Properties

Label 820.2.bi.a.189.10
Level $820$
Weight $2$
Character 820.189
Analytic conductor $6.548$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(189,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.189"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bi (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 189.10
Character \(\chi\) \(=\) 820.189
Dual form 820.2.bi.a.269.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.323438 q^{3} +(-0.368890 + 2.20543i) q^{5} +(-1.10691 - 3.40672i) q^{7} -2.89539 q^{9} +(2.23783 + 3.08011i) q^{11} +(1.70933 - 5.26078i) q^{13} +(0.119313 - 0.713321i) q^{15} +(4.40830 - 3.20282i) q^{17} +(-3.22215 + 1.04694i) q^{19} +(0.358017 + 1.10186i) q^{21} +(-0.505667 - 0.164301i) q^{23} +(-4.72784 - 1.62712i) q^{25} +1.90679 q^{27} +(5.43089 - 7.47498i) q^{29} +(5.47917 - 3.98085i) q^{31} +(-0.723801 - 0.996227i) q^{33} +(7.92160 - 1.18451i) q^{35} +(4.64893 - 6.39870i) q^{37} +(-0.552863 + 1.70154i) q^{39} +(1.89538 + 6.11617i) q^{41} +(0.902310 + 0.293178i) q^{43} +(1.06808 - 6.38557i) q^{45} +(-2.79826 + 8.61215i) q^{47} +(-4.71735 + 3.42736i) q^{49} +(-1.42581 + 1.03591i) q^{51} +(-3.81986 - 2.77529i) q^{53} +(-7.61849 + 3.79916i) q^{55} +(1.04217 - 0.338621i) q^{57} +(3.05698 - 9.40843i) q^{59} +(-2.05425 - 6.32232i) q^{61} +(3.20493 + 9.86376i) q^{63} +(10.9717 + 5.71045i) q^{65} +(-5.32921 - 3.87190i) q^{67} +(0.163552 + 0.0531412i) q^{69} +(0.637848 + 0.877922i) q^{71} -1.26023i q^{73} +(1.52916 + 0.526274i) q^{75} +(8.01599 - 11.0331i) q^{77} -1.60115i q^{79} +8.06943 q^{81} -2.18693i q^{83} +(5.43741 + 10.9037i) q^{85} +(-1.75656 + 2.41770i) q^{87} +(2.46675 - 0.801496i) q^{89} -19.8140 q^{91} +(-1.77217 + 1.28756i) q^{93} +(-1.12033 - 7.49244i) q^{95} +(-5.97081 - 4.33805i) q^{97} +(-6.47940 - 8.91812i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 68 q^{9} + 10 q^{15} - 26 q^{21} + 10 q^{25} - 20 q^{29} + 4 q^{31} + 15 q^{35} - 8 q^{39} + 4 q^{41} - 4 q^{45} + 18 q^{49} + 52 q^{51} - 36 q^{59} - 42 q^{61} - 15 q^{65} + 30 q^{69} - 20 q^{75}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.323438 −0.186737 −0.0933686 0.995632i \(-0.529764\pi\)
−0.0933686 + 0.995632i \(0.529764\pi\)
\(4\) 0 0
\(5\) −0.368890 + 2.20543i −0.164973 + 0.986298i
\(6\) 0 0
\(7\) −1.10691 3.40672i −0.418372 1.28762i −0.909199 0.416361i \(-0.863305\pi\)
0.490827 0.871257i \(-0.336695\pi\)
\(8\) 0 0
\(9\) −2.89539 −0.965129
\(10\) 0 0
\(11\) 2.23783 + 3.08011i 0.674732 + 0.928689i 0.999856 0.0169823i \(-0.00540591\pi\)
−0.325124 + 0.945672i \(0.605406\pi\)
\(12\) 0 0
\(13\) 1.70933 5.26078i 0.474083 1.45908i −0.373108 0.927788i \(-0.621708\pi\)
0.847191 0.531289i \(-0.178292\pi\)
\(14\) 0 0
\(15\) 0.119313 0.713321i 0.0308065 0.184179i
\(16\) 0 0
\(17\) 4.40830 3.20282i 1.06917 0.776797i 0.0934068 0.995628i \(-0.470224\pi\)
0.975763 + 0.218831i \(0.0702243\pi\)
\(18\) 0 0
\(19\) −3.22215 + 1.04694i −0.739213 + 0.240185i −0.654333 0.756207i \(-0.727051\pi\)
−0.0848795 + 0.996391i \(0.527051\pi\)
\(20\) 0 0
\(21\) 0.358017 + 1.10186i 0.0781257 + 0.240446i
\(22\) 0 0
\(23\) −0.505667 0.164301i −0.105439 0.0342591i 0.255822 0.966724i \(-0.417654\pi\)
−0.361261 + 0.932465i \(0.617654\pi\)
\(24\) 0 0
\(25\) −4.72784 1.62712i −0.945568 0.325425i
\(26\) 0 0
\(27\) 1.90679 0.366963
\(28\) 0 0
\(29\) 5.43089 7.47498i 1.00849 1.38807i 0.0885246 0.996074i \(-0.471785\pi\)
0.919967 0.391996i \(-0.128215\pi\)
\(30\) 0 0
\(31\) 5.47917 3.98085i 0.984088 0.714982i 0.0254696 0.999676i \(-0.491892\pi\)
0.958619 + 0.284694i \(0.0918919\pi\)
\(32\) 0 0
\(33\) −0.723801 0.996227i −0.125998 0.173421i
\(34\) 0 0
\(35\) 7.92160 1.18451i 1.33900 0.200218i
\(36\) 0 0
\(37\) 4.64893 6.39870i 0.764279 1.05194i −0.232567 0.972580i \(-0.574712\pi\)
0.996846 0.0793599i \(-0.0252876\pi\)
\(38\) 0 0
\(39\) −0.552863 + 1.70154i −0.0885289 + 0.272464i
\(40\) 0 0
\(41\) 1.89538 + 6.11617i 0.296009 + 0.955185i
\(42\) 0 0
\(43\) 0.902310 + 0.293178i 0.137601 + 0.0447092i 0.377008 0.926210i \(-0.376953\pi\)
−0.239407 + 0.970919i \(0.576953\pi\)
\(44\) 0 0
\(45\) 1.06808 6.38557i 0.159220 0.951905i
\(46\) 0 0
\(47\) −2.79826 + 8.61215i −0.408168 + 1.25621i 0.510053 + 0.860143i \(0.329626\pi\)
−0.918221 + 0.396068i \(0.870374\pi\)
\(48\) 0 0
\(49\) −4.71735 + 3.42736i −0.673907 + 0.489622i
\(50\) 0 0
\(51\) −1.42581 + 1.03591i −0.199654 + 0.145057i
\(52\) 0 0
\(53\) −3.81986 2.77529i −0.524698 0.381216i 0.293673 0.955906i \(-0.405122\pi\)
−0.818371 + 0.574690i \(0.805122\pi\)
\(54\) 0 0
\(55\) −7.61849 + 3.79916i −1.02728 + 0.512279i
\(56\) 0 0
\(57\) 1.04217 0.338621i 0.138038 0.0448514i
\(58\) 0 0
\(59\) 3.05698 9.40843i 0.397985 1.22487i −0.528627 0.848854i \(-0.677293\pi\)
0.926612 0.376018i \(-0.122707\pi\)
\(60\) 0 0
\(61\) −2.05425 6.32232i −0.263019 0.809490i −0.992143 0.125108i \(-0.960072\pi\)
0.729124 0.684382i \(-0.239928\pi\)
\(62\) 0 0
\(63\) 3.20493 + 9.86376i 0.403783 + 1.24272i
\(64\) 0 0
\(65\) 10.9717 + 5.71045i 1.36087 + 0.708295i
\(66\) 0 0
\(67\) −5.32921 3.87190i −0.651067 0.473028i 0.212568 0.977146i \(-0.431817\pi\)
−0.863634 + 0.504119i \(0.831817\pi\)
\(68\) 0 0
\(69\) 0.163552 + 0.0531412i 0.0196893 + 0.00639745i
\(70\) 0 0
\(71\) 0.637848 + 0.877922i 0.0756986 + 0.104190i 0.845187 0.534470i \(-0.179489\pi\)
−0.769489 + 0.638660i \(0.779489\pi\)
\(72\) 0 0
\(73\) 1.26023i 0.147498i −0.997277 0.0737492i \(-0.976504\pi\)
