Properties

Label 820.2.bi.a.269.11
Level $820$
Weight $2$
Character 820.269
Analytic conductor $6.548$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(189,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.189"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bi (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 269.11
Character \(\chi\) \(=\) 820.269
Dual form 820.2.bi.a.189.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.323438 q^{3} +(1.98349 + 1.03235i) q^{5} +(1.10691 - 3.40672i) q^{7} -2.89539 q^{9} +(2.23783 - 3.08011i) q^{11} +(-1.70933 - 5.26078i) q^{13} +(0.641538 + 0.333902i) q^{15} +(-4.40830 - 3.20282i) q^{17} +(-3.22215 - 1.04694i) q^{19} +(0.358017 - 1.10186i) q^{21} +(0.505667 - 0.164301i) q^{23} +(2.86850 + 4.09532i) q^{25} -1.90679 q^{27} +(5.43089 + 7.47498i) q^{29} +(5.47917 + 3.98085i) q^{31} +(0.723801 - 0.996227i) q^{33} +(5.71247 - 5.61449i) q^{35} +(-4.64893 - 6.39870i) q^{37} +(-0.552863 - 1.70154i) q^{39} +(1.89538 - 6.11617i) q^{41} +(-0.902310 + 0.293178i) q^{43} +(-5.74299 - 2.98906i) q^{45} +(2.79826 + 8.61215i) q^{47} +(-4.71735 - 3.42736i) q^{49} +(-1.42581 - 1.03591i) q^{51} +(3.81986 - 2.77529i) q^{53} +(7.61849 - 3.79916i) q^{55} +(-1.04217 - 0.338621i) q^{57} +(3.05698 + 9.40843i) q^{59} +(-2.05425 + 6.32232i) q^{61} +(-3.20493 + 9.86376i) q^{63} +(2.04052 - 12.1993i) q^{65} +(5.32921 - 3.87190i) q^{67} +(0.163552 - 0.0531412i) q^{69} +(0.637848 - 0.877922i) q^{71} -1.26023i q^{73} +(0.927784 + 1.32459i) q^{75} +(-8.01599 - 11.0331i) q^{77} +1.60115i q^{79} +8.06943 q^{81} -2.18693i q^{83} +(-5.43741 - 10.9037i) q^{85} +(1.75656 + 2.41770i) q^{87} +(2.46675 + 0.801496i) q^{89} -19.8140 q^{91} +(1.77217 + 1.28756i) q^{93} +(-5.31031 - 5.40299i) q^{95} +(5.97081 - 4.33805i) q^{97} +(-6.47940 + 8.91812i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 68 q^{9} + 10 q^{15} - 26 q^{21} + 10 q^{25} - 20 q^{29} + 4 q^{31} + 15 q^{35} - 8 q^{39} + 4 q^{41} - 4 q^{45} + 18 q^{49} + 52 q^{51} - 36 q^{59} - 42 q^{61} - 15 q^{65} + 30 q^{69} - 20 q^{75}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.323438 0.186737 0.0933686 0.995632i \(-0.470236\pi\)
0.0933686 + 0.995632i \(0.470236\pi\)
\(4\) 0 0
\(5\) 1.98349 + 1.03235i 0.887046 + 0.461681i
\(6\) 0 0
\(7\) 1.10691 3.40672i 0.418372 1.28762i −0.490827 0.871257i \(-0.663305\pi\)
0.909199 0.416361i \(-0.136695\pi\)
\(8\) 0 0
\(9\) −2.89539 −0.965129
\(10\) 0 0
\(11\) 2.23783 3.08011i 0.674732 0.928689i −0.325124 0.945672i \(-0.605406\pi\)
0.999856 + 0.0169823i \(0.00540591\pi\)
\(12\) 0 0
\(13\) −1.70933 5.26078i −0.474083 1.45908i −0.847191 0.531289i \(-0.821708\pi\)
0.373108 0.927788i \(-0.378292\pi\)
\(14\) 0 0
\(15\) 0.641538 + 0.333902i 0.165644 + 0.0862131i
\(16\) 0 0
\(17\) −4.40830 3.20282i −1.06917 0.776797i −0.0934068 0.995628i \(-0.529776\pi\)
−0.975763 + 0.218831i \(0.929776\pi\)
\(18\) 0 0
\(19\) −3.22215 1.04694i −0.739213 0.240185i −0.0848795 0.996391i \(-0.527051\pi\)
−0.654333 + 0.756207i \(0.727051\pi\)
\(20\) 0 0
\(21\) 0.358017 1.10186i 0.0781257 0.240446i
\(22\) 0 0
\(23\) 0.505667 0.164301i 0.105439 0.0342591i −0.255822 0.966724i \(-0.582346\pi\)
0.361261 + 0.932465i \(0.382346\pi\)
\(24\) 0 0
\(25\) 2.86850 + 4.09532i 0.573701 + 0.819065i
\(26\) 0 0
\(27\) −1.90679 −0.366963
\(28\) 0 0
\(29\) 5.43089 + 7.47498i 1.00849 + 1.38807i 0.919967 + 0.391996i \(0.128215\pi\)
0.0885246 + 0.996074i \(0.471785\pi\)
\(30\) 0 0
\(31\) 5.47917 + 3.98085i 0.984088 + 0.714982i 0.958619 0.284694i \(-0.0918919\pi\)
0.0254696 + 0.999676i \(0.491892\pi\)
\(32\) 0 0
\(33\) 0.723801 0.996227i 0.125998 0.173421i
\(34\) 0 0
\(35\) 5.71247 5.61449i 0.965584 0.949021i
\(36\) 0 0
\(37\) −4.64893 6.39870i −0.764279 1.05194i −0.996846 0.0793599i \(-0.974712\pi\)
0.232567 0.972580i \(-0.425288\pi\)
\(38\) 0 0
\(39\) −0.552863 1.70154i −0.0885289 0.272464i
\(40\) 0 0
\(41\) 1.89538 6.11617i 0.296009 0.955185i
\(42\) 0 0
\(43\) −0.902310 + 0.293178i −0.137601 + 0.0447092i −0.377008 0.926210i \(-0.623047\pi\)
0.239407 + 0.970919i \(0.423047\pi\)
\(44\) 0 0
\(45\) −5.74299 2.98906i −0.856114 0.445582i
\(46\) 0 0
\(47\) 2.79826 + 8.61215i 0.408168 + 1.25621i 0.918221 + 0.396068i \(0.129626\pi\)
−0.510053 + 0.860143i \(0.670374\pi\)
\(48\) 0 0
\(49\) −4.71735 3.42736i −0.673907 0.489622i
\(50\) 0 0
\(51\) −1.42581 1.03591i −0.199654 0.145057i
\(52\) 0 0
\(53\) 3.81986 2.77529i 0.524698 0.381216i −0.293673 0.955906i \(-0.594878\pi\)
0.818371 + 0.574690i \(0.194878\pi\)
\(54\) 0 0
\(55\) 7.61849 3.79916i 1.02728 0.512279i
\(56\) 0 0
\(57\) −1.04217 0.338621i −0.138038 0.0448514i
\(58\) 0 0
\(59\) 3.05698 + 9.40843i 0.397985 + 1.22487i 0.926612 + 0.376018i \(0.122707\pi\)
−0.528627 + 0.848854i \(0.677293\pi\)
\(60\) 0 0
\(61\) −2.05425 + 6.32232i −0.263019 + 0.809490i 0.729124 + 0.684382i \(0.239928\pi\)
−0.992143 + 0.125108i \(0.960072\pi\)
\(62\) 0 0
\(63\) −3.20493 + 9.86376i −0.403783 + 1.24272i
\(64\) 0 0
\(65\) 2.04052 12.1993i 0.253095 1.51314i
\(66\) 0 0
\(67\) 5.32921 3.87190i 0.651067 0.473028i −0.212568 0.977146i \(-0.568183\pi\)
0.863634 + 0.504119i \(0.168183\pi\)
\(68\) 0 0
\(69\) 0.163552 0.0531412i 0.0196893 0.00639745i
\(70\) 0 0
\(71\) 0.637848 0.877922i 0.0756986 0.104190i −0.769489 0.638660i \(-0.779489\pi\)
0.845187 + 0.534470i \(0.179489\pi\)
\(72\) 0 0
\(73\) 1.26023i 0.147498i −0.997277 0.0737492i \(-0.976504\pi\)
