Properties

Label 820.2.bg.b.681.8
Level $820$
Weight $2$
Character 820.681
Analytic conductor $6.548$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(441,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.441"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bg (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 681.8
Character \(\chi\) \(=\) 820.681
Dual form 820.2.bg.b.761.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.43298i q^{3} +(-0.809017 - 0.587785i) q^{5} +(-3.30690 + 1.07448i) q^{7} -8.78535 q^{9} +(3.15743 + 4.34583i) q^{11} +(0.256531 + 0.0833521i) q^{13} +(2.01785 - 2.77734i) q^{15} +(-4.15727 - 5.72199i) q^{17} +(4.35396 - 1.41469i) q^{19} +(-3.68866 - 11.3525i) q^{21} +(-0.610350 + 1.87846i) q^{23} +(0.309017 + 0.951057i) q^{25} -19.8610i q^{27} +(2.22301 - 3.05971i) q^{29} +(-7.35345 + 5.34260i) q^{31} +(-14.9191 + 10.8394i) q^{33} +(3.30690 + 1.07448i) q^{35} +(-0.0353143 - 0.0256574i) q^{37} +(-0.286146 + 0.880667i) q^{39} +(6.14835 + 1.78824i) q^{41} +(0.892376 - 2.74645i) q^{43} +(7.10750 + 5.16390i) q^{45} +(-10.4190 - 3.38535i) q^{47} +(4.11798 - 2.99189i) q^{49} +(19.6435 - 14.2718i) q^{51} +(-2.78930 + 3.83915i) q^{53} -5.37174i q^{55} +(4.85659 + 14.9470i) q^{57} +(-2.38781 + 7.34892i) q^{59} +(-0.864716 - 2.66132i) q^{61} +(29.0523 - 9.43966i) q^{63} +(-0.158545 - 0.218219i) q^{65} +(-4.97098 + 6.84197i) q^{67} +(-6.44873 - 2.09532i) q^{69} +(-0.478354 - 0.658398i) q^{71} -8.15541 q^{73} +(-3.26496 + 1.06085i) q^{75} +(-15.1108 - 10.9786i) q^{77} -9.20912i q^{79} +41.8263 q^{81} +4.16410 q^{83} +7.07277i q^{85} +(10.5039 + 7.63155i) q^{87} +(1.91886 - 0.623477i) q^{89} -0.937884 q^{91} +(-18.3410 - 25.2443i) q^{93} +(-4.35396 - 1.41469i) q^{95} +(-2.52047 + 3.46913i) q^{97} +(-27.7391 - 38.1796i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{5} - 5 q^{7} - 42 q^{9} + 5 q^{11} + 5 q^{13} - 5 q^{17} - 25 q^{19} - 6 q^{21} - 22 q^{23} - 8 q^{25} + 5 q^{29} - 9 q^{31} + 24 q^{33} + 5 q^{35} - 11 q^{37} + 20 q^{39} + 16 q^{41} + 26 q^{43}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.43298i 1.98203i 0.133745 + 0.991016i \(0.457300\pi\)
−0.133745 + 0.991016i \(0.542700\pi\)
\(4\) 0 0
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 0 0
\(7\) −3.30690 + 1.07448i −1.24989 + 0.406114i −0.857882 0.513847i \(-0.828220\pi\)
−0.392010 + 0.919961i \(0.628220\pi\)
\(8\) 0 0
\(9\) −8.78535 −2.92845
\(10\) 0 0
\(11\) 3.15743 + 4.34583i 0.952001 + 1.31032i 0.950633 + 0.310318i \(0.100436\pi\)
0.00136834 + 0.999999i \(0.499564\pi\)
\(12\) 0 0
\(13\) 0.256531 + 0.0833521i 0.0711490 + 0.0231177i 0.344375 0.938832i \(-0.388091\pi\)
−0.273226 + 0.961950i \(0.588091\pi\)
\(14\) 0 0
\(15\) 2.01785 2.77734i 0.521008 0.717106i
\(16\) 0 0
\(17\) −4.15727 5.72199i −1.00829 1.38779i −0.920101 0.391682i \(-0.871893\pi\)
−0.0881848 0.996104i \(-0.528107\pi\)
\(18\) 0 0
\(19\) 4.35396 1.41469i 0.998866 0.324551i 0.236454 0.971643i \(-0.424015\pi\)
0.762413 + 0.647091i \(0.224015\pi\)
\(20\) 0 0
\(21\) −3.68866 11.3525i −0.804931 2.47732i
\(22\) 0 0
\(23\) −0.610350 + 1.87846i −0.127267 + 0.391687i −0.994307 0.106551i \(-0.966019\pi\)
0.867040 + 0.498238i \(0.166019\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) 19.8610i 3.82225i
\(28\) 0 0
\(29\) 2.22301 3.05971i 0.412803 0.568174i −0.551096 0.834442i \(-0.685790\pi\)
0.963899 + 0.266267i \(0.0857903\pi\)
\(30\) 0 0
\(31\) −7.35345 + 5.34260i −1.32072 + 0.959559i −0.320796 + 0.947148i \(0.603950\pi\)
−0.999923 + 0.0124103i \(0.996050\pi\)
\(32\) 0 0
\(33\) −14.9191 + 10.8394i −2.59709 + 1.88690i
\(34\) 0 0
\(35\) 3.30690 + 1.07448i 0.558968 + 0.181620i
\(36\) 0 0
\(37\) −0.0353143 0.0256574i −0.00580564 0.00421805i 0.584879 0.811121i \(-0.301142\pi\)
−0.590684 + 0.806903i \(0.701142\pi\)
\(38\) 0 0
\(39\) −0.286146 + 0.880667i −0.0458200 + 0.141020i
\(40\) 0 0
\(41\) 6.14835 + 1.78824i 0.960211 + 0.279277i
\(42\) 0 0
\(43\) 0.892376 2.74645i 0.136086 0.418830i −0.859671 0.510848i \(-0.829332\pi\)
0.995757 + 0.0920176i \(0.0293316\pi\)
\(44\) 0 0
\(45\) 7.10750 + 5.16390i 1.05952 + 0.769788i
\(46\) 0 0
\(47\) −10.4190 3.38535i −1.51977 0.493805i −0.574063 0.818811i \(-0.694633\pi\)
−0.945712 + 0.325007i \(0.894633\pi\)
\(48\) 0 0
\(49\) 4.11798 2.99189i 0.588283 0.427413i
\(50\) 0 0
\(51\) 19.6435 14.2718i 2.75064 1.99845i
\(52\) 0 0
\(53\) −2.78930 + 3.83915i −0.383140 + 0.527347i −0.956413 0.292017i \(-0.905674\pi\)
0.573273 + 0.819365i \(0.305674\pi\)
\(54\) 0 0
\(55\) 5.37174i 0.724326i
\(56\) 0 0
\(57\) 4.85659 + 14.9470i 0.643271 + 1.97978i
\(58\) 0 0
\(59\) −2.38781 + 7.34892i −0.310866 + 0.956748i 0.666556 + 0.745455i \(0.267768\pi\)
−0.977423 + 0.211294i \(0.932232\pi\)
\(60\) 0 0
\(61\) −0.864716 2.66132i −0.110716 0.340747i 0.880314 0.474392i \(-0.157332\pi\)
−0.991029 + 0.133644i \(0.957332\pi\)
\(62\) 0 0
\(63\) 29.0523 9.43966i 3.66024 1.18929i
\(64\) 0 0
\(65\) −0.158545 0.218219i −0.0196651 0.0270667i
\(66\) 0 0
\(67\) −4.97098 + 6.84197i −0.607302 + 0.835880i −0.996352 0.0853370i \(-0.972803\pi\)
0.389050 + 0.921217i \(0.372803\pi\)
\(68\) 0 0
\(69\) −6.44873 2.09532i −0.776336 0.252247i
\(70\) 0 0
\(71\) −0.478354 0.658398i −0.0567702 0.0781375i 0.779688 0.626168i \(-0.215378\pi\)
−0.836458 + 0.548031i \(0.815378\pi\)
\(72\) 0 0
