Properties

Label 820.2.bg.b.681.6
Level $820$
Weight $2$
Character 820.681
Analytic conductor $6.548$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(441,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.441"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bg (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 681.6
Character \(\chi\) \(=\) 820.681
Dual form 820.2.bg.b.761.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.94063i q^{3} +(-0.809017 - 0.587785i) q^{5} +(-0.0642499 + 0.0208760i) q^{7} -0.766036 q^{9} +(-2.16777 - 2.98368i) q^{11} +(-6.64164 - 2.15800i) q^{13} +(1.14067 - 1.57000i) q^{15} +(-1.45177 - 1.99819i) q^{17} +(-4.29550 + 1.39569i) q^{19} +(-0.0405126 - 0.124685i) q^{21} +(0.787726 - 2.42437i) q^{23} +(0.309017 + 0.951057i) q^{25} +4.33529i q^{27} +(-1.87679 + 2.58318i) q^{29} +(6.91829 - 5.02643i) q^{31} +(5.79021 - 4.20683i) q^{33} +(0.0642499 + 0.0208760i) q^{35} +(-8.43488 - 6.12830i) q^{37} +(4.18787 - 12.8889i) q^{39} +(6.20927 + 1.56362i) q^{41} +(-1.94594 + 5.98900i) q^{43} +(0.619736 + 0.450264i) q^{45} +(-5.49583 - 1.78570i) q^{47} +(-5.65943 + 4.11181i) q^{49} +(3.87774 - 2.81734i) q^{51} +(-5.45570 + 7.50912i) q^{53} +3.68803i q^{55} +(-2.70852 - 8.33597i) q^{57} +(4.49661 - 13.8391i) q^{59} +(-2.71482 - 8.35535i) q^{61} +(0.0492177 - 0.0159918i) q^{63} +(4.10476 + 5.64971i) q^{65} +(8.16190 - 11.2339i) q^{67} +(4.70480 + 1.52868i) q^{69} +(6.24053 + 8.58935i) q^{71} +0.824160 q^{73} +(-1.84565 + 0.599687i) q^{75} +(0.201566 + 0.146446i) q^{77} -1.29531i q^{79} -10.7113 q^{81} -0.209284 q^{83} +2.46990i q^{85} +(-5.01300 - 3.64216i) q^{87} +(-7.98903 + 2.59579i) q^{89} +0.471775 q^{91} +(9.75444 + 13.4258i) q^{93} +(4.29550 + 1.39569i) q^{95} +(3.17235 - 4.36637i) q^{97} +(1.66059 + 2.28560i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 8 q^{5} - 5 q^{7} - 42 q^{9} + 5 q^{11} + 5 q^{13} - 5 q^{17} - 25 q^{19} - 6 q^{21} - 22 q^{23} - 8 q^{25} + 5 q^{29} - 9 q^{31} + 24 q^{33} + 5 q^{35} - 11 q^{37} + 20 q^{39} + 16 q^{41} + 26 q^{43}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.94063i 1.12042i 0.828350 + 0.560211i \(0.189280\pi\)
−0.828350 + 0.560211i \(0.810720\pi\)
\(4\) 0 0
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 0 0
\(7\) −0.0642499 + 0.0208760i −0.0242842 + 0.00789040i −0.321134 0.947034i \(-0.604064\pi\)
0.296850 + 0.954924i \(0.404064\pi\)
\(8\) 0 0
\(9\) −0.766036 −0.255345
\(10\) 0 0
\(11\) −2.16777 2.98368i −0.653607 0.899613i 0.345642 0.938366i \(-0.387661\pi\)
−0.999249 + 0.0387538i \(0.987661\pi\)
\(12\) 0 0
\(13\) −6.64164 2.15800i −1.84206 0.598521i −0.998066 0.0621668i \(-0.980199\pi\)
−0.843993 0.536354i \(-0.819801\pi\)
\(14\) 0 0
\(15\) 1.14067 1.57000i 0.294520 0.405372i
\(16\) 0 0
\(17\) −1.45177 1.99819i −0.352105 0.484632i 0.595823 0.803116i \(-0.296826\pi\)
−0.947928 + 0.318484i \(0.896826\pi\)
\(18\) 0 0
\(19\) −4.29550 + 1.39569i −0.985455 + 0.320194i −0.757039 0.653370i \(-0.773355\pi\)
−0.228416 + 0.973564i \(0.573355\pi\)
\(20\) 0 0
\(21\) −0.0405126 0.124685i −0.00884058 0.0272085i
\(22\) 0 0
\(23\) 0.787726 2.42437i 0.164252 0.505517i −0.834728 0.550662i \(-0.814375\pi\)
0.998980 + 0.0451457i \(0.0143752\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) 4.33529i 0.834328i
\(28\) 0 0
\(29\) −1.87679 + 2.58318i −0.348512 + 0.479685i −0.946903 0.321519i \(-0.895807\pi\)
0.598392 + 0.801204i \(0.295807\pi\)
\(30\) 0 0
\(31\) 6.91829 5.02643i 1.24256 0.902774i 0.244796 0.969575i \(-0.421279\pi\)
0.997766 + 0.0668004i \(0.0212791\pi\)
\(32\) 0 0
\(33\) 5.79021 4.20683i 1.00795 0.732315i
\(34\) 0 0
\(35\) 0.0642499 + 0.0208760i 0.0108602 + 0.00352870i
\(36\) 0 0
\(37\) −8.43488 6.12830i −1.38669 1.00749i −0.996220 0.0868686i \(-0.972314\pi\)
−0.390466 0.920617i \(-0.627686\pi\)
\(38\) 0 0
\(39\) 4.18787 12.8889i 0.670596 2.06388i
\(40\) 0 0
\(41\) 6.20927 + 1.56362i 0.969726 + 0.244197i
\(42\) 0 0
\(43\) −1.94594 + 5.98900i −0.296754 + 0.913314i 0.685873 + 0.727721i \(0.259421\pi\)
−0.982627 + 0.185593i \(0.940579\pi\)
\(44\) 0 0
\(45\) 0.619736 + 0.450264i 0.0923848 + 0.0671215i
\(46\) 0 0
\(47\) −5.49583 1.78570i −0.801649 0.260472i −0.120592 0.992702i \(-0.538479\pi\)
−0.681057 + 0.732231i \(0.738479\pi\)
\(48\) 0 0
\(49\) −5.65943 + 4.11181i −0.808490 + 0.587402i
\(50\) 0 0
\(51\) 3.87774 2.81734i 0.542992 0.394507i
\(52\) 0 0
\(53\) −5.45570 + 7.50912i −0.749397 + 1.03146i 0.248625 + 0.968600i \(0.420021\pi\)
−0.998023 + 0.0628572i \(0.979979\pi\)
\(54\) 0 0
\(55\) 3.68803i 0.497294i
\(56\) 0 0
\(57\) −2.70852 8.33597i −0.358752 1.10413i
\(58\) 0 0
\(59\) 4.49661 13.8391i 0.585409 1.80170i −0.0122129 0.999925i \(-0.503888\pi\)
0.597622 0.801778i \(-0.296112\pi\)
\(60\) 0 0
\(61\) −2.71482 8.35535i −0.347597 1.06979i −0.960179 0.279386i \(-0.909869\pi\)
0.612582 0.790407i \(-0.290131\pi\)
\(62\) 0 0
\(63\) 0.0492177 0.0159918i 0.00620084 0.00201478i
\(64\) 0 0
\(65\) 4.10476 + 5.64971i 0.509132 + 0.700761i
\(66\) 0 0
\(67\) 8.16190 11.2339i 0.997135 1.37244i 0.0700678 0.997542i \(-0.477678\pi\)
0.927067 0.374896i \(-0.122322\pi\)
\(68\) 0 0
\(69\) 4.70480 + 1.52868i 0.566392 + 0.184032i
\(70\) 0 0
\(71\) 6.24053 + 8.58935i 0.740615 + 1.01937i 0.998583 + 0.0532152i \(0.0169469\pi\)
−0.257968 + 0.966153i \(0.583053\pi\)
\(72\) 0 0
