Properties

Label 820.2.bi.a.189.1
Level $820$
Weight $2$
Character 820.189
Analytic conductor $6.548$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(189,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.189"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bi (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 189.1
Character \(\chi\) \(=\) 820.189
Dual form 820.2.bi.a.269.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.03349 q^{3} +(1.66279 + 1.49503i) q^{5} +(-0.0669129 - 0.205937i) q^{7} +6.20209 q^{9} +(-2.13114 - 2.93326i) q^{11} +(0.699493 - 2.15282i) q^{13} +(-5.04407 - 4.53517i) q^{15} +(-2.80914 + 2.04096i) q^{17} +(-2.36798 + 0.769403i) q^{19} +(0.202980 + 0.624708i) q^{21} +(5.90545 + 1.91880i) q^{23} +(0.529751 + 4.97186i) q^{25} -9.71351 q^{27} +(3.38875 - 4.66421i) q^{29} +(-0.260464 + 0.189238i) q^{31} +(6.46479 + 8.89802i) q^{33} +(0.196620 - 0.442467i) q^{35} +(4.68159 - 6.44365i) q^{37} +(-2.12191 + 6.53056i) q^{39} +(1.70127 + 6.17298i) q^{41} +(5.69152 + 1.84929i) q^{43} +(10.3128 + 9.27233i) q^{45} +(3.16195 - 9.73150i) q^{47} +(5.62519 - 4.08694i) q^{49} +(8.52152 - 6.19124i) q^{51} +(8.51902 + 6.18943i) q^{53} +(0.841683 - 8.06352i) q^{55} +(7.18325 - 2.33398i) q^{57} +(1.33099 - 4.09637i) q^{59} +(-1.56003 - 4.80128i) q^{61} +(-0.415000 - 1.27724i) q^{63} +(4.38164 - 2.53392i) q^{65} +(5.42363 + 3.94050i) q^{67} +(-17.9141 - 5.82066i) q^{69} +(9.55669 + 13.1537i) q^{71} +6.64621i q^{73} +(-1.60700 - 15.0821i) q^{75} +(-0.461465 + 0.635152i) q^{77} +0.296675i q^{79} +10.8596 q^{81} +3.09381i q^{83} +(-7.72232 - 0.806068i) q^{85} +(-10.2798 + 14.1489i) q^{87} +(-9.05444 + 2.94197i) q^{89} -0.490149 q^{91} +(0.790117 - 0.574054i) q^{93} +(-5.08774 - 2.26085i) q^{95} +(-3.18534 - 2.31429i) q^{97} +(-13.2175 - 18.1923i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 68 q^{9} + 10 q^{15} - 26 q^{21} + 10 q^{25} - 20 q^{29} + 4 q^{31} + 15 q^{35} - 8 q^{39} + 4 q^{41} - 4 q^{45} + 18 q^{49} + 52 q^{51} - 36 q^{59} - 42 q^{61} - 15 q^{65} + 30 q^{69} - 20 q^{75}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.03349 −1.75139 −0.875694 0.482866i \(-0.839596\pi\)
−0.875694 + 0.482866i \(0.839596\pi\)
\(4\) 0 0
\(5\) 1.66279 + 1.49503i 0.743623 + 0.668599i
\(6\) 0 0
\(7\) −0.0669129 0.205937i −0.0252907 0.0778368i 0.937615 0.347677i \(-0.113029\pi\)
−0.962905 + 0.269840i \(0.913029\pi\)
\(8\) 0 0
\(9\) 6.20209 2.06736
\(10\) 0 0
\(11\) −2.13114 2.93326i −0.642562 0.884411i 0.356187 0.934415i \(-0.384077\pi\)
−0.998749 + 0.0500038i \(0.984077\pi\)
\(12\) 0 0
\(13\) 0.699493 2.15282i 0.194004 0.597084i −0.805982 0.591940i \(-0.798362\pi\)
0.999987 0.00514462i \(-0.00163759\pi\)
\(14\) 0 0
\(15\) −5.04407 4.53517i −1.30237 1.17098i
\(16\) 0 0
\(17\) −2.80914 + 2.04096i −0.681317 + 0.495006i −0.873794 0.486296i \(-0.838348\pi\)
0.192477 + 0.981301i \(0.438348\pi\)
\(18\) 0 0
\(19\) −2.36798 + 0.769403i −0.543252 + 0.176513i −0.567772 0.823186i \(-0.692194\pi\)
0.0245198 + 0.999699i \(0.492194\pi\)
\(20\) 0 0
\(21\) 0.202980 + 0.624708i 0.0442938 + 0.136322i
\(22\) 0 0
\(23\) 5.90545 + 1.91880i 1.23137 + 0.400097i 0.851211 0.524824i \(-0.175869\pi\)
0.380160 + 0.924921i \(0.375869\pi\)
\(24\) 0 0
\(25\) 0.529751 + 4.97186i 0.105950 + 0.994371i
\(26\) 0 0
\(27\) −9.71351 −1.86937
\(28\) 0 0
\(29\) 3.38875 4.66421i 0.629275 0.866123i −0.368712 0.929544i \(-0.620201\pi\)
0.997987 + 0.0634209i \(0.0202011\pi\)
\(30\) 0 0
\(31\) −0.260464 + 0.189238i −0.0467808 + 0.0339882i −0.610930 0.791685i \(-0.709204\pi\)
0.564149 + 0.825673i \(0.309204\pi\)
\(32\) 0 0
\(33\) 6.46479 + 8.89802i 1.12538 + 1.54895i
\(34\) 0 0
\(35\) 0.196620 0.442467i 0.0332349 0.0747905i
\(36\) 0 0
\(37\) 4.68159 6.44365i 0.769648 1.05933i −0.226702 0.973964i \(-0.572794\pi\)
0.996350 0.0853656i \(-0.0272058\pi\)
\(38\) 0 0
\(39\) −2.12191 + 6.53056i −0.339777 + 1.04573i
\(40\) 0 0
\(41\) 1.70127 + 6.17298i 0.265694 + 0.964058i
\(42\) 0 0
\(43\) 5.69152 + 1.84929i 0.867949 + 0.282014i 0.708945 0.705264i \(-0.249172\pi\)
0.159005 + 0.987278i \(0.449172\pi\)
\(44\) 0 0
\(45\) 10.3128 + 9.27233i 1.53734 + 1.38224i
\(46\) 0 0
\(47\) 3.16195 9.73150i 0.461218 1.41948i −0.402458 0.915438i \(-0.631844\pi\)
0.863677 0.504046i \(-0.168156\pi\)
\(48\) 0 0
\(49\) 5.62519 4.08694i 0.803598 0.583848i
\(50\) 0 0
\(51\) 8.52152 6.19124i 1.19325 0.866948i
\(52\) 0 0
\(53\) 8.51902 + 6.18943i 1.17018 + 0.850184i 0.991030 0.133639i \(-0.0426661\pi\)
0.179147 + 0.983822i \(0.442666\pi\)
\(54\) 0 0
\(55\) 0.841683 8.06352i 0.113493 1.08728i
\(56\) 0 0
\(57\) 7.18325 2.33398i 0.951445 0.309143i
\(58\) 0 0
\(59\) 1.33099 4.09637i 0.173280 0.533302i −0.826270 0.563274i \(-0.809542\pi\)
0.999551 + 0.0299716i \(0.00954167\pi\)
\(60\) 0 0
\(61\) −1.56003 4.80128i −0.199742 0.614741i −0.999888 0.0149371i \(-0.995245\pi\)
0.800147 0.599804i \(-0.204755\pi\)
\(62\) 0 0
\(63\) −0.415000 1.27724i −0.0522850 0.160917i
\(64\) 0 0
\(65\) 4.38164 2.53392i 0.543476 0.314294i
\(66\) 0 0
\(67\) 5.42363 + 3.94050i 0.662602 + 0.481408i 0.867540 0.497367i \(-0.165700\pi\)
−0.204939 + 0.978775i \(0.565700\pi\)
\(68\) 0 0
\(69\) −17.9141 5.82066i −2.15661 0.700725i
\(70\) 0 0
\(71\) 9.55669 + 13.1537i 1.13417 + 1.56105i 0.779895 + 0.625910i \(0.215272\pi\)
0.354275 + 0.935141i \(0.384728\pi\)
\(72\) 0 0
\(73\) 6.64621i 0.777880i 0.921263 + 0.388940i \(0.127159\pi\)