\(73\) −8.15541 −0.954518 −0.477259 0.878763i \(-0.658370\pi\)
−0.477259 + 0.878763i \(0.658370\pi\)
\(74\) 0 0
\(75\) −3.26496 + 1.06085i −0.377005 + 0.122496i
\(76\) 0 0
\(77\) −15.1108 10.9786i −1.72204 1.25113i
\(78\) 0 0
\(79\) 9.20912i 1.03611i −0.855348 0.518053i \(-0.826657\pi\)
0.855348 0.518053i \(-0.173343\pi\)
\(80\) 0 0
\(81\) 41.8263 4.64736
\(82\) 0 0
\(83\) 4.16410 0.457070 0.228535 0.973536i \(-0.426607\pi\)
0.228535 + 0.973536i \(0.426607\pi\)
\(84\) 0 0
\(85\) 7.07277i 0.767149i
\(86\) 0 0
\(87\) 10.5039 + 7.63155i 1.12614 + 0.818188i
\(88\) 0 0
\(89\) 1.91886 0.623477i 0.203399 0.0660884i −0.205546 0.978648i \(-0.565897\pi\)
0.408945 + 0.912559i \(0.365897\pi\)
\(90\) 0 0
\(91\) −0.937884 −0.0983170
\(92\) 0 0
\(93\) −18.3410 25.2443i −1.90188 2.61771i
\(94\) 0 0
\(95\) −4.35396 1.41469i −0.446707 0.145144i
\(96\) 0 0
\(97\) −2.52047 + 3.46913i −0.255915 + 0.352237i −0.917572 0.397570i \(-0.869854\pi\)
0.661657 + 0.749807i \(0.269854\pi\)
\(98\) 0 0
\(99\) −27.7391 38.1796i −2.78789 3.83720i
\(100\) 0 0
\(101\) −8.50468 + 2.76334i −0.846247 + 0.274962i −0.699873 0.714267i \(-0.746760\pi\)
−0.146374 + 0.989229i \(0.546760\pi\)
\(102\) 0 0
\(103\) −1.16236 3.57739i −0.114531 0.352490i 0.877318 0.479910i \(-0.159331\pi\)
−0.991849 + 0.127419i \(0.959331\pi\)
\(104\) 0 0
\(105\) −3.68866 + 11.3525i −0.359976 + 1.10789i
\(106\) 0 0
\(107\) 4.56297 + 14.0434i 0.441119 + 1.35762i 0.886684 + 0.462375i \(0.153003\pi\)
−0.445565 + 0.895249i \(0.646997\pi\)
\(108\) 0 0
\(109\) 13.0354i 1.24856i 0.781200 + 0.624280i \(0.214608\pi\)
−0.781200 + 0.624280i \(0.785392\pi\)
\(110\) 0 0
\(111\) 0.0880812 0.121233i 0.00836030 0.0115070i
\(112\) 0 0
\(113\) −10.6718 + 7.75350i −1.00392 + 0.729388i −0.962924 0.269771i \(-0.913052\pi\)
−0.0409923 + 0.999159i \(0.513052\pi\)
\(114\) 0 0
\(115\) 1.59792 1.16096i 0.149007 0.108260i
\(116\) 0 0
\(117\) −2.25372 0.732277i −0.208356 0.0676991i
\(118\) 0 0
\(119\) 19.8958 + 14.4552i 1.82385 + 1.32510i
\(120\) 0 0
\(121\) −5.51769 + 16.9817i −0.501608 + 1.54379i
\(122\) 0 0
\(123\) −6.13901 + 21.1072i −0.553536 + 1.90317i
\(124\) 0 0
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) 0 0
\(127\) −9.05689 6.58022i −0.803669 0.583900i 0.108319 0.994116i \(-0.465453\pi\)
−0.911988 + 0.410216i \(0.865453\pi\)
\(128\) 0 0
\(129\) 9.42851 + 3.06351i 0.830134 + 0.269727i
\(130\) 0 0
\(131\) 4.11049 2.98645i 0.359135 0.260927i −0.393556 0.919301i \(-0.628755\pi\)
0.752691 + 0.658374i \(0.228755\pi\)
\(132\) 0 0
\(133\) −12.8781 + 9.35646i −1.11667 + 0.811308i
\(134\) 0 0
\(135\) −11.6740 + 16.0679i −1.00474 + 1.38290i
\(136\) 0 0
\(137\) 3.20307i 0.273657i 0.990595 + 0.136829i \(0.0436909\pi\)
−0.990595 + 0.136829i \(0.956309\pi\)
\(138\) 0 0
\(139\) 2.35384 + 7.24438i 0.199650 + 0.614460i 0.999891 + 0.0147809i \(0.00470508\pi\)
−0.800241 + 0.599679i \(0.795295\pi\)
\(140\) 0 0
\(141\) 11.6219 35.7684i 0.978736 3.01224i
\(142\) 0 0
\(143\) 0.447746 + 1.37802i 0.0374424 + 0.115236i
\(144\) 0 0
\(145\) −3.59691 + 1.16871i −0.298707 + 0.0970558i
\(146\) 0 0
\(147\) 10.2711 + 14.1369i 0.847145 + 1.16600i
\(148\) 0 0
\(149\) −1.57402 + 2.16645i −0.128949 + 0.177483i −0.868610 0.495497i \(-0.834986\pi\)
0.739661 + 0.672980i \(0.234986\pi\)
\(150\) 0 0
\(151\) −9.85419 3.20182i −0.801923 0.260561i −0.120750 0.992683i \(-0.538530\pi\)
−0.681173 + 0.732122i \(0.738530\pi\)
\(152\) 0 0
\(153\) 36.5230 + 50.2697i 2.95271 + 4.06406i
\(154\) 0 0
\(155\) 9.08937 0.730076
\(156\) 0 0
\(157\) 6.21351 2.01889i 0.495892 0.161125i −0.0503846 0.998730i \(-0.516045\pi\)
0.546277 + 0.837605i \(0.316045\pi\)
\(158\) 0 0
\(159\) −13.1797 9.57562i −1.04522 0.759396i
\(160\) 0 0
\(161\) 6.86771i 0.541251i
\(162\) 0 0
\(163\) −6.80919 −0.533337 −0.266668 0.963788i \(-0.585923\pi\)
−0.266668 + 0.963788i \(0.585923\pi\)
\(164\) 0 0
\(165\) 18.4411 1.43564
\(166\) 0 0
\(167\) 12.0378i 0.931511i 0.884913 + 0.465756i \(0.154217\pi\)
−0.884913 + 0.465756i \(0.845783\pi\)
\(168\) 0 0
\(169\) −10.4584 7.59844i −0.804489 0.584496i
\(170\) 0 0
\(171\) −38.2510 + 12.4285i −2.92513 + 0.950432i
\(172\) 0 0
\(173\) 12.9861 0.987318 0.493659 0.869656i \(-0.335659\pi\)
0.493659 + 0.869656i \(0.335659\pi\)
\(174\) 0 0
\(175\) −2.04378 2.81302i −0.154495 0.212644i
\(176\) 0 0
\(177\) −25.2287 8.19730i −1.89631 0.616147i
\(178\) 0 0
\(179\) −8.10112 + 11.1502i −0.605506 + 0.833408i −0.996198 0.0871137i \(-0.972236\pi\)
0.390692 + 0.920521i \(0.372236\pi\)
\(180\) 0 0
\(181\) −0.708556 0.975243i −0.0526665 0.0724893i 0.781871 0.623440i \(-0.214265\pi\)
−0.834538 + 0.550950i \(0.814265\pi\)
\(182\) 0 0
\(183\) 9.13627 2.96855i 0.675372 0.219442i
\(184\) 0 0
\(185\) 0.0134889 + 0.0415145i 0.000991722 + 0.00305221i
\(186\) 0 0
\(187\) 11.7405 36.1336i 0.858551 2.64235i
\(188\) 0 0
\(189\) 21.3402 + 65.6783i 1.55227 + 4.77739i
\(190\) 0 0
\(191\) 15.5006i 1.12158i 0.827957 + 0.560792i \(0.189503\pi\)
−0.827957 + 0.560792i \(0.810497\pi\)
\(192\) 0 0
\(193\) 2.70237 3.71950i 0.194521 0.267735i −0.700604 0.713550i \(-0.747086\pi\)
0.895125 + 0.445815i \(0.147086\pi\)
\(194\) 0 0
\(195\) 0.749140 0.544282i 0.0536470 0.0389769i
\(196\) 0 0
\(197\) −6.71576 + 4.87929i −0.478478 + 0.347635i −0.800736 0.599017i \(-0.795558\pi\)
0.322258 + 0.946652i \(0.395558\pi\)