\(73\) 0.824160 0.0964606 0.0482303 0.998836i \(-0.484642\pi\)
0.0482303 + 0.998836i \(0.484642\pi\)
\(74\) 0 0
\(75\) −1.84565 + 0.599687i −0.213117 + 0.0692459i
\(76\) 0 0
\(77\) 0.201566 + 0.146446i 0.0229706 + 0.0166891i
\(78\) 0 0
\(79\) 1.29531i 0.145734i −0.997342 0.0728670i \(-0.976785\pi\)
0.997342 0.0728670i \(-0.0232149\pi\)
\(80\) 0 0
\(81\) −10.7113 −1.19014
\(82\) 0 0
\(83\) −0.209284 −0.0229719 −0.0114860 0.999934i \(-0.503656\pi\)
−0.0114860 + 0.999934i \(0.503656\pi\)
\(84\) 0 0
\(85\) 2.46990i 0.267898i
\(86\) 0 0
\(87\) −5.01300 3.64216i −0.537450 0.390480i
\(88\) 0 0
\(89\) −7.98903 + 2.59579i −0.846836 + 0.275154i −0.700120 0.714025i \(-0.746870\pi\)
−0.146716 + 0.989179i \(0.546870\pi\)
\(90\) 0 0
\(91\) 0.471775 0.0494554
\(92\) 0 0
\(93\) 9.75444 + 13.4258i 1.01149 + 1.39219i
\(94\) 0 0
\(95\) 4.29550 + 1.39569i 0.440709 + 0.143195i
\(96\) 0 0
\(97\) 3.17235 4.36637i 0.322104 0.443338i −0.617004 0.786960i \(-0.711654\pi\)
0.939108 + 0.343622i \(0.111654\pi\)
\(98\) 0 0
\(99\) 1.66059 + 2.28560i 0.166895 + 0.229712i
\(100\) 0 0
\(101\) 10.6923 3.47413i 1.06392 0.345688i 0.275803 0.961214i \(-0.411056\pi\)
0.788117 + 0.615526i \(0.211056\pi\)
\(102\) 0 0
\(103\) −1.40260 4.31676i −0.138202 0.425343i 0.857872 0.513863i \(-0.171786\pi\)
−0.996074 + 0.0885204i \(0.971786\pi\)
\(104\) 0 0
\(105\) −0.0405126 + 0.124685i −0.00395363 + 0.0121680i
\(106\) 0 0
\(107\) 4.70386 + 14.4770i 0.454739 + 1.39954i 0.871441 + 0.490500i \(0.163186\pi\)
−0.416702 + 0.909043i \(0.636814\pi\)
\(108\) 0 0
\(109\) 13.5120i 1.29421i 0.762399 + 0.647107i \(0.224021\pi\)
−0.762399 + 0.647107i \(0.775979\pi\)
\(110\) 0 0
\(111\) 11.8927 16.3690i 1.12881 1.55367i
\(112\) 0 0
\(113\) −10.6601 + 7.74499i −1.00281 + 0.728587i −0.962690 0.270608i \(-0.912775\pi\)
−0.0401244 + 0.999195i \(0.512775\pi\)
\(114\) 0 0
\(115\) −2.06229 + 1.49834i −0.192310 + 0.139721i
\(116\) 0 0
\(117\) 5.08773 + 1.65310i 0.470361 + 0.152829i
\(118\) 0 0
\(119\) 0.134990 + 0.0980761i 0.0123745 + 0.00899062i
\(120\) 0 0
\(121\) −0.803924 + 2.47423i −0.0730840 + 0.224930i
\(122\) 0 0
\(123\) −3.03441 + 12.0499i −0.273603 + 1.08650i
\(124\) 0 0
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) 0 0
\(127\) −14.9976 10.8964i −1.33082 0.966900i −0.999728 0.0233028i \(-0.992582\pi\)
−0.331095 0.943597i \(-0.607418\pi\)
\(128\) 0 0
\(129\) −11.6224 3.77635i −1.02330 0.332489i
\(130\) 0 0
\(131\) −11.5113 + 8.36346i −1.00575 + 0.730719i −0.963313 0.268381i \(-0.913512\pi\)
−0.0424349 + 0.999099i \(0.513512\pi\)
\(132\) 0 0
\(133\) 0.246849 0.179346i 0.0214045 0.0155513i
\(134\) 0 0
\(135\) 2.54822 3.50733i 0.219316 0.301863i
\(136\) 0 0
\(137\) 17.7040i 1.51255i 0.654253 + 0.756276i \(0.272983\pi\)
−0.654253 + 0.756276i \(0.727017\pi\)
\(138\) 0 0
\(139\) −0.367427 1.13083i −0.0311648 0.0959154i 0.934264 0.356582i \(-0.116058\pi\)
−0.965429 + 0.260666i \(0.916058\pi\)
\(140\) 0 0
\(141\) 3.46538 10.6654i 0.291838 0.898185i
\(142\) 0 0
\(143\) 7.95876 + 24.4945i 0.665545 + 2.04834i
\(144\) 0 0
\(145\) 3.03671 0.986688i 0.252185 0.0819400i
\(146\) 0 0
\(147\) −7.97950 10.9828i −0.658138 0.905849i
\(148\) 0 0
\(149\) −1.64715 + 2.26711i −0.134940 + 0.185729i −0.871140 0.491036i \(-0.836619\pi\)
0.736199 + 0.676765i \(0.236619\pi\)
\(150\) 0 0
\(151\) −2.50829 0.814993i −0.204122 0.0663232i 0.205172 0.978726i \(-0.434225\pi\)
−0.409293 + 0.912403i \(0.634225\pi\)
\(152\) 0 0
\(153\) 1.11211 + 1.53068i 0.0899084 + 0.123748i
\(154\) 0 0
\(155\) −8.55148 −0.686871
\(156\) 0 0
\(157\) −8.15099 + 2.64842i −0.650520 + 0.211367i −0.615643 0.788025i \(-0.711104\pi\)
−0.0348764 + 0.999392i \(0.511104\pi\)
\(158\) 0 0
\(159\) −14.5724 10.5875i −1.15567 0.839641i
\(160\) 0 0
\(161\) 0.172210i 0.0135721i
\(162\) 0 0
\(163\) 0.483415 0.0378640 0.0189320 0.999821i \(-0.493973\pi\)
0.0189320 + 0.999821i \(0.493973\pi\)
\(164\) 0 0
\(165\) −7.15709 −0.557179
\(166\) 0 0
\(167\) 19.0176i 1.47163i 0.677183 + 0.735815i \(0.263201\pi\)
−0.677183 + 0.735815i \(0.736799\pi\)
\(168\) 0 0
\(169\) 28.9372 + 21.0241i 2.22594 + 1.61724i
\(170\) 0 0
\(171\) 3.29051 1.06915i 0.251631 0.0817600i
\(172\) 0 0
\(173\) −13.6124 −1.03493 −0.517466 0.855704i \(-0.673125\pi\)
−0.517466 + 0.855704i \(0.673125\pi\)
\(174\) 0 0
\(175\) −0.0397086 0.0546542i −0.00300169 0.00413147i
\(176\) 0 0
\(177\) 26.8566 + 8.72625i 2.01867 + 0.655905i
\(178\) 0 0
\(179\) 4.50436 6.19971i 0.336671 0.463388i −0.606794 0.794859i \(-0.707545\pi\)
0.943466 + 0.331471i \(0.107545\pi\)
\(180\) 0 0
\(181\) −13.6668 18.8107i −1.01584 1.39819i −0.915076 0.403280i \(-0.867870\pi\)
−0.100768 0.994910i \(-0.532130\pi\)
\(182\) 0 0
\(183\) 16.2146 5.26845i 1.19862 0.389455i
\(184\) 0 0
\(185\) 3.22184 + 9.91579i 0.236874 + 0.729024i
\(186\) 0 0
\(187\) −2.81485 + 8.66322i −0.205842 + 0.633517i
\(188\) 0 0
\(189\) −0.0905038 0.278542i −0.00658318 0.0202609i
\(190\) 0 0
\(191\) 16.1097i 1.16566i −0.812594 0.582830i \(-0.801945\pi\)
0.812594 0.582830i \(-0.198055\pi\)
\(192\) 0 0
\(193\) −14.8797 + 20.4801i −1.07106 + 1.47419i −0.202064 + 0.979372i \(0.564765\pi\)
−0.868997 + 0.494817i \(0.835235\pi\)
\(194\) 0 0
\(195\) −10.9640 + 7.96581i −0.785148 + 0.570443i
\(196\) 0 0
\(197\) 18.1064 13.1551i 1.29003 0.937259i 0.290220 0.956960i \(-0.406271\pi\)