−0.921263 + 0.388940i \(0.872841\pi\)
\(74\) 0 0
\(75\) −1.60700 15.0821i −0.185560 1.74153i
\(76\) 0 0
\(77\) −0.461465 + 0.635152i −0.0525888 + 0.0723823i
\(78\) 0 0
\(79\) 0.296675i 0.0333786i 0.999861 + 0.0166893i \(0.00531261\pi\)
−0.999861 + 0.0166893i \(0.994687\pi\)
\(80\) 0 0
\(81\) 10.8596 1.20662
\(82\) 0 0
\(83\) 3.09381i 0.339590i 0.985479 + 0.169795i \(0.0543105\pi\)
−0.985479 + 0.169795i \(0.945690\pi\)
\(84\) 0 0
\(85\) −7.72232 0.806068i −0.837604 0.0874304i
\(86\) 0 0
\(87\) −10.2798 + 14.1489i −1.10211 + 1.51692i
\(88\) 0 0
\(89\) −9.05444 + 2.94197i −0.959769 + 0.311848i −0.746679 0.665185i \(-0.768353\pi\)
−0.213090 + 0.977033i \(0.568353\pi\)
\(90\) 0 0
\(91\) −0.490149 −0.0513816
\(92\) 0 0
\(93\) 0.790117 0.574054i 0.0819314 0.0595266i
\(94\) 0 0
\(95\) −5.08774 2.26085i −0.521991 0.231958i
\(96\) 0 0
\(97\) −3.18534 2.31429i −0.323423 0.234980i 0.414212 0.910180i \(-0.364057\pi\)
−0.737635 + 0.675200i \(0.764057\pi\)
\(98\) 0 0
\(99\) −13.2175 18.1923i −1.32841 1.82840i
\(100\) 0 0
\(101\) 12.4684 4.05121i 1.24065 0.403111i 0.386087 0.922462i \(-0.373827\pi\)
0.854561 + 0.519352i \(0.173827\pi\)
\(102\) 0 0
\(103\) 3.95669 1.28561i 0.389864 0.126675i −0.107524 0.994202i \(-0.534292\pi\)
0.497388 + 0.867528i \(0.334292\pi\)
\(104\) 0 0
\(105\) −0.596446 + 1.34222i −0.0582072 + 0.130987i
\(106\) 0 0
\(107\) 2.64208 0.858463i 0.255419 0.0829907i −0.178509 0.983938i \(-0.557127\pi\)
0.433928 + 0.900948i \(0.357127\pi\)
\(108\) 0 0
\(109\) 0.107588i 0.0103050i −0.999987 0.00515251i \(-0.998360\pi\)
0.999987 0.00515251i \(-0.00164010\pi\)
\(110\) 0 0
\(111\) −14.2016 + 19.5468i −1.34795 + 1.85530i
\(112\) 0 0
\(113\) 4.68542 + 6.44892i 0.440767 + 0.606664i 0.970382 0.241574i \(-0.0776637\pi\)
−0.529615 + 0.848238i \(0.677664\pi\)
\(114\) 0 0
\(115\) 6.95086 + 12.0194i 0.648171 + 1.12081i
\(116\) 0 0
\(117\) 4.33831 13.3520i 0.401077 1.23439i
\(118\) 0 0
\(119\) 0.608277 + 0.441939i 0.0557606 + 0.0405125i
\(120\) 0 0
\(121\) −0.663075 + 2.04074i −0.0602796 + 0.185521i
\(122\) 0 0
\(123\) −5.16079 18.7257i −0.465333 1.68844i
\(124\) 0 0
\(125\) −6.55223 + 9.05916i −0.586049 + 0.810276i
\(126\) 0 0
\(127\) −3.76949 + 5.18825i −0.334488 + 0.460383i −0.942821 0.333299i \(-0.891838\pi\)
0.608334 + 0.793681i \(0.291838\pi\)
\(128\) 0 0
\(129\) −17.2652 5.60981i −1.52012 0.493916i
\(130\) 0 0
\(131\) 16.6441 12.0926i 1.45420 1.05654i 0.469370 0.883002i \(-0.344481\pi\)
0.984828 0.173535i \(-0.0555189\pi\)
\(132\) 0 0
\(133\) 0.316897 + 0.436171i 0.0274784 + 0.0378208i
\(134\) 0 0
\(135\) −16.1515 14.5220i −1.39010 1.24986i
\(136\) 0 0
\(137\) −15.3781 −1.31384 −0.656918 0.753962i \(-0.728140\pi\)
−0.656918 + 0.753962i \(0.728140\pi\)
\(138\) 0 0
\(139\) 1.01205 + 3.11478i 0.0858412 + 0.264192i 0.984759 0.173926i \(-0.0556453\pi\)
−0.898918 + 0.438118i \(0.855645\pi\)
\(140\) 0 0
\(141\) −9.59177 + 29.5204i −0.807773 + 2.48607i
\(142\) 0 0
\(143\) −7.80549 + 2.53616i −0.652728 + 0.212084i
\(144\) 0 0
\(145\) 12.6079 2.68932i 1.04703 0.223336i
\(146\) 0 0
\(147\) −17.0640 + 12.3977i −1.40741 + 1.02254i
\(148\) 0 0
\(149\) 3.39798 4.67691i 0.278373 0.383148i −0.646821 0.762642i \(-0.723902\pi\)
0.925194 + 0.379494i \(0.123902\pi\)
\(150\) 0 0
\(151\) −8.27772 2.68960i −0.673632 0.218876i −0.0478265 0.998856i \(-0.515229\pi\)
−0.625805 + 0.779980i \(0.715229\pi\)
\(152\) 0 0
\(153\) −17.4225 + 12.6582i −1.40853 + 1.02336i
\(154\) 0 0
\(155\) −0.716016 0.0747389i −0.0575118 0.00600317i
\(156\) 0 0
\(157\) −5.42870 16.7078i −0.433258 1.33343i −0.894862 0.446344i \(-0.852726\pi\)
0.461604 0.887086i \(-0.347274\pi\)
\(158\) 0 0
\(159\) −25.8424 18.7756i −2.04944 1.48900i
\(160\) 0 0
\(161\) 1.34454i 0.105965i
\(162\) 0 0
\(163\) 7.59370i 0.594784i −0.954755 0.297392i \(-0.903883\pi\)
0.954755 0.297392i \(-0.0961169\pi\)
\(164\) 0 0
\(165\) −2.55324 + 24.4606i −0.198770 + 1.90426i
\(166\) 0 0
\(167\) 7.87999 0.609772 0.304886 0.952389i \(-0.401382\pi\)
0.304886 + 0.952389i \(0.401382\pi\)
\(168\) 0 0
\(169\) 6.37189 + 4.62945i 0.490145 + 0.356111i
\(170\) 0 0
\(171\) −14.6864 + 4.77190i −1.12310 + 0.364917i
\(172\) 0 0
\(173\) 13.9308i 1.05914i −0.848265 0.529571i \(-0.822353\pi\)
0.848265 0.529571i \(-0.177647\pi\)
\(174\) 0 0
\(175\) 0.988441 0.441776i 0.0747191 0.0333952i
\(176\) 0 0
\(177\) −4.03756 + 12.4263i −0.303481 + 0.934019i
\(178\) 0 0
\(179\) −8.17015 + 11.2452i −0.610665 + 0.840509i −0.996632 0.0820040i \(-0.973868\pi\)
0.385967 + 0.922513i \(0.373868\pi\)
\(180\) 0 0
\(181\) −4.82223 6.63723i −0.358434 0.493342i 0.591278 0.806468i \(-0.298624\pi\)
−0.949712 + 0.313126i \(0.898624\pi\)
\(182\) 0 0
\(183\) 4.73234 + 14.5647i 0.349825 + 1.07665i
\(184\) 0 0
\(185\) 17.4180 3.71532i 1.28060 0.273156i
\(186\) 0 0
\(187\) 11.9733 + 3.89037i 0.875577 + 0.284492i
\(188\) 0 0
\(189\) 0.649959 + 2.00037i 0.0472776 + 0.145505i
\(190\) 0 0
\(191\) 15.8216i 1.14481i −0.819970 0.572406i \(-0.806010\pi\)
0.819970 0.572406i \(-0.193990\pi\)
\(192\) 0 0
\(193\) 17.3526 + 12.6074i 1.24907 + 0.907502i 0.998168 0.0605111i \(-0.0192731\pi\)
0.250901 + 0.968013i \(0.419273\pi\)
\(194\) 0 0
\(195\) −13.2917 + 7.68664i −0.951838 + 0.550451i
\(196\) 0 0
\(197\) −13.9828 19.2457i −0.996233 1.37120i −0.927608 0.373554i \(-0.878139\pi\)
−0.0686245 0.997643i \(-0.521861\pi\)
\(198\) 0 0
\(199\) −18.9316 6.15125i −1.34203 0.436050i −0.452023 0.892006i \(-0.649297\pi\)