\(198\) 0 0
\(199\) −8.88934 2.88832i −0.630148 0.204748i −0.0235075 0.999724i \(-0.507483\pi\)
−0.606641 + 0.794976i \(0.707483\pi\)
\(200\) 0 0
\(201\) −23.4883 17.0653i −1.65674 1.20369i
\(202\) 0 0
\(203\) −4.06369 + 12.5067i −0.285215 + 0.877802i
\(204\) 0 0
\(205\) −3.92301 5.06063i −0.273995 0.353450i
\(206\) 0 0
\(207\) 5.36214 16.5030i 0.372694 1.14704i
\(208\) 0 0
\(209\) 19.8953 + 14.4548i 1.37619 + 0.999859i
\(210\) 0 0
\(211\) −12.2972 3.99560i −0.846574 0.275069i −0.146564 0.989201i \(-0.546821\pi\)
−0.700010 + 0.714133i \(0.746821\pi\)
\(212\) 0 0
\(213\) 2.26027 1.64218i 0.154871 0.112520i
\(214\) 0 0
\(215\) −2.33627 + 1.69740i −0.159332 + 0.115762i
\(216\) 0 0
\(217\) 18.5766 25.5686i 1.26107 1.73571i
\(218\) 0 0
\(219\) 27.9973i 1.89188i
\(220\) 0 0
\(221\) −0.589530 1.81439i −0.0396561 0.122049i
\(222\) 0 0
\(223\) 7.46551 22.9765i 0.499928 1.53862i −0.309206 0.950995i \(-0.600063\pi\)
0.809134 0.587624i \(-0.199937\pi\)
\(224\) 0 0
\(225\) −2.71482 8.35536i −0.180988 0.557024i
\(226\) 0 0
\(227\) 12.5602 4.08106i 0.833650 0.270869i 0.139068 0.990283i \(-0.455589\pi\)
0.694582 + 0.719413i \(0.255589\pi\)
\(228\) 0 0
\(229\) −2.11019 2.90443i −0.139445 0.191930i 0.733582 0.679600i \(-0.237847\pi\)
−0.873028 + 0.487670i \(0.837847\pi\)
\(230\) 0 0
\(231\) 37.6895 51.8751i 2.47978 3.41313i
\(232\) 0 0
\(233\) 9.70309 + 3.15273i 0.635671 + 0.206542i 0.609085 0.793105i \(-0.291537\pi\)
0.0265853 + 0.999647i \(0.491537\pi\)
\(234\) 0 0
\(235\) 6.43933 + 8.86297i 0.420055 + 0.578157i
\(236\) 0 0
\(237\) 31.6147 2.05360
\(238\) 0 0
\(239\) −3.81170 + 1.23850i −0.246558 + 0.0801116i −0.429689 0.902977i \(-0.641377\pi\)
0.183131 + 0.983089i \(0.441377\pi\)
\(240\) 0 0
\(241\) −14.9945 10.8941i −0.965881 0.701754i −0.0113719 0.999935i \(-0.503620\pi\)
−0.954509 + 0.298182i \(0.903620\pi\)
\(242\) 0 0
\(243\) 84.0058i 5.38898i
\(244\) 0 0
\(245\) −5.09010 −0.325195
\(246\) 0 0
\(247\) 1.23484 0.0785712
\(248\) 0 0
\(249\) 14.2953i 0.905926i
\(250\) 0 0
\(251\) 15.1951 + 11.0399i 0.959104 + 0.696830i 0.952942 0.303151i \(-0.0980387\pi\)
0.00616145 + 0.999981i \(0.498039\pi\)
\(252\) 0 0
\(253\) −10.0906 + 3.27864i −0.634392 + 0.206127i
\(254\) 0 0
\(255\) −24.2807 −1.52051
\(256\) 0 0
\(257\) 5.99666 + 8.25369i 0.374061 + 0.514851i 0.953999 0.299810i \(-0.0969231\pi\)
−0.579938 + 0.814661i \(0.696923\pi\)
\(258\) 0 0
\(259\) 0.144349 + 0.0469019i 0.00896943 + 0.00291434i
\(260\) 0 0
\(261\) −19.5299 + 26.8806i −1.20887 + 1.66387i
\(262\) 0 0
\(263\) 8.07721 + 11.1173i 0.498062 + 0.685524i 0.981849 0.189662i \(-0.0607392\pi\)
−0.483787 + 0.875186i \(0.660739\pi\)
\(264\) 0 0
\(265\) 4.51319 1.46642i 0.277243 0.0900817i
\(266\) 0 0
\(267\) 2.14038 + 6.58742i 0.130989 + 0.403144i
\(268\) 0 0
\(269\) 2.33377 7.18260i 0.142292 0.437931i −0.854360 0.519681i \(-0.826051\pi\)
0.996653 + 0.0817498i \(0.0260509\pi\)
\(270\) 0 0
\(271\) 2.06623 + 6.35921i 0.125515 + 0.386295i 0.993995 0.109430i \(-0.0349025\pi\)
−0.868480 + 0.495725i \(0.834903\pi\)
\(272\) 0 0
\(273\) 3.21974i 0.194867i
\(274\) 0 0
\(275\) −3.15743 + 4.34583i −0.190400 + 0.262063i
\(276\) 0 0
\(277\) 15.9125 11.5611i 0.956090 0.694640i 0.00385053 0.999993i \(-0.498774\pi\)
0.952239 + 0.305353i \(0.0987743\pi\)
\(278\) 0 0
\(279\) 64.6026 46.9366i 3.86766 2.81002i
\(280\) 0 0
\(281\) 25.1881 + 8.18411i 1.50260 + 0.488223i 0.940774 0.339034i \(-0.110100\pi\)
0.561823 + 0.827258i \(0.310100\pi\)
\(282\) 0 0
\(283\) 3.67079 + 2.66699i 0.218206 + 0.158536i 0.691519 0.722359i \(-0.256942\pi\)
−0.473313 + 0.880894i \(0.656942\pi\)
\(284\) 0 0
\(285\) 4.85659 14.9470i 0.287680 0.885387i
\(286\) 0 0
\(287\) −22.2534 + 0.692712i −1.31358 + 0.0408895i
\(288\) 0 0
\(289\) −10.2050 + 31.4077i −0.600293 + 1.84751i
\(290\) 0 0
\(291\) −11.9095 8.65273i −0.698145 0.507232i
\(292\) 0 0
\(293\) −26.0730 8.47164i −1.52320 0.494919i −0.576519 0.817083i \(-0.695590\pi\)
−0.946684 + 0.322165i \(0.895590\pi\)
\(294\) 0 0
\(295\) 6.25137 4.54188i 0.363969 0.264439i
\(296\) 0 0
\(297\) 86.3124 62.7097i 5.00836 3.63878i
\(298\) 0 0
\(299\) −0.313148 + 0.431011i −0.0181098 + 0.0249260i
\(300\) 0 0
\(301\) 10.0411i 0.578759i
\(302\) 0 0
\(303\) −9.48648 29.1964i −0.544984 1.67729i
\(304\) 0 0
\(305\) −0.864716 + 2.66132i −0.0495135 + 0.152387i
\(306\) 0 0
\(307\) 7.37797 + 22.7071i 0.421083 + 1.29596i 0.906695 + 0.421786i \(0.138597\pi\)
−0.485612 + 0.874174i \(0.661403\pi\)
\(308\) 0 0
\(309\) 12.2811 3.99037i 0.698647 0.227004i
\(310\) 0 0
\(311\) −4.27612 5.88558i −0.242477 0.333740i 0.670382 0.742016i \(-0.266130\pi\)
−0.912859 + 0.408276i \(0.866130\pi\)
\(312\) 0 0
\(313\) −5.70377 + 7.85057i −0.322396 + 0.443740i −0.939197 0.343379i \(-0.888428\pi\)
0.616801 + 0.787119i \(0.288428\pi\)
\(314\) 0 0
\(315\) −29.0523 9.43966i −1.63691 0.531865i
\(316\) 0 0
\(317\) 20.0449 + 27.5894i 1.12583 + 1.54958i 0.795749 + 0.605627i \(0.207077\pi\)
0.330085 + 0.943951i \(0.392923\pi\)
\(318\) 0 0
\(319\) 20.3160 1.13748
\(320\) 0 0
\(321\) −48.2106 + 15.6646i −2.69085 + 0.874312i
\(322\) 0 0
\(323\) −26.1954 19.0321i −1.45755 1.05897i
\(324\) 0 0
\(325\) 0.269733i 0.0149621i
\(326\) 0 0
\(327\) −44.7501 −2.47469
\(328\) 0 0
\(329\) 38.0923 2.10009
\(330\) 0 0