0.999806 + 0.0197008i \(0.00627137\pi\)
\(198\) 0 0
\(199\) −1.90269 0.618222i −0.134878 0.0438246i 0.240800 0.970575i \(-0.422590\pi\)
−0.375678 + 0.926750i \(0.622590\pi\)
\(200\) 0 0
\(201\) 21.8008 + 15.8392i 1.53771 + 1.11721i
\(202\) 0 0
\(203\) 0.0666570 0.205149i 0.00467840 0.0143986i
\(204\) 0 0
\(205\) −4.10433 4.91472i −0.286659 0.343259i
\(206\) 0 0
\(207\) −0.603427 + 1.85716i −0.0419410 + 0.129081i
\(208\) 0 0
\(209\) 13.4759 + 9.79085i 0.932151 + 0.677247i
\(210\) 0 0
\(211\) −3.71026 1.20554i −0.255425 0.0829925i 0.178506 0.983939i \(-0.442874\pi\)
−0.433930 + 0.900946i \(0.642874\pi\)
\(212\) 0 0
\(213\) −16.6687 + 12.1105i −1.14212 + 0.829801i
\(214\) 0 0
\(215\) 5.09455 3.70141i 0.347445 0.252434i
\(216\) 0 0
\(217\) −0.339567 + 0.467374i −0.0230513 + 0.0317274i
\(218\) 0 0
\(219\) 1.59939i 0.108077i
\(220\) 0 0
\(221\) 5.33003 + 16.4041i 0.358537 + 1.10346i
\(222\) 0 0
\(223\) 3.57388 10.9993i 0.239325 0.736565i −0.757194 0.653190i \(-0.773430\pi\)
0.996518 0.0833749i \(-0.0265699\pi\)
\(224\) 0 0
\(225\) −0.236718 0.728543i −0.0157812 0.0485695i
\(226\) 0 0
\(227\) 13.2607 4.30865i 0.880142 0.285975i 0.166126 0.986105i \(-0.446874\pi\)
0.714016 + 0.700129i \(0.246874\pi\)
\(228\) 0 0
\(229\) 8.95349 + 12.3234i 0.591663 + 0.814355i 0.994913 0.100735i \(-0.0321195\pi\)
−0.403250 + 0.915090i \(0.632120\pi\)
\(230\) 0 0
\(231\) −0.284198 + 0.391165i −0.0186989 + 0.0257368i
\(232\) 0 0
\(233\) 9.86652 + 3.20583i 0.646377 + 0.210021i 0.613816 0.789449i \(-0.289634\pi\)
0.0325611 + 0.999470i \(0.489634\pi\)
\(234\) 0 0
\(235\) 3.39661 + 4.67503i 0.221570 + 0.304965i
\(236\) 0 0
\(237\) 2.51372 0.163284
\(238\) 0 0
\(239\) 4.75836 1.54609i 0.307793 0.100008i −0.151048 0.988526i \(-0.548265\pi\)
0.458841 + 0.888518i \(0.348265\pi\)
\(240\) 0 0
\(241\) −2.05525 1.49323i −0.132391 0.0961874i 0.519619 0.854398i \(-0.326074\pi\)
−0.652010 + 0.758211i \(0.726074\pi\)
\(242\) 0 0
\(243\) 7.78076i 0.499136i
\(244\) 0 0
\(245\) 6.99544 0.446922
\(246\) 0 0
\(247\) 31.5411 2.00691
\(248\) 0 0
\(249\) 0.406142i 0.0257382i
\(250\) 0 0
\(251\) −16.5929 12.0554i −1.04733 0.760931i −0.0756289 0.997136i \(-0.524096\pi\)
−0.971703 + 0.236205i \(0.924096\pi\)
\(252\) 0 0
\(253\) −8.94116 + 2.90516i −0.562126 + 0.182646i
\(254\) 0 0
\(255\) −4.79315 −0.300159
\(256\) 0 0
\(257\) −8.93361 12.2961i −0.557264 0.767007i 0.433712 0.901052i \(-0.357204\pi\)
−0.990975 + 0.134044i \(0.957204\pi\)
\(258\) 0 0
\(259\) 0.669874 + 0.217655i 0.0416240 + 0.0135244i
\(260\) 0 0
\(261\) 1.43769 1.97881i 0.0889908 0.122485i
\(262\) 0 0
\(263\) −1.38565 1.90718i −0.0854425 0.117602i 0.764156 0.645031i \(-0.223156\pi\)
−0.849599 + 0.527430i \(0.823156\pi\)
\(264\) 0 0
\(265\) 8.82750 2.86823i 0.542269 0.176194i
\(266\) 0 0
\(267\) −5.03747 15.5037i −0.308288 0.948813i
\(268\) 0 0
\(269\) 6.32616 19.4699i 0.385713 1.18710i −0.550249 0.835000i \(-0.685467\pi\)
0.935962 0.352101i \(-0.114533\pi\)
\(270\) 0 0
\(271\) −7.84685 24.1501i −0.476662 1.46702i −0.843703 0.536811i \(-0.819629\pi\)
0.367040 0.930205i \(-0.380371\pi\)
\(272\) 0 0
\(273\) 0.915539i 0.0554109i
\(274\) 0 0
\(275\) 2.16777 2.98368i 0.130721 0.179923i
\(276\) 0 0
\(277\) −1.35971 + 0.987889i −0.0816972 + 0.0593565i −0.627884 0.778307i \(-0.716079\pi\)
0.546187 + 0.837663i \(0.316079\pi\)
\(278\) 0 0
\(279\) −5.29966 + 3.85043i −0.317282 + 0.230519i
\(280\) 0 0
\(281\) −15.5785 5.06177i −0.929338 0.301960i −0.195046 0.980794i \(-0.562486\pi\)
−0.734292 + 0.678834i \(0.762486\pi\)
\(282\) 0 0
\(283\) 15.1035 + 10.9734i 0.897813 + 0.652299i 0.937903 0.346897i \(-0.112765\pi\)
−0.0400905 + 0.999196i \(0.512765\pi\)
\(284\) 0 0
\(285\) −2.70852 + 8.33597i −0.160439 + 0.493780i
\(286\) 0 0
\(287\) −0.431587 + 0.0291626i −0.0254758 + 0.00172141i
\(288\) 0 0
\(289\) 3.36817 10.3662i 0.198127 0.609774i
\(290\) 0 0
\(291\) 8.47349 + 6.15635i 0.496725 + 0.360892i
\(292\) 0 0
\(293\) 6.18814 + 2.01065i 0.361515 + 0.117463i 0.484142 0.874990i \(-0.339132\pi\)
−0.122627 + 0.992453i \(0.539132\pi\)
\(294\) 0 0
\(295\) −11.7723 + 8.55306i −0.685409 + 0.497979i
\(296\) 0 0
\(297\) 12.9351 9.39791i 0.750572 0.545322i
\(298\) 0 0
\(299\) −10.4636 + 14.4019i −0.605125 + 0.832883i
\(300\) 0 0
\(301\) 0.425416i 0.0245206i
\(302\) 0 0
\(303\) 6.74198 + 20.7497i 0.387317 + 1.19204i
\(304\) 0 0
\(305\) −2.71482 + 8.35535i −0.155450 + 0.478426i
\(306\) 0 0
\(307\) −2.82885 8.70629i −0.161451 0.496894i 0.837306 0.546734i \(-0.184129\pi\)
−0.998757 + 0.0498394i \(0.984129\pi\)
\(308\) 0 0
\(309\) 8.37722 2.72192i 0.476563 0.154845i
\(310\) 0 0
\(311\) 14.9409 + 20.5644i 0.847222 + 1.16610i 0.984468 + 0.175564i \(0.0561748\pi\)
−0.137246 + 0.990537i \(0.543825\pi\)
\(312\) 0 0
\(313\) 7.89594 10.8678i 0.446305 0.614286i −0.525294 0.850921i \(-0.676045\pi\)
0.971599 + 0.236635i \(0.0760446\pi\)
\(314\) 0 0
\(315\) −0.0492177 0.0159918i −0.00277310 0.000901035i
\(316\) 0 0
\(317\) −0.650998 0.896023i −0.0365637 0.0503256i 0.790344 0.612664i \(-0.209902\pi\)
−0.826907 + 0.562338i \(0.809902\pi\)
\(318\) 0 0
\(319\) 11.7758 0.659320
\(320\) 0 0
\(321\) −28.0944 + 9.12844i −1.56808 + 0.509500i
\(322\) 0 0
\(323\) 9.02493 + 6.55699i 0.502160 + 0.364841i
\(324\) 0 0
\(325\) 6.98343i 0.387371i
\(326\) 0 0
\(327\) −26.2217 −1.45007
\(328\) 0 0
\(329\) 0.390385 0.0215226