0.997277 0.0737492i \(-0.0234964\pi\)
\(74\) 0 0
\(75\) 1.52916 + 0.526274i 0.176573 + 0.0607689i
\(76\) 0 0
\(77\) 8.01599 11.0331i 0.913507 1.25734i
\(78\) 0 0
\(79\) 1.60115i 0.180143i −0.995935 0.0900715i \(-0.971290\pi\)
0.995935 0.0900715i \(-0.0287096\pi\)
\(80\) 0 0
\(81\) 8.06943 0.896604
\(82\) 0 0
\(83\) 2.18693i 0.240047i −0.992771 0.120023i \(-0.961703\pi\)
0.992771 0.120023i \(-0.0382969\pi\)
\(84\) 0 0
\(85\) 5.43741 + 10.9037i 0.589770 + 1.18267i
\(86\) 0 0
\(87\) −1.75656 + 2.41770i −0.188323 + 0.259204i
\(88\) 0 0
\(89\) 2.46675 0.801496i 0.261475 0.0849584i −0.175346 0.984507i \(-0.556104\pi\)
0.436821 + 0.899548i \(0.356104\pi\)
\(90\) 0 0
\(91\) −19.8140 −2.07708
\(92\) 0 0
\(93\) −1.77217 + 1.28756i −0.183766 + 0.133514i
\(94\) 0 0
\(95\) −1.12033 7.49244i −0.114944 0.768708i
\(96\) 0 0
\(97\) −5.97081 4.33805i −0.606244 0.440462i 0.241846 0.970315i \(-0.422247\pi\)
−0.848090 + 0.529853i \(0.822247\pi\)
\(98\) 0 0
\(99\) −6.47940 8.91812i −0.651204 0.896305i
\(100\) 0 0
\(101\) 11.0083 3.57682i 1.09537 0.355907i 0.295050 0.955482i \(-0.404664\pi\)
0.800318 + 0.599575i \(0.204664\pi\)
\(102\) 0 0
\(103\) 1.62343 0.527485i 0.159962 0.0519747i −0.227942 0.973675i \(-0.573200\pi\)
0.387903 + 0.921700i \(0.373200\pi\)
\(104\) 0 0
\(105\) −2.56215 + 0.383115i −0.250040 + 0.0373882i
\(106\) 0 0
\(107\) −11.9301 + 3.87632i −1.15332 + 0.374738i −0.822394 0.568918i \(-0.807362\pi\)
−0.330930 + 0.943655i \(0.607362\pi\)
\(108\) 0 0
\(109\) 7.87682i 0.754462i 0.926119 + 0.377231i \(0.123124\pi\)
−0.926119 + 0.377231i \(0.876876\pi\)
\(110\) 0 0
\(111\) −1.50364 + 2.06959i −0.142719 + 0.196436i
\(112\) 0 0
\(113\) −1.80397 2.48296i −0.169704 0.233577i 0.715691 0.698417i \(-0.246112\pi\)
−0.885395 + 0.464840i \(0.846112\pi\)
\(114\) 0 0
\(115\) 0.548890 1.05460i 0.0511842 0.0983422i
\(116\) 0 0
\(117\) −4.94917 + 15.2320i −0.457551 + 1.40820i
\(118\) 0 0
\(119\) −15.7907 11.4726i −1.44753 1.05169i
\(120\) 0 0
\(121\) −1.08001 + 3.32394i −0.0981831 + 0.302176i
\(122\) 0 0
\(123\) −0.613039 1.97820i −0.0552759 0.178369i
\(124\) 0 0
\(125\) 5.33256 9.82669i 0.476959 0.878926i
\(126\) 0 0
\(127\) −4.52109 + 6.22275i −0.401182 + 0.552180i −0.961040 0.276409i \(-0.910856\pi\)
0.559858 + 0.828588i \(0.310856\pi\)
\(128\) 0 0
\(129\) −0.291842 0.0948251i −0.0256952 0.00834888i
\(130\) 0 0
\(131\) −15.3480 + 11.1509i −1.34096 + 0.974263i −0.341549 + 0.939864i \(0.610952\pi\)
−0.999408 + 0.0343989i \(0.989048\pi\)
\(132\) 0 0
\(133\) 7.13326 + 9.81809i 0.618532 + 0.851337i
\(134\) 0 0
\(135\) −0.703398 + 4.20530i −0.0605388 + 0.361935i
\(136\) 0 0
\(137\) 0.617567 0.0527623 0.0263811 0.999652i \(-0.491602\pi\)
0.0263811 + 0.999652i \(0.491602\pi\)
\(138\) 0 0
\(139\) −5.69838 17.5378i −0.483330 1.48754i −0.834385 0.551182i \(-0.814177\pi\)
0.351055 0.936355i \(-0.385823\pi\)
\(140\) 0 0
\(141\) 0.905063 2.78550i 0.0762201 0.234581i
\(142\) 0 0
\(143\) 20.0290 6.50781i 1.67491 0.544210i
\(144\) 0 0
\(145\) 14.4821 + 14.7349i 1.20268 + 1.22367i
\(146\) 0 0
\(147\) 1.52577 1.10854i 0.125844 0.0914307i
\(148\) 0 0
\(149\) −13.8926 + 19.1216i −1.13813 + 1.56650i −0.366510 + 0.930414i \(0.619447\pi\)
−0.771619 + 0.636085i \(0.780553\pi\)
\(150\) 0 0
\(151\) 14.4549 + 4.69668i 1.17632 + 0.382210i 0.830999 0.556274i \(-0.187769\pi\)
0.345323 + 0.938484i \(0.387769\pi\)
\(152\) 0 0
\(153\) −12.7637 + 9.27340i −1.03189 + 0.749710i
\(154\) 0 0
\(155\) 6.75827 + 13.5524i 0.542838 + 1.08856i
\(156\) 0 0
\(157\) 6.35713 + 19.5652i 0.507354 + 1.56148i 0.796776 + 0.604275i \(0.206537\pi\)
−0.289422 + 0.957202i \(0.593463\pi\)
\(158\) 0 0
\(159\) 1.23549 + 0.897636i 0.0979807 + 0.0711871i
\(160\) 0 0
\(161\) 1.90453i 0.150098i
\(162\) 0 0
\(163\) 15.6125i 1.22287i 0.791296 + 0.611433i \(0.209407\pi\)
−0.791296 + 0.611433i \(0.790593\pi\)
\(164\) 0 0
\(165\) 2.46411 1.22879i 0.191831 0.0956615i
\(166\) 0 0
\(167\) −18.8443 −1.45821 −0.729107 0.684400i \(-0.760064\pi\)
−0.729107 + 0.684400i \(0.760064\pi\)
\(168\) 0 0
\(169\) −14.2367 10.3436i −1.09513 0.795661i
\(170\) 0 0
\(171\) 9.32938 3.03130i 0.713436 0.231809i
\(172\) 0 0
\(173\) 13.5531i 1.03043i −0.857062 0.515213i \(-0.827713\pi\)
0.857062 0.515213i \(-0.172287\pi\)
\(174\) 0 0
\(175\) −0.309856 + 17.9075i −0.0234229 + 1.35368i
\(176\) 0 0
\(177\) −0.988746 + 3.04305i −0.0743187 + 0.228729i
\(178\) 0 0
\(179\) 5.15096 7.08969i 0.385001 0.529908i −0.571900 0.820323i \(-0.693793\pi\)
0.956901 + 0.290415i \(0.0937934\pi\)
\(180\) 0 0
\(181\) 4.48481 + 6.17280i 0.333353 + 0.458821i 0.942485 0.334248i \(-0.108482\pi\)
−0.609132 + 0.793069i \(0.708482\pi\)
\(182\) 0 0
\(183\) 0.664422 + 2.04488i 0.0491155 + 0.151162i
\(184\) 0 0
\(185\) 12.3969 + 12.6133i 0.911442 + 0.927349i
\(186\) 0 0
\(187\) 19.7301 + 6.41069i 1.44281 + 0.468796i
\(188\) 0 0
\(189\) −2.11065 6.49591i −0.153527 0.472508i
\(190\) 0 0
\(191\) 2.59195i 0.187547i −0.995594 0.0937736i \(-0.970107\pi\)
0.995594 0.0937736i \(-0.0298930\pi\)
\(192\) 0 0
\(193\) 12.6123 + 9.16337i 0.907853 + 0.659594i 0.940471 0.339874i \(-0.110384\pi\)
−0.0326179 + 0.999468i \(0.510384\pi\)
\(194\) 0 0
\(195\) −3.54867 1.84698i −0.254126 0.132265i
\(196\) 0 0
\(197\) 4.15387 + 5.71732i 0.295951 + 0.407342i 0.930936 0.365183i \(-0.118994\pi\)
−0.634985 + 0.772525i \(0.718994\pi\)
\(198\) 0 0
\(199\) −4.99884 1.62422i −0.354358 0.115138i 0.126428 0.991976i \(-0.459649\pi\)