0.997277 0.0737492i \(-0.0234964\pi\)
\(74\) 0 0
\(75\) 0.927784 + 1.32459i 0.107131 + 0.152950i
\(76\) 0 0
\(77\) −8.01599 11.0331i −0.913507 1.25734i
\(78\) 0 0
\(79\) 1.60115i 0.180143i 0.995935 + 0.0900715i \(0.0287096\pi\)
−0.995935 + 0.0900715i \(0.971290\pi\)
\(80\) 0 0
\(81\) 8.06943 0.896604
\(82\) 0 0
\(83\) 2.18693i 0.240047i −0.992771 0.120023i \(-0.961703\pi\)
0.992771 0.120023i \(-0.0382969\pi\)
\(84\) 0 0
\(85\) −5.43741 10.9037i −0.589770 1.18267i
\(86\) 0 0
\(87\) 1.75656 + 2.41770i 0.188323 + 0.259204i
\(88\) 0 0
\(89\) 2.46675 + 0.801496i 0.261475 + 0.0849584i 0.436821 0.899548i \(-0.356104\pi\)
−0.175346 + 0.984507i \(0.556104\pi\)
\(90\) 0 0
\(91\) −19.8140 −2.07708
\(92\) 0 0
\(93\) 1.77217 + 1.28756i 0.183766 + 0.133514i
\(94\) 0 0
\(95\) −5.31031 5.40299i −0.544827 0.554335i
\(96\) 0 0
\(97\) 5.97081 4.33805i 0.606244 0.440462i −0.241846 0.970315i \(-0.577753\pi\)
0.848090 + 0.529853i \(0.177753\pi\)
\(98\) 0 0
\(99\) −6.47940 + 8.91812i −0.651204 + 0.896305i
\(100\) 0 0
\(101\) 11.0083 + 3.57682i 1.09537 + 0.355907i 0.800318 0.599575i \(-0.204664\pi\)
0.295050 + 0.955482i \(0.404664\pi\)
\(102\) 0 0
\(103\) −1.62343 0.527485i −0.159962 0.0519747i 0.227942 0.973675i \(-0.426800\pi\)
−0.387903 + 0.921700i \(0.626800\pi\)
\(104\) 0 0
\(105\) 1.84763 1.81594i 0.180311 0.177218i
\(106\) 0 0
\(107\) 11.9301 + 3.87632i 1.15332 + 0.374738i 0.822394 0.568918i \(-0.192638\pi\)
0.330930 + 0.943655i \(0.392638\pi\)
\(108\) 0 0
\(109\) 7.87682i 0.754462i −0.926119 0.377231i \(-0.876876\pi\)
0.926119 0.377231i \(-0.123124\pi\)
\(110\) 0 0
\(111\) −1.50364 2.06959i −0.142719 0.196436i
\(112\) 0 0
\(113\) 1.80397 2.48296i 0.169704 0.233577i −0.715691 0.698417i \(-0.753888\pi\)
0.885395 + 0.464840i \(0.153888\pi\)
\(114\) 0 0
\(115\) 1.17260 + 0.196135i 0.109346 + 0.0182897i
\(116\) 0 0
\(117\) 4.94917 + 15.2320i 0.457551 + 1.40820i
\(118\) 0 0
\(119\) −15.7907 + 11.4726i −1.44753 + 1.05169i
\(120\) 0 0
\(121\) −1.08001 3.32394i −0.0981831 0.302176i
\(122\) 0 0
\(123\) 0.613039 1.97820i 0.0552759 0.178369i
\(124\) 0 0
\(125\) 1.46185 + 11.0844i 0.130752 + 0.991415i
\(126\) 0 0
\(127\) 4.52109 + 6.22275i 0.401182 + 0.552180i 0.961040 0.276409i \(-0.0891444\pi\)
−0.559858 + 0.828588i \(0.689144\pi\)
\(128\) 0 0
\(129\) −0.291842 + 0.0948251i −0.0256952 + 0.00834888i
\(130\) 0 0
\(131\) −15.3480 11.1509i −1.34096 0.974263i −0.999408 0.0343989i \(-0.989048\pi\)
−0.341549 0.939864i \(-0.610952\pi\)
\(132\) 0 0
\(133\) −7.13326 + 9.81809i −0.618532 + 0.851337i
\(134\) 0 0
\(135\) −3.78212 1.96848i −0.325513 0.169420i
\(136\) 0 0
\(137\) −0.617567 −0.0527623 −0.0263811 0.999652i \(-0.508398\pi\)
−0.0263811 + 0.999652i \(0.508398\pi\)
\(138\) 0 0
\(139\) −5.69838 + 17.5378i −0.483330 + 1.48754i 0.351055 + 0.936355i \(0.385823\pi\)
−0.834385 + 0.551182i \(0.814177\pi\)
\(140\) 0 0
\(141\) 0.905063 + 2.78550i 0.0762201 + 0.234581i
\(142\) 0 0
\(143\) −20.0290 6.50781i −1.67491 0.544210i
\(144\) 0 0
\(145\) 3.05535 + 20.4332i 0.253733 + 1.69688i
\(146\) 0 0
\(147\) −1.52577 1.10854i −0.125844 0.0914307i
\(148\) 0 0
\(149\) −13.8926 19.1216i −1.13813 1.56650i −0.771619 0.636085i \(-0.780553\pi\)
−0.366510 0.930414i \(-0.619447\pi\)
\(150\) 0 0
\(151\) 14.4549 4.69668i 1.17632 0.382210i 0.345323 0.938484i \(-0.387769\pi\)
0.830999 + 0.556274i \(0.187769\pi\)
\(152\) 0 0
\(153\) 12.7637 + 9.27340i 1.03189 + 0.749710i
\(154\) 0 0
\(155\) 6.75827 + 13.5524i 0.542838 + 1.08856i
\(156\) 0 0
\(157\) −6.35713 + 19.5652i −0.507354 + 1.56148i 0.289422 + 0.957202i \(0.406537\pi\)
−0.796776 + 0.604275i \(0.793463\pi\)
\(158\) 0 0
\(159\) 1.23549 0.897636i 0.0979807 0.0711871i
\(160\) 0 0
\(161\) 1.90453i 0.150098i
\(162\) 0 0
\(163\) 15.6125i 1.22287i 0.791296 + 0.611433i \(0.209407\pi\)
−0.791296 + 0.611433i \(0.790593\pi\)
\(164\) 0 0
\(165\) 2.46411 1.22879i 0.191831 0.0956615i
\(166\) 0 0
\(167\) 18.8443 1.45821 0.729107 0.684400i \(-0.239936\pi\)
0.729107 + 0.684400i \(0.239936\pi\)
\(168\) 0 0
\(169\) −14.2367 + 10.3436i −1.09513 + 0.795661i
\(170\) 0 0
\(171\) 9.32938 + 3.03130i 0.713436 + 0.231809i
\(172\) 0 0
\(173\) 13.5531i 1.03043i −0.857062 0.515213i \(-0.827713\pi\)
0.857062 0.515213i \(-0.172287\pi\)
\(174\) 0 0
\(175\) 17.1268 5.23903i 1.29466 0.396033i
\(176\) 0 0
\(177\) 0.988746 + 3.04305i 0.0743187 + 0.228729i
\(178\) 0 0
\(179\) 5.15096 + 7.08969i 0.385001 + 0.529908i 0.956901 0.290415i \(-0.0937934\pi\)
−0.571900 + 0.820323i \(0.693793\pi\)
\(180\) 0 0
\(181\) 4.48481 6.17280i 0.333353 0.458821i −0.609132 0.793069i \(-0.708482\pi\)
0.942485 + 0.334248i \(0.108482\pi\)
\(182\) 0 0
\(183\) −0.664422 + 2.04488i −0.0491155 + 0.151162i
\(184\) 0 0
\(185\) −2.61542 17.4911i −0.192290 1.28597i
\(186\) 0 0
\(187\) −19.7301 + 6.41069i −1.44281 + 0.468796i
\(188\) 0 0
\(189\) −2.11065 + 6.49591i −0.153527 + 0.472508i
\(190\) 0 0
\(191\) 2.59195i 0.187547i 0.995594 + 0.0937736i \(0.0298930\pi\)
−0.995594 + 0.0937736i \(0.970107\pi\)
\(192\) 0 0
\(193\) −12.6123 + 9.16337i −0.907853 + 0.659594i −0.940471 0.339874i \(-0.889616\pi\)
0.0326179 + 0.999468i \(0.489616\pi\)
\(194\) 0 0
\(195\) 0.659982 3.94574i 0.0472623 0.282560i
\(196\) 0 0
\(197\) −4.15387 + 5.71732i −0.295951 + 0.407342i −0.930936 0.365183i \(-0.881006\pi\)
0.634985 + 0.772525i \(0.281006\pi\)
\(198\) 0 0
\(199\) −4.99884 + 1.62422i −0.354358 + 0.115138i −0.480786 0.876838i \(-0.659649\pi\)