−0.890002 + 0.455956i \(0.849297\pi\)
\(200\) 0 0
\(201\) −16.4525 11.9535i −1.16047 0.843133i
\(202\) 0 0
\(203\) −1.18728 0.385772i −0.0833310 0.0270759i
\(204\) 0 0
\(205\) −6.39996 + 12.8078i −0.446992 + 0.894538i
\(206\) 0 0
\(207\) 36.6261 + 11.9005i 2.54569 + 0.827144i
\(208\) 0 0
\(209\) 7.30335 + 5.30619i 0.505183 + 0.367037i
\(210\) 0 0
\(211\) −23.7692 7.72308i −1.63634 0.531679i −0.660622 0.750718i \(-0.729708\pi\)
−0.975716 + 0.219040i \(0.929708\pi\)
\(212\) 0 0
\(213\) −28.9902 39.9015i −1.98637 2.73401i
\(214\) 0 0
\(215\) 6.69907 + 11.5840i 0.456873 + 0.790022i
\(216\) 0 0
\(217\) 0.0563996 + 0.0409767i 0.00382865 + 0.00278168i
\(218\) 0 0
\(219\) 20.1612i 1.36237i
\(220\) 0 0
\(221\) 2.42884 + 7.47521i 0.163382 + 0.502837i
\(222\) 0 0
\(223\) −3.38854 1.10100i −0.226913 0.0737286i 0.193354 0.981129i \(-0.438064\pi\)
−0.420267 + 0.907401i \(0.638064\pi\)
\(224\) 0 0
\(225\) 3.28556 + 30.8359i 0.219037 + 2.05573i
\(226\) 0 0
\(227\) 8.63058 + 26.5622i 0.572832 + 1.76300i 0.643446 + 0.765492i \(0.277504\pi\)
−0.0706139 + 0.997504i \(0.522496\pi\)
\(228\) 0 0
\(229\) −1.63343 2.24823i −0.107940 0.148567i 0.751629 0.659586i \(-0.229268\pi\)
−0.859570 + 0.511019i \(0.829268\pi\)
\(230\) 0 0
\(231\) 1.39985 1.92673i 0.0921035 0.126770i
\(232\) 0 0
\(233\) −2.55997 + 7.87877i −0.167709 + 0.516155i −0.999226 0.0393445i \(-0.987473\pi\)
0.831517 + 0.555500i \(0.187473\pi\)
\(234\) 0 0
\(235\) 19.8066 11.4542i 1.29204 0.747191i
\(236\) 0 0
\(237\) 0.899963i 0.0584589i
\(238\) 0 0
\(239\) 18.6883 6.07219i 1.20885 0.392778i 0.365837 0.930679i \(-0.380783\pi\)
0.843008 + 0.537901i \(0.180783\pi\)
\(240\) 0 0
\(241\) −15.6811 11.3930i −1.01011 0.733888i −0.0458777 0.998947i \(-0.514608\pi\)
−0.964232 + 0.265059i \(0.914608\pi\)
\(242\) 0 0
\(243\) −3.80204 −0.243901
\(244\) 0 0
\(245\) 15.4636 + 1.61412i 0.987934 + 0.103122i
\(246\) 0 0
\(247\) 5.63602i 0.358611i
\(248\) 0 0
\(249\) 9.38505i 0.594753i
\(250\) 0 0
\(251\) −0.306537 0.222712i −0.0193485 0.0140575i 0.578069 0.815988i \(-0.303806\pi\)
−0.597417 + 0.801930i \(0.703806\pi\)
\(252\) 0 0
\(253\) −6.95699 21.4114i −0.437382 1.34612i
\(254\) 0 0
\(255\) 23.4256 + 2.44520i 1.46697 + 0.153125i
\(256\) 0 0
\(257\) 19.4489 14.1305i 1.21319 0.881435i 0.217675 0.976021i \(-0.430153\pi\)
0.995517 + 0.0945859i \(0.0301527\pi\)
\(258\) 0 0
\(259\) −1.64024 0.532947i −0.101920 0.0331157i
\(260\) 0 0
\(261\) 21.0173 28.9279i 1.30094 1.79059i
\(262\) 0 0
\(263\) 23.2139 16.8659i 1.43143 1.03999i 0.441682 0.897172i \(-0.354382\pi\)
0.989748 0.142823i \(-0.0456181\pi\)
\(264\) 0 0
\(265\) 4.91195 + 23.0280i 0.301739 + 1.41460i
\(266\) 0 0
\(267\) 27.4666 8.92444i 1.68093 0.546167i
\(268\) 0 0
\(269\) −4.56554 + 14.0513i −0.278366 + 0.856722i 0.709943 + 0.704259i \(0.248721\pi\)
−0.988309 + 0.152463i \(0.951279\pi\)
\(270\) 0 0
\(271\) 4.94944 + 15.2328i 0.300657 + 0.925327i 0.981262 + 0.192677i \(0.0617169\pi\)
−0.680605 + 0.732650i \(0.738283\pi\)
\(272\) 0 0
\(273\) 1.48686 0.0899892
\(274\) 0 0
\(275\) 13.4548 12.1496i 0.811353 0.732649i
\(276\) 0 0
\(277\) −11.0870 15.2600i −0.666154 0.916882i 0.333511 0.942746i \(-0.391766\pi\)
−0.999665 + 0.0258637i \(0.991766\pi\)
\(278\) 0 0
\(279\) −1.61542 + 1.17367i −0.0967128 + 0.0702660i
\(280\) 0 0
\(281\) 18.5113 + 6.01469i 1.10429 + 0.358806i 0.803753 0.594963i \(-0.202833\pi\)
0.300540 + 0.953769i \(0.402833\pi\)
\(282\) 0 0
\(283\) −13.2502 + 18.2374i −0.787645 + 1.08410i 0.206753 + 0.978393i \(0.433710\pi\)
−0.994397 + 0.105706i \(0.966290\pi\)
\(284\) 0 0
\(285\) 15.4336 + 6.85828i 0.914209 + 0.406249i
\(286\) 0 0
\(287\) 1.15741 0.763406i 0.0683195 0.0450624i
\(288\) 0 0
\(289\) −1.52753 + 4.70126i −0.0898548 + 0.276545i
\(290\) 0 0
\(291\) 9.66272 + 7.02038i 0.566439 + 0.411542i
\(292\) 0 0
\(293\) 0.460758 1.41807i 0.0269178 0.0828444i −0.936695 0.350146i \(-0.886132\pi\)
0.963613 + 0.267302i \(0.0861320\pi\)
\(294\) 0 0
\(295\) 8.33737 4.82153i 0.485421 0.280721i
\(296\) 0 0
\(297\) 20.7008 + 28.4922i 1.20118 + 1.65329i
\(298\) 0 0
\(299\) 8.26163 11.3712i 0.477783 0.657611i
\(300\) 0 0
\(301\) 1.29584i 0.0746907i
\(302\) 0 0
\(303\) −37.8227 + 12.2893i −2.17286 + 0.706004i
\(304\) 0 0
\(305\) 4.58407 10.3158i 0.262483 0.590683i
\(306\) 0 0
\(307\) −23.8434 + 7.74721i −1.36082 + 0.442156i −0.896316 0.443416i \(-0.853766\pi\)
−0.464502 + 0.885572i \(0.653766\pi\)
\(308\) 0 0
\(309\) −12.0026 + 3.89988i −0.682804 + 0.221856i
\(310\) 0 0
\(311\) 13.7018 + 18.8590i 0.776960 + 1.06939i 0.995611 + 0.0935907i \(0.0298345\pi\)
−0.218651 + 0.975803i \(0.570165\pi\)
\(312\) 0 0
\(313\) 1.81588 + 1.31932i 0.102640 + 0.0745722i 0.637921 0.770102i \(-0.279794\pi\)
−0.535282 + 0.844674i \(0.679794\pi\)
\(314\) 0 0
\(315\) 1.21945 2.74422i 0.0687085 0.154619i
\(316\) 0 0
\(317\) −11.6186 + 8.44142i −0.652567 + 0.474118i −0.864145 0.503244i \(-0.832140\pi\)
0.211578 + 0.977361i \(0.432140\pi\)
\(318\) 0 0
\(319\) −20.9032 −1.17036
\(320\) 0 0
\(321\) −8.01472 + 2.60414i −0.447338 + 0.145349i
\(322\) 0 0
\(323\) 5.08167 6.99432i 0.282752 0.389174i
\(324\) 0 0
\(325\) 11.0741 + 2.33732i 0.614278 + 0.129651i
\(326\) 0 0
\(327\) 0.326366i 0.0180481i
\(328\) 0 0
\(329\) −2.21565 −0.122153
\(330\) 0 0
\(331\) 7.60835i 0.418193i 0.977895 + 0.209096i \(0.0670522\pi\)
−0.977895 + 0.209096i \(0.932948\pi\)