−0.480786 + 0.876838i \(0.659649\pi\)
\(200\) 0 0
\(201\) 1.72367 + 1.25232i 0.121578 + 0.0883319i
\(202\) 0 0
\(203\) −31.4767 10.2274i −2.20923 0.717822i
\(204\) 0 0
\(205\) −14.1880 + 1.92394i −0.990931 + 0.134373i
\(206\) 0 0
\(207\) 1.46410 + 0.475715i 0.101762 + 0.0330645i
\(208\) 0 0
\(209\) −10.4353 7.58172i −0.721827 0.524438i
\(210\) 0 0
\(211\) 13.5045 + 4.38787i 0.929687 + 0.302074i 0.734435 0.678679i \(-0.237447\pi\)
0.195253 + 0.980753i \(0.437447\pi\)
\(212\) 0 0
\(213\) −0.206304 0.283954i −0.0141357 0.0194562i
\(214\) 0 0
\(215\) −0.979437 + 1.88183i −0.0667970 + 0.128340i
\(216\) 0 0
\(217\) −19.6266 14.2595i −1.33234 0.968001i
\(218\) 0 0
\(219\) 0.407606i 0.0275434i
\(220\) 0 0
\(221\) −9.31406 28.6657i −0.626532 1.92827i
\(222\) 0 0
\(223\) 10.8302 + 3.51893i 0.725241 + 0.235645i 0.648294 0.761390i \(-0.275483\pi\)
0.0769470 + 0.997035i \(0.475483\pi\)
\(224\) 0 0
\(225\) 13.6889 + 4.71115i 0.912595 + 0.314077i
\(226\) 0 0
\(227\) 3.31590 + 10.2053i 0.220084 + 0.677349i 0.998753 + 0.0499144i \(0.0158949\pi\)
−0.778670 + 0.627434i \(0.784105\pi\)
\(228\) 0 0
\(229\) −3.56218 4.90292i −0.235395 0.323994i 0.674934 0.737878i \(-0.264172\pi\)
−0.910330 + 0.413884i \(0.864172\pi\)
\(230\) 0 0
\(231\) −2.59268 + 3.56852i −0.170586 + 0.234791i
\(232\) 0 0
\(233\) 3.19060 9.81965i 0.209023 0.643307i −0.790501 0.612461i \(-0.790180\pi\)
0.999524 0.0308463i \(-0.00982023\pi\)
\(234\) 0 0
\(235\) −17.9612 9.34829i −1.17166 0.609816i
\(236\) 0 0
\(237\) 0.517872i 0.0336394i
\(238\) 0 0
\(239\) −19.7473 + 6.41627i −1.27734 + 0.415034i −0.867644 0.497186i \(-0.834367\pi\)
−0.409700 + 0.912220i \(0.634367\pi\)
\(240\) 0 0
\(241\) −12.5913 9.14812i −0.811078 0.589282i 0.103065 0.994675i \(-0.467135\pi\)
−0.914143 + 0.405392i \(0.867135\pi\)
\(242\) 0 0
\(243\) −8.33035 −0.534392
\(244\) 0 0
\(245\) −5.81861 11.6681i −0.371737 0.745448i
\(246\) 0 0
\(247\) 18.7406i 1.19244i
\(248\) 0 0
\(249\) 0.707337i 0.0448257i
\(250\) 0 0
\(251\) 14.0545 + 10.2112i 0.887112 + 0.644525i 0.935123 0.354322i \(-0.115288\pi\)
−0.0480113 + 0.998847i \(0.515288\pi\)
\(252\) 0 0
\(253\) −0.625532 1.92519i −0.0393268 0.121036i
\(254\) 0 0
\(255\) −1.75867 3.52667i −0.110132 0.220849i
\(256\) 0 0
\(257\) 16.9702 12.3295i 1.05857 0.769096i 0.0847466 0.996403i \(-0.472992\pi\)
0.973823 + 0.227307i \(0.0729919\pi\)
\(258\) 0 0
\(259\) −26.9445 8.75480i −1.67425 0.543997i
\(260\) 0 0
\(261\) −15.7245 + 21.6430i −0.973325 + 1.33967i
\(262\) 0 0
\(263\) −0.387478 + 0.281519i −0.0238929 + 0.0173592i −0.599668 0.800249i \(-0.704701\pi\)
0.575775 + 0.817608i \(0.304701\pi\)
\(264\) 0 0
\(265\) 7.52982 7.40066i 0.462553 0.454619i
\(266\) 0 0
\(267\) −0.797842 + 0.259235i −0.0488271 + 0.0158649i
\(268\) 0 0
\(269\) 4.63996 14.2803i 0.282903 0.870687i −0.704116 0.710085i \(-0.748657\pi\)
0.987019 0.160602i \(-0.0513435\pi\)
\(270\) 0 0
\(271\) 7.22729 + 22.2433i 0.439027 + 1.35119i 0.888903 + 0.458095i \(0.151468\pi\)
−0.449876 + 0.893091i \(0.648532\pi\)
\(272\) 0 0
\(273\) 6.40862 0.387867
\(274\) 0 0
\(275\) −5.56840 18.2035i −0.335787 1.09771i
\(276\) 0 0
\(277\) −7.21267 9.92739i −0.433367 0.596479i 0.535355 0.844627i \(-0.320178\pi\)
−0.968722 + 0.248148i \(0.920178\pi\)
\(278\) 0 0
\(279\) −15.8643 + 11.5261i −0.949772 + 0.690050i
\(280\) 0 0
\(281\) −1.94205 0.631011i −0.115853 0.0376430i 0.250517 0.968112i \(-0.419399\pi\)
−0.366370 + 0.930469i \(0.619399\pi\)
\(282\) 0 0
\(283\) −13.9900 + 19.2556i −0.831620 + 1.14463i 0.156000 + 0.987757i \(0.450140\pi\)
−0.987619 + 0.156869i \(0.949860\pi\)
\(284\) 0 0
\(285\) 0.362359 + 2.42334i 0.0214643 + 0.143546i
\(286\) 0 0
\(287\) 18.7380 13.2271i 1.10607 0.780769i
\(288\) 0 0
\(289\) 3.92178 12.0700i 0.230693 0.709999i
\(290\) 0 0
\(291\) 1.93119 + 1.40309i 0.113208 + 0.0822507i
\(292\) 0 0
\(293\) −2.15585 + 6.63502i −0.125946 + 0.387622i −0.994072 0.108722i \(-0.965324\pi\)
0.868126 + 0.496343i \(0.165324\pi\)
\(294\) 0 0
\(295\) 19.6219 + 10.2126i 1.14243 + 0.594603i
\(296\) 0 0
\(297\) 4.26709 + 5.87314i 0.247602 + 0.340794i
\(298\) 0 0
\(299\) −1.72870 + 2.37935i −0.0999734 + 0.137602i
\(300\) 0 0
\(301\) 3.39843i 0.195882i
\(302\) 0 0
\(303\) −3.56051 + 1.15688i −0.204546 + 0.0664610i
\(304\) 0 0
\(305\) 14.7012 2.19825i 0.841789 0.125872i
\(306\) 0 0
\(307\) 19.0901 6.20273i 1.08953 0.354009i 0.291463 0.956582i \(-0.405858\pi\)
0.798064 + 0.602573i \(0.205858\pi\)
\(308\) 0 0
\(309\) −0.525080 + 0.170609i −0.0298708 + 0.00970561i
\(310\) 0 0
\(311\) 12.1391 + 16.7080i 0.688343 + 0.947422i 0.999996 0.00277352i \(-0.000882839\pi\)
−0.311654 + 0.950196i \(0.600883\pi\)
\(312\) 0 0
\(313\) −8.34400 6.06227i −0.471631 0.342660i 0.326446 0.945216i \(-0.394149\pi\)
−0.798077 + 0.602556i \(0.794149\pi\)
\(314\) 0 0
\(315\) −22.9361 + 3.42960i −1.29230 + 0.193236i
\(316\) 0 0
\(317\) 18.2630 13.2688i 1.02575 0.745252i 0.0582978 0.998299i \(-0.481433\pi\)
0.967454 + 0.253047i \(0.0814327\pi\)
\(318\) 0 0
\(319\) 35.1772 1.96955
\(320\) 0 0
\(321\) 3.85864 1.25375i 0.215368 0.0699775i
\(322\) 0 0
\(323\) −10.8511 + 14.9352i −0.603769 + 0.831016i
\(324\) 0 0
\(325\) −16.6414 + 22.0908i −0.923097 + 1.22538i
\(326\) 0 0
\(327\) 2.54766i 0.140886i
\(328\) 0 0
\(329\) 32.4366 1.78829
\(330\) 0 0
\(331\) 26.4785i 1.45539i −0.685900 0.727696i \(-0.740591\pi\)
0.685900 0.727696i \(-0.259409\pi\)
\(332\) 0 0