0.126428 + 0.991976i \(0.459649\pi\)
\(200\) 0 0
\(201\) 1.72367 1.25232i 0.121578 0.0883319i
\(202\) 0 0
\(203\) 31.4767 10.2274i 2.20923 0.717822i
\(204\) 0 0
\(205\) 10.0735 10.1747i 0.703565 0.710631i
\(206\) 0 0
\(207\) −1.46410 + 0.475715i −0.101762 + 0.0330645i
\(208\) 0 0
\(209\) −10.4353 + 7.58172i −0.721827 + 0.524438i
\(210\) 0 0
\(211\) 13.5045 4.38787i 0.929687 0.302074i 0.195253 0.980753i \(-0.437447\pi\)
0.734435 + 0.678679i \(0.237447\pi\)
\(212\) 0 0
\(213\) 0.206304 0.283954i 0.0141357 0.0194562i
\(214\) 0 0
\(215\) −2.09239 0.349982i −0.142700 0.0238686i
\(216\) 0 0
\(217\) 19.6266 14.2595i 1.33234 0.968001i
\(218\) 0 0
\(219\) 0.407606i 0.0275434i
\(220\) 0 0
\(221\) −9.31406 + 28.6657i −0.626532 + 1.92827i
\(222\) 0 0
\(223\) −10.8302 + 3.51893i −0.725241 + 0.235645i −0.648294 0.761390i \(-0.724517\pi\)
−0.0769470 + 0.997035i \(0.524517\pi\)
\(224\) 0 0
\(225\) −8.30543 11.8576i −0.553695 0.790503i
\(226\) 0 0
\(227\) −3.31590 + 10.2053i −0.220084 + 0.677349i 0.778670 + 0.627434i \(0.215895\pi\)
−0.998753 + 0.0499144i \(0.984105\pi\)
\(228\) 0 0
\(229\) −3.56218 + 4.90292i −0.235395 + 0.323994i −0.910330 0.413884i \(-0.864172\pi\)
0.674934 + 0.737878i \(0.264172\pi\)
\(230\) 0 0
\(231\) −2.59268 3.56852i −0.170586 0.234791i
\(232\) 0 0
\(233\) −3.19060 9.81965i −0.209023 0.643307i −0.999524 0.0308463i \(-0.990180\pi\)
0.790501 0.612461i \(-0.209820\pi\)
\(234\) 0 0
\(235\) −3.34043 + 19.9709i −0.217906 + 1.30276i
\(236\) 0 0
\(237\) 0.517872i 0.0336394i
\(238\) 0 0
\(239\) −19.7473 6.41627i −1.27734 0.415034i −0.409700 0.912220i \(-0.634367\pi\)
−0.867644 + 0.497186i \(0.834367\pi\)
\(240\) 0 0
\(241\) −12.5913 + 9.14812i −0.811078 + 0.589282i −0.914143 0.405392i \(-0.867135\pi\)
0.103065 + 0.994675i \(0.467135\pi\)
\(242\) 0 0
\(243\) 8.33035 0.534392
\(244\) 0 0
\(245\) −5.81861 11.6681i −0.371737 0.745448i
\(246\) 0 0
\(247\) 18.7406i 1.19244i
\(248\) 0 0
\(249\) 0.707337i 0.0448257i
\(250\) 0 0
\(251\) 14.0545 10.2112i 0.887112 0.644525i −0.0480113 0.998847i \(-0.515288\pi\)
0.935123 + 0.354322i \(0.115288\pi\)
\(252\) 0 0
\(253\) 0.625532 1.92519i 0.0393268 0.121036i
\(254\) 0 0
\(255\) −1.75867 3.52667i −0.110132 0.220849i
\(256\) 0 0
\(257\) −16.9702 12.3295i −1.05857 0.769096i −0.0847466 0.996403i \(-0.527008\pi\)
−0.973823 + 0.227307i \(0.927008\pi\)
\(258\) 0 0
\(259\) −26.9445 + 8.75480i −1.67425 + 0.543997i
\(260\) 0 0
\(261\) −15.7245 21.6430i −0.973325 1.33967i
\(262\) 0 0
\(263\) 0.387478 + 0.281519i 0.0238929 + 0.0173592i 0.599668 0.800249i \(-0.295299\pi\)
−0.575775 + 0.817608i \(0.695299\pi\)
\(264\) 0 0
\(265\) 10.4417 1.56134i 0.641431 0.0959124i
\(266\) 0 0
\(267\) 0.797842 + 0.259235i 0.0488271 + 0.0158649i
\(268\) 0 0
\(269\) 4.63996 + 14.2803i 0.282903 + 0.870687i 0.987019 + 0.160602i \(0.0513435\pi\)
−0.704116 + 0.710085i \(0.748657\pi\)
\(270\) 0 0
\(271\) 7.22729 22.2433i 0.439027 1.35119i −0.449876 0.893091i \(-0.648532\pi\)
0.888903 0.458095i \(-0.151468\pi\)
\(272\) 0 0
\(273\) −6.40862 −0.387867
\(274\) 0 0
\(275\) 19.0333 + 0.329336i 1.14775 + 0.0198597i
\(276\) 0 0
\(277\) 7.21267 9.92739i 0.433367 0.596479i −0.535355 0.844627i \(-0.679822\pi\)
0.968722 + 0.248148i \(0.0798220\pi\)
\(278\) 0 0
\(279\) −15.8643 11.5261i −0.949772 0.690050i
\(280\) 0 0
\(281\) −1.94205 + 0.631011i −0.115853 + 0.0376430i −0.366370 0.930469i \(-0.619399\pi\)
0.250517 + 0.968112i \(0.419399\pi\)
\(282\) 0 0
\(283\) 13.9900 + 19.2556i 0.831620 + 1.14463i 0.987619 + 0.156869i \(0.0501401\pi\)
−0.156000 + 0.987757i \(0.549860\pi\)
\(284\) 0 0
\(285\) −1.71756 1.74754i −0.101739 0.103515i
\(286\) 0 0
\(287\) −18.7380 13.2271i −1.10607 0.780769i
\(288\) 0 0
\(289\) 3.92178 + 12.0700i 0.230693 + 0.709999i
\(290\) 0 0
\(291\) 1.93119 1.40309i 0.113208 0.0822507i
\(292\) 0 0
\(293\) 2.15585 + 6.63502i 0.125946 + 0.387622i 0.994072 0.108722i \(-0.0346757\pi\)
−0.868126 + 0.496343i \(0.834676\pi\)
\(294\) 0 0
\(295\) −3.64928 + 21.8174i −0.212470 + 1.27026i
\(296\) 0 0
\(297\) −4.26709 + 5.87314i −0.247602 + 0.340794i
\(298\) 0 0
\(299\) −1.72870 2.37935i −0.0999734 0.137602i
\(300\) 0 0
\(301\) 3.39843i 0.195882i
\(302\) 0 0
\(303\) 3.56051 + 1.15688i 0.204546 + 0.0664610i
\(304\) 0 0
\(305\) −10.6014 + 10.4196i −0.607036 + 0.596624i
\(306\) 0 0
\(307\) −19.0901 6.20273i −1.08953 0.354009i −0.291463 0.956582i \(-0.594142\pi\)
−0.798064 + 0.602573i \(0.794142\pi\)
\(308\) 0 0
\(309\) −0.525080 0.170609i −0.0298708 0.00970561i
\(310\) 0 0
\(311\) 12.1391 16.7080i 0.688343 0.947422i −0.311654 0.950196i \(-0.600883\pi\)
0.999996 + 0.00277352i \(0.000882839\pi\)
\(312\) 0 0
\(313\) 8.34400 6.06227i 0.471631 0.342660i −0.326446 0.945216i \(-0.605851\pi\)
0.798077 + 0.602556i \(0.205851\pi\)
\(314\) 0 0
\(315\) −16.5398 + 16.2561i −0.931914 + 0.915928i
\(316\) 0 0
\(317\) −18.2630 13.2688i −1.02575 0.745252i −0.0582978 0.998299i \(-0.518567\pi\)
−0.967454 + 0.253047i \(0.918567\pi\)
\(318\) 0 0
\(319\) 35.1772 1.96955
\(320\) 0 0
\(321\) 3.85864 + 1.25375i 0.215368 + 0.0699775i
\(322\) 0 0
\(323\) 10.8511 + 14.9352i 0.603769 + 0.831016i
\(324\) 0 0
\(325\) 16.6414 22.0908i 0.923097 1.22538i
\(326\) 0 0
\(327\) 2.54766i 0.140886i
\(328\) 0 0
\(329\) 32.4366 1.78829
\(330\) 0 0
\(331\) 26.4785i 1.45539i 0.685900 + 0.727696i \(0.259409\pi\)
−0.685900 + 0.727696i \(0.740591\pi\)
\(332\) 0 0