\(331\) 8.03934i 0.441882i 0.975287 + 0.220941i \(0.0709128\pi\)
−0.975287 + 0.220941i \(0.929087\pi\)
\(332\) 0 0
\(333\) 0.310249 + 0.225409i 0.0170015 + 0.0123523i
\(334\) 0 0
\(335\) 8.04322 2.61340i 0.439448 0.142785i
\(336\) 0 0
\(337\) −1.30553 −0.0711166 −0.0355583 0.999368i \(-0.511321\pi\)
−0.0355583 + 0.999368i \(0.511321\pi\)
\(338\) 0 0
\(339\) −26.6176 36.6360i −1.44567 1.98979i
\(340\) 0 0
\(341\) −46.4360 15.0880i −2.51465 0.817060i
\(342\) 0 0
\(343\) 3.90340 5.37257i 0.210764 0.290092i
\(344\) 0 0
\(345\) 3.98553 + 5.48562i 0.214574 + 0.295336i
\(346\) 0 0
\(347\) −1.34198 + 0.436037i −0.0720415 + 0.0234077i −0.344816 0.938670i \(-0.612059\pi\)
0.272775 + 0.962078i \(0.412059\pi\)
\(348\) 0 0
\(349\) 1.27229 + 3.91571i 0.0681042 + 0.209603i 0.979317 0.202334i \(-0.0648525\pi\)
−0.911213 + 0.411937i \(0.864853\pi\)
\(350\) 0 0
\(351\) 1.65545 5.09496i 0.0883616 0.271949i
\(352\) 0 0
\(353\) −2.92220 8.99359i −0.155533 0.478681i 0.842682 0.538412i \(-0.180976\pi\)
−0.998214 + 0.0597313i \(0.980976\pi\)
\(354\) 0 0
\(355\) 0.813825i 0.0431933i
\(356\) 0 0
\(357\) −49.6243 + 68.3020i −2.62640 + 3.61492i
\(358\) 0 0
\(359\) −15.9754 + 11.6068i −0.843150 + 0.612585i −0.923249 0.384202i \(-0.874476\pi\)
0.0800986 + 0.996787i \(0.474476\pi\)
\(360\) 0 0
\(361\) 1.58429 1.15105i 0.0833836 0.0605817i
\(362\) 0 0
\(363\) −58.2978 18.9421i −3.05984 0.994203i
\(364\) 0 0
\(365\) 6.59786 + 4.79363i 0.345348 + 0.250910i
\(366\) 0 0
\(367\) 4.26213 13.1175i 0.222481 0.684727i −0.776056 0.630664i \(-0.782783\pi\)
0.998538 0.0540632i \(-0.0172172\pi\)
\(368\) 0 0
\(369\) −54.0154 15.7104i −2.81193 0.817848i
\(370\) 0 0
\(371\) 5.09887 15.6927i 0.264720 0.814726i
\(372\) 0 0
\(373\) 0.938099 + 0.681569i 0.0485729 + 0.0352903i 0.611807 0.791007i \(-0.290443\pi\)
−0.563234 + 0.826298i \(0.690443\pi\)
\(374\) 0 0
\(375\) 3.26496 + 1.06085i 0.168602 + 0.0547820i
\(376\) 0 0
\(377\) 0.825306 0.599620i 0.0425054 0.0308820i
\(378\) 0 0
\(379\) 5.43231 3.94680i 0.279039 0.202734i −0.439459 0.898263i \(-0.644830\pi\)
0.718498 + 0.695529i \(0.244830\pi\)
\(380\) 0 0
\(381\) 22.5897 31.0921i 1.15731 1.59290i
\(382\) 0 0
\(383\) 32.1532i 1.64295i 0.570243 + 0.821476i \(0.306849\pi\)
−0.570243 + 0.821476i \(0.693151\pi\)
\(384\) 0 0
\(385\) 5.77182 + 17.7638i 0.294159 + 0.905328i
\(386\) 0 0
\(387\) −7.83984 + 24.1285i −0.398521 + 1.22652i
\(388\) 0 0
\(389\) −5.48000 16.8657i −0.277847 0.855125i −0.988452 0.151534i \(-0.951579\pi\)
0.710605 0.703591i \(-0.248421\pi\)
\(390\) 0 0
\(391\) 13.2859 4.31686i 0.671899 0.218313i
\(392\) 0 0
\(393\) 10.2524 + 14.1112i 0.517165 + 0.711817i
\(394\) 0 0
\(395\) −5.41298 + 7.45033i −0.272357 + 0.374867i
\(396\) 0 0
\(397\) 1.78328 + 0.579424i 0.0895004 + 0.0290805i 0.353425 0.935463i \(-0.385017\pi\)
−0.263924 + 0.964543i \(0.585017\pi\)
\(398\) 0 0
\(399\) −32.1205 44.2101i −1.60804 2.21327i
\(400\) 0 0
\(401\) 3.34927 0.167254 0.0836272 0.996497i \(-0.473350\pi\)
0.0836272 + 0.996497i \(0.473350\pi\)
\(402\) 0 0
\(403\) −2.33171 + 0.757618i −0.116151 + 0.0377396i
\(404\) 0 0
\(405\) −33.8382 24.5849i −1.68143 1.22163i
\(406\) 0 0
\(407\) 0.234481i 0.0116228i
\(408\) 0 0
\(409\) 20.7198 1.02453 0.512264 0.858828i \(-0.328807\pi\)
0.512264 + 0.858828i \(0.328807\pi\)
\(410\) 0 0
\(411\) −10.9961 −0.542397
\(412\) 0 0
\(413\) 26.8678i 1.32208i
\(414\) 0 0
\(415\) −3.36883 2.44760i −0.165369 0.120148i
\(416\) 0 0
\(417\) −24.8698 + 8.08069i −1.21788 + 0.395713i
\(418\) 0 0
\(419\) 22.3937 1.09400 0.547001 0.837132i \(-0.315769\pi\)
0.547001 + 0.837132i \(0.315769\pi\)
\(420\) 0 0
\(421\) −15.0638 20.7336i −0.734166 1.01049i −0.998933 0.0461800i \(-0.985295\pi\)
0.264768 0.964312i \(-0.414705\pi\)
\(422\) 0 0
\(423\) 91.5350 + 29.7415i 4.45058 + 1.44608i
\(424\) 0 0
\(425\) 4.15727 5.72199i 0.201657 0.277557i
\(426\) 0 0
\(427\) 5.71906 + 7.87162i 0.276765 + 0.380934i
\(428\) 0 0
\(429\) −4.73072 + 1.53710i −0.228401 + 0.0742120i
\(430\) 0 0
\(431\) −3.88103 11.9446i −0.186943 0.575351i 0.813034 0.582217i \(-0.197815\pi\)
−0.999976 + 0.00686584i \(0.997815\pi\)
\(432\) 0 0
\(433\) 7.14245 21.9822i 0.343244 1.05640i −0.619273 0.785176i \(-0.712572\pi\)
0.962517 0.271221i \(-0.0874276\pi\)
\(434\) 0 0
\(435\) −4.01215 12.3481i −0.192368 0.592047i
\(436\) 0 0
\(437\) 9.04221i 0.432548i
\(438\) 0 0
\(439\) 23.4426 32.2659i 1.11885 1.53997i 0.311166 0.950356i \(-0.399280\pi\)
0.807686 0.589612i \(-0.200720\pi\)
\(440\) 0 0
\(441\) −36.1779 + 26.2848i −1.72276 + 1.25166i
\(442\) 0 0
\(443\) 6.63156 4.81811i 0.315075 0.228915i −0.418996 0.907988i \(-0.637618\pi\)
0.734071 + 0.679073i \(0.237618\pi\)
\(444\) 0 0
\(445\) −1.91886 0.623477i −0.0909629 0.0295556i
\(446\) 0 0
\(447\) −7.43738 5.40357i −0.351776 0.255580i
\(448\) 0 0
\(449\) 3.03025 9.32614i 0.143006 0.440128i −0.853743 0.520695i \(-0.825673\pi\)
0.996749 + 0.0805668i \(0.0256730\pi\)
\(450\) 0 0
\(451\) 11.6416 + 32.3659i 0.548180 + 1.52405i
\(452\) 0 0
\(453\) 10.9918 33.8292i 0.516439 1.58944i
\(454\) 0 0
\(455\) 0.758764 + 0.551275i 0.0355714 + 0.0258441i
\(456\) 0 0
\(457\) −32.4871 10.5557i −1.51968 0.493774i −0.573995 0.818859i \(-0.694607\pi\)
−0.945685 + 0.325084i \(0.894607\pi\)
\(458\) 0 0
\(459\) −113.644 + 82.5674i −5.30446 + 3.85392i
\(460\) 0 0
