0.761412i
\(436\) 0 0
\(437\) 15.4603 0.739567
\(438\) 0 0
\(439\) 1.25895 + 1.73280i 0.0600865 + 0.0827020i 0.838003 0.545666i \(-0.183723\pi\)
−0.777916 + 0.628368i \(0.783723\pi\)
\(440\) 0 0
\(441\) 34.8879 + 25.3475i 1.66133 + 1.20703i
\(442\) 0 0
\(443\) 8.98635 12.3687i 0.426954 0.587652i −0.540296 0.841475i \(-0.681688\pi\)
0.967251 + 0.253822i \(0.0816879\pi\)
\(444\) 0 0
\(445\) −20.8199 + 4.44096i −0.986958 + 0.210522i
\(446\) 0 0
\(447\) 10.3077 + 14.1874i 0.487540 + 0.671041i
\(448\) 0 0
\(449\) 4.20676 + 12.9471i 0.198529 + 0.611011i 0.999917 + 0.0128657i \(0.00409541\pi\)
−0.801388 + 0.598145i \(0.795905\pi\)
\(450\) 0 0
\(451\) 14.4813 + 18.1457i 0.681898 + 0.854449i
\(452\) 0 0
\(453\) −25.1104 + 8.15887i −1.17979 + 0.383337i
\(454\) 0 0
\(455\) −0.948778 + 0.548682i −0.0444794 + 0.0257226i
\(456\) 0 0
\(457\) −11.1170 34.2145i −0.520030 1.60049i −0.773939 0.633260i \(-0.781717\pi\)
0.253910 0.967228i \(-0.418283\pi\)
\(458\) 0 0
\(459\) 27.2866 + 19.8249i 1.27363 + 0.925347i
\(460\) 0 0
\(461\) 31.0216 + 22.5385i 1.44482 + 1.04972i 0.987008 + 0.160673i \(0.0513664\pi\)
0.457811 + 0.889050i \(0.348634\pi\)
\(462\) 0 0
\(463\) −23.2603 + 16.8996i −1.08100 + 0.785391i −0.977857 0.209275i \(-0.932890\pi\)
−0.103142 + 0.994667i \(0.532890\pi\)
\(464\) 0 0
\(465\) −2.17203 0.226720i −0.100725 0.0105139i
\(466\) 0 0
\(467\) 10.6732 + 3.46792i 0.493896 + 0.160476i 0.545366 0.838198i \(-0.316391\pi\)
−0.0514702 + 0.998675i \(0.516391\pi\)
\(468\) 0 0
\(469\) 0.448582 + 1.38059i 0.0207136 + 0.0637499i
\(470\) 0 0
\(471\) 16.4679 50.6831i 0.758802 2.33535i
\(472\) 0 0
\(473\) 6.70498 20.6358i 0.308295 0.948835i
\(474\) 0 0
\(475\) −9.23964 + 8.34336i −0.423944 + 0.382820i
\(476\) 0 0
\(477\) −52.8357 + 38.3874i −2.41918 + 1.75764i
\(478\) 0 0
\(479\) 27.2184 8.84381i 1.24364 0.404084i 0.388004 0.921658i \(-0.373165\pi\)
0.855638 + 0.517574i \(0.173165\pi\)
\(480\) 0 0
\(481\) −10.5973 + 14.5859i −0.483194 + 0.665059i
\(482\) 0 0
\(483\) 4.07866i 0.185585i
\(484\) 0 0
\(485\) 3.57519 8.04548i 0.162341 0.365326i
\(486\) 0 0
\(487\) −8.68645 11.9559i −0.393621 0.541772i 0.565508 0.824743i \(-0.308680\pi\)
−0.959129 + 0.282971i \(0.908680\pi\)
\(488\) 0 0
\(489\) 23.0354i 1.04170i
\(490\) 0 0
\(491\) −20.4369 −0.922303 −0.461151 0.887321i \(-0.652564\pi\)
−0.461151 + 0.887321i \(0.652564\pi\)
\(492\) 0 0
\(493\) 20.0188i 0.901599i
\(494\) 0 0
\(495\) −5.22019 + 50.0106i −0.234630 + 2.24781i
\(496\) 0 0
\(497\) −2.06935 2.84822i −0.0928232 0.127760i
\(498\) 0 0
\(499\) 39.2117 + 12.7407i 1.75536 + 0.570350i 0.996702 0.0811430i \(-0.0258570\pi\)
0.758655 + 0.651493i \(0.225857\pi\)
\(500\) 0 0
\(501\) −23.9039 −1.06795
\(502\) 0 0
\(503\) −21.6666 15.7417i −0.966068 0.701890i −0.0115160 0.999934i \(-0.503666\pi\)
−0.954552 + 0.298044i \(0.903666\pi\)
\(504\) 0 0