\(333\) 13.4605 + 18.5267i 0.737628 + 1.01526i
\(334\) 0 0
\(335\) 14.5676 2.17828i 0.795914 0.119012i
\(336\) 0 0
\(337\) 1.99129i 0.108472i −0.998528 0.0542362i \(-0.982728\pi\)
0.998528 0.0542362i \(-0.0172724\pi\)
\(338\) 0 0
\(339\) 0.583474 0.803083i 0.0316900 0.0436175i
\(340\) 0 0
\(341\) 24.5229 7.96799i 1.32799 0.431491i
\(342\) 0 0
\(343\) 3.38778 2.46136i 0.182923 0.132901i
\(344\) 0 0
\(345\) 0.379265 + 0.0634376i 0.0204189 + 0.00341536i
\(346\) 0 0
\(347\) 9.26301 28.5086i 0.497265 1.53042i −0.316133 0.948715i \(-0.602385\pi\)
0.813397 0.581708i \(-0.197615\pi\)
\(348\) 0 0
\(349\) 3.60942 11.1087i 0.193208 0.594633i −0.806785 0.590845i \(-0.798794\pi\)
0.999993 0.00378744i \(-0.00120558\pi\)
\(350\) 0 0
\(351\) 3.25934 + 10.0312i 0.173971 + 0.535427i
\(352\) 0 0
\(353\) −14.7171 4.78187i −0.783312 0.254513i −0.110058 0.993925i \(-0.535104\pi\)
−0.673254 + 0.739412i \(0.735104\pi\)
\(354\) 0 0
\(355\) 2.17149 1.08287i 0.115251 0.0574728i
\(356\) 0 0
\(357\) −5.10731 + 3.71068i −0.270308 + 0.196390i
\(358\) 0 0
\(359\) 2.22246 + 1.61471i 0.117297 + 0.0852211i 0.644887 0.764278i \(-0.276904\pi\)
−0.527590 + 0.849499i \(0.676904\pi\)
\(360\) 0 0
\(361\) −6.08514 4.42111i −0.320270 0.232690i
\(362\) 0 0
\(363\) −0.349318 1.07509i −0.0183344 0.0564276i
\(364\) 0 0
\(365\) 1.30100 2.49965i 0.0680972 0.130838i
\(366\) 0 0
\(367\) −1.16714 + 0.379228i −0.0609243 + 0.0197955i −0.339321 0.940671i \(-0.610197\pi\)
0.278396 + 0.960466i \(0.410197\pi\)
\(368\) 0 0
\(369\) −5.48786 + 17.7087i −0.285687 + 0.921877i
\(370\) 0 0
\(371\) −5.22639 16.0852i −0.271341 0.835101i
\(372\) 0 0
\(373\) −17.1372 23.5873i −0.887329 1.22130i −0.974337 0.225096i \(-0.927730\pi\)
0.0870073 0.996208i \(-0.472270\pi\)
\(374\) 0 0
\(375\) 0.472819 + 3.58511i 0.0244163 + 0.185134i
\(376\) 0 0
\(377\) 30.0410 41.3479i 1.54719 2.12953i
\(378\) 0 0
\(379\) 25.0058 + 18.1678i 1.28446 + 0.933218i 0.999678 0.0253732i \(-0.00807740\pi\)
0.284786 + 0.958591i \(0.408077\pi\)
\(380\) 0 0
\(381\) 1.46229 + 2.01268i 0.0749156 + 0.103113i
\(382\) 0 0
\(383\) −24.4170 −1.24765 −0.623826 0.781563i \(-0.714423\pi\)
−0.623826 + 0.781563i \(0.714423\pi\)
\(384\) 0 0
\(385\) −4.50969 30.1594i −0.229835 1.53706i
\(386\) 0 0
\(387\) 2.61254 0.848864i 0.132803 0.0431502i
\(388\) 0 0
\(389\) 2.02804 6.24168i 0.102826 0.316466i −0.886388 0.462943i \(-0.846793\pi\)
0.989214 + 0.146477i \(0.0467935\pi\)
\(390\) 0 0
\(391\) −2.75536 0.895269i −0.139344 0.0452757i
\(392\) 0 0
\(393\) −4.96412 3.60664i −0.250407 0.181931i
\(394\) 0 0
\(395\) −1.65294 + 3.17587i −0.0831687 + 0.159795i
\(396\) 0 0
\(397\) 0.884344 + 2.72173i 0.0443839 + 0.136600i 0.970793 0.239919i \(-0.0771210\pi\)
−0.926409 + 0.376519i \(0.877121\pi\)
\(398\) 0 0
\(399\) −2.30717 + 3.17555i −0.115503 + 0.158976i
\(400\) 0 0
\(401\) 2.33669 0.116689 0.0583443 0.998297i \(-0.481418\pi\)
0.0583443 + 0.998297i \(0.481418\pi\)
\(402\) 0 0
\(403\) 11.5767 35.6293i 0.576674 1.77482i
\(404\) 0 0
\(405\) 16.0057 + 8.33048i 0.795329 + 0.413945i
\(406\) 0 0
\(407\) −30.1123 −1.49261
\(408\) 0 0
\(409\) −4.06167 −0.200837 −0.100418 0.994945i \(-0.532018\pi\)
−0.100418 + 0.994945i \(0.532018\pi\)
\(410\) 0 0
\(411\) −0.199745 −0.00985268
\(412\) 0 0
\(413\) 35.4356 1.74367
\(414\) 0 0
\(415\) 2.25768 4.33776i 0.110825 0.212932i
\(416\) 0 0
\(417\) −1.84307 + 5.67240i −0.0902557 + 0.277779i
\(418\) 0 0
\(419\) 8.47842 0.414198 0.207099 0.978320i \(-0.433598\pi\)
0.207099 + 0.978320i \(0.433598\pi\)
\(420\) 0 0
\(421\) −20.5080 + 28.2269i −0.999501 + 1.37569i −0.0738694 + 0.997268i \(0.523535\pi\)
−0.925631 + 0.378427i \(0.876465\pi\)
\(422\) 0 0
\(423\) −8.10204 24.9355i −0.393935 1.21241i
\(424\) 0 0
\(425\) 0.471350 27.2407i 0.0228638 1.32137i
\(426\) 0 0
\(427\) 19.2645 + 13.9965i 0.932274 + 0.677336i
\(428\) 0 0
\(429\) −6.47814 2.10488i −0.312768 0.101624i
\(430\) 0 0
\(431\) −5.42031 + 16.6820i −0.261087 + 0.803543i 0.731482 + 0.681861i \(0.238829\pi\)
−0.992569 + 0.121682i \(0.961171\pi\)
\(432\) 0 0
\(433\) −31.1477 + 10.1205i −1.49686 + 0.486361i −0.939101 0.343640i \(-0.888340\pi\)
−0.557763 + 0.830001i \(0.688340\pi\)
\(434\) 0 0
\(435\) 0.988216 + 6.60887i 0.0473813 + 0.316871i
\(436\) 0 0
\(437\) −1.80135 −0.0861702
\(438\) 0 0
\(439\) −19.0863 26.2701i −0.910941 1.25380i −0.966844 0.255366i \(-0.917804\pi\)
0.0559035 0.998436i \(-0.482196\pi\)
\(440\) 0 0
\(441\) 13.6586 + 9.92352i 0.650407 + 0.472549i
\(442\) 0 0
\(443\) 9.95829 13.7064i 0.473133 0.651211i −0.504034 0.863684i \(-0.668152\pi\)
0.977167 + 0.212472i \(0.0681515\pi\)
\(444\) 0 0
\(445\) 4.06536 + 4.13632i 0.192717 + 0.196080i
\(446\) 0 0
\(447\) −4.49341 6.18465i −0.212531 0.292524i
\(448\) 0 0
\(449\) −3.22139 9.91442i −0.152027 0.467891i 0.845821 0.533467i \(-0.179111\pi\)
−0.997848 + 0.0655767i \(0.979111\pi\)
\(450\) 0 0
\(451\) −14.5969 19.5250i −0.687343 0.919394i
\(452\) 0 0
\(453\) 4.67526 1.51909i 0.219663 0.0713729i
\(454\) 0 0
\(455\) −39.3011 20.4550i −1.84246 0.958947i
\(456\) 0 0
\(457\) 11.3384 + 34.8962i 0.530390 + 1.63237i 0.753404 + 0.657558i \(0.228411\pi\)
−0.223014 + 0.974815i \(0.571589\pi\)
\(458\) 0 0
\(459\) 8.40572 + 6.10711i 0.392345 + 0.285056i
\(460\) 0 0
\(461\) −20.2256 14.6948i −0.942000 0.684403i 0.00690089 0.999976i \(-0.497803\pi\)
−0.948901 + 0.315573i \(0.897803\pi\)
\(462\) 0 0