\(330\) 0 0
\(331\) 22.8344i 1.25509i 0.778579 + 0.627546i \(0.215941\pi\)
−0.778579 + 0.627546i \(0.784059\pi\)
\(332\) 0 0
\(333\) 6.46142 + 4.69449i 0.354083 + 0.257257i
\(334\) 0 0
\(335\) −13.2062 + 4.29096i −0.721533 + 0.234440i
\(336\) 0 0
\(337\) 0.652804 0.0355605 0.0177803 0.999842i \(-0.494340\pi\)
0.0177803 + 0.999842i \(0.494340\pi\)
\(338\) 0 0
\(339\) −15.0301 20.6872i −0.816325 1.12357i
\(340\) 0 0
\(341\) −29.9945 9.74581i −1.62429 0.527765i
\(342\) 0 0
\(343\) 0.555739 0.764909i 0.0300071 0.0413012i
\(344\) 0 0
\(345\) −2.90773 4.00215i −0.156547 0.215468i
\(346\) 0 0
\(347\) −7.10614 + 2.30893i −0.381478 + 0.123950i −0.493477 0.869759i \(-0.664274\pi\)
0.112000 + 0.993708i \(0.464274\pi\)
\(348\) 0 0
\(349\) −9.07135 27.9187i −0.485578 1.49446i −0.831142 0.556061i \(-0.812312\pi\)
0.345564 0.938395i \(-0.387688\pi\)
\(350\) 0 0
\(351\) 9.35556 28.7934i 0.499363 1.53688i
\(352\) 0 0
\(353\) 4.03909 + 12.4311i 0.214979 + 0.661638i 0.999155 + 0.0410994i \(0.0130860\pi\)
−0.784176 + 0.620539i \(0.786914\pi\)
\(354\) 0 0
\(355\) 10.6170i 0.563493i
\(356\) 0 0
\(357\) −0.190329 + 0.261966i −0.0100733 + 0.0138647i
\(358\) 0 0
\(359\) −5.70996 + 4.14853i −0.301360 + 0.218951i −0.728180 0.685385i \(-0.759634\pi\)
0.426820 + 0.904337i \(0.359634\pi\)
\(360\) 0 0
\(361\) 1.13204 0.822476i 0.0595811 0.0432882i
\(362\) 0 0
\(363\) −4.80155 1.56012i −0.252016 0.0818850i
\(364\) 0 0
\(365\) −0.666759 0.484429i −0.0348998 0.0253562i
\(366\) 0 0
\(367\) 10.4150 32.0542i 0.543661 1.67322i −0.180492 0.983576i \(-0.557769\pi\)
0.724153 0.689640i \(-0.242231\pi\)
\(368\) 0 0
\(369\) −4.75652 1.19779i −0.247615 0.0623545i
\(370\) 0 0
\(371\) 0.193767 0.596353i 0.0100599 0.0309611i
\(372\) 0 0
\(373\) −5.56073 4.04011i −0.287924 0.209189i 0.434442 0.900700i \(-0.356945\pi\)
−0.722366 + 0.691511i \(0.756945\pi\)
\(374\) 0 0
\(375\) 1.84565 + 0.599687i 0.0953088 + 0.0309677i
\(376\) 0 0
\(377\) 18.0395 13.1065i 0.929081 0.675017i
\(378\) 0 0
\(379\) 3.39533 2.46685i 0.174406 0.126714i −0.497157 0.867660i \(-0.665623\pi\)
0.671564 + 0.740947i \(0.265623\pi\)
\(380\) 0 0
\(381\) 21.1459 29.1048i 1.08334 1.49108i
\(382\) 0 0
\(383\) 6.69530i 0.342114i −0.985261 0.171057i \(-0.945282\pi\)
0.985261 0.171057i \(-0.0547182\pi\)
\(384\) 0 0
\(385\) −0.0769914 0.236955i −0.00392385 0.0120764i
\(386\) 0 0
\(387\) 1.49066 4.58779i 0.0757747 0.233210i
\(388\) 0 0
\(389\) 2.70933 + 8.33846i 0.137369 + 0.422777i 0.995951 0.0898988i \(-0.0286544\pi\)
−0.858582 + 0.512676i \(0.828654\pi\)
\(390\) 0 0
\(391\) −5.98795 + 1.94560i −0.302824 + 0.0983933i
\(392\) 0 0
\(393\) −16.2304 22.3392i −0.818713 1.12686i
\(394\) 0 0
\(395\) −0.761366 + 1.04793i −0.0383085 + 0.0527271i
\(396\) 0 0
\(397\) 6.77472 + 2.20124i 0.340014 + 0.110477i 0.474047 0.880500i \(-0.342793\pi\)
−0.134033 + 0.990977i \(0.542793\pi\)
\(398\) 0 0
\(399\) 0.348044 + 0.479041i 0.0174240 + 0.0239821i
\(400\) 0 0
\(401\) −15.6859 −0.783317 −0.391659 0.920111i \(-0.628099\pi\)
−0.391659 + 0.920111i \(0.628099\pi\)
\(402\) 0 0
\(403\) −56.7958 + 18.4541i −2.82920 + 0.919263i
\(404\) 0 0
\(405\) 8.66562 + 6.29594i 0.430598 + 0.312848i
\(406\) 0 0
\(407\) 38.4517i 1.90598i
\(408\) 0 0
\(409\) −17.0981 −0.845448 −0.422724 0.906258i \(-0.638926\pi\)
−0.422724 + 0.906258i \(0.638926\pi\)
\(410\) 0 0
\(411\) −34.3568 −1.69470
\(412\) 0 0
\(413\) 0.983035i 0.0483720i
\(414\) 0 0
\(415\) 0.169314 + 0.123014i 0.00831132 + 0.00603852i
\(416\) 0 0
\(417\) 2.19451 0.713040i 0.107466 0.0349177i
\(418\) 0 0
\(419\) 17.7479 0.867044 0.433522 0.901143i \(-0.357271\pi\)
0.433522 + 0.901143i \(0.357271\pi\)
\(420\) 0 0
\(421\) −19.4854 26.8194i −0.949662 1.30710i −0.951678 0.307099i \(-0.900642\pi\)
0.00201586 0.999998i \(-0.499358\pi\)
\(422\) 0 0
\(423\) 4.21000 + 1.36791i 0.204697 + 0.0665102i
\(424\) 0 0
\(425\) 1.45177 1.99819i 0.0704211 0.0969263i
\(426\) 0 0
\(427\) 0.348853 + 0.480156i 0.0168822 + 0.0232364i
\(428\) 0 0
\(429\) −47.5348 + 15.4450i −2.29500 + 0.745691i
\(430\) 0 0
\(431\) −0.910426 2.80200i −0.0438537 0.134968i 0.926732 0.375722i \(-0.122605\pi\)
−0.970586 + 0.240754i \(0.922605\pi\)
\(432\) 0 0
\(433\) 0.244000 0.750954i 0.0117259 0.0360885i −0.945022 0.327006i \(-0.893960\pi\)
0.956748 + 0.290917i \(0.0939604\pi\)
\(434\) 0 0
\(435\) 1.91479 + 5.89313i 0.0918074 + 0.282554i
\(436\) 0 0
\(437\) 11.5133i 0.550757i
\(438\) 0 0
\(439\) 0.326113 0.448857i 0.0155645 0.0214228i −0.801164 0.598445i \(-0.795785\pi\)
0.816728 + 0.577022i \(0.195785\pi\)
\(440\) 0 0
\(441\) 4.33532 3.14980i 0.206444 0.149990i
\(442\) 0 0
\(443\) 0.985864 0.716272i 0.0468398 0.0340311i −0.564119 0.825693i \(-0.690784\pi\)
0.610959 + 0.791662i \(0.290784\pi\)
\(444\) 0 0
\(445\) 7.98903 + 2.59579i 0.378716 + 0.123052i
\(446\) 0 0
\(447\) −4.39962 3.19651i −0.208095 0.151190i
\(448\) 0 0
\(449\) −0.324897 + 0.999929i −0.0153328 + 0.0471896i −0.958430 0.285327i \(-0.907898\pi\)
0.943097 + 0.332517i \(0.107898\pi\)
\(450\) 0 0
\(451\) −8.79493 21.9160i −0.414137 1.03199i
\(452\) 0 0
\(453\) 1.58160 4.86766i 0.0743100 0.228703i
\(454\) 0 0
\(455\) −0.381674 0.277302i −0.0178931 0.0130001i
\(456\) 0 0
\(457\) −35.2539 11.4547i −1.64911 0.535828i −0.670563 0.741853i \(-0.733947\pi\)
−0.978547 + 0.206024i \(0.933947\pi\)
\(458\) 0 0