\(505\) 28.6699 6.11540i 1.27579 0.272132i
\(506\) 0 0
\(507\) 19.3291 14.0434i 0.858435 0.623689i
\(508\) 0 0
\(509\) 6.45239 8.88095i 0.285997 0.393641i −0.641712 0.766946i \(-0.721775\pi\)
0.927709 + 0.373305i \(0.121775\pi\)
\(510\) 0 0
\(511\) 1.36870 + 0.444717i 0.0605477 + 0.0196731i
\(512\) 0 0
\(513\) −23.0014 7.47360i −1.01554 0.329968i
\(514\) 0 0
\(515\) −9.09806 + 1.94065i −0.400908 + 0.0855153i
\(516\) 0 0
\(517\) 35.2836 + 11.4643i 1.55177 + 0.504200i
\(518\) 0 0
\(519\) 42.2591i 1.85497i
\(520\) 0 0
\(521\) −16.3163 22.4575i −0.714832 0.983881i −0.999680 0.0253086i \(-0.991943\pi\)
0.284848 0.958573i \(-0.408057\pi\)
\(522\) 0 0
\(523\) 7.26772 10.0032i 0.317795 0.437408i −0.619997 0.784604i \(-0.712866\pi\)
0.937792 + 0.347196i \(0.112866\pi\)
\(524\) 0 0
\(525\) −2.20110 2.43755i −0.0960639 0.106384i
\(526\) 0 0
\(527\) −0.345453 1.06320i −0.0150482 0.0463135i
\(528\) 0 0
\(529\) 12.5851 9.14363i 0.547179 0.397549i
\(530\) 0 0
\(531\) 8.25493 + 25.4060i 0.358233 + 1.10253i
\(532\) 0 0
\(533\) −14.4793 + 0.655433i −0.627169 + 0.0283900i
\(534\) 0 0
\(535\) −6.07523 + 1.29587i −0.262655 + 0.0560253i
\(536\) 0 0
\(537\) −24.7841 34.1124i −1.06951 1.47206i
\(538\) 0 0
\(539\) −23.9761 + 7.79030i −1.03272 + 0.335552i
\(540\) 0 0
\(541\) −31.1045 22.5987i −1.33728 0.971594i −0.999539 0.0303569i \(-0.990336\pi\)
−0.337746 0.941237i \(-0.609664\pi\)
\(542\) 0 0
\(543\) −14.6282 + 20.1340i −0.627757 + 0.864033i
\(544\) 0 0
\(545\) 0.120436 + 0.208257i 0.00515889 + 0.00892073i
\(546\) 0 0
\(547\) 29.4222 1.25800 0.629001 0.777405i \(-0.283464\pi\)
0.629001 + 0.777405i \(0.283464\pi\)
\(548\) 0 0
\(549\) −9.67545 + 29.7780i −0.412938 + 1.27089i
\(550\) 0 0
\(551\) −4.43583 13.6521i −0.188973 0.581598i
\(552\) 0 0
\(553\) −0.0610964 0.0198514i −0.00259808 0.000844168i
\(554\) 0 0
\(555\) −49.3709 21.9391i −2.09568 0.931261i
\(556\) 0 0
\(557\) −21.0050 15.2611i −0.890013 0.646632i 0.0458688 0.998947i \(-0.485394\pi\)
−0.935881 + 0.352316i \(0.885394\pi\)
\(558\) 0 0
\(559\) 7.96236 + 10.9593i 0.336772 + 0.463527i
\(560\) 0 0
\(561\) −36.3210 + 11.8014i −1.53348 + 0.498257i
\(562\) 0 0
\(563\) 35.2718 + 25.6265i 1.48653 + 1.08003i 0.975379 + 0.220535i \(0.0707802\pi\)
0.511150 + 0.859492i \(0.329220\pi\)
\(564\) 0 0
\(565\) −1.85048 + 17.7281i −0.0778505 + 0.745826i
\(566\) 0 0
\(567\) 0.726648 2.23639i 0.0305163 0.0939197i
\(568\) 0 0
\(569\) 21.2820 15.4623i 0.892188 0.648212i −0.0442597 0.999020i \(-0.514093\pi\)
0.936448 + 0.350808i \(0.114093\pi\)
\(570\) 0 0
\(571\) 22.4839i 0.940924i 0.882420 + 0.470462i \(0.155913\pi\)
−0.882420 + 0.470462i \(0.844087\pi\)
\(572\) 0 0
\(573\) 47.9948i 2.00501i
\(574\) 0 0
\(575\) −6.41156 + 30.3775i −0.267381 + 1.26683i
\(576\) 0 0
\(577\) 19.4507 0.809744 0.404872 0.914373i \(-0.367316\pi\)
