Newspace parameters
Level: | \( N \) | \(=\) | \( 820 = 2^{2} \cdot 5 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 820.bg (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.54773296574\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
441.1 | 0 | − | 3.03671i | 0 | 0.309017 | + | 0.951057i | 0 | −0.298250 | − | 0.410506i | 0 | −6.22161 | 0 | |||||||||||||
441.2 | 0 | − | 2.34579i | 0 | 0.309017 | + | 0.951057i | 0 | −0.869808 | − | 1.19719i | 0 | −2.50275 | 0 | |||||||||||||
441.3 | 0 | − | 1.23652i | 0 | 0.309017 | + | 0.951057i | 0 | 0.581439 | + | 0.800283i | 0 | 1.47101 | 0 | |||||||||||||
441.4 | 0 | 0.0118557i | 0 | 0.309017 | + | 0.951057i | 0 | 2.84530 | + | 3.91622i | 0 | 2.99986 | 0 | ||||||||||||||
441.5 | 0 | 0.804578i | 0 | 0.309017 | + | 0.951057i | 0 | −1.73252 | − | 2.38461i | 0 | 2.35265 | 0 | ||||||||||||||
441.6 | 0 | 2.10026i | 0 | 0.309017 | + | 0.951057i | 0 | −2.62784 | − | 3.61690i | 0 | −1.41111 | 0 | ||||||||||||||
441.7 | 0 | 2.14480i | 0 | 0.309017 | + | 0.951057i | 0 | 0.606688 | + | 0.835034i | 0 | −1.60015 | 0 | ||||||||||||||
441.8 | 0 | 2.73311i | 0 | 0.309017 | + | 0.951057i | 0 | 1.92203 | + | 2.64545i | 0 | −4.46987 | 0 | ||||||||||||||
681.1 | 0 | − | 2.63835i | 0 | −0.809017 | − | 0.587785i | 0 | −4.34729 | + | 1.41252i | 0 | −3.96087 | 0 | |||||||||||||
681.2 | 0 | − | 2.16903i | 0 | −0.809017 | − | 0.587785i | 0 | −1.30195 | + | 0.423028i | 0 | −1.70470 | 0 | |||||||||||||
681.3 | 0 | − | 1.65530i | 0 | −0.809017 | − | 0.587785i | 0 | 4.93296 | − | 1.60282i | 0 | 0.259996 | 0 | |||||||||||||
681.4 | 0 | − | 0.195916i | 0 | −0.809017 | − | 0.587785i | 0 | 0.384497 | − | 0.124931i | 0 | 2.96162 | 0 | |||||||||||||
681.5 | 0 | 1.07205i | 0 | −0.809017 | − | 0.587785i | 0 | −2.50037 | + | 0.812419i | 0 | 1.85070 | 0 | ||||||||||||||
681.6 | 0 | 1.94063i | 0 | −0.809017 | − | 0.587785i | 0 | −0.0642499 | + | 0.0208760i | 0 | −0.766036 | 0 | ||||||||||||||
681.7 | 0 | 2.11504i | 0 | −0.809017 | − | 0.587785i | 0 | 3.27625 | − | 1.06452i | 0 | −1.47340 | 0 | ||||||||||||||
681.8 | 0 | 3.43298i | 0 | −0.809017 | − | 0.587785i | 0 | −3.30690 | + | 1.07448i | 0 | −8.78535 | 0 | ||||||||||||||
701.1 | 0 | − | 2.73311i | 0 | 0.309017 | − | 0.951057i | 0 | 1.92203 | − | 2.64545i | 0 | −4.46987 | 0 | |||||||||||||
701.2 | 0 | − | 2.14480i | 0 | 0.309017 | − | 0.951057i | 0 | 0.606688 | − | 0.835034i | 0 | −1.60015 | 0 | |||||||||||||
701.3 | 0 | − | 2.10026i | 0 | 0.309017 | − | 0.951057i | 0 | −2.62784 | + | 3.61690i | 0 | −1.41111 | 0 | |||||||||||||
701.4 | 0 | − | 0.804578i | 0 | 0.309017 | − | 0.951057i | 0 | −1.73252 | + | 2.38461i | 0 | 2.35265 | 0 | |||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
41.f | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 820.2.bg.b | ✓ | 32 |
41.f | even | 10 | 1 | inner | 820.2.bg.b | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
820.2.bg.b | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
820.2.bg.b | ✓ | 32 | 41.f | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{32} + 69 T_{3}^{30} + 2147 T_{3}^{28} + 39906 T_{3}^{26} + 494511 T_{3}^{24} + 4315995 T_{3}^{22} + \cdots + 841 \)
acting on \(S_{2}^{\mathrm{new}}(820, [\chi])\).