\(459\) 8.66273 6.29384i 0.404341 0.293771i
\(460\) 0 0
\(461\) 11.6544 8.46739i 0.542798 0.394366i −0.282325 0.959319i \(-0.591106\pi\)
0.825123 + 0.564953i \(0.191106\pi\)
\(462\) 0 0
\(463\) 11.5198 15.8557i 0.535373 0.736877i −0.452565 0.891732i \(-0.649491\pi\)
0.987937 + 0.154854i \(0.0494908\pi\)
\(464\) 0 0
\(465\) 16.5952i 0.769586i
\(466\) 0 0
\(467\) 9.07143 + 27.9190i 0.419776 + 1.29194i 0.907909 + 0.419168i \(0.137678\pi\)
−0.488133 + 0.872769i \(0.662322\pi\)
\(468\) 0 0
\(469\) −0.289882 + 0.892164i −0.0133855 + 0.0411963i
\(470\) 0 0
\(471\) −5.13959 15.8180i −0.236820 0.728856i
\(472\) 0 0
\(473\) 22.0876 7.17670i 1.01559 0.329985i
\(474\) 0 0
\(475\) −2.65477 3.65397i −0.121809 0.167656i
\(476\) 0 0
\(477\) 4.17926 5.75225i 0.191355 0.263378i
\(478\) 0 0
\(479\) 31.6373 + 10.2796i 1.44554 + 0.469686i 0.923621 0.383306i \(-0.125215\pi\)
0.521923 + 0.852992i \(0.325215\pi\)
\(480\) 0 0
\(481\) 42.7965 + 58.9044i 1.95135 + 2.68581i
\(482\) 0 0
\(483\) −0.334196 −0.0152064
\(484\) 0 0
\(485\) −5.13297 + 1.66780i −0.233076 + 0.0757311i
\(486\) 0 0
\(487\) −2.89179 2.10101i −0.131040 0.0952059i 0.520335 0.853962i \(-0.325807\pi\)
−0.651374 + 0.758757i \(0.725807\pi\)
\(488\) 0 0
\(489\) 0.938129i 0.0424236i
\(490\) 0 0
\(491\) 37.8790 1.70945 0.854727 0.519077i \(-0.173724\pi\)
0.854727 + 0.519077i \(0.173724\pi\)
\(492\) 0 0
\(493\) 7.88635 0.355183
\(494\) 0 0
\(495\) 2.82516i 0.126982i
\(496\) 0 0
\(497\) −0.580265 0.421587i −0.0260284 0.0189108i
\(498\) 0 0
\(499\) 5.77057 1.87497i 0.258326 0.0839352i −0.176991 0.984212i \(-0.556636\pi\)
0.435317 + 0.900277i \(0.356636\pi\)
\(500\) 0 0
\(501\) −36.9062 −1.64885
\(502\) 0 0
\(503\) −13.9476 19.1972i −0.621893 0.855963i 0.375596 0.926784i \(-0.377438\pi\)
−0.997489 + 0.0708208i \(0.977438\pi\)
\(504\) 0 0
\(505\) −10.6923 3.47413i −0.475799 0.154597i
\(506\) 0 0
\(507\) −40.7999 + 56.1563i −1.81199 + 2.49399i
\(508\) 0 0
\(509\) 4.53891 + 6.24728i 0.201184 + 0.276906i 0.897674 0.440661i \(-0.145256\pi\)
−0.696490 + 0.717567i \(0.745256\pi\)
\(510\) 0 0
\(511\) −0.0529521 + 0.0172052i −0.00234246 + 0.000761113i
\(512\) 0 0
\(513\) −6.05074 18.6223i −0.267147 0.822193i
\(514\) 0 0
\(515\) −1.40260 + 4.31676i −0.0618059 + 0.190219i
\(516\) 0 0
\(517\) 6.58572 + 20.2688i 0.289640 + 0.891420i
\(518\) 0 0
\(519\) 26.4166i 1.15956i
\(520\) 0 0
\(521\) 13.4398 18.4983i 0.588808 0.810425i −0.405819 0.913954i \(-0.633014\pi\)
0.994626 + 0.103529i \(0.0330135\pi\)
\(522\) 0 0
\(523\) 0.0282957 0.0205580i 0.00123728 0.000898939i −0.587166 0.809466i \(-0.699757\pi\)
0.588404 + 0.808567i \(0.299757\pi\)
\(524\) 0 0
\(525\) 0.106063 0.0770596i 0.00462899 0.00336316i
\(526\) 0 0
\(527\) −20.0875 6.52683i −0.875026 0.284313i
\(528\) 0 0
\(529\) 13.3503 + 9.69958i 0.580449 + 0.421721i
\(530\) 0 0
\(531\) −3.44456 + 10.6013i −0.149481 + 0.460056i
\(532\) 0 0
\(533\) −37.8655 23.7846i −1.64013 1.03023i
\(534\) 0 0
\(535\) 4.70386 14.4770i 0.203365 0.625895i
\(536\) 0 0
\(537\) 12.0313 + 8.74128i 0.519190 + 0.377214i
\(538\) 0 0
\(539\) 24.5367 + 7.97244i 1.05687 + 0.343397i
\(540\) 0 0
\(541\) 4.72581 3.43350i 0.203179 0.147618i −0.481543 0.876422i \(-0.659924\pi\)
0.684722 + 0.728804i \(0.259924\pi\)
\(542\) 0 0
\(543\) 36.5046 26.5222i 1.56656 1.13817i
\(544\) 0 0
\(545\) 7.94215 10.9314i 0.340204 0.468251i
\(546\) 0 0
\(547\) 19.7029i 0.842437i −0.906959 0.421218i \(-0.861603\pi\)
0.906959 0.421218i \(-0.138397\pi\)
\(548\) 0 0
\(549\) 2.07965 + 6.40050i 0.0887572 + 0.273167i
\(550\) 0 0
\(551\) 4.45643 13.7155i 0.189850 0.584300i
\(552\) 0 0
\(553\) 0.0270410 + 0.0832236i 0.00114990 + 0.00353903i
\(554\) 0 0
\(555\) −19.2429 + 6.25239i −0.816814 + 0.265399i
\(556\) 0 0
\(557\) −5.01166 6.89796i −0.212351 0.292276i 0.689533 0.724254i \(-0.257816\pi\)
−0.901884 + 0.431978i \(0.857816\pi\)
\(558\) 0 0
\(559\) 25.8485 35.5774i 1.09328 1.50477i
\(560\) 0 0
\(561\) −16.8121 5.46257i −0.709806 0.230630i
\(562\) 0 0
\(563\) 1.52512 + 2.09915i 0.0642762 + 0.0884686i 0.839945 0.542672i \(-0.182587\pi\)
−0.775669 + 0.631140i \(0.782587\pi\)
\(564\) 0 0
\(565\) 13.1766 0.554342
\(566\) 0 0
\(567\) 0.688199 0.223609i 0.0289017 0.00939072i
\(568\) 0 0
\(569\) −19.1514 13.9143i −0.802871 0.583320i 0.108884 0.994054i \(-0.465272\pi\)
−0.911755 + 0.410735i \(0.865272\pi\)
\(570\) 0 0
\(571\) 30.8979i 1.29304i 0.762898 + 0.646519i \(0.223776\pi\)
−0.762898 + 0.646519i \(0.776224\pi\)
\(572\) 0 0
\(573\) 31.2630 1.30603
\(574\) 0 0
\(575\) 2.54914 0.106306
\(576\) 0 0
\(577\) 41.8453i 1.74204i −0.491245 0.871021i \(-0.663458\pi\)
0.491245 0.871021i \(-0.336542\pi\)
\(578\) 0 0
\(579\) −39.7442 28.8759i −1.65171 1.20004i
\(580\) 0 0
\(581\) 0.0134465 0.00436902i 0.000557854 0.000181258i
\(582\) 0 0
\(583\) 34.2315 1.41772
\(584\) 0 0
\(585\) −3.14439 4.32788i −0.130005 0.178936i
\(586\) 0 0
\(587\) 17.9302 + 5.82588i 0.740060 + 0.240460i 0.654698 0.755890i \(-0.272796\pi\)
0.0853611 + 0.996350i \(0.472796\pi\)
\(588\) 0 0
\(589\) −22.7022 + 31.2469i −0.935427 + 1.28750i
\(590\) 0 0
\(591\) 25.5291 + 35.1377i 1.05013 + 1.44537i
\(592\) 0 0
\(593\) −27.7752 + 9.02472i −1.14059 + 0.370601i −0.817592 0.575798i \(-0.804691\pi\)
−0.323000 + 0.946399i \(0.604691\pi\)
\(594\) 0 0
\(595\) −0.0515616 0.158690i −0.00211382 0.00650567i