0.404872 + 0.914373i \(0.367316\pi\)
\(578\) 0 0
\(579\) −52.6391 + 38.2445i −2.18760 + 1.58939i
\(580\) 0 0
\(581\) 0.637129 + 0.207016i 0.0264326 + 0.00858846i
\(582\) 0 0
\(583\) 38.1790i 1.58121i
\(584\) 0 0
\(585\) −23.3441 20.9889i −0.965158 0.867784i
\(586\) 0 0
\(587\) −7.56585 23.2853i −0.312276 0.961087i −0.976861 0.213874i \(-0.931392\pi\)
0.664585 0.747212i \(-0.268608\pi\)
\(588\) 0 0
\(589\) 0.471174 + 0.648515i 0.0194144 + 0.0267216i
\(590\) 0 0
\(591\) 42.4167 58.3816i 1.74479 2.40150i
\(592\) 0 0
\(593\) −12.3480 + 38.0032i −0.507071 + 1.56060i 0.290191 + 0.956969i \(0.406281\pi\)
−0.797262 + 0.603634i \(0.793719\pi\)
\(594\) 0 0
\(595\) 0.682722 1.53637i 0.0279889 0.0629852i
\(596\) 0 0
\(597\) −57.4289 + 18.6598i −2.35041 + 0.763694i
\(598\) 0 0
\(599\) −2.59508 + 7.98683i −0.106032 + 0.326333i −0.989971 0.141269i \(-0.954882\pi\)
0.883939 + 0.467602i \(0.154882\pi\)
\(600\) 0 0
\(601\) 44.2909i 1.80666i 0.428941 + 0.903332i \(0.358887\pi\)
−0.428941 + 0.903332i \(0.641113\pi\)
\(602\) 0 0
\(603\) −33.6378 + 24.4393i −1.36984 + 0.995245i
\(604\) 0 0
\(605\) −3.56795 3.20798i −0.145058 0.130423i
\(606\) 0 0
\(607\) −6.25546 + 8.60991i −0.253901 + 0.349465i −0.916873 0.399179i \(-0.869295\pi\)
0.662971 + 0.748645i \(0.269295\pi\)
\(608\) 0 0
\(609\) 3.60162 1.17024i 0.145945 0.0474204i
\(610\) 0 0
\(611\) −18.7384 + 13.6142i −0.758073 + 0.550773i
\(612\) 0 0
\(613\) −18.7307 + 6.08596i −0.756524 + 0.245810i −0.661786 0.749693i \(-0.730201\pi\)
−0.0947380 + 0.995502i \(0.530201\pi\)
\(614\) 0 0
\(615\) −10.9722 42.0243i −0.442441 1.69458i
\(616\) 0 0
\(617\) 13.1219 4.26358i 0.528270 0.171645i −0.0327254 0.999464i \(-0.510419\pi\)
0.560995 + 0.827819i \(0.310419\pi\)
\(618\) 0 0
\(619\) 19.6216 14.2559i 0.788659 0.572995i −0.118906 0.992906i \(-0.537939\pi\)
0.907565 + 0.419911i \(0.137939\pi\)
\(620\) 0 0
\(621\) −57.3626 + 18.6382i −2.30188 + 0.747927i
\(622\) 0 0
\(623\) −1.21172 + 1.66779i −0.0485465 + 0.0668185i
\(624\) 0 0
\(625\) −12.5619 21.6148i −0.502474 0.864592i
\(626\) 0 0
\(627\) 22.1547 16.0963i 0.884772 0.642825i
\(628\) 0 0
\(629\) 27.6561i 1.10272i
\(630\) 0 0
\(631\) −4.72928 + 14.5552i −0.188270 + 0.579435i −0.999989 0.00461250i \(-0.998532\pi\)
0.811720 + 0.584047i \(0.198532\pi\)
\(632\) 0 0
\(633\) −72.1037 + 23.4279i −2.86586 + 0.931176i
\(634\) 0 0
\(635\) 13.1044 + 5.82323i 0.520032 + 0.231088i
\(636\) 0 0
\(637\) 4.86365 14.9688i 0.192705 0.593085i
\(638\) 0 0
\(639\) 59.2714 81.5801i 2.34474 3.22726i
\(640\) 0 0
\(641\) −6.44630 8.87257i −0.254613 0.350445i 0.662507 0.749056i \(-0.269493\pi\)
−0.917120 + 0.398610i \(0.869493\pi\)
\(642\) 0 0
\(643\) −1.16761 3.59352i −0.0460458 0.141715i 0.925390 0.379015i \(-0.123737\pi\)
−0.971436 + 0.237301i \(0.923737\pi\)
\(644\) 0 0
\(645\) −27.1404 + 30.1858i −1.06865 + 1.18857i
\(646\) 0 0