\(461\) −22.8921 + 16.6321i −1.06619 + 0.774632i −0.975224 0.221222i \(-0.928996\pi\)
−0.0909663 + 0.995854i \(0.528996\pi\)
\(462\) 0 0
\(463\) −13.4318 + 18.4873i −0.624231 + 0.859180i −0.997652 0.0684820i \(-0.978184\pi\)
0.373422 + 0.927662i \(0.378184\pi\)
\(464\) 0 0
\(465\) 31.2036i 1.44703i
\(466\) 0 0
\(467\) 11.2362 + 34.5816i 0.519951 + 1.60025i 0.774089 + 0.633077i \(0.218208\pi\)
−0.254137 + 0.967168i \(0.581792\pi\)
\(468\) 0 0
\(469\) 9.08701 27.9669i 0.419599 1.29139i
\(470\) 0 0
\(471\) 6.93081 + 21.3309i 0.319355 + 0.982874i
\(472\) 0 0
\(473\) 14.7532 4.79362i 0.678354 0.220411i
\(474\) 0 0
\(475\) 2.69089 + 3.70370i 0.123467 + 0.169937i
\(476\) 0 0
\(477\) 24.5050 33.7282i 1.12201 1.54431i
\(478\) 0 0
\(479\) 19.0315 + 6.18370i 0.869570 + 0.282541i 0.709620 0.704585i \(-0.248867\pi\)
0.159950 + 0.987125i \(0.448867\pi\)
\(480\) 0 0
\(481\) −0.00692064 0.00952545i −0.000315554 0.000434323i
\(482\) 0 0
\(483\) 23.5767 1.07278
\(484\) 0 0
\(485\) 4.07821 1.32509i 0.185182 0.0601693i
\(486\) 0 0
\(487\) 23.0286 + 16.7313i 1.04353 + 0.758166i 0.970971 0.239198i \(-0.0768845\pi\)
0.0725558 + 0.997364i \(0.476884\pi\)
\(488\) 0 0
\(489\) 23.3758i 1.05709i
\(490\) 0 0
\(491\) −7.23252 −0.326399 −0.163200 0.986593i \(-0.552181\pi\)
−0.163200 + 0.986593i \(0.552181\pi\)
\(492\) 0 0
\(493\) −26.7493 −1.20473
\(494\) 0 0
\(495\) 47.1926i 2.12115i
\(496\) 0 0
\(497\) 2.28930 + 1.66328i 0.102689 + 0.0746082i
\(498\) 0 0
\(499\) 19.1472 6.22129i 0.857145 0.278503i 0.152709 0.988271i \(-0.451200\pi\)
0.704436 + 0.709768i \(0.251200\pi\)
\(500\) 0 0
\(501\) −41.3255 −1.84629
\(502\) 0 0
\(503\) 1.14294 + 1.57312i 0.0509611 + 0.0701419i 0.833737 0.552162i \(-0.186197\pi\)
−0.782776 + 0.622304i \(0.786197\pi\)
\(504\) 0 0
\(505\) 8.50468 + 2.76334i 0.378453 + 0.122967i
\(506\) 0 0
\(507\) 26.0853 35.9033i 1.15849 1.59452i
\(508\) 0 0
\(509\) −17.4481 24.0153i −0.773374 1.06446i −0.995982 0.0895500i \(-0.971457\pi\)
0.222608 0.974908i \(-0.428543\pi\)
\(510\) 0 0
\(511\) 26.9691 8.76280i 1.19304 0.387643i
\(512\) 0 0
\(513\) −28.0971 86.4739i −1.24052 3.81791i
\(514\) 0 0
\(515\) −1.16236 + 3.57739i −0.0512198 + 0.157638i
\(516\) 0 0
\(517\) −18.1852 55.9684i −0.799786 2.46149i
\(518\) 0 0
\(519\) 44.5811i 1.95690i
\(520\) 0 0
\(521\) 10.4626 14.4006i 0.458377 0.630901i −0.515795 0.856712i \(-0.672503\pi\)
0.974171 + 0.225811i \(0.0725032\pi\)
\(522\) 0 0
\(523\) −9.20784 + 6.68989i −0.402631 + 0.292528i −0.770612 0.637305i \(-0.780049\pi\)
0.367981 + 0.929833i \(0.380049\pi\)
\(524\) 0 0
\(525\) 9.65704 7.01625i 0.421468 0.306214i
\(526\) 0 0
\(527\) 61.1405 + 19.8658i 2.66332 + 0.865366i
\(528\) 0 0
\(529\) 15.4513 + 11.2260i 0.671795 + 0.488088i
\(530\) 0 0
\(531\) 20.9777 64.5628i 0.910356 2.80179i
\(532\) 0 0
\(533\) 1.42819 + 0.971219i 0.0618618 + 0.0420682i
\(534\) 0 0
\(535\) 4.56297 14.0434i 0.197274 0.607148i
\(536\) 0 0
\(537\) −38.2785 27.8110i −1.65184 1.20013i
\(538\) 0 0
\(539\) 26.0045 + 8.44937i 1.12009 + 0.363940i
\(540\) 0 0
\(541\) 2.09947 1.52535i 0.0902632 0.0655801i −0.541738 0.840547i \(-0.682234\pi\)
0.632002 + 0.774967i \(0.282234\pi\)
\(542\) 0 0
\(543\) 3.34799 2.43246i 0.143676 0.104387i
\(544\) 0 0
\(545\) 7.66199 10.5458i 0.328204 0.451734i
\(546\) 0 0
\(547\) 16.6721i 0.712848i −0.934324 0.356424i \(-0.883996\pi\)
0.934324 0.356424i \(-0.116004\pi\)
\(548\) 0 0
\(549\) 7.59683 + 23.3806i 0.324225 + 0.997862i
\(550\) 0 0
\(551\) 5.35036 16.4667i 0.227933 0.701506i
\(552\) 0 0
\(553\) 9.89499 + 30.4536i 0.420778 + 1.29502i
\(554\) 0 0
\(555\) −0.142518 + 0.0463070i −0.00604957 + 0.00196562i
\(556\) 0 0
\(557\) 5.14459 + 7.08092i 0.217983 + 0.300028i 0.903979 0.427578i \(-0.140633\pi\)
−0.685995 + 0.727606i \(0.740633\pi\)
\(558\) 0 0
\(559\) 0.457845 0.630170i 0.0193648 0.0266533i
\(560\) 0 0
\(561\) 124.046 + 40.3049i 5.23722 + 1.70167i
\(562\) 0 0
\(563\) −14.1083 19.4183i −0.594592 0.818386i 0.400608 0.916250i \(-0.368799\pi\)
−0.995200 + 0.0978641i \(0.968799\pi\)
\(564\) 0 0
\(565\) 13.1910 0.554952
\(566\) 0 0
\(567\) −138.315 + 44.9414i −5.80870 + 1.88736i
\(568\) 0 0
\(569\) 14.5857 + 10.5971i 0.611465 + 0.444256i 0.849930 0.526896i \(-0.176644\pi\)
−0.238465 + 0.971151i \(0.576644\pi\)
\(570\) 0 0
\(571\) 21.4414i 0.897294i −0.893709 0.448647i \(-0.851906\pi\)
0.893709 0.448647i \(-0.148094\pi\)
\(572\) 0 0
\(573\) −53.2132 −2.22302
\(574\) 0 0
\(575\) −1.97513 −0.0823688
\(576\) 0 0
\(577\) 2.68089i 0.111607i −0.998442 0.0558035i \(-0.982228\pi\)
0.998442 0.0558035i \(-0.0177720\pi\)
\(578\) 0 0
\(579\) 12.7690 + 9.27719i 0.530660 + 0.385547i
\(580\) 0 0
\(581\) −13.7703 + 4.47423i −0.571287 + 0.185622i
\(582\) 0 0
\(583\) −25.4913 −1.05574
\(584\) 0 0
\(585\) 1.39287 + 1.91713i 0.0575883 + 0.0792634i
\(586\) 0 0
\(587\) 13.9708 + 4.53940i 0.576638 + 0.187361i 0.582794 0.812620i \(-0.301960\pi\)
−0.00615591 + 0.999981i \(0.501960\pi\)
\(588\) 0 0
\(589\) −24.4585 + 33.6643i −1.00780 + 1.38711i
\(590\) 0 0
\(591\) −16.7505 23.0551i −0.689023 0.948359i
\(592\) 0 0
\(593\) 6.71884 2.18308i 0.275910 0.0896485i −0.167794 0.985822i \(-0.553664\pi\)
0.443704 + 0.896174i \(0.353664\pi\)
\(594\) 0 0
\(595\) −7.59953 23.3889i −0.311550 0.958853i
\(596\) 0 0
\(597\) 9.91554 30.5169i 0.405816 1.24897i
\(598\) 0 0