\(333\) −13.4605 + 18.5267i −0.737628 + 1.01526i
\(334\) 0 0
\(335\) 10.5051 10.3249i 0.573955 0.564109i
\(336\) 0 0
\(337\) 1.99129i 0.108472i −0.998528 0.0542362i \(-0.982728\pi\)
0.998528 0.0542362i \(-0.0172724\pi\)
\(338\) 0 0
\(339\) 0.583474 + 0.803083i 0.0316900 + 0.0436175i
\(340\) 0 0
\(341\) 24.5229 + 7.96799i 1.32799 + 0.431491i
\(342\) 0 0
\(343\) −3.38778 2.46136i −0.182923 0.132901i
\(344\) 0 0
\(345\) −0.177532 + 0.341099i −0.00955800 + 0.0183642i
\(346\) 0 0
\(347\) −9.26301 28.5086i −0.497265 1.53042i −0.813397 0.581708i \(-0.802385\pi\)
0.316133 0.948715i \(-0.397615\pi\)
\(348\) 0 0
\(349\) 3.60942 + 11.1087i 0.193208 + 0.594633i 0.999993 + 0.00378744i \(0.00120558\pi\)
−0.806785 + 0.590845i \(0.798794\pi\)
\(350\) 0 0
\(351\) 3.25934 10.0312i 0.173971 0.535427i
\(352\) 0 0
\(353\) 14.7171 4.78187i 0.783312 0.254513i 0.110058 0.993925i \(-0.464896\pi\)
0.673254 + 0.739412i \(0.264896\pi\)
\(354\) 0 0
\(355\) −2.17149 + 1.08287i −0.115251 + 0.0574728i
\(356\) 0 0
\(357\) 5.10731 + 3.71068i 0.270308 + 0.196390i
\(358\) 0 0
\(359\) 2.22246 1.61471i 0.117297 0.0852211i −0.527590 0.849499i \(-0.676904\pi\)
0.644887 + 0.764278i \(0.276904\pi\)
\(360\) 0 0
\(361\) −6.08514 + 4.42111i −0.320270 + 0.232690i
\(362\) 0 0
\(363\) 0.349318 1.07509i 0.0183344 0.0564276i
\(364\) 0 0
\(365\) 2.77934 + 0.464885i 0.145477 + 0.0243332i
\(366\) 0 0
\(367\) 1.16714 + 0.379228i 0.0609243 + 0.0197955i 0.339321 0.940671i \(-0.389803\pi\)
−0.278396 + 0.960466i \(0.589803\pi\)
\(368\) 0 0
\(369\) −5.48786 17.7087i −0.285687 0.921877i
\(370\) 0 0
\(371\) −5.22639 + 16.0852i −0.271341 + 0.835101i
\(372\) 0 0
\(373\) 17.1372 23.5873i 0.887329 1.22130i −0.0870073 0.996208i \(-0.527730\pi\)
0.974337 0.225096i \(-0.0722697\pi\)
\(374\) 0 0
\(375\) −1.72475 + 3.17833i −0.0890659 + 0.164128i
\(376\) 0 0
\(377\) −30.0410 41.3479i −1.54719 2.12953i
\(378\) 0 0
\(379\) 25.0058 18.1678i 1.28446 0.933218i 0.284786 0.958591i \(-0.408077\pi\)
0.999678 + 0.0253732i \(0.00807740\pi\)
\(380\) 0 0
\(381\) 1.46229 2.01268i 0.0749156 0.103113i
\(382\) 0 0
\(383\) 24.4170 1.24765 0.623826 0.781563i \(-0.285577\pi\)
0.623826 + 0.781563i \(0.285577\pi\)
\(384\) 0 0
\(385\) 21.3756 + 21.7487i 1.08940 + 1.10842i
\(386\) 0 0
\(387\) −2.61254 0.848864i −0.132803 0.0431502i
\(388\) 0 0
\(389\) 2.02804 + 6.24168i 0.102826 + 0.316466i 0.989214 0.146477i \(-0.0467935\pi\)
−0.886388 + 0.462943i \(0.846793\pi\)
\(390\) 0 0
\(391\) −2.75536 + 0.895269i −0.139344 + 0.0452757i
\(392\) 0 0
\(393\) 4.96412 3.60664i 0.250407 0.181931i
\(394\) 0 0
\(395\) 3.53122 + 0.590647i 0.177675 + 0.0297187i
\(396\) 0 0
\(397\) −0.884344 + 2.72173i −0.0443839 + 0.136600i −0.970793 0.239919i \(-0.922879\pi\)
0.926409 + 0.376519i \(0.122879\pi\)
\(398\) 0 0
\(399\) −2.30717 3.17555i −0.115503 0.158976i
\(400\) 0 0
\(401\) 2.33669 0.116689 0.0583443 0.998297i \(-0.481418\pi\)
0.0583443 + 0.998297i \(0.481418\pi\)
\(402\) 0 0
\(403\) −11.5767 35.6293i −0.576674 1.77482i
\(404\) 0 0
\(405\) −2.97673 + 17.7966i −0.147915 + 0.884318i
\(406\) 0 0
\(407\) 30.1123 1.49261
\(408\) 0 0
\(409\) −4.06167 −0.200837 −0.100418 0.994945i \(-0.532018\pi\)
−0.100418 + 0.994945i \(0.532018\pi\)
\(410\) 0 0
\(411\) −0.199745 −0.00985268
\(412\) 0 0
\(413\) −35.4356 −1.74367
\(414\) 0 0
\(415\) 4.82312 + 0.806737i 0.236758 + 0.0396012i
\(416\) 0 0
\(417\) 1.84307 + 5.67240i 0.0902557 + 0.277779i
\(418\) 0 0
\(419\) 8.47842 0.414198 0.207099 0.978320i \(-0.433598\pi\)
0.207099 + 0.978320i \(0.433598\pi\)
\(420\) 0 0
\(421\) −20.5080 28.2269i −0.999501 1.37569i −0.925631 0.378427i \(-0.876465\pi\)
−0.0738694 0.997268i \(-0.523535\pi\)
\(422\) 0 0
\(423\) 8.10204 24.9355i 0.393935 1.21241i
\(424\) 0 0
\(425\) −26.0531 + 7.96956i −1.26376 + 0.386581i
\(426\) 0 0
\(427\) −19.2645 + 13.9965i −0.932274 + 0.677336i
\(428\) 0 0
\(429\) −6.47814 + 2.10488i −0.312768 + 0.101624i
\(430\) 0 0
\(431\) −5.42031 16.6820i −0.261087 0.803543i −0.992569 0.121682i \(-0.961171\pi\)
0.731482 0.681861i \(-0.238829\pi\)
\(432\) 0 0
\(433\) 31.1477 + 10.1205i 1.49686 + 0.486361i 0.939101 0.343640i \(-0.111660\pi\)
0.557763 + 0.830001i \(0.311660\pi\)
\(434\) 0 0
\(435\) −4.68408 4.76583i −0.224585 0.228504i
\(436\) 0 0
\(437\) 1.80135 0.0861702
\(438\) 0 0
\(439\) −19.0863 + 26.2701i −0.910941 + 1.25380i 0.0559035 + 0.998436i \(0.482196\pi\)
−0.966844 + 0.255366i \(0.917804\pi\)
\(440\) 0 0
\(441\) 13.6586 9.92352i 0.650407 0.472549i
\(442\) 0 0
\(443\) −9.95829 13.7064i −0.473133 0.651211i 0.504034 0.863684i \(-0.331848\pi\)
−0.977167 + 0.212472i \(0.931848\pi\)
\(444\) 0 0
\(445\) 0.857683 + 5.73591i 0.0406581 + 0.271908i
\(446\) 0 0
\(447\) 4.49341 6.18465i 0.212531 0.292524i
\(448\) 0 0
\(449\) −3.22139 + 9.91442i −0.152027 + 0.467891i −0.997848 0.0655767i \(-0.979111\pi\)
0.845821 + 0.533467i \(0.179111\pi\)
\(450\) 0 0
\(451\) −14.5969 + 19.5250i −0.687343 + 0.919394i
\(452\) 0 0
\(453\) −4.67526 1.51909i −0.219663 0.0713729i
\(454\) 0 0
\(455\) 7.30921 43.6985i 0.342661 2.04862i
\(456\) 0 0
\(457\) −11.3384 + 34.8962i −0.530390 + 1.63237i 0.223014 + 0.974815i \(0.428411\pi\)
−0.753404 + 0.657558i \(0.771589\pi\)
\(458\) 0 0
\(459\) 8.40572 6.10711i 0.392345 0.285056i
\(460\) 0 0
\(461\) −20.2256 + 14.6948i −0.942000 + 0.684403i −0.948901 0.315573i \(-0.897803\pi\)
0.00690089 + 0.999976i \(0.497803\pi\)
\(462\) 0 0