\(647\) 10.9551i 0.430689i 0.976538 + 0.215344i \(0.0690874\pi\)
−0.976538 + 0.215344i \(0.930913\pi\)
\(648\) 0 0
\(649\) −14.8522 4.82579i −0.583002 0.189429i
\(650\) 0 0
\(651\) −0.171088 + 0.124303i −0.00670546 + 0.00487180i
\(652\) 0 0
\(653\) −16.8284 −0.658544 −0.329272 0.944235i \(-0.606803\pi\)
−0.329272 + 0.944235i \(0.606803\pi\)
\(654\) 0 0
\(655\) 45.7544 + 4.77592i 1.78777 + 0.186611i
\(656\) 0 0
\(657\) 41.2204i 1.60816i
\(658\) 0 0
\(659\) 7.74006i 0.301510i 0.988571 + 0.150755i \(0.0481705\pi\)
−0.988571 + 0.150755i \(0.951830\pi\)
\(660\) 0 0
\(661\) −20.9801 + 15.2429i −0.816031 + 0.592881i −0.915573 0.402152i \(-0.868262\pi\)
0.0995420 + 0.995033i \(0.468262\pi\)
\(662\) 0 0
\(663\) 7.36788 22.6760i 0.286145 0.880663i
\(664\) 0 0
\(665\) −0.125157 + 1.19903i −0.00485338 + 0.0464965i
\(666\) 0 0
\(667\) −28.9618 21.0419i −1.12140 0.814747i
\(668\) 0 0
\(669\) 10.2791 3.33989i 0.397413 0.129127i
\(670\) 0 0
\(671\) −10.7588 14.8082i −0.415337 0.571663i
\(672\) 0 0
\(673\) 15.6237 + 11.3513i 0.602250 + 0.437560i 0.846677 0.532107i \(-0.178600\pi\)
−0.244427 + 0.969668i \(0.578600\pi\)
\(674\) 0 0
\(675\) 24.2236 42.0954i 0.932367 1.62025i
\(676\) 0 0
\(677\) −9.62811 3.12836i −0.370038 0.120233i 0.118094 0.993002i \(-0.462322\pi\)
−0.488132 + 0.872770i \(0.662322\pi\)
\(678\) 0 0
\(679\) −0.263456 0.810835i −0.0101105 0.0311170i
\(680\) 0 0
\(681\) −26.1808 + 80.5763i −1.00325 + 3.08769i
\(682\) 0 0
\(683\) 3.32384 0.127183 0.0635917 0.997976i \(-0.479744\pi\)
0.0635917 + 0.997976i \(0.479744\pi\)
\(684\) 0 0
\(685\) 29.7672 17.2145i 1.13735 0.657731i
\(686\) 0 0
\(687\) −4.95501 + 6.81998i −0.189045 + 0.260199i
\(688\) 0 0
\(689\) 19.2837 + 14.0104i 0.734651 + 0.533755i
\(690\) 0 0
\(691\) 30.6771 9.96760i 1.16701 0.379185i 0.339486 0.940611i \(-0.389747\pi\)
0.827527 + 0.561426i \(0.189747\pi\)
\(692\) 0 0
\(693\) 2.86205 + 3.93927i 0.108720 + 0.149640i
\(694\) 0 0
\(695\) −1.52772 7.16216i −0.0579495 0.271676i
\(696\) 0 0
\(697\) 17.3779 13.8686i 0.658236 0.525309i
\(698\) 0 0
\(699\) 7.76564 + 23.9002i 0.293724 + 0.903988i
\(700\) 0 0
\(701\) −5.06793 + 3.68207i −0.191413 + 0.139070i −0.679364 0.733801i \(-0.737744\pi\)
0.487951 + 0.872871i \(0.337744\pi\)
\(702\) 0 0
\(703\) 6.12814 + 18.8605i 0.231127 + 0.711336i
\(704\) 0 0
\(705\) −51.6124 46.4053i −1.94384 1.74772i
\(706\) 0 0
\(707\) 1.66859 2.29661i 0.0627537 0.0863730i
\(708\) 0 0
\(709\) −7.29109 10.0353i −0.273823 0.376885i 0.649853 0.760060i \(-0.274830\pi\)
−0.923676 + 0.383175i \(0.874830\pi\)
\(710\) 0 0
\(711\) 1.84001i 0.0690056i
\(712\) 0 0
\(713\) 1.90127 + 0.617760i 0.0712031 + 0.0231353i
\(714\) 0 0
\(715\) 17.9480 3.82838i 0.671219 0.143173i
\(716\) 0 0
\(717\) 56.6908 + 18.4200i 2.11716 + 0.687906i
\(718\) 0 0
\(719\) −26.1545 8.49812i −0.975399 0.316926i −0.222405 0.974954i \(-0.571391\pi\)