\(599\) −2.71734 8.36310i −0.111027 0.341707i 0.880070 0.474843i \(-0.157495\pi\)
−0.991098 + 0.133136i \(0.957495\pi\)
\(600\) 0 0
\(601\) 18.1276i 0.739439i −0.929143 0.369720i \(-0.879454\pi\)
0.929143 0.369720i \(-0.120546\pi\)
\(602\) 0 0
\(603\) 43.6718 60.1091i 1.77845 2.44783i
\(604\) 0 0
\(605\) 14.4455 10.4953i 0.587293 0.426693i
\(606\) 0 0
\(607\) −2.62544 + 1.90749i −0.106563 + 0.0774228i −0.639791 0.768549i \(-0.720979\pi\)
0.533227 + 0.845972i \(0.320979\pi\)
\(608\) 0 0
\(609\) −42.9354 13.9506i −1.73983 0.565305i
\(610\) 0 0
\(611\) −2.39064 1.73690i −0.0967148 0.0702674i
\(612\) 0 0
\(613\) −8.31691 + 25.5968i −0.335917 + 1.03385i 0.630352 + 0.776309i \(0.282911\pi\)
−0.966269 + 0.257536i \(0.917089\pi\)
\(614\) 0 0
\(615\) 17.3730 13.4676i 0.700548 0.543067i
\(616\) 0 0
\(617\) 7.01072 21.5768i 0.282241 0.868649i −0.704971 0.709236i \(-0.749040\pi\)
0.987212 0.159412i \(-0.0509600\pi\)
\(618\) 0 0
\(619\) 32.5655 + 23.6602i 1.30892 + 0.950984i 1.00000 0.000104725i \(-3.33350e-5\pi\)
0.308917 + 0.951089i \(0.400033\pi\)
\(620\) 0 0
\(621\) 37.3081 + 12.1222i 1.49712 + 0.486445i
\(622\) 0 0
\(623\) −5.67559 + 4.12355i −0.227388 + 0.165207i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) −49.6230 + 68.3002i −1.98175 + 2.72765i
\(628\) 0 0
\(629\) 0.308733i 0.0123100i
\(630\) 0 0
\(631\) 11.1467 + 34.3060i 0.443743 + 1.36570i 0.883857 + 0.467758i \(0.154938\pi\)
−0.440114 + 0.897942i \(0.645062\pi\)
\(632\) 0 0
\(633\) 13.7168 42.2160i 0.545195 1.67794i
\(634\) 0 0
\(635\) 3.45942 + 10.6470i 0.137283 + 0.422514i
\(636\) 0 0
\(637\) 1.30577 0.424271i 0.0517366 0.0168102i
\(638\) 0 0
\(639\) 4.20251 + 5.78426i 0.166249 + 0.228822i
\(640\) 0 0
\(641\) −20.1874 + 27.7856i −0.797355 + 1.09747i 0.195798 + 0.980644i \(0.437270\pi\)
−0.993153 + 0.116821i \(0.962730\pi\)
\(642\) 0 0
\(643\) 9.76313 + 3.17223i 0.385020 + 0.125101i 0.495130 0.868819i \(-0.335120\pi\)
−0.110110 + 0.993919i \(0.535120\pi\)
\(644\) 0 0
\(645\) −5.82714 8.02037i −0.229443 0.315802i
\(646\) 0 0
\(647\) −8.16437 −0.320975 −0.160487 0.987038i \(-0.551307\pi\)
−0.160487 + 0.987038i \(0.551307\pi\)
\(648\) 0 0
\(649\) −39.4765 + 12.8267i −1.54959 + 0.503492i
\(650\) 0 0
\(651\) 87.7763 + 63.7733i 3.44023 + 2.49947i
\(652\) 0 0
\(653\) 17.8885i 0.700030i 0.936744 + 0.350015i \(0.113824\pi\)
−0.936744 + 0.350015i \(0.886176\pi\)
\(654\) 0 0
\(655\) −5.08084 −0.198525
\(656\) 0 0
\(657\) 71.6481 2.79526
\(658\) 0 0
\(659\) 19.7388i 0.768914i −0.923143 0.384457i \(-0.874389\pi\)
0.923143 0.384457i \(-0.125611\pi\)
\(660\) 0 0
\(661\) −4.74924 3.45052i −0.184724 0.134210i 0.491580 0.870832i \(-0.336419\pi\)
−0.676304 + 0.736623i \(0.736419\pi\)
\(662\) 0 0
\(663\) 6.22875 2.02384i 0.241905 0.0785996i
\(664\) 0 0
\(665\) 15.9182 0.617280
\(666\) 0 0
\(667\) 4.39075 + 6.04335i 0.170010 + 0.233999i
\(668\) 0 0
\(669\) 78.8778 + 25.6290i 3.04959 + 0.990873i
\(670\) 0 0
\(671\) 8.83538 12.1609i 0.341086 0.469464i
\(672\) 0 0
\(673\) −23.4764 32.3125i −0.904949 1.24555i −0.968862 0.247599i \(-0.920358\pi\)
0.0639139 0.997955i \(-0.479642\pi\)
\(674\) 0 0
\(675\) 18.8889 6.13738i 0.727035 0.236228i
\(676\) 0 0
\(677\) −1.55145 4.77486i −0.0596269 0.183513i 0.916806 0.399332i \(-0.130758\pi\)
−0.976433 + 0.215819i \(0.930758\pi\)
\(678\) 0 0
\(679\) 4.60745 14.1803i 0.176818 0.544189i
\(680\) 0 0
\(681\) 14.0102 + 43.1189i 0.536872 + 1.65232i
\(682\) 0 0
\(683\) 30.2311i 1.15676i 0.815767 + 0.578381i \(0.196315\pi\)
−0.815767 + 0.578381i \(0.803685\pi\)
\(684\) 0 0
\(685\) 1.88272 2.59134i 0.0719350 0.0990101i
\(686\) 0 0
\(687\) 9.97085 7.24425i 0.380412 0.276385i
\(688\) 0 0
\(689\) −1.03554 + 0.752367i −0.0394511 + 0.0286629i
\(690\) 0 0
\(691\) −45.3081 14.7215i −1.72360 0.560032i −0.731101 0.682269i \(-0.760993\pi\)
−0.992501 + 0.122237i \(0.960993\pi\)
\(692\) 0 0
\(693\) 132.754 + 96.4512i 5.04290 + 3.66388i
\(694\) 0 0
\(695\) 2.35384 7.24438i 0.0892863 0.274795i
\(696\) 0 0
\(697\) −15.3280 42.6150i −0.580590 1.61416i
\(698\) 0 0
\(699\) −10.8232 + 33.3105i −0.409373 + 1.25992i
\(700\) 0 0
\(701\) 32.4087 + 23.5463i 1.22406 + 0.889331i 0.996431 0.0844166i \(-0.0269027\pi\)
0.227629 + 0.973748i \(0.426903\pi\)
\(702\) 0 0
\(703\) −0.190054 0.0617524i −0.00716803 0.00232904i
\(704\) 0 0
\(705\) −30.4264 + 22.1061i −1.14592 + 0.832563i
\(706\) 0 0
\(707\) 25.1550 18.2762i 0.946051 0.687346i
\(708\) 0 0
\(709\) −13.1869 + 18.1502i −0.495245 + 0.681646i −0.981345 0.192257i \(-0.938419\pi\)
0.486100 + 0.873903i \(0.338419\pi\)
\(710\) 0 0
\(711\) 80.9053i 3.03419i
\(712\) 0 0
\(713\) −5.54770 17.0741i −0.207763 0.639428i
\(714\) 0 0
\(715\) 0.447746 1.37802i 0.0167448 0.0515350i
\(716\) 0 0
\(717\) −4.25173 13.0855i −0.158784 0.488686i
\(718\) 0 0
\(719\) 19.5530 6.35315i 0.729203 0.236932i 0.0791942 0.996859i \(-0.474765\pi\)
0.650009 + 0.759927i \(0.274765\pi\)
\(720\) 0 0
\(721\) 7.68764 + 10.5811i 0.286303 + 0.394062i
\(722\) 0 0
\(723\) 37.3994 51.4758i 1.39090 1.91441i
\(724\) 0 0
\(725\) 3.59691 + 1.16871i 0.133586 + 0.0434047i
\(726\) 0 0
\(727\) −23.4523 32.2794i −0.869799 1.19718i −0.979143 0.203172i \(-0.934875\pi\)
0.109344 0.994004i \(-0.465125\pi\)
\(728\) 0 0
\(729\) −162.911 −6.03376
\(730\) 0 0
\(731\) −19.4250 + 6.31157i −0.718460 + 0.233442i