\(596\) 0 0
\(597\) 1.19974 3.69242i 0.0491021 0.151121i
\(598\) 0 0
\(599\) 8.22746 + 25.3215i 0.336165 + 1.03461i 0.966145 + 0.257998i \(0.0830629\pi\)
−0.629980 + 0.776611i \(0.716937\pi\)
\(600\) 0 0
\(601\) 9.76291i 0.398237i 0.979975 + 0.199119i \(0.0638079\pi\)
−0.979975 + 0.199119i \(0.936192\pi\)
\(602\) 0 0
\(603\) −6.25231 + 8.60556i −0.254614 + 0.350446i
\(604\) 0 0
\(605\) 2.10470 1.52916i 0.0855683 0.0621690i
\(606\) 0 0
\(607\) 9.43044 6.85162i 0.382770 0.278098i −0.379717 0.925103i \(-0.623978\pi\)
0.762486 + 0.647004i \(0.223978\pi\)
\(608\) 0 0
\(609\) 0.398118 + 0.129356i 0.0161326 + 0.00524179i
\(610\) 0 0
\(611\) 32.6478 + 23.7200i 1.32079 + 0.959608i
\(612\) 0 0
\(613\) 1.28802 3.96413i 0.0520228 0.160110i −0.921670 0.387975i \(-0.873175\pi\)
0.973693 + 0.227865i \(0.0731746\pi\)
\(614\) 0 0
\(615\) 9.53763 7.96498i 0.384595 0.321179i
\(616\) 0 0
\(617\) 10.8596 33.4224i 0.437191 1.34553i −0.453634 0.891188i \(-0.649873\pi\)
0.890825 0.454346i \(-0.150127\pi\)
\(618\) 0 0
\(619\) −22.6502 16.4563i −0.910387 0.661435i 0.0307259 0.999528i \(-0.490218\pi\)
−0.941113 + 0.338093i \(0.890218\pi\)
\(620\) 0 0
\(621\) 10.5104 + 3.41503i 0.421766 + 0.137040i
\(622\) 0 0
\(623\) 0.459104 0.333559i 0.0183936 0.0133637i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) −19.0004 + 26.1518i −0.758803 + 1.04440i
\(628\) 0 0
\(629\) 25.7513i 1.02677i
\(630\) 0 0
\(631\) 12.7296 + 39.1777i 0.506758 + 1.55964i 0.797795 + 0.602929i \(0.206000\pi\)
−0.291037 + 0.956712i \(0.594000\pi\)
\(632\) 0 0
\(633\) 2.33950 7.20023i 0.0929866 0.286183i
\(634\) 0 0
\(635\) 5.72858 + 17.6308i 0.227332 + 0.699655i
\(636\) 0 0
\(637\) 46.4611 15.0961i 1.84086 0.598131i
\(638\) 0 0
\(639\) −4.78047 6.57975i −0.189112 0.260291i
\(640\) 0 0
\(641\) 9.11952 12.5519i 0.360200 0.495772i −0.590005 0.807400i \(-0.700874\pi\)
0.950204 + 0.311628i \(0.100874\pi\)
\(642\) 0 0
\(643\) −27.0140 8.77737i −1.06533 0.346146i −0.276661 0.960968i \(-0.589228\pi\)
−0.788666 + 0.614822i \(0.789228\pi\)
\(644\) 0 0
\(645\) 7.18305 + 9.88662i 0.282832 + 0.389285i
\(646\) 0 0
\(647\) 10.0176 0.393831 0.196916 0.980420i \(-0.436908\pi\)
0.196916 + 0.980420i \(0.436908\pi\)
\(648\) 0 0
\(649\) −51.0392 + 16.5836i −2.00346 + 0.650964i
\(650\) 0 0
\(651\) −0.906999 0.658974i −0.0355481 0.0258272i
\(652\) 0 0
\(653\) 13.3533i 0.522555i −0.965264 0.261277i \(-0.915856\pi\)
0.965264 0.261277i \(-0.0841437\pi\)
\(654\) 0 0
\(655\) 14.2288 0.555964
\(656\) 0 0
\(657\) −0.631336 −0.0246307
\(658\) 0 0
\(659\) 26.4985i 1.03223i 0.856518 + 0.516117i \(0.172623\pi\)
−0.856518 + 0.516117i \(0.827377\pi\)
\(660\) 0 0
\(661\) 9.81156 + 7.12851i 0.381625 + 0.277267i 0.762015 0.647559i \(-0.224210\pi\)
−0.380390 + 0.924826i \(0.624210\pi\)
\(662\) 0 0
\(663\) −31.8343 + 10.3436i −1.23634 + 0.401712i
\(664\) 0 0
\(665\) −0.305122 −0.0118321
\(666\) 0 0
\(667\) 4.78420 + 6.58489i 0.185245 + 0.254968i
\(668\) 0 0
\(669\) 21.3455 + 6.93557i 0.825264 + 0.268145i
\(670\) 0 0
\(671\) −19.0446 + 26.2126i −0.735208 + 1.01193i
\(672\) 0 0
\(673\) −20.4676 28.1713i −0.788969 1.08592i −0.994236 0.107216i \(-0.965806\pi\)
0.205267 0.978706i \(-0.434194\pi\)
\(674\) 0 0
\(675\) −4.12311 + 1.33968i −0.158699 + 0.0515643i
\(676\) 0 0
\(677\) −5.69465 17.5263i −0.218863 0.673591i −0.998857 0.0478038i \(-0.984778\pi\)
0.779994 0.625787i \(-0.215222\pi\)
\(678\) 0 0
\(679\) −0.112671 + 0.346765i −0.00432390 + 0.0133076i
\(680\) 0 0
\(681\) 8.36149 + 25.7340i 0.320413 + 0.986130i
\(682\) 0 0
\(683\) 16.8516i 0.644808i 0.946602 + 0.322404i \(0.104491\pi\)
−0.946602 + 0.322404i \(0.895509\pi\)
\(684\) 0 0
\(685\) 10.4061 14.3228i 0.397598 0.547246i
\(686\) 0 0
\(687\) −23.9152 + 17.3754i −0.912421 + 0.662912i
\(688\) 0 0
\(689\) 52.4394 38.0995i 1.99778 1.45147i
\(690\) 0 0
\(691\) 5.47247 + 1.77811i 0.208183 + 0.0676426i 0.411252 0.911522i \(-0.365092\pi\)
−0.203069 + 0.979164i \(0.565092\pi\)
\(692\) 0 0
\(693\) −0.154407 0.112183i −0.00586543 0.00426149i
\(694\) 0 0
\(695\) −0.367427 + 1.13083i −0.0139373 + 0.0428947i
\(696\) 0 0
\(697\) −5.89002 14.6773i −0.223100 0.555943i
\(698\) 0 0
\(699\) −6.22132 + 19.1472i −0.235312 + 0.724215i
\(700\) 0 0
\(701\) 15.3673 + 11.1650i 0.580417 + 0.421697i 0.838874 0.544325i \(-0.183214\pi\)
−0.258458 + 0.966023i \(0.583214\pi\)
\(702\) 0 0
\(703\) 44.7852 + 14.5516i 1.68911 + 0.548824i
\(704\) 0 0
\(705\) −9.07249 + 6.59155i −0.341690 + 0.248252i
\(706\) 0 0
\(707\) −0.614450 + 0.446424i −0.0231088 + 0.0167895i
\(708\) 0 0
\(709\) −7.80384 + 10.7411i −0.293079 + 0.403389i −0.930011 0.367531i \(-0.880203\pi\)
0.636932 + 0.770920i \(0.280203\pi\)
\(710\) 0 0
\(711\) 0.992255i 0.0372125i
\(712\) 0 0
\(713\) −6.73623 20.7320i −0.252274 0.776419i
\(714\) 0 0
\(715\) 7.95876 24.4945i 0.297641 0.916044i
\(716\) 0 0
\(717\) 3.00038 + 9.23421i 0.112051 + 0.344858i
\(718\) 0 0
\(719\) −5.85943 + 1.90384i −0.218520 + 0.0710014i −0.416231 0.909259i \(-0.636649\pi\)
0.197711 + 0.980260i \(0.436649\pi\)
\(720\) 0 0
\(721\) 0.180234 + 0.248070i 0.00671225 + 0.00923862i
\(722\) 0 0
\(723\) 2.89780 3.98848i 0.107770 0.148333i
\(724\) 0 0
\(725\) −3.03671 0.986688i −0.112781 0.0366447i
\(726\) 0 0
\(727\) −17.1762 23.6410i −0.637028 0.876794i 0.361424 0.932401i \(-0.382291\pi\)
−0.998453 + 0.0556071i \(0.982291\pi\)