−0.752994 + 0.658028i \(0.771391\pi\)
\(720\) 0 0
\(721\) −0.529507 + 0.728804i −0.0197199 + 0.0271421i
\(722\) 0 0
\(723\) −47.5686 + 34.5606i −1.76909 + 1.28532i
\(724\) 0 0
\(725\) 28.6642 3.05416i 1.06456 0.113429i
\(726\) 0 0
\(727\) 14.3554 + 10.4298i 0.532414 + 0.386821i 0.821260 0.570554i \(-0.193272\pi\)
−0.288846 + 0.957376i \(0.593272\pi\)
\(728\) 0 0
\(729\) −21.0454 −0.779458
\(730\) 0 0
\(731\) −19.7626 6.42127i −0.730947 0.237499i
\(732\) 0 0
\(733\) −20.9217 28.7962i −0.772759 1.06361i −0.996044 0.0888585i \(-0.971678\pi\)
0.223285 0.974753i \(-0.428322\pi\)
\(734\) 0 0
\(735\) 46.9088 + 4.89641i 1.73026 + 0.180607i
\(736\) 0 0
\(737\) 24.3066i 0.895347i
\(738\) 0 0
\(739\) 22.0790 0.812190 0.406095 0.913831i \(-0.366890\pi\)
0.406095 + 0.913831i \(0.366890\pi\)
\(740\) 0 0
\(741\) 17.0968i 0.628068i
\(742\) 0 0
\(743\) 5.62014 + 7.73546i 0.206183 + 0.283787i 0.899568 0.436781i \(-0.143881\pi\)
−0.693385 + 0.720567i \(0.743881\pi\)
\(744\) 0 0
\(745\) 11.8129 + 5.24931i 0.432790 + 0.192320i
\(746\) 0 0
\(747\) 19.1881i 0.702055i
\(748\) 0 0
\(749\) −0.353578 + 0.486658i −0.0129195 + 0.0177821i
\(750\) 0 0
\(751\) −34.2566 + 11.1307i −1.25004 + 0.406163i −0.857936 0.513757i \(-0.828253\pi\)
−0.392106 + 0.919920i \(0.628253\pi\)
\(752\) 0 0
\(753\) −0.929879 + 0.675597i −0.0338867 + 0.0246201i
\(754\) 0 0
\(755\) −13.0123 + 14.4725i −0.473568 + 0.526707i
\(756\) 0 0
\(757\) −14.5655 + 44.8279i −0.529391 + 1.62930i 0.226076 + 0.974110i \(0.427410\pi\)
−0.755467 + 0.655187i \(0.772590\pi\)
\(758\) 0 0
\(759\) 21.1040 64.9514i 0.766026 2.35759i
\(760\) 0 0
\(761\) −0.410675 1.26393i −0.0148870 0.0458173i 0.943337 0.331836i \(-0.107668\pi\)
−0.958224 + 0.286019i \(0.907668\pi\)
\(762\) 0 0
\(763\) 0.0221562 + 0.00719900i 0.000802110 + 0.000260621i
\(764\) 0 0
\(765\) 47.8945 + 4.99931i 1.73163 + 0.180750i
\(766\) 0 0
\(767\) 7.88772 5.73076i 0.284809 0.206926i
\(768\) 0 0
\(769\) −5.97772 4.34307i −0.215562 0.156615i 0.474765 0.880113i \(-0.342533\pi\)
−0.690327 + 0.723498i \(0.742533\pi\)
\(770\) 0 0
\(771\) −58.9983 42.8647i −2.12477 1.54374i
\(772\) 0 0
\(773\) 3.80483 + 11.7101i 0.136850 + 0.421181i 0.995873 0.0907555i \(-0.0289282\pi\)
−0.859023 + 0.511937i \(0.828928\pi\)
\(774\) 0 0
\(775\) −1.46965 + 0.656850i −0.0527914 + 0.0235947i
\(776\) 0 0
\(777\) −4.97567 + 1.61669i −0.178501 + 0.0579985i
\(778\) 0 0
\(779\) −8.77808 + 13.3085i −0.314507 + 0.476828i
\(780\) 0 0
\(781\) 18.2165 + 56.0645i 0.651836 + 2.00615i
\(782\) 0 0
\(783\) 32.9166 + 45.3059i 1.17635 + 1.61910i
\(784\) 0 0
\(785\) −8.19475 38.4182i −0.292483 1.37120i
\(786\) 0 0
\(787\) 3.86233 5.31604i 0.137677 0.189496i −0.734611 0.678489i \(-0.762635\pi\)
0.872288 + 0.488992i \(0.162635\pi\)
\(788\) 0 0
\(789\) −70.4192 51.1626i −2.50699 1.82144i