\(332\) 0 0
\(333\) 29.0356 39.9641i 1.59114 2.19002i
\(334\) 0 0
\(335\) 3.12719 + 14.6607i 0.170857 + 0.801001i
\(336\) 0 0
\(337\) 22.8389i 1.24411i −0.782972 0.622057i \(-0.786297\pi\)
0.782972 0.622057i \(-0.213703\pi\)
\(338\) 0 0
\(339\) −14.2132 19.5628i −0.771954 1.06250i
\(340\) 0 0
\(341\) 1.11017 + 0.360716i 0.0601191 + 0.0195339i
\(342\) 0 0
\(343\) −2.44431 1.77589i −0.131980 0.0958893i
\(344\) 0 0
\(345\) −21.0854 36.4608i −1.13520 1.96298i
\(346\) 0 0
\(347\) −1.85432 5.70702i −0.0995453 0.306369i 0.888866 0.458167i \(-0.151494\pi\)
−0.988412 + 0.151798i \(0.951494\pi\)
\(348\) 0 0
\(349\) −3.00764 9.25656i −0.160995 0.495492i 0.837724 0.546094i \(-0.183886\pi\)
−0.998719 + 0.0506020i \(0.983886\pi\)
\(350\) 0 0
\(351\) −6.79453 + 20.9114i −0.362665 + 1.11617i
\(352\) 0 0
\(353\) −20.8449 + 6.77291i −1.10946 + 0.360486i −0.805737 0.592274i \(-0.798230\pi\)
−0.303725 + 0.952760i \(0.598230\pi\)
\(354\) 0 0
\(355\) −3.77437 + 36.1594i −0.200323 + 1.91914i
\(356\) 0 0
\(357\) −1.84520 1.34062i −0.0976586 0.0709531i
\(358\) 0 0
\(359\) 16.5684 12.0376i 0.874447 0.635323i −0.0573298 0.998355i \(-0.518259\pi\)
0.931776 + 0.363033i \(0.118259\pi\)
\(360\) 0 0
\(361\) −10.3560 + 7.52406i −0.545051 + 0.396003i
\(362\) 0 0
\(363\) 2.01144 6.19056i 0.105573 0.324920i
\(364\) 0 0
\(365\) −9.93631 + 11.0513i −0.520090 + 0.578450i
\(366\) 0 0
\(367\) −6.95645 2.26029i −0.363124 0.117986i 0.121772 0.992558i \(-0.461142\pi\)
−0.484896 + 0.874572i \(0.661142\pi\)
\(368\) 0 0
\(369\) 10.5514 + 38.2854i 0.549285 + 1.99306i
\(370\) 0 0
\(371\) 0.704599 2.16853i 0.0365809 0.112585i
\(372\) 0 0
\(373\) −5.00847 + 6.89357i −0.259329 + 0.356936i −0.918751 0.394837i \(-0.870801\pi\)
0.659422 + 0.751773i \(0.270801\pi\)
\(374\) 0 0
\(375\) 19.8761 27.4809i 1.02640 1.41911i
\(376\) 0 0
\(377\) −7.67080 10.5579i −0.395066 0.543762i
\(378\) 0 0
\(379\) −20.5006 + 14.8946i −1.05304 + 0.765082i −0.972789 0.231692i \(-0.925574\pi\)
−0.0802558 + 0.996774i \(0.525574\pi\)
\(380\) 0 0
\(381\) 11.4347 15.7385i 0.585818 0.806310i
\(382\) 0 0
\(383\) −32.7360 −1.67273 −0.836366 0.548172i \(-0.815324\pi\)
−0.836366 + 0.548172i \(0.815324\pi\)
\(384\) 0 0
\(385\) −1.71689 + 0.366220i −0.0875010 + 0.0186643i
\(386\) 0 0
\(387\) 35.2993 + 11.4694i 1.79437 + 0.583025i
\(388\) 0 0
\(389\) −0.117127 0.360481i −0.00593860 0.0182771i 0.948043 0.318141i \(-0.103059\pi\)
−0.953982 + 0.299864i \(0.903059\pi\)
\(390\) 0 0
\(391\) −20.5054 + 6.66262i −1.03700 + 0.336943i
\(392\) 0 0
\(393\) −50.4896 + 36.6829i −2.54687 + 1.85041i
\(394\) 0 0
\(395\) −0.443540 + 0.493309i −0.0223169 + 0.0248211i
\(396\) 0 0
\(397\) −12.0907 + 37.2112i −0.606813 + 1.86758i −0.123001 + 0.992407i \(0.539252\pi\)
−0.483812 + 0.875172i \(0.660748\pi\)
\(398\) 0 0
\(399\) −0.961304 1.32312i −0.0481254 0.0662390i
\(400\) 0 0
\(401\) 32.5757 1.62675 0.813377 0.581737i \(-0.197627\pi\)
0.813377 + 0.581737i \(0.197627\pi\)
\(402\) 0 0
\(403\) 0.225203 + 0.693103i 0.0112182 + 0.0345259i
\(404\) 0 0
\(405\) 18.0573 + 16.2355i 0.897273 + 0.806748i
\(406\) 0 0
\(407\) −28.8780 −1.43143
\(408\) 0 0
\(409\) −7.90131 −0.390695 −0.195347 0.980734i \(-0.562583\pi\)
−0.195347 + 0.980734i \(0.562583\pi\)
\(410\) 0 0
\(411\) 46.6493 2.30104
\(412\) 0 0
\(413\) −0.932654 −0.0458929
\(414\) 0 0
\(415\) −4.62535 + 5.14436i −0.227049 + 0.252527i
\(416\) 0 0
\(417\) −3.07005 9.44866i −0.150341 0.462703i
\(418\) 0 0
\(419\) 7.27081 0.355202 0.177601 0.984103i \(-0.443166\pi\)
0.177601 + 0.984103i \(0.443166\pi\)
\(420\) 0 0
\(421\) 10.1349 + 13.9495i 0.493945 + 0.679858i 0.981110 0.193453i \(-0.0619686\pi\)
−0.487164 + 0.873310i \(0.661969\pi\)
\(422\) 0 0
\(423\) 19.6107 60.3556i 0.953506 2.93459i
\(424\) 0 0
\(425\) −11.6355 12.8855i −0.564405 0.625036i
\(426\) 0 0
\(427\) −0.884374 + 0.642535i −0.0427979 + 0.0310945i
\(428\) 0 0
\(429\) 23.6779 7.69342i 1.14318 0.371442i
\(430\) 0 0
\(431\) 5.95343 + 18.3228i 0.286767 + 0.882577i 0.985864 + 0.167550i \(0.0535856\pi\)
−0.699097 + 0.715027i \(0.746414\pi\)
\(432\) 0 0
\(433\) −10.6175 3.44984i −0.510246 0.165789i 0.0425684 0.999094i \(-0.486446\pi\)
−0.552814 + 0.833305i \(0.686446\pi\)
\(434\) 0 0
\(435\) −38.2461 + 8.15804i −1.83376 + 0.391148i
\(436\) 0 0
\(437\) −15.4603 −0.739567
\(438\) 0 0
\(439\) 1.25895 1.73280i 0.0600865 0.0827020i −0.777916 0.628368i \(-0.783723\pi\)
0.838003 + 0.545666i \(0.183723\pi\)
\(440\) 0 0
\(441\) 34.8879 25.3475i 1.66133 1.20703i
\(442\) 0 0
\(443\) −8.98635 12.3687i −0.426954 0.587652i 0.540296 0.841475i \(-0.318312\pi\)
−0.967251 + 0.253822i \(0.918312\pi\)
\(444\) 0 0
\(445\) −19.4540 8.64482i −0.922207 0.409804i
\(446\) 0 0
\(447\) −10.3077 + 14.1874i −0.487540 + 0.671041i
\(448\) 0 0
\(449\) 4.20676 12.9471i 0.198529 0.611011i −0.801388 0.598145i \(-0.795905\pi\)
0.999917 0.0128657i \(-0.00409541\pi\)
\(450\) 0 0
\(451\) 14.4813 18.1457i 0.681898 0.854449i
\(452\) 0 0
\(453\) 25.1104 + 8.15887i 1.17979 + 0.383337i
\(454\) 0 0
\(455\) −0.815016 0.732790i −0.0382085 0.0343537i
\(456\) 0 0
\(457\) 11.1170 34.2145i 0.520030 1.60049i −0.253910 0.967228i \(-0.581717\pi\)
0.773939 0.633260i \(-0.218283\pi\)
\(458\) 0 0
\(459\) 27.2866 19.8249i 1.27363 0.925347i
\(460\) 0 0
\(461\) 31.0216 22.5385i 1.44482 1.04972i 0.457811 0.889050i \(-0.348634\pi\)
0.987008 0.160673i \(-0.0513664\pi\)
\(462\) 0 0