\(463\) 13.3896 + 9.72815i 0.622270 + 0.452105i 0.853714 0.520743i \(-0.174345\pi\)
−0.231444 + 0.972848i \(0.574345\pi\)
\(464\) 0 0
\(465\) −2.18589 4.38337i −0.101368 0.203274i
\(466\) 0 0
\(467\) −34.9472 + 11.3550i −1.61716 + 0.525449i −0.971270 0.237979i \(-0.923515\pi\)
−0.645894 + 0.763427i \(0.723515\pi\)
\(468\) 0 0
\(469\) −7.29151 + 22.4410i −0.336691 + 1.03623i
\(470\) 0 0
\(471\) −2.05614 6.32815i −0.0947420 0.291586i
\(472\) 0 0
\(473\) 1.11620 + 3.43530i 0.0513228 + 0.157955i
\(474\) 0 0
\(475\) 16.9373 + 0.293069i 0.777138 + 0.0134469i
\(476\) 0 0
\(477\) 11.0600 + 8.03554i 0.506402 + 0.367922i
\(478\) 0 0
\(479\) 18.7223 + 6.08324i 0.855443 + 0.277950i 0.703724 0.710473i \(-0.251519\pi\)
0.151719 + 0.988424i \(0.451519\pi\)
\(480\) 0 0
\(481\) −25.7156 35.3945i −1.17253 1.61385i
\(482\) 0 0
\(483\) 0.615998i 0.0280289i
\(484\) 0 0
\(485\) 11.7698 11.5679i 0.534441 0.525273i
\(486\) 0 0
\(487\) 14.1204 19.4351i 0.639859 0.880690i −0.358749 0.933434i \(-0.616797\pi\)
0.998608 + 0.0527440i \(0.0167967\pi\)
\(488\) 0 0
\(489\) 5.04968i 0.228355i
\(490\) 0 0
\(491\) 31.2785 1.41158 0.705788 0.708423i \(-0.250593\pi\)
0.705788 + 0.708423i \(0.250593\pi\)
\(492\) 0 0
\(493\) 50.3461i 2.26748i
\(494\) 0 0
\(495\) 22.0585 11.0000i 0.991455 0.494415i
\(496\) 0 0
\(497\) 2.28479 3.14475i 0.102487 0.141061i
\(498\) 0 0
\(499\) 7.75904 2.52107i 0.347342 0.112858i −0.130150 0.991494i \(-0.541546\pi\)
0.477492 + 0.878636i \(0.341546\pi\)
\(500\) 0 0
\(501\) 6.09496 0.272303
\(502\) 0 0
\(503\) 11.8321 8.59652i 0.527567 0.383300i −0.291880 0.956455i \(-0.594281\pi\)
0.819447 + 0.573155i \(0.194281\pi\)
\(504\) 0 0
\(505\) 3.82756 + 25.5975i 0.170324 + 1.13907i
\(506\) 0 0
\(507\) 4.60470 + 3.34551i 0.204502 + 0.148579i
\(508\) 0 0
\(509\) 10.4425 + 14.3728i 0.462854 + 0.637064i 0.975098 0.221777i \(-0.0711856\pi\)
−0.512244 + 0.858840i \(0.671186\pi\)
\(510\) 0 0
\(511\) −4.29323 + 1.39496i −0.189921 + 0.0617092i
\(512\) 0 0
\(513\) −6.14398 + 1.99630i −0.271263 + 0.0881388i
\(514\) 0 0
\(515\) 0.564463 + 3.77495i 0.0248732 + 0.166344i
\(516\) 0 0
\(517\) −32.7884 + 10.6536i −1.44203 + 0.468545i
\(518\) 0 0
\(519\) 4.38360i 0.192419i
\(520\) 0 0
\(521\) 15.9630 21.9711i 0.699350 0.962573i −0.300611 0.953747i \(-0.597191\pi\)
0.999961 0.00882616i \(-0.00280949\pi\)
\(522\) 0 0
\(523\) −15.6851 21.5887i −0.685861 0.944006i 0.314125 0.949382i \(-0.398289\pi\)
−0.999986 + 0.00537534i \(0.998289\pi\)
\(524\) 0 0
\(525\) 0.100219 5.79197i 0.00437392 0.252782i
\(526\) 0 0
\(527\) 11.4039 35.0976i 0.496761 1.52887i
\(528\) 0 0
\(529\) −18.3787 13.3529i −0.799073 0.580561i
\(530\) 0 0
\(531\) −8.85115 + 27.2410i −0.384107 + 1.18216i
\(532\) 0 0
\(533\) 35.4156 + 0.483374i 1.53402 + 0.0209373i
\(534\) 0 0
\(535\) −4.14806 27.7409i −0.179336 1.19934i
\(536\) 0 0
\(537\) −1.66602 + 2.29308i −0.0718940 + 0.0989536i
\(538\) 0 0
\(539\) −21.1133 6.86012i −0.909414 0.295486i
\(540\) 0 0
\(541\) 28.9322 21.0205i 1.24389 0.903740i 0.246041 0.969260i \(-0.420870\pi\)
0.997851 + 0.0655192i \(0.0208704\pi\)
\(542\) 0 0
\(543\) −1.45056 1.99652i −0.0622494 0.0856790i
\(544\) 0 0
\(545\) −17.3718 2.90568i −0.744125 0.124466i
\(546\) 0 0
\(547\) −4.34916 −0.185957 −0.0929783 0.995668i \(-0.529639\pi\)
−0.0929783 + 0.995668i \(0.529639\pi\)
\(548\) 0 0
\(549\) 5.94784 + 18.3056i 0.253848 + 0.781262i
\(550\) 0 0
\(551\) −9.67330 + 29.7714i −0.412097 + 1.26830i
\(552\) 0 0
\(553\) −5.45465 + 1.77232i −0.231955 + 0.0753669i
\(554\) 0 0
\(555\) −4.00965 4.07963i −0.170200 0.173171i
\(556\) 0 0
\(557\) −4.75515 + 3.45482i −0.201482 + 0.146385i −0.683952 0.729527i \(-0.739740\pi\)
0.482469 + 0.875913i \(0.339740\pi\)
\(558\) 0 0
\(559\) 3.08469 4.24571i 0.130468 0.179574i
\(560\) 0 0
\(561\) −6.38146 2.07346i −0.269426 0.0875417i
\(562\) 0 0
\(563\) −26.1178 + 18.9757i −1.10073 + 0.799729i −0.981179 0.193099i \(-0.938146\pi\)
−0.119553 + 0.992828i \(0.538146\pi\)
\(564\) 0 0
\(565\) 6.14145 3.06260i 0.258373 0.128844i
\(566\) 0 0
\(567\) −8.93213 27.4903i −0.375114 1.15448i
\(568\) 0 0
\(569\) 11.4547 + 8.32230i 0.480204 + 0.348889i 0.801405 0.598122i \(-0.204086\pi\)
−0.321200 + 0.947011i \(0.604086\pi\)
\(570\) 0 0
\(571\) 11.4233i 0.478051i 0.971013 + 0.239025i \(0.0768279\pi\)
−0.971013 + 0.239025i \(0.923172\pi\)
\(572\) 0 0
\(573\) 0.838337i 0.0350220i
\(574\) 0 0
\(575\) 2.12337 + 1.59957i 0.0885508 + 0.0667067i
\(576\) 0 0
\(577\) −32.5144 −1.35359 −0.676796 0.736171i \(-0.736632\pi\)
−0.676796 + 0.736171i \(0.736632\pi\)
\(578\) 0 0
\(579\) −4.07930 2.96379i −0.169530 0.123171i
\(580\) 0 0
\(581\) −7.45025 + 2.42073i −0.309088 + 0.100429i
\(582\) 0 0
\(583\) 17.9762i 0.744500i
\(584\) 0 0
\(585\) −31.7674 16.5340i −1.31342 0.683596i
\(586\) 0 0
\(587\) −8.54007 + 26.2836i −0.352486 + 1.08484i 0.604966 + 0.796251i \(0.293187\pi\)
−0.957453 + 0.288590i \(0.906813\pi\)
\(588\) 0 0
\(589\) −13.4870 + 18.5633i −0.555723 + 0.764887i
\(590\) 0 0
\(591\) −1.34352 1.84920i −0.0552651 0.0760659i
\(592\) 0 0
\(593\) 11.7760 + 36.2428i 0.483583 + 1.48831i 0.834023 + 0.551730i \(0.186032\pi\)
−0.350440 + 0.936585i \(0.613968\pi\)
\(594\) 0 0
\(595\) 31.1270 30.5931i 1.27608 1.25419i
\(596\) 0 0
\(597\) 1.61682 + 0.525335i 0.0661719 + 0.0215005i
\(598\) 0 0
\(599\) 2.49613 + 7.68231i 0.101989 + 0.313891i 0.989012 0.147835i \(-0.0472305\pi\)
−0.887023 + 0.461726i \(0.847230\pi\)
\(600\) 0 0