\(790\) 0 0
\(791\) 1.01456 + 1.39642i 0.0360734 + 0.0496508i
\(792\) 0 0
\(793\) 11.4275 0.405803
\(794\) 0 0
\(795\) −29.0052 + 65.2722i −1.02871 + 2.31497i
\(796\) 0 0
\(797\) 45.0875 14.6498i 1.59708 0.518923i 0.630698 0.776029i \(-0.282769\pi\)
0.966383 + 0.257106i \(0.0827688\pi\)
\(798\) 0 0
\(799\) 10.9792 33.7906i 0.388417 1.19543i
\(800\) 0 0
\(801\) −56.1564 18.2463i −1.98419 0.644702i
\(802\) 0 0
\(803\) −19.4951 14.1640i −0.687966 0.499837i
\(804\) 0 0
\(805\) 1.50510 + 2.60262i 0.0530479 + 0.0917302i
\(806\) 0 0
\(807\) −13.8495 42.6245i −0.487527 1.50045i
\(808\) 0 0
\(809\) −31.5672 + 43.4486i −1.10984 + 1.52757i −0.288200 + 0.957570i \(0.593057\pi\)
−0.821644 + 0.570000i \(0.806943\pi\)
\(810\) 0 0
\(811\) 23.3409 0.819611 0.409805 0.912173i \(-0.365597\pi\)
0.409805 + 0.912173i \(0.365597\pi\)
\(812\) 0 0
\(813\) 15.0141 46.2086i 0.526567 1.62061i
\(814\) 0 0
\(815\) −8.50052 14.6991i −0.297760 0.514886i
\(816\) 0 0
\(817\) 14.9003 0.521294
\(818\) 0 0
\(819\) −3.03995 −0.106224
\(820\) 0 0
\(821\) −28.3435 −0.989196 −0.494598 0.869122i \(-0.664685\pi\)
−0.494598 + 0.869122i \(0.664685\pi\)
\(822\) 0 0
\(823\) 9.38237 0.327049 0.163524 0.986539i \(-0.447714\pi\)
0.163524 + 0.986539i \(0.447714\pi\)
\(824\) 0 0
\(825\) 22.4394 + 50.2064i 0.781239 + 1.74796i
\(826\) 0 0
\(827\) −2.17753 + 6.70176i −0.0757202 + 0.233043i −0.981752 0.190167i \(-0.939097\pi\)
0.906031 + 0.423210i \(0.139097\pi\)
\(828\) 0 0
\(829\) −15.0278 −0.521936 −0.260968 0.965347i \(-0.584042\pi\)
−0.260968 + 0.965347i \(0.584042\pi\)
\(830\) 0 0
\(831\) 33.6324 46.2910i 1.16669 1.60582i
\(832\) 0 0
\(833\) 7.46067 + 22.9616i 0.258497 + 0.795572i
\(834\) 0 0
\(835\) −15.2532 + 8.82100i −0.527860 + 0.305263i
\(836\) 0 0
\(837\) −2.53002 1.83817i −0.0874504 0.0635364i
\(838\) 0 0
\(839\) 3.18838 + 1.03597i 0.110075 + 0.0357656i 0.363537 0.931580i \(-0.381569\pi\)
−0.253462 + 0.967345i \(0.581569\pi\)
\(840\) 0 0
\(841\) −1.30977 + 4.03107i −0.0451646 + 0.139002i
\(842\) 0 0
\(843\) 56.1540 18.2455i 1.93405 0.628410i
\(844\) 0 0
\(845\) 7.15173 16.0940i 0.246027 0.553650i
\(846\) 0 0
\(847\) −0.464631 −0.0159649
\(848\) 0 0
\(849\) 40.1945 + 55.3230i 1.37947 + 1.89868i
\(850\) 0 0
\(851\) 40.0109 + 29.0696i 1.37156 + 0.996494i
\(852\) 0 0
\(853\) 1.07832 1.48418i 0.0369209 0.0508172i −0.790157 0.612904i \(-0.790001\pi\)
0.827078 + 0.562087i \(0.190001\pi\)
\(854\) 0 0
\(855\) −33.7701 + 7.20330i −1.15491 + 0.246348i
\(856\) 0 0
\(857\) 4.14968 + 5.71154i 0.141750 + 0.195102i 0.873989 0.485945i \(-0.161525\pi\)
−0.732239 + 0.681048i \(0.761525\pi\)
\(858\) 0 0
\(859\) −0.646894 1.99093i −0.0220717 0.0679298i 0.939414 0.342785i \(-0.111370\pi\)
−0.961486 + 0.274855i \(0.911370\pi\)
\(860\) 0 0
\(861\) −3.51099 2.31579i −0.119654 0.0789218i
\(862\) 0 0