\(463\) 23.2603 + 16.8996i 1.08100 + 0.785391i 0.977857 0.209275i \(-0.0671105\pi\)
0.103142 + 0.994667i \(0.467110\pi\)
\(464\) 0 0
\(465\) 2.17203 + 0.226720i 0.100725 + 0.0105139i
\(466\) 0 0
\(467\) −10.6732 + 3.46792i −0.493896 + 0.160476i −0.545366 0.838198i \(-0.683609\pi\)
0.0514702 + 0.998675i \(0.483609\pi\)
\(468\) 0 0
\(469\) 0.448582 1.38059i 0.0207136 0.0637499i
\(470\) 0 0
\(471\) 16.4679 + 50.6831i 0.758802 + 2.33535i
\(472\) 0 0
\(473\) −6.70498 20.6358i −0.308295 0.948835i
\(474\) 0 0
\(475\) −5.07980 11.3657i −0.233077 0.521492i
\(476\) 0 0
\(477\) 52.8357 + 38.3874i 2.41918 + 1.75764i
\(478\) 0 0
\(479\) 27.2184 + 8.84381i 1.24364 + 0.404084i 0.855638 0.517574i \(-0.173165\pi\)
0.388004 + 0.921658i \(0.373165\pi\)
\(480\) 0 0
\(481\) −10.5973 14.5859i −0.483194 0.665059i
\(482\) 0 0
\(483\) 4.07866i 0.185585i
\(484\) 0 0
\(485\) −1.83662 8.61037i −0.0833968 0.390977i
\(486\) 0 0
\(487\) 8.68645 11.9559i 0.393621 0.541772i −0.565508 0.824743i \(-0.691320\pi\)
0.959129 + 0.282971i \(0.0913199\pi\)
\(488\) 0 0
\(489\) 23.0354i 1.04170i
\(490\) 0 0
\(491\) −20.4369 −0.922303 −0.461151 0.887321i \(-0.652564\pi\)
−0.461151 + 0.887321i \(0.652564\pi\)
\(492\) 0 0
\(493\) 20.0188i 0.901599i
\(494\) 0 0
\(495\) 5.22019 50.0106i 0.234630 2.24781i
\(496\) 0 0
\(497\) 2.06935 2.84822i 0.0928232 0.127760i
\(498\) 0 0
\(499\) 39.2117 12.7407i 1.75536 0.570350i 0.758655 0.651493i \(-0.225857\pi\)
0.996702 + 0.0811430i \(0.0258570\pi\)
\(500\) 0 0
\(501\) −23.9039 −1.06795
\(502\) 0 0
\(503\) 21.6666 15.7417i 0.966068 0.701890i 0.0115160 0.999934i \(-0.496334\pi\)
0.954552 + 0.298044i \(0.0963343\pi\)
\(504\) 0 0
\(505\) 26.7890 + 11.9043i 1.19209 + 0.529733i
\(506\) 0 0
\(507\) −19.3291 14.0434i −0.858435 0.623689i
\(508\) 0 0
\(509\) 6.45239 + 8.88095i 0.285997 + 0.393641i 0.927709 0.373305i \(-0.121775\pi\)
−0.641712 + 0.766946i \(0.721775\pi\)
\(510\) 0 0
\(511\) 1.36870 0.444717i 0.0605477 0.0196731i
\(512\) 0 0
\(513\) 23.0014 7.47360i 1.01554 0.329968i
\(514\) 0 0
\(515\) 8.50117 + 3.77769i 0.374606 + 0.166465i
\(516\) 0 0
\(517\) −35.2836 + 11.4643i −1.55177 + 0.504200i
\(518\) 0 0
\(519\) 42.2591i 1.85497i
\(520\) 0 0
\(521\) −16.3163 + 22.4575i −0.714832 + 0.983881i 0.284848 + 0.958573i \(0.408057\pi\)
−0.999680 + 0.0253086i \(0.991943\pi\)
\(522\) 0 0
\(523\) −7.26772 10.0032i −0.317795 0.437408i 0.619997 0.784604i \(-0.287134\pi\)
−0.937792 + 0.347196i \(0.887134\pi\)
\(524\) 0 0
\(525\) −2.99843 + 1.34013i −0.130862 + 0.0584879i
\(526\) 0 0
\(527\) 0.345453 1.06320i 0.0150482 0.0463135i
\(528\) 0 0
\(529\) 12.5851 + 9.14363i 0.547179 + 0.397549i
\(530\) 0 0
\(531\) 8.25493 25.4060i 0.358233 1.10253i
\(532\) 0 0
\(533\) 14.4793 + 0.655433i 0.627169 + 0.0283900i
\(534\) 0 0
\(535\) 5.67665 + 2.52255i 0.245423 + 0.109059i
\(536\) 0 0
\(537\) 24.7841 34.1124i 1.06951 1.47206i
\(538\) 0 0
\(539\) −23.9761 7.79030i −1.03272 0.335552i
\(540\) 0 0
\(541\) −31.1045 + 22.5987i −1.33728 + 0.971594i −0.337746 + 0.941237i \(0.609664\pi\)
−0.999539 + 0.0303569i \(0.990336\pi\)
\(542\) 0 0
\(543\) 14.6282 + 20.1340i 0.627757 + 0.864033i
\(544\) 0 0
\(545\) 0.160847 0.178896i 0.00688993 0.00766305i
\(546\) 0 0
\(547\) −29.4222 −1.25800 −0.629001 0.777405i \(-0.716536\pi\)
−0.629001 + 0.777405i \(0.716536\pi\)
\(548\) 0 0
\(549\) −9.67545 29.7780i −0.412938 1.27089i
\(550\) 0 0
\(551\) −4.43583 + 13.6521i −0.188973 + 0.581598i
\(552\) 0 0
\(553\) 0.0610964 0.0198514i 0.00259808 0.000844168i
\(554\) 0 0
\(555\) −52.8373 + 11.2704i −2.24282 + 0.478402i
\(556\) 0 0
\(557\) 21.0050 15.2611i 0.890013 0.646632i −0.0458688 0.998947i \(-0.514606\pi\)
0.935881 + 0.352316i \(0.114606\pi\)
\(558\) 0 0
\(559\) 7.96236 10.9593i 0.336772 0.463527i
\(560\) 0 0
\(561\) −36.3210 11.8014i −1.53348 0.498257i
\(562\) 0 0
\(563\) −35.2718 + 25.6265i −1.48653 + 1.08003i −0.511150 + 0.859492i \(0.670780\pi\)
−0.975379 + 0.220535i \(0.929220\pi\)
\(564\) 0 0
\(565\) −1.85048 + 17.7281i −0.0778505 + 0.745826i
\(566\) 0 0
\(567\) −0.726648 2.23639i −0.0305163 0.0939197i
\(568\) 0 0
\(569\) 21.2820 + 15.4623i 0.892188 + 0.648212i 0.936448 0.350808i \(-0.114093\pi\)
−0.0442597 + 0.999020i \(0.514093\pi\)
\(570\) 0 0
\(571\) 22.4839i 0.940924i −0.882420 0.470462i \(-0.844087\pi\)
0.882420 0.470462i \(-0.155913\pi\)
\(572\) 0 0
\(573\) 47.9948i 2.00501i
\(574\) 0 0
\(575\) −6.41156 + 30.3775i −0.267381 + 1.26683i
\(576\) 0 0
\(577\) −19.4507 −0.809744 −0.404872 0.914373i \(-0.632684\pi\)
−0.404872 + 0.914373i \(0.632684\pi\)
\(578\) 0 0
\(579\) −52.6391 38.2445i −2.18760 1.58939i
\(580\) 0 0
\(581\) 0.637129 0.207016i 0.0264326 0.00858846i
\(582\) 0 0
\(583\) 38.1790i 1.58121i
\(584\) 0 0
\(585\) 27.1753 15.7156i 1.12356 0.649760i
\(586\) 0 0
\(587\) 7.56585 23.2853i 0.312276 0.961087i −0.664585 0.747212i \(-0.731392\pi\)
0.976861 0.213874i \(-0.0686083\pi\)
\(588\) 0 0
\(589\) 0.471174 0.648515i 0.0194144 0.0267216i
\(590\) 0 0
\(591\) 42.4167 + 58.3816i 1.74479 + 2.40150i
\(592\) 0 0
\(593\) 12.3480 + 38.0032i 0.507071 + 1.56060i 0.797262 + 0.603634i \(0.206281\pi\)
−0.290191 + 0.956969i \(0.593719\pi\)
\(594\) 0 0
\(595\) 0.350724 + 1.64425i 0.0143783 + 0.0674075i
\(596\) 0 0
\(597\) 57.4289 + 18.6598i 2.35041 + 0.763694i
\(598\) 0 0
\(599\) −2.59508 7.98683i −0.106032 0.326333i 0.883939 0.467602i \(-0.154882\pi\)
−0.989971 + 0.141269i \(0.954882\pi\)
\(600\) 0 0