\(463\) −13.3896 + 9.72815i −0.622270 + 0.452105i −0.853714 0.520743i \(-0.825655\pi\)
0.231444 + 0.972848i \(0.425655\pi\)
\(464\) 0 0
\(465\) 2.18589 + 4.38337i 0.101368 + 0.203274i
\(466\) 0 0
\(467\) 34.9472 + 11.3550i 1.61716 + 0.525449i 0.971270 0.237979i \(-0.0764848\pi\)
0.645894 + 0.763427i \(0.276485\pi\)
\(468\) 0 0
\(469\) −7.29151 22.4410i −0.336691 1.03623i
\(470\) 0 0
\(471\) −2.05614 + 6.32815i −0.0947420 + 0.291586i
\(472\) 0 0
\(473\) −1.11620 + 3.43530i −0.0513228 + 0.157955i
\(474\) 0 0
\(475\) −4.95520 16.1989i −0.227360 0.743257i
\(476\) 0 0
\(477\) −11.0600 + 8.03554i −0.506402 + 0.367922i
\(478\) 0 0
\(479\) 18.7223 6.08324i 0.855443 0.277950i 0.151719 0.988424i \(-0.451519\pi\)
0.703724 + 0.710473i \(0.251519\pi\)
\(480\) 0 0
\(481\) −25.7156 + 35.3945i −1.17253 + 1.61385i
\(482\) 0 0
\(483\) 0.615998i 0.0280289i
\(484\) 0 0
\(485\) 16.3215 2.44053i 0.741119 0.110819i
\(486\) 0 0
\(487\) −14.1204 19.4351i −0.639859 0.880690i 0.358749 0.933434i \(-0.383203\pi\)
−0.998608 + 0.0527440i \(0.983203\pi\)
\(488\) 0 0
\(489\) 5.04968i 0.228355i
\(490\) 0 0
\(491\) 31.2785 1.41158 0.705788 0.708423i \(-0.250593\pi\)
0.705788 + 0.708423i \(0.250593\pi\)
\(492\) 0 0
\(493\) 50.3461i 2.26748i
\(494\) 0 0
\(495\) −22.0585 + 11.0000i −0.991455 + 0.494415i
\(496\) 0 0
\(497\) −2.28479 3.14475i −0.102487 0.141061i
\(498\) 0 0
\(499\) 7.75904 + 2.52107i 0.347342 + 0.112858i 0.477492 0.878636i \(-0.341546\pi\)
−0.130150 + 0.991494i \(0.541546\pi\)
\(500\) 0 0
\(501\) 6.09496 0.272303
\(502\) 0 0
\(503\) −11.8321 8.59652i −0.527567 0.383300i 0.291880 0.956455i \(-0.405719\pi\)
−0.819447 + 0.573155i \(0.805719\pi\)
\(504\) 0 0
\(505\) 18.1424 + 18.4590i 0.807326 + 0.821417i
\(506\) 0 0
\(507\) −4.60470 + 3.34551i −0.204502 + 0.148579i
\(508\) 0 0
\(509\) 10.4425 14.3728i 0.462854 0.637064i −0.512244 0.858840i \(-0.671186\pi\)
0.975098 + 0.221777i \(0.0711856\pi\)
\(510\) 0 0
\(511\) −4.29323 1.39496i −0.189921 0.0617092i
\(512\) 0 0
\(513\) 6.14398 + 1.99630i 0.271263 + 0.0881388i
\(514\) 0 0
\(515\) −2.67552 2.72222i −0.117898 0.119955i
\(516\) 0 0
\(517\) 32.7884 + 10.6536i 1.44203 + 0.468545i
\(518\) 0 0
\(519\) 4.38360i 0.192419i
\(520\) 0 0
\(521\) 15.9630 + 21.9711i 0.699350 + 0.962573i 0.999961 + 0.00882616i \(0.00280949\pi\)
−0.300611 + 0.953747i \(0.597191\pi\)
\(522\) 0 0
\(523\) 15.6851 21.5887i 0.685861 0.944006i −0.314125 0.949382i \(-0.601711\pi\)
0.999986 + 0.00537534i \(0.00171103\pi\)
\(524\) 0 0
\(525\) 5.53946 1.69450i 0.241762 0.0739542i
\(526\) 0 0
\(527\) −11.4039 35.0976i −0.496761 1.52887i
\(528\) 0 0
\(529\) −18.3787 + 13.3529i −0.799073 + 0.580561i
\(530\) 0 0
\(531\) −8.85115 27.2410i −0.384107 1.18216i
\(532\) 0 0
\(533\) −35.4156 + 0.483374i −1.53402 + 0.0209373i
\(534\) 0 0
\(535\) 19.6615 + 20.0047i 0.850042 + 0.864878i
\(536\) 0 0
\(537\) 1.66602 + 2.29308i 0.0718940 + 0.0989536i
\(538\) 0 0
\(539\) −21.1133 + 6.86012i −0.909414 + 0.295486i
\(540\) 0 0
\(541\) 28.9322 + 21.0205i 1.24389 + 0.903740i 0.997851 0.0655192i \(-0.0208704\pi\)
0.246041 + 0.969260i \(0.420870\pi\)
\(542\) 0 0
\(543\) 1.45056 1.99652i 0.0622494 0.0856790i
\(544\) 0 0
\(545\) 8.13164 15.6236i 0.348321 0.669243i
\(546\) 0 0
\(547\) 4.34916 0.185957 0.0929783 0.995668i \(-0.470361\pi\)
0.0929783 + 0.995668i \(0.470361\pi\)
\(548\) 0 0
\(549\) 5.94784 18.3056i 0.253848 0.781262i
\(550\) 0 0
\(551\) −9.67330 29.7714i −0.412097 1.26830i
\(552\) 0 0
\(553\) 5.45465 + 1.77232i 0.231955 + 0.0753669i
\(554\) 0 0
\(555\) −0.845928 5.65730i −0.0359077 0.240139i
\(556\) 0 0
\(557\) 4.75515 + 3.45482i 0.201482 + 0.146385i 0.683952 0.729527i \(-0.260260\pi\)
−0.482469 + 0.875913i \(0.660260\pi\)
\(558\) 0 0
\(559\) 3.08469 + 4.24571i 0.130468 + 0.179574i
\(560\) 0 0
\(561\) −6.38146 + 2.07346i −0.269426 + 0.0875417i
\(562\) 0 0
\(563\) 26.1178 + 18.9757i 1.10073 + 0.799729i 0.981179 0.193099i \(-0.0618538\pi\)
0.119553 + 0.992828i \(0.461854\pi\)
\(564\) 0 0
\(565\) 6.14145 3.06260i 0.258373 0.128844i
\(566\) 0 0
\(567\) 8.93213 27.4903i 0.375114 1.15448i
\(568\) 0 0
\(569\) 11.4547 8.32230i 0.480204 0.348889i −0.321200 0.947011i \(-0.604086\pi\)
0.801405 + 0.598122i \(0.204086\pi\)
\(570\) 0 0
\(571\) 11.4233i 0.478051i −0.971013 0.239025i \(-0.923172\pi\)
0.971013 0.239025i \(-0.0768279\pi\)
\(572\) 0 0
\(573\) 0.838337i 0.0350220i
\(574\) 0 0
\(575\) 2.12337 + 1.59957i 0.0885508 + 0.0667067i
\(576\) 0 0
\(577\) 32.5144 1.35359 0.676796 0.736171i \(-0.263368\pi\)
0.676796 + 0.736171i \(0.263368\pi\)
\(578\) 0 0
\(579\) −4.07930 + 2.96379i −0.169530 + 0.123171i
\(580\) 0 0
\(581\) −7.45025 2.42073i −0.309088 0.100429i
\(582\) 0 0
\(583\) 17.9762i 0.744500i
\(584\) 0 0
\(585\) −5.90809 + 35.3218i −0.244270 + 1.46038i
\(586\) 0 0
\(587\) 8.54007 + 26.2836i 0.352486 + 1.08484i 0.957453 + 0.288590i \(0.0931866\pi\)
−0.604966 + 0.796251i \(0.706813\pi\)
\(588\) 0 0
\(589\) −13.4870 18.5633i −0.555723 0.764887i
\(590\) 0 0
\(591\) −1.34352 + 1.84920i −0.0552651 + 0.0760659i
\(592\) 0 0
\(593\) −11.7760 + 36.2428i −0.483583 + 1.48831i 0.350440 + 0.936585i \(0.386032\pi\)
−0.834023 + 0.551730i \(0.813968\pi\)
\(594\) 0 0
\(595\) −43.1645 + 6.45432i −1.76957 + 0.264602i
\(596\) 0 0
\(597\) −1.61682 + 0.525335i −0.0661719 + 0.0215005i
\(598\) 0 0
\(599\) 2.49613 7.68231i 0.101989 0.313891i −0.887023 0.461726i \(-0.847230\pi\)
0.989012 + 0.147835i \(0.0472305\pi\)
\(600\) 0 0