\(728\) 0 0
\(729\) −17.0343 −0.630901
\(730\) 0 0
\(731\) 14.7922 4.80628i 0.547110 0.177767i
\(732\) 0 0
\(733\) 6.09089 + 4.42529i 0.224972 + 0.163452i 0.694562 0.719433i \(-0.255598\pi\)
−0.469590 + 0.882885i \(0.655598\pi\)
\(734\) 0 0
\(735\) 13.5755i 0.500741i
\(736\) 0 0
\(737\) −51.2114 −1.88640
\(738\) 0 0
\(739\) 37.6564 1.38521 0.692607 0.721315i \(-0.256462\pi\)
0.692607 + 0.721315i \(0.256462\pi\)
\(740\) 0 0
\(741\) 61.2094i 2.24859i
\(742\) 0 0
\(743\) 26.7577 + 19.4406i 0.981645 + 0.713207i 0.958076 0.286515i \(-0.0924968\pi\)
0.0235697 + 0.999722i \(0.492497\pi\)
\(744\) 0 0
\(745\) 2.66515 0.865960i 0.0976436 0.0317263i
\(746\) 0 0
\(747\) 0.160319 0.00586577
\(748\) 0 0
\(749\) −0.604444 0.831946i −0.0220859 0.0303987i
\(750\) 0 0
\(751\) −4.66882 1.51699i −0.170368 0.0553559i 0.222591 0.974912i \(-0.428549\pi\)
−0.392959 + 0.919556i \(0.628549\pi\)
\(752\) 0 0
\(753\) 23.3951 32.2006i 0.852564 1.17345i
\(754\) 0 0
\(755\) 1.55021 + 2.13368i 0.0564179 + 0.0776526i
\(756\) 0 0
\(757\) −29.3213 + 9.52708i −1.06570 + 0.346268i −0.788813 0.614634i \(-0.789304\pi\)
−0.276890 + 0.960902i \(0.589304\pi\)
\(758\) 0 0
\(759\) −5.63783 17.3515i −0.204640 0.629818i
\(760\) 0 0
\(761\) −13.7918 + 42.4469i −0.499953 + 1.53870i 0.309139 + 0.951017i \(0.399959\pi\)
−0.809092 + 0.587682i \(0.800041\pi\)
\(762\) 0 0
\(763\) −0.282077 0.868144i −0.0102119 0.0314289i
\(764\) 0 0
\(765\) 1.89203i 0.0684064i
\(766\) 0 0
\(767\) −59.7297 + 82.2109i −2.15672 + 2.96846i
\(768\) 0 0
\(769\) −9.79153 + 7.11396i −0.353092 + 0.256536i −0.750165 0.661251i \(-0.770026\pi\)
0.397073 + 0.917787i \(0.370026\pi\)
\(770\) 0 0
\(771\) 23.8621 17.3368i 0.859372 0.624370i
\(772\) 0 0
\(773\) −1.44387 0.469143i −0.0519325 0.0168739i 0.282936 0.959139i \(-0.408692\pi\)
−0.334868 + 0.942265i \(0.608692\pi\)
\(774\) 0 0
\(775\) 6.91829 + 5.02643i 0.248512 + 0.180555i
\(776\) 0 0
\(777\) −0.422388 + 1.29998i −0.0151531 + 0.0466364i
\(778\) 0 0
\(779\) −28.8543 + 1.94970i −1.03381 + 0.0698553i
\(780\) 0 0
\(781\) 12.0998 37.2395i 0.432966 1.33253i
\(782\) 0 0
\(783\) −11.1989 8.13645i −0.400214 0.290773i
\(784\) 0 0
\(785\) 8.15099 + 2.64842i 0.290921 + 0.0945260i
\(786\) 0 0
\(787\) −27.8693 + 20.2482i −0.993434 + 0.721772i −0.960670 0.277691i \(-0.910431\pi\)
−0.0327635 + 0.999463i \(0.510431\pi\)
\(788\) 0 0
\(789\) 3.70112 2.68902i 0.131763 0.0957317i
\(790\) 0 0
\(791\) 0.523223 0.720154i 0.0186037 0.0256057i
\(792\) 0 0
\(793\) 61.3518i 2.17867i
\(794\) 0 0
\(795\) 5.56616 + 17.1309i 0.197411 + 0.607570i
\(796\) 0 0
\(797\) 8.92632 27.4724i 0.316186 0.973122i −0.659077 0.752076i \(-0.729053\pi\)
0.975263 0.221046i \(-0.0709472\pi\)
\(798\) 0 0
\(799\) 4.41050 + 13.5741i 0.156032 + 0.480218i
\(800\) 0 0
\(801\) 6.11988 1.98847i 0.216235 0.0702591i
\(802\) 0 0
\(803\) −1.78659 2.45903i −0.0630473 0.0867772i
\(804\) 0 0
\(805\) 0.101223 0.139321i 0.00356763 0.00491042i
\(806\) 0 0
\(807\) 37.7839 + 12.2767i 1.33005 + 0.432161i
\(808\) 0 0
\(809\) −9.39782 12.9350i −0.330410 0.454770i 0.611200 0.791476i \(-0.290687\pi\)
−0.941610 + 0.336706i \(0.890687\pi\)
\(810\) 0 0
\(811\) −15.4721 −0.543300 −0.271650 0.962396i \(-0.587569\pi\)
−0.271650 + 0.962396i \(0.587569\pi\)
\(812\) 0 0
\(813\) 46.8664 15.2278i 1.64368 0.534063i
\(814\) 0 0
\(815\) −0.391091 0.284144i −0.0136993 0.00995314i
\(816\) 0 0
\(817\) 28.4417i 0.995049i
\(818\) 0 0
\(819\) −0.361396 −0.0126282
\(820\) 0 0
\(821\) 2.91335 0.101677 0.0508384 0.998707i \(-0.483811\pi\)
0.0508384 + 0.998707i \(0.483811\pi\)
\(822\) 0 0
\(823\) 8.75688i 0.305246i −0.988285 0.152623i \(-0.951228\pi\)
0.988285 0.152623i \(-0.0487720\pi\)
\(824\) 0 0
\(825\) 5.79021 + 4.20683i 0.201589 + 0.146463i
\(826\) 0 0
\(827\) −31.9069 + 10.3672i −1.10951 + 0.360502i −0.805755 0.592249i \(-0.798240\pi\)
−0.303755 + 0.952750i \(0.598240\pi\)
\(828\) 0 0
\(829\) 2.61019 0.0906557 0.0453279 0.998972i \(-0.485567\pi\)
0.0453279 + 0.998972i \(0.485567\pi\)
\(830\) 0 0
\(831\) −1.91713 2.63870i −0.0665043 0.0915354i
\(832\) 0 0
\(833\) 16.4323 + 5.33919i 0.569347 + 0.184992i
\(834\) 0 0
\(835\) 11.1783 15.3856i 0.386841 0.532441i
\(836\) 0 0
\(837\) 21.7911 + 29.9928i 0.753209 + 1.03670i
\(838\) 0 0
\(839\) 43.7743 14.2231i 1.51126 0.491037i 0.567979 0.823043i \(-0.307726\pi\)
0.943277 + 0.332006i \(0.107726\pi\)
\(840\) 0 0
\(841\) 5.81101 + 17.8844i 0.200380 + 0.616705i
\(842\) 0 0
\(843\) 9.82302 30.2321i 0.338323 1.04125i
\(844\) 0 0
\(845\) −11.0530 34.0177i −0.380235 1.17024i
\(846\) 0 0
\(847\) 0.175751i 0.00603889i
\(848\) 0 0
\(849\) −21.2952 + 29.3104i −0.730850 + 1.00593i
\(850\) 0 0
\(851\) −21.5017 + 15.6219i −0.737067 + 0.535511i
\(852\) 0 0
\(853\) −39.5271 + 28.7181i −1.35338 + 0.983290i −0.354548 + 0.935038i \(0.615365\pi\)
−0.998835 + 0.0482522i \(0.984635\pi\)
\(854\) 0 0
\(855\) −3.29051 1.06915i −0.112533 0.0365642i
\(856\) 0 0
\(857\) 31.4340 + 22.8382i 1.07377 + 0.780137i 0.976585 0.215130i \(-0.0690175\pi\)
0.0971806 + 0.995267i \(0.469018\pi\)
\(858\) 0 0
\(859\) −5.24341 + 16.1376i −0.178903 + 0.550606i −0.999790 0.0204838i \(-0.993479\pi\)
0.820887 + 0.571090i \(0.193479\pi\)
\(860\) 0 0
\(861\) −0.0565937 0.837550i −0.00192871 0.0285436i
\(862\) 0 0
\(863\) 8.38682 25.8120i 0.285491 0.878650i −0.700761 0.713397i \(-0.747156\pi\)