\(601\) 44.2909i 1.80666i −0.428941 0.903332i \(-0.641113\pi\)
0.428941 0.903332i \(-0.358887\pi\)
\(602\) 0 0
\(603\) 33.6378 + 24.4393i 1.36984 + 0.995245i
\(604\) 0 0
\(605\) −4.15352 + 2.40200i −0.168865 + 0.0976551i
\(606\) 0 0
\(607\) 6.25546 + 8.60991i 0.253901 + 0.349465i 0.916873 0.399179i \(-0.130705\pi\)
−0.662971 + 0.748645i \(0.730705\pi\)
\(608\) 0 0
\(609\) 3.60162 + 1.17024i 0.145945 + 0.0474204i
\(610\) 0 0
\(611\) −18.7384 13.6142i −0.758073 0.550773i
\(612\) 0 0
\(613\) 18.7307 + 6.08596i 0.756524 + 0.245810i 0.661786 0.749693i \(-0.269799\pi\)
0.0947380 + 0.995502i \(0.469799\pi\)
\(614\) 0 0
\(615\) 19.4142 38.8525i 0.782857 1.56668i
\(616\) 0 0
\(617\) −13.1219 4.26358i −0.528270 0.171645i 0.0327254 0.999464i \(-0.489581\pi\)
−0.560995 + 0.827819i \(0.689581\pi\)
\(618\) 0 0
\(619\) 19.6216 + 14.2559i 0.788659 + 0.572995i 0.907565 0.419911i \(-0.137939\pi\)
−0.118906 + 0.992906i \(0.537939\pi\)
\(620\) 0 0
\(621\) −57.3626 18.6382i −2.30188 0.747927i
\(622\) 0 0
\(623\) 1.21172 + 1.66779i 0.0485465 + 0.0668185i
\(624\) 0 0
\(625\) −24.4387 + 5.26769i −0.977549 + 0.210708i
\(626\) 0 0
\(627\) −22.1547 16.0963i −0.884772 0.642825i
\(628\) 0 0
\(629\) 27.6561i 1.10272i
\(630\) 0 0
\(631\) −4.72928 14.5552i −0.188270 0.579435i 0.811720 0.584047i \(-0.198532\pi\)
−0.999989 + 0.00461250i \(0.998532\pi\)
\(632\) 0 0
\(633\) 72.1037 + 23.4279i 2.86586 + 0.931176i
\(634\) 0 0
\(635\) −14.0245 + 2.99147i −0.556545 + 0.118713i
\(636\) 0 0
\(637\) −4.86365 14.9688i −0.192705 0.593085i
\(638\) 0 0
\(639\) 59.2714 + 81.5801i 2.34474 + 3.22726i
\(640\) 0 0
\(641\) −6.44630 + 8.87257i −0.254613 + 0.350445i −0.917120 0.398610i \(-0.869493\pi\)
0.662507 + 0.749056i \(0.269493\pi\)
\(642\) 0 0
\(643\) 1.16761 3.59352i 0.0460458 0.141715i −0.925390 0.379015i \(-0.876263\pi\)
0.971436 + 0.237301i \(0.0762627\pi\)
\(644\) 0 0
\(645\) −20.3216 35.1400i −0.800162 1.38364i
\(646\) 0 0
\(647\) 10.9551i 0.430689i 0.976538 + 0.215344i \(0.0690874\pi\)
−0.976538 + 0.215344i \(0.930913\pi\)
\(648\) 0 0
\(649\) −14.8522 + 4.82579i −0.583002 + 0.189429i
\(650\) 0 0
\(651\) −0.171088 0.124303i −0.00670546 0.00487180i
\(652\) 0 0
\(653\) 16.8284 0.658544 0.329272 0.944235i \(-0.393197\pi\)
0.329272 + 0.944235i \(0.393197\pi\)
\(654\) 0 0
\(655\) 45.7544 + 4.77592i 1.78777 + 0.186611i
\(656\) 0 0
\(657\) 41.2204i 1.60816i
\(658\) 0 0
\(659\) 7.74006i 0.301510i −0.988571 0.150755i \(-0.951830\pi\)
0.988571 0.150755i \(-0.0481705\pi\)
\(660\) 0 0
\(661\) −20.9801 15.2429i −0.816031 0.592881i 0.0995420 0.995033i \(-0.468262\pi\)
−0.915573 + 0.402152i \(0.868262\pi\)
\(662\) 0 0
\(663\) −7.36788 22.6760i −0.286145 0.880663i
\(664\) 0 0
\(665\) −0.125157 + 1.19903i −0.00485338 + 0.0464965i
\(666\) 0 0
\(667\) 28.9618 21.0419i 1.12140 0.814747i
\(668\) 0 0
\(669\) 10.2791 + 3.33989i 0.397413 + 0.129127i
\(670\) 0 0
\(671\) −10.7588 + 14.8082i −0.415337 + 0.571663i
\(672\) 0 0
\(673\) −15.6237 + 11.3513i −0.602250 + 0.437560i −0.846677 0.532107i \(-0.821400\pi\)
0.244427 + 0.969668i \(0.421400\pi\)
\(674\) 0 0
\(675\) −5.14574 48.2942i −0.198059 1.85884i
\(676\) 0 0
\(677\) 9.62811 3.12836i 0.370038 0.120233i −0.118094 0.993002i \(-0.537678\pi\)
0.488132 + 0.872770i \(0.337678\pi\)
\(678\) 0 0
\(679\) −0.263456 + 0.810835i −0.0101105 + 0.0311170i
\(680\) 0 0
\(681\) −26.1808 80.5763i −1.00325 3.08769i
\(682\) 0 0
\(683\) −3.32384 −0.127183 −0.0635917 0.997976i \(-0.520256\pi\)
−0.0635917 + 0.997976i \(0.520256\pi\)
\(684\) 0 0
\(685\) −25.5705 22.9907i −0.976999 0.878430i
\(686\) 0 0
\(687\) 4.95501 + 6.81998i 0.189045 + 0.260199i
\(688\) 0 0
\(689\) 19.2837 14.0104i 0.734651 0.533755i
\(690\) 0 0
\(691\) 30.6771 + 9.96760i 1.16701 + 0.379185i 0.827527 0.561426i \(-0.189747\pi\)
0.339486 + 0.940611i \(0.389747\pi\)
\(692\) 0 0
\(693\) −2.86205 + 3.93927i −0.108720 + 0.149640i
\(694\) 0 0
\(695\) −2.97386 + 6.69228i −0.112805 + 0.253852i
\(696\) 0 0
\(697\) −17.3779 13.8686i −0.658236 0.525309i
\(698\) 0 0
\(699\) 7.76564 23.9002i 0.293724 0.903988i
\(700\) 0 0
\(701\) −5.06793 3.68207i −0.191413 0.139070i 0.487951 0.872871i \(-0.337744\pi\)
−0.679364 + 0.733801i \(0.737744\pi\)
\(702\) 0 0
\(703\) −6.12814 + 18.8605i −0.231127 + 0.711336i
\(704\) 0 0
\(705\) −60.0831 + 34.7463i −2.26286 + 1.30862i
\(706\) 0 0
\(707\) −1.66859 2.29661i −0.0627537 0.0863730i
\(708\) 0 0
\(709\) −7.29109 + 10.0353i −0.273823 + 0.376885i −0.923676 0.383175i \(-0.874830\pi\)
0.649853 + 0.760060i \(0.274830\pi\)
\(710\) 0 0
\(711\) 1.84001i 0.0690056i
\(712\) 0 0
\(713\) −1.90127 + 0.617760i −0.0712031 + 0.0231353i
\(714\) 0 0
\(715\) −16.7705 7.45236i −0.627183 0.278703i
\(716\) 0 0
\(717\) −56.6908 + 18.4200i −2.11716 + 0.687906i
\(718\) 0 0
\(719\) −26.1545 + 8.49812i −0.975399 + 0.316926i −0.752994 0.658028i \(-0.771391\pi\)
−0.222405 + 0.974954i \(0.571391\pi\)
\(720\) 0 0
\(721\) −0.529507 0.728804i −0.0197199 0.0271421i
\(722\) 0 0
\(723\) 47.5686 + 34.5606i 1.76909 + 1.28532i
\(724\) 0 0
\(725\) 24.9850 + 14.3775i 0.927920 + 0.533967i
\(726\) 0 0
\(727\) −14.3554 + 10.4298i −0.532414 + 0.386821i −0.821260 0.570554i \(-0.806728\pi\)
0.288846 + 0.957376i \(0.406728\pi\)
\(728\) 0 0
\(729\) −21.0454 −0.779458
\(730\) 0 0
\(731\) −19.7626 + 6.42127i −0.730947 + 0.237499i
\(732\) 0 0
\(733\) 20.9217 28.7962i 0.772759 1.06361i −0.223285 0.974753i \(-0.571678\pi\)