\(863\) −52.5051 + 17.0600i −1.78730 + 0.580728i −0.999385 0.0350622i \(-0.988837\pi\)
−0.787911 + 0.615790i \(0.788837\pi\)
\(864\) 0 0
\(865\) −15.5944 26.9658i −0.530227 0.916866i
\(866\) 0 0
\(867\) −4.63376 14.2612i −0.157371 0.484337i
\(868\) 0 0
\(869\) 0.870226 + 0.632256i 0.0295204 + 0.0214478i
\(870\) 0 0
\(871\) 12.2770 + 8.91973i 0.415989 + 0.302234i
\(872\) 0 0
\(873\) 19.7558 14.3534i 0.668631 0.485789i
\(874\) 0 0
\(875\) −2.30404 0.743170i −0.0778908 0.0251237i
\(876\) 0 0
\(877\) 10.9460 + 3.55657i 0.369620 + 0.120097i 0.487936 0.872879i \(-0.337750\pi\)
−0.118317 + 0.992976i \(0.537750\pi\)
\(878\) 0 0
\(879\) −1.39771 4.30170i −0.0471435 0.145093i
\(880\) 0 0
\(881\) 15.9839 49.1932i 0.538510 1.65736i −0.197431 0.980317i \(-0.563260\pi\)
0.735941 0.677046i \(-0.236740\pi\)
\(882\) 0 0
\(883\) −9.82569 + 30.2404i −0.330661 + 1.01767i 0.638160 + 0.769904i \(0.279696\pi\)
−0.968820 + 0.247765i \(0.920304\pi\)
\(884\) 0 0
\(885\) 21.7257 + 19.5338i 0.730302 + 0.656622i
\(886\) 0 0
\(887\) 38.4297 27.9208i 1.29034 0.937490i 0.290532 0.956865i \(-0.406168\pi\)
0.999812 + 0.0193750i \(0.00616765\pi\)
\(888\) 0 0
\(889\) 1.32068 0.429115i 0.0442942 0.0143920i
\(890\) 0 0
\(891\) −23.1433 + 31.8541i −0.775331 + 1.06715i
\(892\) 0 0
\(893\) 25.4768i 0.852549i
\(894\) 0 0
\(895\) −28.4030 12.6215i −0.949408 0.421891i
\(896\) 0 0
\(897\) 25.0616 + 34.4944i 0.836783 + 1.15173i
\(898\) 0 0
\(899\) 1.85614i 0.0619059i
\(900\) 0 0
\(901\) −36.5635 −1.21811
\(902\) 0 0
\(903\) 3.93091i 0.130812i
\(904\) 0 0
\(905\) −1.90452 + 18.2457i −0.0633084 + 0.606509i
\(906\) 0 0
\(907\) −11.0779 15.2475i −0.367837 0.506284i 0.584475 0.811412i \(-0.301301\pi\)
−0.952311 + 0.305128i \(0.901301\pi\)
\(908\) 0 0
\(909\) 77.3298 + 25.1260i 2.56487 + 0.833376i
\(910\) 0 0
\(911\) −19.2673 −0.638355 −0.319177 0.947695i \(-0.603407\pi\)
−0.319177 + 0.947695i \(0.603407\pi\)
\(912\) 0 0
\(913\) −9.07494 6.59333i −0.300337 0.218207i
\(914\) 0 0
\(915\) 7.14358 + 33.4902i 0.236159 + 1.10715i
\(916\) 0 0
\(917\) 3.60401 2.61847i 0.119015 0.0864695i
\(918\) 0 0
\(919\) 12.4602 17.1499i 0.411023 0.565724i −0.552445 0.833550i \(-0.686305\pi\)
0.963468 + 0.267825i \(0.0863050\pi\)
\(920\) 0 0
\(921\) 72.3290 + 23.5011i 2.38332 + 0.774388i
\(922\) 0 0
\(923\) −35.0023 11.3729i −1.15211 0.374344i
\(924\) 0 0
\(925\) −39.5998 + 4.21935i −1.30203 + 0.138731i
\(926\) 0 0
\(927\) −24.5397 7.97344i −0.805990 0.261882i
\(928\) 0 0
\(929\) 28.5637i 0.937146i −0.883425 0.468573i \(-0.844768\pi\)
0.883425 0.468573i \(-0.155232\pi\)
\(930\) 0 0
\(931\) −10.1758 14.0058i −0.333499 0.459022i
\(932\) 0 0
\(933\) 41.5645 57.2086i 1.36076 1.87292i
\(934\) 0 0
\(935\) −18.8217 + 20.9337i −0.615537 + 0.684606i
\(936\) 0 0
\(937\) −16.1122 49.5883i −0.526363 1.61998i −0.761605 0.648041i \(-0.775588\pi\)
0.235242 0.971937i \(-0.424412\pi\)