\(601\) 20.0945i 0.819673i −0.912159 0.409837i \(-0.865586\pi\)
0.912159 0.409837i \(-0.134414\pi\)
\(602\) 0 0
\(603\) −15.4301 + 11.2106i −0.628364 + 0.456533i
\(604\) 0 0
\(605\) 1.28927 7.70797i 0.0524163 0.313374i
\(606\) 0 0
\(607\) −24.3362 + 33.4959i −0.987777 + 1.35956i −0.0552439 + 0.998473i \(0.517594\pi\)
−0.932533 + 0.361085i \(0.882406\pi\)
\(608\) 0 0
\(609\) 10.1808 3.30793i 0.412545 0.134044i
\(610\) 0 0
\(611\) 40.5234 29.4420i 1.63940 1.19110i
\(612\) 0 0
\(613\) −43.0744 + 13.9957i −1.73976 + 0.565282i −0.994802 0.101828i \(-0.967531\pi\)
−0.744959 + 0.667111i \(0.767531\pi\)
\(614\) 0 0
\(615\) 3.25816 3.29089i 0.131382 0.132701i
\(616\) 0 0
\(617\) −1.25193 + 0.406777i −0.0504008 + 0.0163762i −0.334109 0.942534i \(-0.608435\pi\)
0.283708 + 0.958911i \(0.408435\pi\)
\(618\) 0 0
\(619\) 26.3363 19.1345i 1.05855 0.769079i 0.0847277 0.996404i \(-0.472998\pi\)
0.973819 + 0.227325i \(0.0729980\pi\)
\(620\) 0 0
\(621\) −0.964202 + 0.313288i −0.0386921 + 0.0125718i
\(622\) 0 0
\(623\) 5.46094 7.51634i 0.218788 0.301136i
\(624\) 0 0
\(625\) −8.54337 + 23.4949i −0.341735 + 0.939796i
\(626\) 0 0
\(627\) −3.37519 + 2.45222i −0.134792 + 0.0979322i
\(628\) 0 0
\(629\) 43.0971i 1.71839i
\(630\) 0 0
\(631\) 1.08512 3.33966i 0.0431979 0.132950i −0.927132 0.374736i \(-0.877733\pi\)
0.970329 + 0.241786i \(0.0777333\pi\)
\(632\) 0 0
\(633\) 4.36787 1.41921i 0.173607 0.0564084i
\(634\) 0 0
\(635\) 2.54350 + 17.0101i 0.100936 + 0.675027i
\(636\) 0 0
\(637\) −9.96704 + 30.6754i −0.394909 + 1.21540i
\(638\) 0 0
\(639\) −1.84682 + 2.54192i −0.0730589 + 0.100557i
\(640\) 0 0
\(641\) 14.2690 + 19.6396i 0.563593 + 0.775719i 0.991778 0.127972i \(-0.0408467\pi\)
−0.428185 + 0.903691i \(0.640847\pi\)
\(642\) 0 0
\(643\) 14.0839 + 43.3457i 0.555414 + 1.70939i 0.694848 + 0.719157i \(0.255472\pi\)
−0.139434 + 0.990231i \(0.544528\pi\)
\(644\) 0 0
\(645\) −0.676759 0.113198i −0.0266474 0.00445716i
\(646\) 0 0
\(647\) 30.8633i 1.21336i 0.794946 + 0.606680i \(0.207499\pi\)
−0.794946 + 0.606680i \(0.792501\pi\)
\(648\) 0 0
\(649\) 35.8200 + 11.6386i 1.40606 + 0.456856i
\(650\) 0 0
\(651\) 6.34799 4.61208i 0.248797 0.180762i
\(652\) 0 0
\(653\) 17.1864 0.672555 0.336278 0.941763i \(-0.390832\pi\)
0.336278 + 0.941763i \(0.390832\pi\)
\(654\) 0 0
\(655\) −18.9309 37.9623i −0.739692 1.48331i
\(656\) 0 0
\(657\) 3.64884i 0.142355i
\(658\) 0 0
\(659\) 13.0015i 0.506467i 0.967405 + 0.253233i \(0.0814941\pi\)
−0.967405 + 0.253233i \(0.918506\pi\)
\(660\) 0 0
\(661\) −32.9969 + 23.9736i −1.28343 + 0.932466i −0.999651 0.0264233i \(-0.991588\pi\)
−0.283779 + 0.958890i \(0.591588\pi\)
\(662\) 0 0
\(663\) −3.01253 + 9.27160i −0.116997 + 0.360079i
\(664\) 0 0
\(665\) −24.2845 + 12.1101i −0.941713 + 0.469610i
\(666\) 0 0
\(667\) 3.97437 + 2.88755i 0.153888 + 0.111806i
\(668\) 0 0
\(669\) −3.50289 + 1.13816i −0.135429 + 0.0440037i
\(670\) 0 0
\(671\) 14.8764 + 20.4756i 0.574297 + 0.790452i
\(672\) 0 0
\(673\) 21.2404 + 15.4320i 0.818756 + 0.594861i 0.916356 0.400365i \(-0.131117\pi\)
−0.0976002 + 0.995226i \(0.531117\pi\)
\(674\) 0 0
\(675\) −5.46965 7.80894i −0.210527 0.300566i
\(676\) 0 0
\(677\) 8.96082 + 2.91155i 0.344392 + 0.111900i 0.476106 0.879388i \(-0.342048\pi\)
−0.131714 + 0.991288i \(0.542048\pi\)
\(678\) 0 0
\(679\) −8.16935 25.1427i −0.313511 0.964888i
\(680\) 0 0
\(681\) −1.07249 + 3.30078i −0.0410979 + 0.126486i
\(682\) 0 0
\(683\) −32.9208 −1.25968 −0.629840 0.776725i \(-0.716880\pi\)
−0.629840 + 0.776725i \(0.716880\pi\)
\(684\) 0 0
\(685\) −1.22494 0.637545i −0.0468026 0.0243594i
\(686\) 0 0
\(687\) −1.15215 + 1.58579i −0.0439571 + 0.0605018i
\(688\) 0 0
\(689\) −21.1296 15.3515i −0.804973 0.584847i
\(690\) 0 0
\(691\) −40.0174 + 13.0025i −1.52234 + 0.494637i −0.946438 0.322886i \(-0.895347\pi\)
−0.575897 + 0.817522i \(0.695347\pi\)
\(692\) 0 0
\(693\) 23.2094 + 31.9450i 0.881653 + 1.21349i
\(694\) 0 0
\(695\) −29.4079 + 28.9034i −1.11550 + 1.09637i
\(696\) 0 0
\(697\) −27.9444 + 20.8913i −1.05847 + 0.791316i
\(698\) 0 0
\(699\) −1.03196 3.17605i −0.0390324 0.120129i
\(700\) 0 0
\(701\) 5.63145 4.09149i 0.212697 0.154533i −0.476336 0.879263i \(-0.658035\pi\)
0.689033 + 0.724730i \(0.258035\pi\)
\(702\) 0 0
\(703\) 8.28050 + 25.4848i 0.312305 + 0.961176i
\(704\) 0 0
\(705\) −1.08042 + 6.45937i −0.0406911 + 0.243274i
\(706\) 0 0
\(707\) 24.3704 33.5430i 0.916544 1.26151i
\(708\) 0 0
\(709\) 20.4467 + 28.1424i 0.767891 + 1.05691i 0.996516 + 0.0833965i \(0.0265768\pi\)
−0.228626 + 0.973514i \(0.573423\pi\)
\(710\) 0 0
\(711\) 4.63594i 0.173861i
\(712\) 0 0
\(713\) 3.42469 + 1.11275i 0.128256 + 0.0416728i
\(714\) 0 0
\(715\) −33.0090 33.5851i −1.23447 1.25601i
\(716\) 0 0
\(717\) −6.38702 2.07527i −0.238528 0.0775023i
\(718\) 0 0
\(719\) −20.2844 6.59080i −0.756481 0.245796i −0.0947132 0.995505i \(-0.530193\pi\)
−0.661768 + 0.749709i \(0.730193\pi\)
\(720\) 0 0
\(721\) −3.59399 + 4.94670i −0.133847 + 0.184225i
\(722\) 0 0
\(723\) −4.07251 + 2.95885i −0.151458 + 0.110041i
\(724\) 0 0
\(725\) −15.0339 + 43.6833i −0.558347 + 1.62236i
\(726\) 0 0
\(727\) −25.3473 18.4159i −0.940080 0.683008i 0.00836025 0.999965i \(-0.497339\pi\)
−0.948440 + 0.316957i \(0.897339\pi\)
\(728\) 0 0
\(729\) −21.5139 −0.796813
\(730\) 0 0
\(731\) 4.91665 + 1.59752i 0.181849 + 0.0590862i
\(732\) 0 0
\(733\) 21.4607 + 29.5381i 0.792670 + 1.09102i 0.993771 + 0.111446i \(0.0355481\pi\)