0.996044 0.0888585i \(-0.0283219\pi\)
\(734\) 0 0
\(735\) −46.9088 4.89641i −1.73026 0.180607i
\(736\) 0 0
\(737\) 24.3066i 0.895347i
\(738\) 0 0
\(739\) 22.0790 0.812190 0.406095 0.913831i \(-0.366890\pi\)
0.406095 + 0.913831i \(0.366890\pi\)
\(740\) 0 0
\(741\) 17.0968i 0.628068i
\(742\) 0 0
\(743\) −5.62014 + 7.73546i −0.206183 + 0.283787i −0.899568 0.436781i \(-0.856119\pi\)
0.693385 + 0.720567i \(0.256119\pi\)
\(744\) 0 0
\(745\) 12.6423 2.69664i 0.463177 0.0987974i
\(746\) 0 0
\(747\) 19.1881i 0.702055i
\(748\) 0 0
\(749\) −0.353578 0.486658i −0.0129195 0.0177821i
\(750\) 0 0
\(751\) −34.2566 11.1307i −1.25004 0.406163i −0.392106 0.919920i \(-0.628253\pi\)
−0.857936 + 0.513757i \(0.828253\pi\)
\(752\) 0 0
\(753\) 0.929879 + 0.675597i 0.0338867 + 0.0246201i
\(754\) 0 0
\(755\) −9.74309 16.8477i −0.354587 0.613151i
\(756\) 0 0
\(757\) 14.5655 + 44.8279i 0.529391 + 1.62930i 0.755467 + 0.655187i \(0.227410\pi\)
−0.226076 + 0.974110i \(0.572590\pi\)
\(758\) 0 0
\(759\) 21.1040 + 64.9514i 0.766026 + 2.35759i
\(760\) 0 0
\(761\) −0.410675 + 1.26393i −0.0148870 + 0.0458173i −0.958224 0.286019i \(-0.907668\pi\)
0.943337 + 0.331836i \(0.107668\pi\)
\(762\) 0 0
\(763\) −0.0221562 + 0.00719900i −0.000802110 + 0.000260621i
\(764\) 0 0
\(765\) −47.8945 4.99931i −1.73163 0.180750i
\(766\) 0 0
\(767\) −7.88772 5.73076i −0.284809 0.206926i
\(768\) 0 0
\(769\) −5.97772 + 4.34307i −0.215562 + 0.156615i −0.690327 0.723498i \(-0.742533\pi\)
0.474765 + 0.880113i \(0.342533\pi\)
\(770\) 0 0
\(771\) −58.9983 + 42.8647i −2.12477 + 1.54374i
\(772\) 0 0
\(773\) −3.80483 + 11.7101i −0.136850 + 0.421181i −0.995873 0.0907555i \(-0.971072\pi\)
0.859023 + 0.511937i \(0.171072\pi\)
\(774\) 0 0
\(775\) −1.07885 1.19474i −0.0387534 0.0429164i
\(776\) 0 0
\(777\) 4.97567 + 1.61669i 0.178501 + 0.0579985i
\(778\) 0 0
\(779\) −8.77808 13.3085i −0.314507 0.476828i
\(780\) 0 0
\(781\) 18.2165 56.0645i 0.651836 2.00615i
\(782\) 0 0
\(783\) −32.9166 + 45.3059i −1.17635 + 1.61910i
\(784\) 0 0
\(785\) 15.9520 35.8977i 0.569350 1.28124i
\(786\) 0 0
\(787\) −3.86233 5.31604i −0.137677 0.189496i 0.734611 0.678489i \(-0.237365\pi\)
−0.872288 + 0.488992i \(0.837365\pi\)
\(788\) 0 0
\(789\) −70.4192 + 51.1626i −2.50699 + 1.82144i
\(790\) 0 0
\(791\) 1.01456 1.39642i 0.0360734 0.0496508i
\(792\) 0 0
\(793\) −11.4275 −0.405803
\(794\) 0 0
\(795\) −14.9004 69.8552i −0.528462 2.47751i
\(796\) 0 0
\(797\) −45.0875 14.6498i −1.59708 0.518923i −0.630698 0.776029i \(-0.717231\pi\)
−0.966383 + 0.257106i \(0.917231\pi\)
\(798\) 0 0
\(799\) 10.9792 + 33.7906i 0.388417 + 1.19543i
\(800\) 0 0
\(801\) −56.1564 + 18.2463i −1.98419 + 0.644702i
\(802\) 0 0
\(803\) 19.4951 14.1640i 0.687966 0.499837i
\(804\) 0 0
\(805\) 2.01013 2.23569i 0.0708479 0.0787977i
\(806\) 0 0
\(807\) 13.8495 42.6245i 0.487527 1.50045i
\(808\) 0 0
\(809\) −31.5672 43.4486i −1.10984 1.52757i −0.821644 0.570000i \(-0.806943\pi\)
−0.288200 0.957570i \(-0.593057\pi\)
\(810\) 0 0
\(811\) 23.3409 0.819611 0.409805 0.912173i \(-0.365597\pi\)
0.409805 + 0.912173i \(0.365597\pi\)
\(812\) 0 0
\(813\) −15.0141 46.2086i −0.526567 1.62061i
\(814\) 0 0
\(815\) 11.3528 12.6267i 0.397672 0.442295i
\(816\) 0 0
\(817\) −14.9003 −0.521294
\(818\) 0 0
\(819\) −3.03995 −0.106224
\(820\) 0 0
\(821\) −28.3435 −0.989196 −0.494598 0.869122i \(-0.664685\pi\)
−0.494598 + 0.869122i \(0.664685\pi\)
\(822\) 0 0
\(823\) −9.38237 −0.327049 −0.163524 0.986539i \(-0.552286\pi\)
−0.163524 + 0.986539i \(0.552286\pi\)
\(824\) 0 0
\(825\) −40.8150 + 36.8558i −1.42100 + 1.28315i
\(826\) 0 0
\(827\) 2.17753 + 6.70176i 0.0757202 + 0.233043i 0.981752 0.190167i \(-0.0609031\pi\)
−0.906031 + 0.423210i \(0.860903\pi\)
\(828\) 0 0
\(829\) −15.0278 −0.521936 −0.260968 0.965347i \(-0.584042\pi\)
−0.260968 + 0.965347i \(0.584042\pi\)
\(830\) 0 0
\(831\) 33.6324 + 46.2910i 1.16669 + 1.60582i
\(832\) 0 0
\(833\) −7.46067 + 22.9616i −0.258497 + 0.795572i
\(834\) 0 0
\(835\) 13.1028 + 11.7808i 0.453440 + 0.407693i
\(836\) 0 0
\(837\) 2.53002 1.83817i 0.0874504 0.0635364i
\(838\) 0 0
\(839\) 3.18838 1.03597i 0.110075 0.0357656i −0.253462 0.967345i \(-0.581569\pi\)
0.363537 + 0.931580i \(0.381569\pi\)
\(840\) 0 0
\(841\) −1.30977 4.03107i −0.0451646 0.139002i
\(842\) 0 0
\(843\) −56.1540 18.2455i −1.93405 0.628410i
\(844\) 0 0
\(845\) 3.67394 + 17.2240i 0.126387 + 0.592523i
\(846\) 0 0
\(847\) 0.464631 0.0159649
\(848\) 0 0
\(849\) 40.1945 55.3230i 1.37947 1.89868i
\(850\) 0 0
\(851\) 40.0109 29.0696i 1.37156 0.996494i
\(852\) 0 0
\(853\) −1.07832 1.48418i −0.0369209 0.0508172i 0.790157 0.612904i \(-0.209999\pi\)
−0.827078 + 0.562087i \(0.809999\pi\)
\(854\) 0 0
\(855\) −31.5546 14.0220i −1.07914 0.479542i
\(856\) 0 0
\(857\) −4.14968 + 5.71154i −0.141750 + 0.195102i −0.873989 0.485945i \(-0.838475\pi\)
0.732239 + 0.681048i \(0.238475\pi\)
\(858\) 0 0
\(859\) −0.646894 + 1.99093i −0.0220717 + 0.0679298i −0.961486 0.274855i \(-0.911370\pi\)
0.939414 + 0.342785i \(0.111370\pi\)
\(860\) 0 0
\(861\) −3.51099 + 2.31579i −0.119654 + 0.0789218i
\(862\) 0 0
\(863\) 52.5051 + 17.0600i 1.78730 + 0.580728i 0.999385 0.0350622i \(-0.0111629\pi\)
0.787911 + 0.615790i \(0.211163\pi\)
\(864\) 0 0
\(865\) 20.8271 23.1641i 0.708142 0.787603i
\(866\) 0 0
\(867\) 4.63376 14.2612i 0.157371 0.484337i
\(868\) 0 0
\(869\) 0.870226 0.632256i 0.0295204 0.0214478i
\(870\) 0 0