\(732\) 0 0
\(733\) 19.4857 + 14.1572i 0.719720 + 0.522907i 0.886295 0.463122i \(-0.153271\pi\)
−0.166575 + 0.986029i \(0.553271\pi\)
\(734\) 0 0
\(735\) 17.4742i 0.644546i
\(736\) 0 0
\(737\) −45.4296 −1.67342
\(738\) 0 0
\(739\) 3.57909 0.131659 0.0658294 0.997831i \(-0.479031\pi\)
0.0658294 + 0.997831i \(0.479031\pi\)
\(740\) 0 0
\(741\) 4.23919i 0.155731i
\(742\) 0 0
\(743\) 31.0620 + 22.5679i 1.13956 + 0.827935i 0.987057 0.160368i \(-0.0512682\pi\)
0.152498 + 0.988304i \(0.451268\pi\)
\(744\) 0 0
\(745\) 2.54681 0.827510i 0.0933081 0.0303176i
\(746\) 0 0
\(747\) −36.5831 −1.33850
\(748\) 0 0
\(749\) −30.1786 41.5373i −1.10270 1.51774i
\(750\) 0 0
\(751\) −14.4303 4.68869i −0.526569 0.171093i 0.0336553 0.999433i \(-0.489285\pi\)
−0.560225 + 0.828341i \(0.689285\pi\)
\(752\) 0 0
\(753\) −37.8996 + 52.1643i −1.38114 + 1.90097i
\(754\) 0 0
\(755\) 6.09023 + 8.38248i 0.221646 + 0.305070i
\(756\) 0 0
\(757\) −24.6194 + 7.99934i −0.894809 + 0.290741i −0.720093 0.693878i \(-0.755901\pi\)
−0.174716 + 0.984619i \(0.555901\pi\)
\(758\) 0 0
\(759\) −11.2555 34.6409i −0.408549 1.25739i
\(760\) 0 0
\(761\) 0.438199 1.34864i 0.0158847 0.0488881i −0.942800 0.333359i \(-0.891818\pi\)
0.958685 + 0.284471i \(0.0918179\pi\)
\(762\) 0 0
\(763\) −14.0062 43.1067i −0.507059 1.56057i
\(764\) 0 0
\(765\) 62.1367i 2.24656i
\(766\) 0 0
\(767\) −1.22510 + 1.68620i −0.0442357 + 0.0608852i
\(768\) 0 0
\(769\) −2.57470 + 1.87063i −0.0928460 + 0.0674566i −0.633240 0.773956i \(-0.718275\pi\)
0.540394 + 0.841412i \(0.318275\pi\)
\(770\) 0 0
\(771\) −28.3348 + 20.5864i −1.02045 + 0.741401i
\(772\) 0 0
\(773\) −10.9393 3.55440i −0.393459 0.127843i 0.105604 0.994408i \(-0.466322\pi\)
−0.499063 + 0.866566i \(0.666322\pi\)
\(774\) 0 0
\(775\) −7.35345 5.34260i −0.264144 0.191912i
\(776\) 0 0
\(777\) −0.161013 + 0.495548i −0.00577632 + 0.0177777i
\(778\) 0 0
\(779\) 29.2995 0.912044i 1.04976 0.0326774i
\(780\) 0 0
\(781\) 1.35092 4.15769i 0.0483396 0.148774i
\(782\) 0 0
\(783\) −60.7689 44.1512i −2.17170 1.57783i
\(784\) 0 0
\(785\) −6.21351 2.01889i −0.221770 0.0720573i
\(786\) 0 0
\(787\) −27.3143 + 19.8450i −0.973650 + 0.707398i −0.956281 0.292451i \(-0.905529\pi\)
−0.0173698 + 0.999849i \(0.505529\pi\)
\(788\) 0 0
\(789\) −38.1656 + 27.7289i −1.35873 + 0.987175i
\(790\) 0 0
\(791\) 26.9596 37.1067i 0.958572 1.31936i
\(792\) 0 0
\(793\) 0.754789i 0.0268033i
\(794\) 0 0
\(795\) 5.03420 + 15.4937i 0.178545 + 0.549504i
\(796\) 0 0
\(797\) −9.86373 + 30.3575i −0.349391 + 1.07532i 0.609799 + 0.792556i \(0.291250\pi\)
−0.959191 + 0.282760i \(0.908750\pi\)
\(798\) 0 0
\(799\) 23.9438 + 73.6915i 0.847071 + 2.60702i
\(800\) 0 0
\(801\) −16.8579 + 5.47746i −0.595644 + 0.193537i
\(802\) 0 0
\(803\) −25.7501 35.4420i −0.908702 1.25072i
\(804\) 0 0
\(805\) −4.03674 + 5.55609i −0.142276 + 0.195826i
\(806\) 0 0
\(807\) 24.6577 + 8.01178i 0.867993 + 0.282028i
\(808\) 0 0
\(809\) −3.95238 5.43998i −0.138958 0.191260i 0.733866 0.679294i \(-0.237714\pi\)
−0.872824 + 0.488035i \(0.837714\pi\)
\(810\) 0 0
\(811\) −2.59100 −0.0909822 −0.0454911 0.998965i \(-0.514485\pi\)
−0.0454911 + 0.998965i \(0.514485\pi\)
\(812\) 0 0
\(813\) −21.8310 + 7.09334i −0.765648 + 0.248774i
\(814\) 0 0
\(815\) 5.50875 + 4.00234i 0.192963 + 0.140196i
\(816\) 0 0
\(817\) 13.2204i 0.462522i
\(818\) 0 0
\(819\) 8.23964 0.287916
\(820\) 0 0
\(821\) 22.2207 0.775508 0.387754 0.921763i \(-0.373251\pi\)
0.387754 + 0.921763i \(0.373251\pi\)
\(822\) 0 0
\(823\) 44.9090i 1.56543i 0.622381 + 0.782714i \(0.286165\pi\)
−0.622381 + 0.782714i \(0.713835\pi\)
\(824\) 0 0
\(825\) −14.9191 10.8394i −0.519418 0.377379i
\(826\) 0 0
\(827\) 19.5226 6.34329i 0.678869 0.220578i 0.0507686 0.998710i \(-0.483833\pi\)
0.628100 + 0.778133i \(0.283833\pi\)
\(828\) 0 0
\(829\) 4.20342 0.145991 0.0729955 0.997332i \(-0.476744\pi\)
0.0729955 + 0.997332i \(0.476744\pi\)
\(830\) 0 0
\(831\) 39.6891 + 54.6273i 1.37680 + 1.89500i
\(832\) 0 0
\(833\) −34.2391 11.1250i −1.18631 0.385457i
\(834\) 0 0
\(835\) 7.07563 9.73877i 0.244862 0.337024i
\(836\) 0 0
\(837\) 106.109 + 146.047i 3.66767 + 5.04811i
\(838\) 0 0
\(839\) −41.5876 + 13.5126i −1.43576 + 0.466508i −0.920574 0.390568i \(-0.872279\pi\)
−0.515190 + 0.857076i \(0.672279\pi\)
\(840\) 0 0
\(841\) 4.54143 + 13.9771i 0.156601 + 0.481968i
\(842\) 0 0
\(843\) −28.0959 + 86.4703i −0.967674 + 2.97819i
\(844\) 0 0
\(845\) 3.99474 + 12.2945i 0.137423 + 0.422945i
\(846\) 0 0
\(847\) 62.0854i 2.13328i
\(848\) 0 0
\(849\) −9.15571 + 12.6018i −0.314223 + 0.432491i
\(850\) 0 0
\(851\) 0.0697506 0.0506768i 0.00239102 0.00173718i
\(852\) 0 0
\(853\) 31.7524 23.0694i 1.08718 0.789883i 0.108259 0.994123i \(-0.465472\pi\)
0.978921 + 0.204240i \(0.0654723\pi\)
\(854\) 0 0
\(855\) 38.2510 + 12.4285i 1.30816 + 0.425046i
\(856\) 0 0
\(857\) −10.8884 7.91085i −0.371939 0.270230i 0.386075 0.922467i \(-0.373830\pi\)
−0.758015 + 0.652238i \(0.773830\pi\)
\(858\) 0 0
\(859\) 4.47937 13.7861i 0.152834 0.470375i −0.845101 0.534607i \(-0.820460\pi\)
0.997935 + 0.0642317i \(0.0204597\pi\)
\(860\) 0 0
\(861\) −2.37807 76.3955i −0.0810443 2.60355i
\(862\) 0 0
\(863\) 14.0546 43.2557i 0.478425 1.47244i −0.362858 0.931844i \(-0.618199\pi\)
0.841283 0.540595i \(-0.181801\pi\)
\(864\) 0 0
\(865\) −10.5060 7.63306i −0.357215 0.259532i