−0.201101 + 0.979571i \(0.564452\pi\)
\(734\) 0 0
\(735\) −1.88196 3.77391i −0.0694172 0.139203i
\(736\) 0 0
\(737\) 25.0792i 0.923806i
\(738\) 0 0
\(739\) 14.8588 0.546589 0.273294 0.961930i \(-0.411887\pi\)
0.273294 + 0.961930i \(0.411887\pi\)
\(740\) 0 0
\(741\) 6.06143i 0.222672i
\(742\) 0 0
\(743\) −3.22466 4.43836i −0.118301 0.162828i 0.745760 0.666215i \(-0.232087\pi\)
−0.864061 + 0.503388i \(0.832087\pi\)
\(744\) 0 0
\(745\) −7.81580 52.2696i −0.286349 1.91501i
\(746\) 0 0
\(747\) 6.33201i 0.231676i
\(748\) 0 0
\(749\) 26.4110 36.3517i 0.965038 1.32826i
\(750\) 0 0
\(751\) −42.7462 + 13.8891i −1.55983 + 0.506820i −0.956763 0.290869i \(-0.906056\pi\)
−0.603069 + 0.797689i \(0.706056\pi\)
\(752\) 0 0
\(753\) 4.54576 3.30269i 0.165657 0.120357i
\(754\) 0 0
\(755\) 33.5198 + 5.60668i 1.21991 + 0.204048i
\(756\) 0 0
\(757\) 14.8094 45.5787i 0.538258 1.65659i −0.198244 0.980153i \(-0.563524\pi\)
0.736502 0.676435i \(-0.236476\pi\)
\(758\) 0 0
\(759\) 0.202321 0.622680i 0.00734379 0.0226018i
\(760\) 0 0
\(761\) −1.68629 5.18987i −0.0611280 0.188132i 0.915829 0.401568i \(-0.131535\pi\)
−0.976957 + 0.213436i \(0.931535\pi\)
\(762\) 0 0
\(763\) −26.8341 8.71892i −0.971459 0.315646i
\(764\) 0 0
\(765\) 15.7434 + 31.5704i 0.569204 + 1.14143i
\(766\) 0 0
\(767\) 44.2702 32.1642i 1.59851 1.16138i
\(768\) 0 0
\(769\) −39.8395 28.9451i −1.43665 1.04379i −0.988730 0.149712i \(-0.952165\pi\)
−0.447919 0.894074i \(-0.647835\pi\)
\(770\) 0 0
\(771\) −5.48880 3.98785i −0.197674 0.143619i
\(772\) 0 0
\(773\) −3.79777 11.6883i −0.136596 0.420400i 0.859239 0.511575i \(-0.170938\pi\)
−0.995835 + 0.0911748i \(0.970938\pi\)
\(774\) 0 0
\(775\) −0.585851 + 33.8581i −0.0210444 + 1.21622i
\(776\) 0 0
\(777\) −8.71489 + 2.83164i −0.312645 + 0.101584i
\(778\) 0 0
\(779\) −12.5105 + 17.7229i −0.448234 + 0.634988i
\(780\) 0 0
\(781\) −1.27670 3.92929i −0.0456840 0.140601i
\(782\) 0 0
\(783\) −10.3556 14.2533i −0.370079 0.509370i
\(784\) 0 0
\(785\) −32.8075 + 32.2448i −1.17095 + 1.15087i
\(786\) 0 0
\(787\) 18.0535 24.8485i 0.643538 0.885754i −0.355260 0.934767i \(-0.615608\pi\)
0.998798 + 0.0490134i \(0.0156077\pi\)
\(788\) 0 0
\(789\) 0.125325 + 0.0910541i 0.00446170 + 0.00324161i
\(790\) 0 0
\(791\) −6.46189 8.89403i −0.229758 0.316235i
\(792\) 0 0
\(793\) 36.7717 1.30580
\(794\) 0 0
\(795\) 3.37726 0.504997i 0.119779 0.0179104i
\(796\) 0 0
\(797\) −47.2707 + 15.3592i −1.67442 + 0.544051i −0.983815 0.179186i \(-0.942654\pi\)
−0.690600 + 0.723237i \(0.742654\pi\)
\(798\) 0 0
\(799\) 15.2476 46.9272i 0.539421 1.66017i
\(800\) 0 0
\(801\) −7.14220 2.32064i −0.252357 0.0819958i
\(802\) 0 0
\(803\) −3.88164 2.82018i −0.136980 0.0995219i
\(804\) 0 0
\(805\) 1.96614 3.77762i 0.0692974 0.133144i
\(806\) 0 0
\(807\) 1.50074 + 4.61880i 0.0528286 + 0.162590i
\(808\) 0 0
\(809\) 28.3917 39.0778i 0.998199 1.37390i 0.0717745 0.997421i \(-0.477134\pi\)
0.926424 0.376482i \(-0.122866\pi\)
\(810\) 0 0
\(811\) −24.5513 −0.862114 −0.431057 0.902325i \(-0.641859\pi\)
−0.431057 + 0.902325i \(0.641859\pi\)
\(812\) 0 0
\(813\) 2.33758 7.19434i 0.0819826 0.252317i
\(814\) 0 0
\(815\) −16.1176 + 30.9673i −0.564574 + 1.08474i
\(816\) 0 0
\(817\) 3.21432 0.112455
\(818\) 0 0
\(819\) 57.3693 2.00465
\(820\) 0 0
\(821\) 1.55914 0.0544145 0.0272072 0.999630i \(-0.491339\pi\)
0.0272072 + 0.999630i \(0.491339\pi\)
\(822\) 0 0
\(823\) 22.0230 0.767672 0.383836 0.923401i \(-0.374603\pi\)
0.383836 + 0.923401i \(0.374603\pi\)
\(824\) 0 0
\(825\) 6.15610 + 0.106520i 0.214328 + 0.00370854i
\(826\) 0 0
\(827\) −16.2756 + 50.0911i −0.565957 + 1.74184i 0.0991322 + 0.995074i \(0.468393\pi\)
−0.665090 + 0.746764i \(0.731607\pi\)
\(828\) 0 0
\(829\) 36.6349 1.27238 0.636191 0.771532i \(-0.280509\pi\)
0.636191 + 0.771532i \(0.280509\pi\)
\(830\) 0 0
\(831\) 2.33285 3.21090i 0.0809258 0.111385i
\(832\) 0 0
\(833\) 9.81830 + 30.2176i 0.340184 + 1.04698i
\(834\) 0 0
\(835\) 37.3775 + 19.4539i 1.29350 + 0.673230i
\(836\) 0 0
\(837\) −10.4477 7.59066i −0.361124 0.262372i
\(838\) 0 0
\(839\) 43.5611 + 14.1539i 1.50390 + 0.488645i 0.941151 0.337985i \(-0.109745\pi\)
0.562745 + 0.826631i \(0.309745\pi\)
\(840\) 0 0
\(841\) −17.4193 + 53.6111i −0.600665 + 1.84866i
\(842\) 0 0
\(843\) −0.628134 + 0.204093i −0.0216341 + 0.00702934i
\(844\) 0 0
\(845\) −38.9167 + 5.81916i −1.33877 + 0.200185i
\(846\) 0 0
\(847\) −12.5192 −0.430165
\(848\) 0 0
\(849\) 4.52490 + 6.22800i 0.155294 + 0.213744i
\(850\) 0 0
\(851\) −3.40212 2.47179i −0.116623 0.0847317i
\(852\) 0 0
\(853\) −25.4247 + 34.9942i −0.870527 + 1.19818i 0.108429 + 0.994104i \(0.465418\pi\)
−0.978956 + 0.204073i \(0.934582\pi\)
\(854\) 0 0
\(855\) 15.3754 + 15.6438i 0.525828 + 0.535005i
\(856\) 0 0
\(857\) 2.89622 + 3.98630i 0.0989330 + 0.136170i 0.855613 0.517615i \(-0.173180\pi\)
−0.756680 + 0.653785i \(0.773180\pi\)
\(858\) 0 0
\(859\) −7.54929 23.2343i −0.257579 0.792745i −0.993311 0.115473i \(-0.963162\pi\)
0.735732 0.677273i \(-0.236838\pi\)
\(860\) 0 0
\(861\) −6.06060 4.27814i −0.206545 0.145799i
\(862\) 0 0
\(863\) 10.8977 3.54089i 0.370963 0.120533i −0.117601 0.993061i \(-0.537521\pi\)
0.488565 + 0.872528i \(0.337521\pi\)
\(864\) 0 0
\(865\) 13.9916 26.8826i 0.475728 0.914034i
\(866\) 0 0
\(867\) 1.26845 + 3.90390i 0.0430789 + 0.132583i
\(868\) 0 0
\(869\) 4.93171 + 3.58310i 0.167297 + 0.121548i
\(870\) 0 0
\(871\) −29.4786 21.4174i −0.998843 0.725702i