\(871\) 12.2770 8.91973i 0.415989 0.302234i
\(872\) 0 0
\(873\) −19.7558 14.3534i −0.668631 0.485789i
\(874\) 0 0
\(875\) 2.30404 + 0.743170i 0.0778908 + 0.0251237i
\(876\) 0 0
\(877\) −10.9460 + 3.55657i −0.369620 + 0.120097i −0.487936 0.872879i \(-0.662250\pi\)
0.118317 + 0.992976i \(0.462250\pi\)
\(878\) 0 0
\(879\) −1.39771 + 4.30170i −0.0471435 + 0.145093i
\(880\) 0 0
\(881\) 15.9839 + 49.1932i 0.538510 + 1.65736i 0.735941 + 0.677046i \(0.236740\pi\)
−0.197431 + 0.980317i \(0.563260\pi\)
\(882\) 0 0
\(883\) 9.82569 + 30.2404i 0.330661 + 1.01767i 0.968820 + 0.247765i \(0.0796960\pi\)
−0.638160 + 0.769904i \(0.720304\pi\)
\(884\) 0 0
\(885\) −25.2914 + 14.6261i −0.850160 + 0.491651i
\(886\) 0 0
\(887\) −38.4297 27.9208i −1.29034 0.937490i −0.290532 0.956865i \(-0.593832\pi\)
−0.999812 + 0.0193750i \(0.993832\pi\)
\(888\) 0 0
\(889\) 1.32068 + 0.429115i 0.0442942 + 0.0143920i
\(890\) 0 0
\(891\) −23.1433 31.8541i −0.775331 1.06715i
\(892\) 0 0
\(893\) 25.4768i 0.852549i
\(894\) 0 0
\(895\) −30.3973 + 6.48385i −1.01607 + 0.216731i
\(896\) 0 0
\(897\) −25.0616 + 34.4944i −0.836783 + 1.15173i
\(898\) 0 0
\(899\) 1.85614i 0.0619059i
\(900\) 0 0
\(901\) −36.5635 −1.21811
\(902\) 0 0
\(903\) 3.93091i 0.130812i
\(904\) 0 0
\(905\) 1.90452 18.2457i 0.0633084 0.606509i
\(906\) 0 0
\(907\) 11.0779 15.2475i 0.367837 0.506284i −0.584475 0.811412i \(-0.698699\pi\)
0.952311 + 0.305128i \(0.0986993\pi\)
\(908\) 0 0
\(909\) 77.3298 25.1260i 2.56487 0.833376i
\(910\) 0 0
\(911\) −19.2673 −0.638355 −0.319177 0.947695i \(-0.603407\pi\)
−0.319177 + 0.947695i \(0.603407\pi\)
\(912\) 0 0
\(913\) 9.07494 6.59333i 0.300337 0.218207i
\(914\) 0 0
\(915\) −13.9057 + 31.2930i −0.459710 + 1.03451i
\(916\) 0 0
\(917\) −3.60401 2.61847i −0.119015 0.0864695i
\(918\) 0 0
\(919\) 12.4602 + 17.1499i 0.411023 + 0.565724i 0.963468 0.267825i \(-0.0863050\pi\)
−0.552445 + 0.833550i \(0.686305\pi\)
\(920\) 0 0
\(921\) 72.3290 23.5011i 2.38332 0.774388i
\(922\) 0 0
\(923\) 35.0023 11.3729i 1.15211 0.374344i
\(924\) 0 0
\(925\) 34.5170 + 19.8627i 1.13491 + 0.653080i
\(926\) 0 0
\(927\) 24.5397 7.97344i 0.805990 0.261882i
\(928\) 0 0
\(929\) 28.5637i 0.937146i 0.883425 + 0.468573i \(0.155232\pi\)
−0.883425 + 0.468573i \(0.844768\pi\)
\(930\) 0 0
\(931\) −10.1758 + 14.0058i −0.333499 + 0.459022i
\(932\) 0 0
\(933\) −41.5645 57.2086i −1.36076 1.87292i
\(934\) 0 0
\(935\) 14.0929 + 24.3694i 0.460888 + 0.796965i
\(936\) 0 0
\(937\) 16.1122 49.5883i 0.526363 1.61998i −0.235242 0.971937i \(-0.575588\pi\)
0.761605 0.648041i \(-0.224412\pi\)
\(938\) 0 0
\(939\) −5.50847 4.00214i −0.179762 0.130605i
\(940\) 0 0
\(941\) 2.59917 7.99943i 0.0847306 0.260774i −0.899711 0.436486i \(-0.856223\pi\)
0.984442 + 0.175712i \(0.0562228\pi\)
\(942\) 0 0
\(943\) −1.79793 + 39.7186i −0.0585488 + 1.29342i
\(944\) 0 0
\(945\) −1.90987 + 4.29791i −0.0621281 + 0.139811i
\(946\) 0 0
\(947\) −21.9425 + 30.2013i −0.713036 + 0.981410i 0.286690 + 0.958023i \(0.407445\pi\)
−0.999726 + 0.0233866i \(0.992555\pi\)
\(948\) 0 0
\(949\) 14.3081 + 4.64898i 0.464460 + 0.150912i
\(950\) 0 0
\(951\) 35.2450 25.6070i 1.14290 0.830364i
\(952\) 0 0
\(953\) −26.9310 37.0674i −0.872381 1.20073i −0.978473 0.206373i \(-0.933834\pi\)
0.106092 0.994356i \(-0.466166\pi\)
\(954\) 0 0
\(955\) 23.6539 26.3081i 0.765421 0.851309i
\(956\) 0 0
\(957\) 63.4099 2.04975
\(958\) 0 0
\(959\) 1.02899 + 3.16691i 0.0332278 + 0.102265i
\(960\) 0 0
\(961\) −9.54750 + 29.3842i −0.307984 + 0.947877i
\(962\) 0 0
\(963\) 16.3864 5.32426i 0.528044 0.171572i
\(964\) 0 0
\(965\) 10.0053 + 46.9062i 0.322081 + 1.50997i
\(966\) 0 0
\(967\) 15.6547 11.3738i 0.503423 0.365758i −0.306900 0.951742i \(-0.599292\pi\)
0.810323 + 0.585984i \(0.199292\pi\)
\(968\) 0 0
\(969\) −15.4152 + 21.2172i −0.495208 + 0.681595i
\(970\) 0 0
\(971\) 6.30955 + 2.05010i 0.202483 + 0.0657907i 0.408503 0.912757i \(-0.366051\pi\)
−0.206020 + 0.978548i \(0.566051\pi\)
\(972\) 0 0
\(973\) 0.573728 0.416837i 0.0183929 0.0133632i
\(974\) 0 0
\(975\) −33.5931 7.09025i −1.07584 0.227070i
\(976\) 0 0
\(977\) −10.2728 31.6165i −0.328657 1.01150i −0.969763 0.244049i \(-0.921524\pi\)
0.641106 0.767452i \(-0.278476\pi\)
\(978\) 0 0
\(979\) 27.9258 + 20.2893i 0.892513 + 0.648449i
\(980\) 0 0
\(981\) 0.667268i 0.0213042i
\(982\) 0 0
\(983\) 53.4952i 1.70623i 0.521722 + 0.853115i \(0.325290\pi\)
−0.521722 + 0.853115i \(0.674710\pi\)
\(984\) 0 0
\(985\) 5.52244 52.9063i 0.175960 1.68573i
\(986\) 0 0
\(987\) 6.72115 0.213937
\(988\) 0 0
\(989\) 30.0626 + 21.8417i 0.955935 + 0.694527i
\(990\) 0 0
\(991\) 20.6073 6.69571i 0.654612 0.212696i 0.0371654 0.999309i \(-0.488167\pi\)
0.617447 + 0.786613i \(0.288167\pi\)
\(992\) 0 0
\(993\) 23.0799i 0.732418i
\(994\) 0 0
\(995\) −22.2830 38.5316i −0.706418 1.22153i
\(996\) 0 0
\(997\) −8.92215 + 27.4596i −0.282567 + 0.869653i 0.704550 + 0.709655i \(0.251149\pi\)
−0.987117 + 0.159999i \(0.948851\pi\)
\(998\) 0 0
\(999\) −45.4746 + 62.5905i −1.43875 + 1.98027i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bi.a.189.1 80
5.4 even 2 inner 820.2.bi.a.189.20 yes 80
41.23 even 10 inner 820.2.bi.a.269.20 yes 80
205.64 even 10 inner 820.2.bi.a.269.1 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bi.a.189.1 80 1.1 even 1 trivial
820.2.bi.a.189.20 yes 80 5.4 even 2 inner
820.2.bi.a.269.1 yes 80 205.64 even 10 inner
820.2.bi.a.269.20 yes 80 41.23 even 10 inner