\(866\) 0 0
\(867\) −107.822 35.0335i −3.66183 1.18980i
\(868\) 0 0
\(869\) 40.0213 29.0771i 1.35763 0.986375i
\(870\) 0 0
\(871\) −1.84551 + 1.34084i −0.0625326 + 0.0454326i
\(872\) 0 0
\(873\) 22.1432 30.4775i 0.749435 1.03151i
\(874\) 0 0
\(875\) 3.47708i 0.117547i
\(876\) 0 0
\(877\) 6.23618 + 19.1930i 0.210581 + 0.648101i 0.999438 + 0.0335246i \(0.0106732\pi\)
−0.788857 + 0.614577i \(0.789327\pi\)
\(878\) 0 0
\(879\) 29.0830 89.5082i 0.980944 3.01904i
\(880\) 0 0
\(881\) 15.7860 + 48.5842i 0.531843 + 1.63684i 0.750373 + 0.661014i \(0.229874\pi\)
−0.218531 + 0.975830i \(0.570126\pi\)
\(882\) 0 0
\(883\) −28.1342 + 9.14135i −0.946791 + 0.307631i −0.741411 0.671051i \(-0.765843\pi\)
−0.205380 + 0.978682i \(0.565843\pi\)
\(884\) 0 0
\(885\) 15.5922 + 21.4608i 0.524126 + 0.721397i
\(886\) 0 0
\(887\) −28.3643 + 39.0400i −0.952378 + 1.31084i −0.00191555 + 0.999998i \(0.500610\pi\)
−0.950463 + 0.310838i \(0.899390\pi\)
\(888\) 0 0
\(889\) 37.0205 + 12.0287i 1.24163 + 0.403430i
\(890\) 0 0
\(891\) 132.064 + 181.770i 4.42430 + 6.08952i
\(892\) 0 0
\(893\) −50.1533 −1.67832
\(894\) 0 0
\(895\) 13.1079 4.25901i 0.438148 0.142363i
\(896\) 0 0
\(897\) −1.47965 1.07503i −0.0494042 0.0358942i
\(898\) 0 0
\(899\) 34.3761i 1.14651i
\(900\) 0 0
\(901\) 33.5634 1.11816
\(902\) 0 0
\(903\) −34.4708 −1.14712
\(904\) 0 0
\(905\) 1.20547i 0.0400711i
\(906\) 0 0
\(907\) −1.08309 0.786913i −0.0359635 0.0261290i 0.569658 0.821882i \(-0.307076\pi\)
−0.605622 + 0.795753i \(0.707076\pi\)
\(908\) 0 0
\(909\) 74.7165 24.2769i 2.47819 0.805213i
\(910\) 0 0
\(911\) −47.0315 −1.55822 −0.779112 0.626885i \(-0.784330\pi\)
−0.779112 + 0.626885i \(0.784330\pi\)
\(912\) 0 0
\(913\) 13.1479 + 18.0965i 0.435131 + 0.598906i
\(914\) 0 0
\(915\) −9.13627 2.96855i −0.302036 0.0981373i
\(916\) 0 0
\(917\) −10.3841 + 14.2925i −0.342914 + 0.471980i
\(918\) 0 0
\(919\) 27.3000 + 37.5752i 0.900543 + 1.23949i 0.970295 + 0.241927i \(0.0777793\pi\)
−0.0697517 + 0.997564i \(0.522221\pi\)
\(920\) 0 0
\(921\) −77.9529 + 25.3284i −2.56863 + 0.834600i
\(922\) 0 0
\(923\) −0.0678340 0.208772i −0.00223278 0.00687180i
\(924\) 0 0
\(925\) 0.0134889 0.0415145i 0.000443512 0.00136499i
\(926\) 0 0
\(927\) 10.2118 + 31.4286i 0.335398 + 1.03225i
\(928\) 0 0
\(929\) 45.1578i 1.48158i 0.671737 + 0.740790i \(0.265549\pi\)
−0.671737 + 0.740790i \(0.734451\pi\)
\(930\) 0 0
\(931\) 13.6969 18.8522i 0.448899 0.617856i
\(932\) 0 0
\(933\) 20.2051 14.6798i 0.661484 0.480596i
\(934\) 0 0
\(935\) −30.7370 + 22.3318i −1.00521 + 0.730327i
\(936\) 0 0
\(937\) 2.43673 + 0.791742i 0.0796045 + 0.0258651i 0.348549 0.937291i \(-0.386675\pi\)
−0.268944 + 0.963156i \(0.586675\pi\)
\(938\) 0 0
\(939\) −26.9508 19.5809i −0.879507 0.638999i
\(940\) 0 0
\(941\) 6.47579 19.9304i 0.211105 0.649713i −0.788303 0.615288i \(-0.789040\pi\)
0.999407 0.0344257i \(-0.0109602\pi\)
\(942\) 0 0
\(943\) −7.11180 + 10.4580i −0.231592 + 0.340559i
\(944\) 0 0
\(945\) 21.3402 65.6783i 0.694196 2.13652i
\(946\) 0 0
\(947\) −8.27045 6.00884i −0.268754 0.195261i 0.445244 0.895409i \(-0.353117\pi\)
−0.713997 + 0.700149i \(0.753117\pi\)
\(948\) 0 0
\(949\) −2.09212 0.679770i −0.0679130 0.0220663i
\(950\) 0 0
\(951\) −94.7140 + 68.8138i −3.07131 + 2.23144i
\(952\) 0 0
\(953\) 9.29587 6.75384i 0.301123 0.218778i −0.426955 0.904273i \(-0.640414\pi\)
0.728078 + 0.685494i \(0.240414\pi\)
\(954\) 0 0
\(955\) 9.11102 12.5402i 0.294826 0.405793i
\(956\) 0 0
\(957\) 69.7444i 2.25452i
\(958\) 0 0
\(959\) −3.44163 10.5923i −0.111136 0.342042i
\(960\) 0 0
\(961\) 15.9504 49.0903i 0.514529 1.58356i
\(962\) 0 0
\(963\) −40.0873 123.376i −1.29179 3.97573i
\(964\) 0 0
\(965\) −4.37253 + 1.42072i −0.140757 + 0.0457346i
\(966\) 0 0
\(967\) 29.2783 + 40.2981i 0.941526 + 1.29590i 0.955190 + 0.295992i \(0.0956503\pi\)
−0.0136647 + 0.999907i \(0.504350\pi\)
\(968\) 0 0
\(969\) 65.3367 89.9282i 2.09892 2.88891i
\(970\) 0 0
\(971\) −41.5403 13.4973i −1.33309 0.433148i −0.446121 0.894973i \(-0.647195\pi\)
−0.886971 + 0.461825i \(0.847195\pi\)
\(972\) 0 0
\(973\) −15.5678 21.4273i −0.499082 0.686927i
\(974\) 0 0
\(975\) −0.925988 −0.0296554
\(976\) 0 0
\(977\) 13.8359 4.49556i 0.442650 0.143826i −0.0792080 0.996858i \(-0.525239\pi\)
0.521858 + 0.853032i \(0.325239\pi\)
\(978\) 0 0
\(979\) 8.76821 + 6.37048i 0.280233 + 0.203601i
\(980\) 0 0
\(981\) 114.520i 3.65635i
\(982\) 0 0
\(983\) 12.2384 0.390343 0.195172 0.980769i \(-0.437474\pi\)
0.195172 + 0.980769i \(0.437474\pi\)
\(984\) 0 0
\(985\) 8.30114 0.264496
\(986\) 0 0
\(987\) 130.770i 4.16245i
\(988\) 0 0
\(989\) 4.61445 + 3.35260i 0.146731 + 0.106606i
\(990\) 0 0
\(991\) −7.04352 + 2.28858i −0.223745 + 0.0726991i −0.418744 0.908104i \(-0.637530\pi\)
0.194999 + 0.980803i \(0.437530\pi\)
\(992\) 0 0
\(993\) −27.5989 −0.875824
\(994\) 0 0
\(995\) 5.49391 + 7.56172i 0.174169 + 0.239723i
\(996\) 0 0
\(997\) −42.6042 13.8429i −1.34929 0.438410i −0.456835 0.889551i \(-0.651017\pi\)
−0.892453 + 0.451141i \(0.851017\pi\)
\(998\) 0 0
\(999\) −0.509580 + 0.701377i −0.0161224 + 0.0221906i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bg.b.681.8 32
41.23 even 10 inner 820.2.bg.b.761.1 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bg.b.681.8 32 1.1 even 1 trivial
820.2.bg.b.761.1 yes 32 41.23 even 10 inner