\(938\) 0 0
\(939\) −5.50847 + 4.00214i −0.179762 + 0.130605i
\(940\) 0 0
\(941\) 2.59917 + 7.99943i 0.0847306 + 0.260774i 0.984442 0.175712i \(-0.0562228\pi\)
−0.899711 + 0.436486i \(0.856223\pi\)
\(942\) 0 0
\(943\) 1.79793 + 39.7186i 0.0585488 + 1.29342i
\(944\) 0 0
\(945\) −0.981127 4.59967i −0.0319161 0.149627i
\(946\) 0 0
\(947\) 21.9425 + 30.2013i 0.713036 + 0.981410i 0.999726 + 0.0233866i \(0.00744487\pi\)
−0.286690 + 0.958023i \(0.592555\pi\)
\(948\) 0 0
\(949\) 14.3081 4.64898i 0.464460 0.150912i
\(950\) 0 0
\(951\) 35.2450 + 25.6070i 1.14290 + 0.830364i
\(952\) 0 0
\(953\) 26.9310 37.0674i 0.872381 1.20073i −0.106092 0.994356i \(-0.533834\pi\)
0.978473 0.206373i \(-0.0661661\pi\)
\(954\) 0 0
\(955\) 17.7110 + 30.6258i 0.573115 + 0.991028i
\(956\) 0 0
\(957\) −63.4099 −2.04975
\(958\) 0 0
\(959\) 1.02899 3.16691i 0.0332278 0.102265i
\(960\) 0 0
\(961\) −9.54750 29.3842i −0.307984 0.947877i
\(962\) 0 0
\(963\) −16.3864 5.32426i −0.528044 0.171572i
\(964\) 0 0
\(965\) −19.4764 + 43.8289i −0.626966 + 1.41090i
\(966\) 0 0
\(967\) −15.6547 11.3738i −0.503423 0.365758i 0.306900 0.951742i \(-0.400708\pi\)
−0.810323 + 0.585984i \(0.800708\pi\)
\(968\) 0 0
\(969\) −15.4152 21.2172i −0.495208 0.681595i
\(970\) 0 0
\(971\) 6.30955 2.05010i 0.202483 0.0657907i −0.206020 0.978548i \(-0.566051\pi\)
0.408503 + 0.912757i \(0.366051\pi\)
\(972\) 0 0
\(973\) −0.573728 0.416837i −0.0183929 0.0133632i
\(974\) 0 0
\(975\) −33.5931 7.09025i −1.07584 0.227070i
\(976\) 0 0
\(977\) 10.2728 31.6165i 0.328657 1.01150i −0.641106 0.767452i \(-0.721524\pi\)
0.969763 0.244049i \(-0.0784758\pi\)
\(978\) 0 0
\(979\) 27.9258 20.2893i 0.892513 0.648449i
\(980\) 0 0
\(981\) 0.667268i 0.0213042i
\(982\) 0 0
\(983\) 53.4952i 1.70623i 0.521722 + 0.853115i \(0.325290\pi\)
−0.521722 + 0.853115i \(0.674710\pi\)
\(984\) 0 0
\(985\) 5.52244 52.9063i 0.175960 1.68573i
\(986\) 0 0
\(987\) −6.72115 −0.213937
\(988\) 0 0
\(989\) 30.0626 21.8417i 0.955935 0.694527i
\(990\) 0 0
\(991\) 20.6073 + 6.69571i 0.654612 + 0.212696i 0.617447 0.786613i \(-0.288167\pi\)
0.0371654 + 0.999309i \(0.488167\pi\)
\(992\) 0 0
\(993\) 23.0799i 0.732418i
\(994\) 0 0
\(995\) −29.7599 + 33.0993i −0.943453 + 1.04932i
\(996\) 0 0
\(997\) 8.92215 + 27.4596i 0.282567 + 0.869653i 0.987117 + 0.159999i \(0.0511490\pi\)
−0.704550 + 0.709655i \(0.748851\pi\)
\(998\) 0 0
\(999\) −45.4746 62.5905i −1.43875 1.98027i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bi.a.269.20 yes 80
5.4 even 2 inner 820.2.bi.a.269.1 yes 80
41.25 even 10 inner 820.2.bi.a.189.1 80
205.189 even 10 inner 820.2.bi.a.189.20 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bi.a.189.1 80 41.25 even 10 inner
820.2.bi.a.189.20 yes 80 205.189 even 10 inner
820.2.bi.a.269.1 yes 80 5.4 even 2 inner
820.2.bi.a.269.20 yes 80 1.1 even 1 trivial