\(601\) 20.0945i 0.819673i 0.912159 + 0.409837i \(0.134414\pi\)
−0.912159 + 0.409837i \(0.865586\pi\)
\(602\) 0 0
\(603\) 15.4301 + 11.2106i 0.628364 + 0.456533i
\(604\) 0 0
\(605\) −6.93231 3.60806i −0.281839 0.146689i
\(606\) 0 0
\(607\) 24.3362 + 33.4959i 0.987777 + 1.35956i 0.932533 + 0.361085i \(0.117594\pi\)
0.0552439 + 0.998473i \(0.482406\pi\)
\(608\) 0 0
\(609\) 10.1808 + 3.30793i 0.412545 + 0.134044i
\(610\) 0 0
\(611\) 40.5234 + 29.4420i 1.63940 + 1.19110i
\(612\) 0 0
\(613\) 43.0744 + 13.9957i 1.73976 + 0.565282i 0.994802 0.101828i \(-0.0324692\pi\)
0.744959 + 0.667111i \(0.232469\pi\)
\(614\) 0 0
\(615\) 4.58893 0.622274i 0.185044 0.0250925i
\(616\) 0 0
\(617\) 1.25193 + 0.406777i 0.0504008 + 0.0163762i 0.334109 0.942534i \(-0.391565\pi\)
−0.283708 + 0.958911i \(0.591565\pi\)
\(618\) 0 0
\(619\) 26.3363 + 19.1345i 1.05855 + 0.769079i 0.973819 0.227325i \(-0.0729980\pi\)
0.0847277 + 0.996404i \(0.472998\pi\)
\(620\) 0 0
\(621\) −0.964202 0.313288i −0.0386921 0.0125718i
\(622\) 0 0
\(623\) −5.46094 7.51634i −0.218788 0.301136i
\(624\) 0 0
\(625\) 19.7049 + 15.3856i 0.788198 + 0.615422i
\(626\) 0 0
\(627\) 3.37519 + 2.45222i 0.134792 + 0.0979322i
\(628\) 0 0
\(629\) 43.0971i 1.71839i
\(630\) 0 0
\(631\) 1.08512 + 3.33966i 0.0431979 + 0.132950i 0.970329 0.241786i \(-0.0777333\pi\)
−0.927132 + 0.374736i \(0.877733\pi\)
\(632\) 0 0
\(633\) −4.36787 1.41921i −0.173607 0.0564084i
\(634\) 0 0
\(635\) −12.0560 12.2665i −0.478430 0.486780i
\(636\) 0 0
\(637\) 9.96704 + 30.6754i 0.394909 + 1.21540i
\(638\) 0 0
\(639\) −1.84682 2.54192i −0.0730589 0.100557i
\(640\) 0 0
\(641\) 14.2690 19.6396i 0.563593 0.775719i −0.428185 0.903691i \(-0.640847\pi\)
0.991778 + 0.127972i \(0.0408467\pi\)
\(642\) 0 0
\(643\) −14.0839 + 43.3457i −0.555414 + 1.70939i 0.139434 + 0.990231i \(0.455472\pi\)
−0.694848 + 0.719157i \(0.744528\pi\)
\(644\) 0 0
\(645\) 0.316787 0.608656i 0.0124735 0.0239658i
\(646\) 0 0
\(647\) 30.8633i 1.21336i 0.794946 + 0.606680i \(0.207499\pi\)
−0.794946 + 0.606680i \(0.792501\pi\)
\(648\) 0 0
\(649\) 35.8200 11.6386i 1.40606 0.456856i
\(650\) 0 0
\(651\) 6.34799 + 4.61208i 0.248797 + 0.180762i
\(652\) 0 0
\(653\) −17.1864 −0.672555 −0.336278 0.941763i \(-0.609168\pi\)
−0.336278 + 0.941763i \(0.609168\pi\)
\(654\) 0 0
\(655\) −18.9309 37.9623i −0.739692 1.48331i
\(656\) 0 0
\(657\) 3.64884i 0.142355i
\(658\) 0 0
\(659\) 13.0015i 0.506467i −0.967405 0.253233i \(-0.918506\pi\)
0.967405 0.253233i \(-0.0814941\pi\)
\(660\) 0 0
\(661\) −32.9969 23.9736i −1.28343 0.932466i −0.283779 0.958890i \(-0.591588\pi\)
−0.999651 + 0.0264233i \(0.991588\pi\)
\(662\) 0 0
\(663\) 3.01253 + 9.27160i 0.116997 + 0.360079i
\(664\) 0 0
\(665\) −24.2845 + 12.1101i −0.941713 + 0.469610i
\(666\) 0 0
\(667\) −3.97437 + 2.88755i −0.153888 + 0.111806i
\(668\) 0 0
\(669\) −3.50289 1.13816i −0.135429 0.0440037i
\(670\) 0 0
\(671\) 14.8764 20.4756i 0.574297 0.790452i
\(672\) 0 0
\(673\) −21.2404 + 15.4320i −0.818756 + 0.594861i −0.916356 0.400365i \(-0.868883\pi\)
0.0976002 + 0.995226i \(0.468883\pi\)
\(674\) 0 0
\(675\) −9.01502 3.10259i −0.346988 0.119419i
\(676\) 0 0
\(677\) −8.96082 + 2.91155i −0.344392 + 0.111900i −0.476106 0.879388i \(-0.657952\pi\)
0.131714 + 0.991288i \(0.457952\pi\)
\(678\) 0 0
\(679\) −8.16935 + 25.1427i −0.313511 + 0.964888i
\(680\) 0 0
\(681\) −1.07249 3.30078i −0.0410979 0.126486i
\(682\) 0 0
\(683\) 32.9208 1.25968 0.629840 0.776725i \(-0.283120\pi\)
0.629840 + 0.776725i \(0.283120\pi\)
\(684\) 0 0
\(685\) −0.227814 + 1.36200i −0.00870433 + 0.0520393i
\(686\) 0 0
\(687\) 1.15215 + 1.58579i 0.0439571 + 0.0605018i
\(688\) 0 0
\(689\) −21.1296 + 15.3515i −0.804973 + 0.584847i
\(690\) 0 0
\(691\) −40.0174 13.0025i −1.52234 0.494637i −0.575897 0.817522i \(-0.695347\pi\)
−0.946438 + 0.322886i \(0.895347\pi\)
\(692\) 0 0
\(693\) −23.2094 + 31.9450i −0.881653 + 1.21349i
\(694\) 0 0
\(695\) 40.7805 6.09785i 1.54689 0.231305i
\(696\) 0 0
\(697\) 27.9444 + 20.8913i 1.05847 + 0.791316i
\(698\) 0 0
\(699\) −1.03196 + 3.17605i −0.0390324 + 0.120129i
\(700\) 0 0
\(701\) 5.63145 + 4.09149i 0.212697 + 0.154533i 0.689033 0.724730i \(-0.258035\pi\)
−0.476336 + 0.879263i \(0.658035\pi\)
\(702\) 0 0
\(703\) −8.28050 + 25.4848i −0.312305 + 0.961176i
\(704\) 0 0
\(705\) 5.80935 + 3.02360i 0.218793 + 0.113875i
\(706\) 0 0
\(707\) −24.3704 33.5430i −0.916544 1.26151i
\(708\) 0 0
\(709\) 20.4467 28.1424i 0.767891 1.05691i −0.228626 0.973514i \(-0.573423\pi\)
0.996516 0.0833965i \(-0.0265768\pi\)
\(710\) 0 0
\(711\) 4.63594i 0.173861i
\(712\) 0 0
\(713\) −3.42469 + 1.11275i −0.128256 + 0.0416728i
\(714\) 0 0
\(715\) 6.96402 + 46.5732i 0.260440 + 1.74174i
\(716\) 0 0
\(717\) 6.38702 2.07527i 0.238528 0.0775023i
\(718\) 0 0
\(719\) −20.2844 + 6.59080i −0.756481 + 0.245796i −0.661768 0.749709i \(-0.730193\pi\)
−0.0947132 + 0.995505i \(0.530193\pi\)
\(720\) 0 0
\(721\) −3.59399 4.94670i −0.133847 0.184225i
\(722\) 0 0
\(723\) 4.07251 + 2.95885i 0.151458 + 0.110041i
\(724\) 0 0
\(725\) −37.8391 + 26.5038i −1.40531 + 0.984326i
\(726\) 0 0
\(727\) 25.3473 18.4159i 0.940080 0.683008i −0.00836025 0.999965i \(-0.502661\pi\)
0.948440 + 0.316957i \(0.102661\pi\)
\(728\) 0 0
\(729\) −21.5139 −0.796813
\(730\) 0 0
\(731\) 4.91665 1.59752i 0.181849 0.0590862i
\(732\) 0 0
\(733\) −21.4607 + 29.5381i −0.792670 + 1.09102i 0.201101 + 0.979571i \(0.435548\pi\)