\(872\) 0 0
\(873\) −17.2878 + 12.5603i −0.585104 + 0.425103i
\(874\) 0 0
\(875\) 39.3794 + 7.28926i 1.33127 + 0.246422i
\(876\) 0 0
\(877\) 42.8548 + 13.9244i 1.44710 + 0.470193i 0.924104 0.382140i \(-0.124813\pi\)
0.523000 + 0.852333i \(0.324813\pi\)
\(878\) 0 0
\(879\) 0.697284 + 2.14602i 0.0235188 + 0.0723834i
\(880\) 0 0
\(881\) 12.4494 38.3154i 0.419432 1.29088i −0.488795 0.872399i \(-0.662563\pi\)
0.908226 0.418479i \(-0.137437\pi\)
\(882\) 0 0
\(883\) 5.49349 16.9072i 0.184871 0.568974i −0.815075 0.579355i \(-0.803304\pi\)
0.999946 + 0.0103812i \(0.00330449\pi\)
\(884\) 0 0
\(885\) −1.18032 + 7.05660i −0.0396760 + 0.237205i
\(886\) 0 0
\(887\) −45.4460 + 33.0184i −1.52593 + 1.10865i −0.567477 + 0.823390i \(0.692080\pi\)
−0.958450 + 0.285261i \(0.907920\pi\)
\(888\) 0 0
\(889\) 26.2036 8.51406i 0.878840 0.285552i
\(890\) 0 0
\(891\) 18.0580 24.8548i 0.604967 0.832666i
\(892\) 0 0
\(893\) 30.6793i 1.02664i
\(894\) 0 0
\(895\) 2.89786 + 19.3800i 0.0968648 + 0.647801i
\(896\) 0 0
\(897\) −0.559128 0.769574i −0.0186688 0.0256953i
\(898\) 0 0
\(899\) 62.5763i 2.08704i
\(900\) 0 0
\(901\) −25.7278 −0.857119
\(902\) 0 0
\(903\) 1.09918i 0.0365786i
\(904\) 0 0
\(905\) 15.2681 7.61384i 0.507528 0.253092i
\(906\) 0 0
\(907\) −7.28420 10.0258i −0.241868 0.332902i 0.670775 0.741661i \(-0.265962\pi\)
−0.912642 + 0.408759i \(0.865962\pi\)
\(908\) 0 0
\(909\) −31.8733 10.3563i −1.05717 0.343496i
\(910\) 0 0
\(911\) 38.8062 1.28571 0.642853 0.765989i \(-0.277750\pi\)
0.642853 + 0.765989i \(0.277750\pi\)
\(912\) 0 0
\(913\) −6.73599 4.89398i −0.222929 0.161967i
\(914\) 0 0
\(915\) −3.42891 + 3.37009i −0.113356 + 0.111412i
\(916\) 0 0
\(917\) −54.9769 + 39.9431i −1.81550 + 1.31904i
\(918\) 0 0
\(919\) 6.32049 8.69940i 0.208494 0.286967i −0.691945 0.721950i \(-0.743246\pi\)
0.900438 + 0.434984i \(0.143246\pi\)
\(920\) 0 0
\(921\) −6.17446 2.00620i −0.203455 0.0661066i
\(922\) 0 0
\(923\) −5.70884 1.85492i −0.187909 0.0610553i
\(924\) 0 0
\(925\) 12.8693 37.3936i 0.423140 1.22949i
\(926\) 0 0
\(927\) 4.70047 + 1.52727i 0.154384 + 0.0501623i
\(928\) 0 0
\(929\) 43.2661i 1.41952i −0.704446 0.709758i \(-0.748804\pi\)
0.704446 0.709758i \(-0.251196\pi\)
\(930\) 0 0
\(931\) 11.6118 + 15.9822i 0.380561 + 0.523797i
\(932\) 0 0
\(933\) 3.92624 5.40400i 0.128539 0.176919i
\(934\) 0 0
\(935\) −45.7526 7.65279i −1.49627 0.250273i
\(936\) 0 0
\(937\) 8.90743 + 27.4142i 0.290993 + 0.895584i 0.984538 + 0.175171i \(0.0560478\pi\)
−0.693545 + 0.720413i \(0.743952\pi\)
\(938\) 0 0
\(939\) 2.69877 1.96077i 0.0880710 0.0639873i
\(940\) 0 0
\(941\) 9.00551 + 27.7161i 0.293571 + 0.903520i 0.983698 + 0.179831i \(0.0575550\pi\)
−0.690126 + 0.723689i \(0.742445\pi\)
\(942\) 0 0
\(943\) −0.0464620 3.40416i −0.00151301 0.110855i
\(944\) 0 0
\(945\) −10.8925 + 10.7057i −0.354334 + 0.348256i
\(946\) 0 0
\(947\) 24.8016 + 34.1364i 0.805942 + 1.10928i 0.991937 + 0.126733i \(0.0404493\pi\)
−0.185995 + 0.982551i \(0.559551\pi\)
\(948\) 0 0
\(949\) −6.62977 + 2.15414i −0.215211 + 0.0699264i
\(950\) 0 0
\(951\) −5.90695 4.29165i −0.191546 0.139166i
\(952\) 0 0
\(953\) 2.11739 2.91433i 0.0685889 0.0944045i −0.773344 0.633986i \(-0.781418\pi\)
0.841933 + 0.539582i \(0.181418\pi\)
\(954\) 0 0
\(955\) −2.67580 + 5.14113i −0.0865870 + 0.166363i
\(956\) 0 0
\(957\) 11.3777 0.367788
\(958\) 0 0
\(959\) −0.683590 + 2.10387i −0.0220743 + 0.0679376i
\(960\) 0 0
\(961\) 4.59462 + 14.1408i 0.148213 + 0.456154i
\(962\) 0 0
\(963\) −34.5422 11.2234i −1.11311 0.361670i
\(964\) 0 0
\(965\) −34.4762 + 5.15519i −1.10983 + 0.165951i
\(966\) 0 0
\(967\) −41.5195 30.1657i −1.33518 0.970063i −0.999607 0.0280476i \(-0.991071\pi\)
−0.335570 0.942015i \(-0.608929\pi\)
\(968\) 0 0
\(969\) 3.50965 + 4.83061i 0.112746 + 0.155182i
\(970\) 0 0
\(971\) −51.3827 + 16.6953i −1.64895 + 0.535776i −0.978512 0.206190i \(-0.933894\pi\)
−0.670437 + 0.741966i \(0.733894\pi\)
\(972\) 0 0
\(973\) 53.4387 + 38.8255i 1.71317 + 1.24469i
\(974\) 0 0
\(975\) 5.38246 7.14502i 0.172377 0.228824i
\(976\) 0 0
\(977\) 4.81936 14.8325i 0.154185 0.474532i −0.843892 0.536512i \(-0.819741\pi\)
0.998077 + 0.0619800i \(0.0197415\pi\)
\(978\) 0 0
\(979\) 7.98888 5.80426i 0.255326 0.185505i
\(980\) 0 0
\(981\) 22.8064i 0.728154i
\(982\) 0 0
\(983\) 22.3814i 0.713856i −0.934132 0.356928i \(-0.883824\pi\)
0.934132 0.356928i \(-0.116176\pi\)
\(984\) 0 0
\(985\) −14.1415 + 7.05201i −0.450584 + 0.224696i
\(986\) 0 0
\(987\) 10.4912 0.333939
\(988\) 0 0
\(989\) −0.408098 + 0.296501i −0.0129768 + 0.00942817i
\(990\) 0 0
\(991\) 17.4547 + 5.67138i 0.554467 + 0.180157i 0.572830 0.819674i \(-0.305845\pi\)
−0.0183629 + 0.999831i \(0.505845\pi\)
\(992\) 0 0
\(993\) 8.56417i 0.271776i
\(994\) 0 0
\(995\) −11.5919 1.93892i −0.367489 0.0614679i
\(996\) 0 0
\(997\) 7.85100 + 24.1629i 0.248644 + 0.765246i 0.995016 + 0.0997174i \(0.0317939\pi\)
−0.746372 + 0.665529i \(0.768206\pi\)
\(998\) 0 0
\(999\) 8.86455 + 12.2010i 0.280462 + 0.386023i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bi.a.269.11 yes 80
5.4 even 2 inner 820.2.bi.a.269.10 yes 80
41.25 even 10 inner 820.2.bi.a.189.10 80
205.189 even 10 inner 820.2.bi.a.189.11 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bi.a.189.10 80 41.25 even 10 inner
820.2.bi.a.189.11 yes 80 205.189 even 10 inner
820.2.bi.a.269.10 yes 80 5.4 even 2 inner
820.2.bi.a.269.11 yes 80 1.1 even 1 trivial