−0.993771 + 0.111446i \(0.964452\pi\)
\(734\) 0 0
\(735\) 1.88196 + 3.77391i 0.0694172 + 0.139203i
\(736\) 0 0
\(737\) 25.0792i 0.923806i
\(738\) 0 0
\(739\) 14.8588 0.546589 0.273294 0.961930i \(-0.411887\pi\)
0.273294 + 0.961930i \(0.411887\pi\)
\(740\) 0 0
\(741\) 6.06143i 0.222672i
\(742\) 0 0
\(743\) 3.22466 4.43836i 0.118301 0.162828i −0.745760 0.666215i \(-0.767913\pi\)
0.864061 + 0.503388i \(0.167913\pi\)
\(744\) 0 0
\(745\) −37.0464 37.6930i −1.35728 1.38096i
\(746\) 0 0
\(747\) 6.33201i 0.231676i
\(748\) 0 0
\(749\) 26.4110 + 36.3517i 0.965038 + 1.32826i
\(750\) 0 0
\(751\) −42.7462 13.8891i −1.55983 0.506820i −0.603069 0.797689i \(-0.706056\pi\)
−0.956763 + 0.290869i \(0.906056\pi\)
\(752\) 0 0
\(753\) −4.54576 3.30269i −0.165657 0.120357i
\(754\) 0 0
\(755\) −15.6905 + 30.1467i −0.571034 + 1.09715i
\(756\) 0 0
\(757\) −14.8094 45.5787i −0.538258 1.65659i −0.736502 0.676435i \(-0.763524\pi\)
0.198244 0.980153i \(-0.436476\pi\)
\(758\) 0 0
\(759\) 0.202321 + 0.622680i 0.00734379 + 0.0226018i
\(760\) 0 0
\(761\) −1.68629 + 5.18987i −0.0611280 + 0.188132i −0.976957 0.213436i \(-0.931535\pi\)
0.915829 + 0.401568i \(0.131535\pi\)
\(762\) 0 0
\(763\) 26.8341 8.71892i 0.971459 0.315646i
\(764\) 0 0
\(765\) −15.7434 31.5704i −0.569204 1.14143i
\(766\) 0 0
\(767\) −44.2702 32.1642i −1.59851 1.16138i
\(768\) 0 0
\(769\) −39.8395 + 28.9451i −1.43665 + 1.04379i −0.447919 + 0.894074i \(0.647835\pi\)
−0.988730 + 0.149712i \(0.952165\pi\)
\(770\) 0 0
\(771\) −5.48880 + 3.98785i −0.197674 + 0.143619i
\(772\) 0 0
\(773\) 3.79777 11.6883i 0.136596 0.420400i −0.859239 0.511575i \(-0.829062\pi\)
0.995835 + 0.0911748i \(0.0290622\pi\)
\(774\) 0 0
\(775\) −32.3820 + 9.90554i −1.16319 + 0.355818i
\(776\) 0 0
\(777\) 8.71489 + 2.83164i 0.312645 + 0.101584i
\(778\) 0 0
\(779\) −12.5105 17.7229i −0.448234 0.634988i
\(780\) 0 0
\(781\) −1.27670 + 3.92929i −0.0456840 + 0.140601i
\(782\) 0 0
\(783\) 10.3556 14.2533i 0.370079 0.509370i
\(784\) 0 0
\(785\) −45.4948 + 6.80278i −1.62378 + 0.242802i
\(786\) 0 0
\(787\) −18.0535 24.8485i −0.643538 0.885754i 0.355260 0.934767i \(-0.384392\pi\)
−0.998798 + 0.0490134i \(0.984392\pi\)
\(788\) 0 0
\(789\) 0.125325 0.0910541i 0.00446170 0.00324161i
\(790\) 0 0
\(791\) −6.46189 + 8.89403i −0.229758 + 0.316235i
\(792\) 0 0
\(793\) −36.7717 −1.30580
\(794\) 0 0
\(795\) −2.43543 + 2.39366i −0.0863759 + 0.0848942i
\(796\) 0 0
\(797\) 47.2707 + 15.3592i 1.67442 + 0.544051i 0.983815 0.179186i \(-0.0573464\pi\)
0.690600 + 0.723237i \(0.257346\pi\)
\(798\) 0 0
\(799\) 15.2476 + 46.9272i 0.539421 + 1.66017i
\(800\) 0 0
\(801\) −7.14220 + 2.32064i −0.252357 + 0.0819958i
\(802\) 0 0
\(803\) 3.88164 2.82018i 0.136980 0.0995219i
\(804\) 0 0
\(805\) −4.20030 0.702562i −0.148041 0.0247621i
\(806\) 0 0
\(807\) −1.50074 + 4.61880i −0.0528286 + 0.162590i
\(808\) 0 0
\(809\) 28.3917 + 39.0778i 0.998199 + 1.37390i 0.926424 + 0.376482i \(0.122866\pi\)
0.0717745 + 0.997421i \(0.477134\pi\)
\(810\) 0 0
\(811\) −24.5513 −0.862114 −0.431057 0.902325i \(-0.641859\pi\)
−0.431057 + 0.902325i \(0.641859\pi\)
\(812\) 0 0
\(813\) −2.33758 7.19434i −0.0819826 0.252317i
\(814\) 0 0
\(815\) −34.4323 5.75930i −1.20611 0.201739i
\(816\) 0 0
\(817\) −3.21432 −0.112455
\(818\) 0 0
\(819\) 57.3693 2.00465
\(820\) 0 0
\(821\) 1.55914 0.0544145 0.0272072 0.999630i \(-0.491339\pi\)
0.0272072 + 0.999630i \(0.491339\pi\)
\(822\) 0 0
\(823\) −22.0230 −0.767672 −0.383836 0.923401i \(-0.625397\pi\)
−0.383836 + 0.923401i \(0.625397\pi\)
\(824\) 0 0
\(825\) 1.80103 + 5.88771i 0.0627039 + 0.204984i
\(826\) 0 0
\(827\) 16.2756 + 50.0911i 0.565957 + 1.74184i 0.665090 + 0.746764i \(0.268393\pi\)
−0.0991322 + 0.995074i \(0.531607\pi\)
\(828\) 0 0
\(829\) 36.6349 1.27238 0.636191 0.771532i \(-0.280509\pi\)
0.636191 + 0.771532i \(0.280509\pi\)
\(830\) 0 0
\(831\) 2.33285 + 3.21090i 0.0809258 + 0.111385i
\(832\) 0 0
\(833\) −9.81830 + 30.2176i −0.340184 + 1.04698i
\(834\) 0 0
\(835\) 6.95147 41.5597i 0.240566 1.43823i
\(836\) 0 0
\(837\) 10.4477 7.59066i 0.361124 0.262372i
\(838\) 0 0
\(839\) 43.5611 14.1539i 1.50390 0.488645i 0.562745 0.826631i \(-0.309745\pi\)
0.941151 + 0.337985i \(0.109745\pi\)
\(840\) 0 0
\(841\) −17.4193 53.6111i −0.600665 1.84866i
\(842\) 0 0
\(843\) 0.628134 + 0.204093i 0.0216341 + 0.00702934i
\(844\) 0 0
\(845\) 28.0638 27.5825i 0.965426 0.948865i
\(846\) 0 0
\(847\) 12.5192 0.430165
\(848\) 0 0
\(849\) 4.52490 6.22800i 0.155294 0.213744i
\(850\) 0 0
\(851\) −3.40212 + 2.47179i −0.116623 + 0.0847317i
\(852\) 0 0
\(853\) 25.4247 + 34.9942i 0.870527 + 1.19818i 0.978956 + 0.204073i \(0.0654180\pi\)
−0.108429 + 0.994104i \(0.534582\pi\)
\(854\) 0 0
\(855\) 3.24380 + 21.6935i 0.110936 + 0.741902i
\(856\) 0 0
\(857\) −2.89622 + 3.98630i −0.0989330 + 0.136170i −0.855613 0.517615i \(-0.826820\pi\)
0.756680 + 0.653785i \(0.226820\pi\)
\(858\) 0 0
\(859\) −7.54929 + 23.2343i −0.257579 + 0.792745i 0.735732 + 0.677273i \(0.236838\pi\)
−0.993311 + 0.115473i \(0.963162\pi\)
\(860\) 0 0
\(861\) −6.06060 + 4.27814i −0.206545 + 0.145799i
\(862\) 0 0
\(863\) −10.8977 3.54089i −0.370963 0.120533i 0.117601 0.993061i \(-0.462479\pi\)
−0.488565 + 0.872528i \(0.662479\pi\)
\(864\) 0 0
\(865\) 29.8905 + 4.99962i 1.01631 + 0.169992i
\(866\) 0 0
\(867\) −1.26845 + 3.90390i −0.0430789 + 0.132583i
\(868\) 0 0
\(869\) 4.93171 3.58310i 0.167297 0.121548i
\(870\) 0 0
\(871\) −29.4786 + 21.4174i −0.998843 + 0.725702i
\(872\) 0 0
\(873\) 17.2878 + 12.5603i 0.585104 + 0.425103i
\(874\) 0 0
\(875\) −39.3794 7.28926i −1.33127 0.246422i
\(876\) 0 0
\(877\) −42.8548 + 13.9244i −1.44710 + 0.470193i −0.924104 0.382140i \(-0.875187\pi\)
−0.523000 + 0.852333i \(0.675187\pi\)
\(878\) 0 0
\(879\) 0.697284 2.14602i 0.0235188 0.0723834i
\(880\) 0 0
\(881\) 12.4494 + 38.3154i 0.419432 + 1.29088i 0.908226 + 0.418479i \(0.137437\pi\)
−0.488795 + 0.872399i \(0.662563\pi\)
\(882\) 0 0
\(883\) −5.49349 16.9072i −0.184871 0.568974i 0.815075 0.579355i \(-0.196696\pi\)
−0.999946 + 0.0103812i \(0.996696\pi\)
\(884\) 0 0
\(885\) −6.34648 3.30316i −0.213335 0.111034i
\(886\) 0 0
\(887\) 45.4460 + 33.0184i 1.52593 + 1.10865i 0.958450 + 0.285261i \(0.0920803\pi\)
0.567477 + 0.823390i \(0.307920\pi\)
\(888\) 0 0
\(889\) 26.2036 + 8.51406i 0.878840 + 0.285552i
\(890\) 0 0
\(891\) 18.0580 + 24.8548i 0.604967 + 0.832666i
\(892\) 0 0
\(893\) 30.6793i 1.02664i
\(894\) 0 0
\(895\) 13.7357 + 13.9754i 0.459133 + 0.467146i
\(896\) 0 0
\(897\) 0.559128 0.769574i 0.0186688 0.0256953i
\(898\) 0 0
\(899\) 62.5763i 2.08704i
\(900\) 0 0
\(901\) −25.7278 −0.857119
\(902\) 0 0
\(903\) 1.09918i 0.0365786i
\(904\) 0 0
\(905\) −15.2681 + 7.61384i −0.507528 + 0.253092i
\(906\) 0 0
\(907\) 7.28420 10.0258i 0.241868 0.332902i −0.670775 0.741661i \(-0.734038\pi\)
0.912642 + 0.408759i \(0.134038\pi\)
\(908\) 0 0
\(909\) −31.8733 + 10.3563i −1.05717 + 0.343496i
\(910\) 0 0
\(911\) 38.8062 1.28571 0.642853 0.765989i \(-0.277750\pi\)
0.642853 + 0.765989i \(0.277750\pi\)
\(912\) 0 0
\(913\) 6.73599 4.89398i 0.222929 0.161967i
\(914\) 0 0
\(915\) −4.75494 + 0.710999i −0.157193 + 0.0235049i
\(916\) 0 0
\(917\) 54.9769 + 39.9431i 1.81550 + 1.31904i
\(918\) 0 0
\(919\) 6.32049 + 8.69940i 0.208494 + 0.286967i 0.900438 0.434984i \(-0.143246\pi\)
−0.691945 + 0.721950i \(0.743246\pi\)
\(920\) 0 0
\(921\) −6.17446 + 2.00620i −0.203455 + 0.0661066i
\(922\) 0 0
\(923\) 5.70884 1.85492i 0.187909 0.0610553i
\(924\) 0 0
\(925\) −32.3909 + 22.6877i −1.06501 + 0.745966i
\(926\) 0 0
\(927\) −4.70047 + 1.52727i −0.154384 + 0.0501623i
\(928\) 0 0
\(929\) 43.2661i 1.41952i 0.704446 + 0.709758i \(0.251196\pi\)
−0.704446 + 0.709758i \(0.748804\pi\)
\(930\) 0 0
\(931\) 11.6118 15.9822i 0.380561 0.523797i
\(932\) 0 0
\(933\) −3.92624 5.40400i −0.128539 0.176919i
\(934\) 0 0
\(935\) −21.4166 + 41.1485i −0.700396 + 1.34570i
\(936\) 0 0
\(937\) −8.90743 + 27.4142i −0.290993 + 0.895584i 0.693545 + 0.720413i \(0.256048\pi\)
−0.984538 + 0.175171i \(0.943952\pi\)
\(938\) 0 0
\(939\) 2.69877 + 1.96077i 0.0880710 + 0.0639873i
\(940\) 0 0
\(941\) 9.00551 27.7161i 0.293571 0.903520i −0.690126 0.723689i \(-0.742445\pi\)
0.983698 0.179831i \(-0.0575550\pi\)
\(942\) 0 0
\(943\) 0.0464620 3.40416i 0.00151301 0.110855i
\(944\) 0 0
\(945\) 15.1049 2.25861i 0.491361 0.0734726i
\(946\) 0 0
\(947\) −24.8016 + 34.1364i −0.805942 + 1.10928i 0.185995 + 0.982551i \(0.440449\pi\)
−0.991937 + 0.126733i \(0.959551\pi\)
\(948\) 0 0
\(949\) −6.62977 2.15414i −0.215211 0.0699264i
\(950\) 0 0
\(951\) −5.90695 + 4.29165i −0.191546 + 0.139166i
\(952\) 0 0
\(953\) −2.11739 2.91433i −0.0685889 0.0944045i 0.773344 0.633986i \(-0.218582\pi\)
−0.841933 + 0.539582i \(0.818582\pi\)
\(954\) 0 0
\(955\) 5.71637 + 0.956146i 0.184977 + 0.0309402i
\(956\) 0 0
\(957\) −11.3777 −0.367788
\(958\) 0 0
\(959\) −0.683590 2.10387i −0.0220743 0.0679376i
\(960\) 0 0
\(961\) 4.59462 14.1408i 0.148213 0.456154i
\(962\) 0 0
\(963\) 34.5422 11.2234i 1.11311 0.361670i
\(964\) 0 0
\(965\) −24.8617 + 24.4353i −0.800327 + 0.786599i
\(966\) 0 0
\(967\) 41.5195 30.1657i 1.33518 0.970063i 0.335570 0.942015i \(-0.391071\pi\)
0.999607 0.0280476i \(-0.00892898\pi\)
\(968\) 0 0
\(969\) 3.50965 4.83061i 0.112746 0.155182i
\(970\) 0 0
\(971\) −51.3827 16.6953i −1.64895 0.535776i −0.670437 0.741966i \(-0.733894\pi\)
−0.978512 + 0.206190i \(0.933894\pi\)
\(972\) 0 0
\(973\) −53.4387 + 38.8255i −1.71317 + 1.24469i
\(974\) 0 0
\(975\) 5.38246 7.14502i 0.172377 0.228824i
\(976\) 0 0
\(977\) −4.81936 14.8325i −0.154185 0.474532i 0.843892 0.536512i \(-0.180259\pi\)
−0.998077 + 0.0619800i \(0.980259\pi\)
\(978\) 0 0
\(979\) 7.98888 + 5.80426i 0.255326 + 0.185505i
\(980\) 0 0
\(981\) 22.8064i 0.728154i
\(982\) 0 0
\(983\) 22.3814i 0.713856i −0.934132 0.356928i \(-0.883824\pi\)
0.934132 0.356928i \(-0.116176\pi\)
\(984\) 0 0
\(985\) −14.1415 + 7.05201i −0.450584 + 0.224696i
\(986\) 0 0
\(987\) −10.4912 −0.333939
\(988\) 0 0
\(989\) −0.408098 0.296501i −0.0129768 0.00942817i
\(990\) 0 0
\(991\) 17.4547 5.67138i 0.554467 0.180157i −0.0183629 0.999831i \(-0.505845\pi\)
0.572830 + 0.819674i \(0.305845\pi\)
\(992\) 0 0
\(993\) 8.56417i 0.271776i
\(994\) 0 0
\(995\) 5.42613 10.4254i 0.172020 0.330508i
\(996\) 0 0
\(997\) −7.85100 + 24.1629i −0.248644 + 0.765246i 0.746372 + 0.665529i \(0.231794\pi\)
−0.995016 + 0.0997174i \(0.968206\pi\)
\(998\) 0 0
\(999\) 8.86455 12.2010i 0.280462 0.386023i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bi.a.189.10 80
5.4 even 2 inner 820.2.bi.a.189.11 yes 80
41.23 even 10 inner 820.2.bi.a.269.11 yes 80
205.64 even 10 inner 820.2.bi.a.269.10 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bi.a.189.10 80 1.1 even 1 trivial
820.2.bi.a.189.11 yes 80 5.4 even 2 inner
820.2.bi.a.269.10 yes 80 205.64 even 10 inner
820.2.bi.a.269.11 yes 80 41.23 even 10 inner