0.986251 0.165253i \(-0.0528441\pi\)
\(864\) 0 0
\(865\) 11.0127 + 8.00117i 0.374442 + 0.272048i
\(866\) 0 0
\(867\) 20.1168 + 6.53636i 0.683204 + 0.221986i
\(868\) 0 0
\(869\) −3.86479 + 2.80794i −0.131104 + 0.0952528i
\(870\) 0 0
\(871\) −78.4511 + 56.9981i −2.65821 + 1.93131i
\(872\) 0 0
\(873\) −2.43013 + 3.34479i −0.0822476 + 0.113204i
\(874\) 0 0
\(875\) 0.0675563i 0.00228382i
\(876\) 0 0
\(877\) 14.2285 + 43.7909i 0.480463 + 1.47871i 0.838446 + 0.544985i \(0.183465\pi\)
−0.357983 + 0.933728i \(0.616535\pi\)
\(878\) 0 0
\(879\) −3.90192 + 12.0089i −0.131608 + 0.405049i
\(880\) 0 0
\(881\) −8.40334 25.8628i −0.283116 0.871341i −0.986957 0.160984i \(-0.948533\pi\)
0.703841 0.710357i \(-0.251467\pi\)
\(882\) 0 0
\(883\) 2.65356 0.862193i 0.0892993 0.0290151i −0.264027 0.964515i \(-0.585051\pi\)
0.353326 + 0.935500i \(0.385051\pi\)
\(884\) 0 0
\(885\) −16.5983 22.8456i −0.557946 0.767947i
\(886\) 0 0
\(887\) −11.8487 + 16.3083i −0.397839 + 0.547578i −0.960200 0.279314i \(-0.909893\pi\)
0.562361 + 0.826892i \(0.309893\pi\)
\(888\) 0 0
\(889\) 1.19107 + 0.387002i 0.0399472 + 0.0129796i
\(890\) 0 0
\(891\) 23.2196 + 31.9591i 0.777886 + 1.07067i
\(892\) 0 0
\(893\) 26.0996 0.873391
\(894\) 0 0
\(895\) −7.28820 + 2.36808i −0.243618 + 0.0791562i
\(896\) 0 0
\(897\) −27.9487 20.3059i −0.933180 0.677995i
\(898\) 0 0
\(899\) 27.3048i 0.910666i
\(900\) 0 0
\(901\) 22.9250 0.763744
\(902\) 0 0
\(903\) 0.825574 0.0274734
\(904\) 0 0
\(905\) 23.2513i 0.772901i
\(906\) 0 0
\(907\) 36.9633 + 26.8554i 1.22735 + 0.891720i 0.996689 0.0813143i \(-0.0259118\pi\)
0.230659 + 0.973035i \(0.425912\pi\)
\(908\) 0 0
\(909\) −8.19065 + 2.66130i −0.271667 + 0.0882699i
\(910\) 0 0
\(911\) −48.1984 −1.59688 −0.798441 0.602073i \(-0.794342\pi\)
−0.798441 + 0.602073i \(0.794342\pi\)
\(912\) 0 0
\(913\) 0.453679 + 0.624436i 0.0150146 + 0.0206658i
\(914\) 0 0
\(915\) −16.2146 5.26845i −0.536039 0.174170i
\(916\) 0 0
\(917\) 0.565004 0.777662i 0.0186581 0.0256806i
\(918\) 0 0
\(919\) −14.0615 19.3540i −0.463845 0.638428i 0.511456 0.859310i \(-0.329107\pi\)
−0.975301 + 0.220882i \(0.929107\pi\)
\(920\) 0 0
\(921\) 16.8957 5.48974i 0.556731 0.180893i
\(922\) 0 0
\(923\) −22.9115 70.5144i −0.754142 2.32101i
\(924\) 0 0
\(925\) 3.22184 9.91579i 0.105933 0.326029i
\(926\) 0 0
\(927\) 1.07444 + 3.30679i 0.0352893 + 0.108609i
\(928\) 0 0
\(929\) 39.0200i 1.28021i −0.768289 0.640103i \(-0.778892\pi\)
0.768289 0.640103i \(-0.221108\pi\)
\(930\) 0 0
\(931\) 18.5712 25.5611i 0.608648 0.837732i
\(932\) 0 0
\(933\) −39.9079 + 28.9948i −1.30652 + 0.949246i
\(934\) 0 0
\(935\) 7.36937 5.35416i 0.241004 0.175100i
\(936\) 0 0
\(937\) 29.8908 + 9.71211i 0.976490 + 0.317281i 0.753433 0.657524i \(-0.228396\pi\)
0.223057 + 0.974805i \(0.428396\pi\)
\(938\) 0 0
\(939\) 21.0904 + 15.3231i 0.688259 + 0.500050i
\(940\) 0 0
\(941\) −4.20289 + 12.9352i −0.137010 + 0.421674i −0.995897 0.0904910i \(-0.971156\pi\)
0.858887 + 0.512165i \(0.171156\pi\)
\(942\) 0 0
\(943\) 8.68201 13.8219i 0.282725 0.450103i
\(944\) 0 0
\(945\) −0.0905038 + 0.278542i −0.00294409 + 0.00906097i
\(946\) 0 0
\(947\) −21.3393 15.5039i −0.693433 0.503809i 0.184354 0.982860i \(-0.440981\pi\)
−0.877787 + 0.479051i \(0.840981\pi\)
\(948\) 0 0
\(949\) −5.47377 1.77854i −0.177686 0.0577337i
\(950\) 0 0
\(951\) 1.73885 1.26335i 0.0563859 0.0409668i
\(952\) 0 0
\(953\) 42.6504 30.9873i 1.38158 1.00378i 0.384851 0.922979i \(-0.374253\pi\)
0.996730 0.0807987i \(-0.0257471\pi\)
\(954\) 0 0
\(955\) −9.46907 + 13.0331i −0.306412 + 0.421740i
\(956\) 0 0
\(957\) 22.8525i 0.738717i
\(958\) 0 0
\(959\) −0.369589 1.13748i −0.0119346 0.0367311i
\(960\) 0 0
\(961\) 13.0182 40.0659i 0.419942 1.29245i
\(962\) 0 0
\(963\) −3.60332 11.0899i −0.116115 0.357367i
\(964\) 0 0
\(965\) 24.0758 7.82270i 0.775027 0.251822i
\(966\) 0 0
\(967\) −9.52511 13.1102i −0.306307 0.421595i 0.627918 0.778279i \(-0.283907\pi\)
−0.934225 + 0.356684i \(0.883907\pi\)
\(968\) 0 0
\(969\) −12.7247 + 17.5140i −0.408776 + 0.562631i
\(970\) 0 0
\(971\) 9.74627 + 3.16676i 0.312773 + 0.101626i 0.461197 0.887298i \(-0.347420\pi\)
−0.148424 + 0.988924i \(0.547420\pi\)
\(972\) 0 0
\(973\) 0.0472143 + 0.0649849i 0.00151362 + 0.00208332i
\(974\) 0 0
\(975\) 13.5522 0.434019
\(976\) 0 0
\(977\) −2.75088 + 0.893814i −0.0880083 + 0.0285956i −0.352690 0.935740i \(-0.614733\pi\)
0.264682 + 0.964336i \(0.414733\pi\)
\(978\) 0 0
\(979\) 25.0634 + 18.2096i 0.801029 + 0.581982i
\(980\) 0 0
\(981\) 10.3507i 0.330471i
\(982\) 0 0
\(983\) −23.3711 −0.745421 −0.372710 0.927948i \(-0.621572\pi\)
−0.372710 + 0.927948i \(0.621572\pi\)
\(984\) 0 0
\(985\) −22.3807 −0.713109
\(986\) 0 0
\(987\) 0.757591i 0.0241144i
\(988\) 0 0
\(989\) 12.9867 + 9.43539i 0.412953 + 0.300028i
\(990\) 0 0
\(991\) −19.9091 + 6.46887i −0.632435 + 0.205491i −0.607653 0.794202i \(-0.707889\pi\)
−0.0247815 + 0.999693i \(0.507889\pi\)
\(992\) 0 0
\(993\) −44.3131 −1.40623
\(994\) 0 0
\(995\) 1.17593 + 1.61853i 0.0372794 + 0.0513107i
\(996\) 0 0
\(997\) −14.9744 4.86547i −0.474244 0.154091i 0.0621364 0.998068i \(-0.480209\pi\)
−0.536380 + 0.843977i \(0.680209\pi\)
\(998\) 0 0
\(999\) 26.5680 36.5677i 0.840573 1.15695i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bg.b.681.6 32
41.23 even 10 inner 820.2.bg.b.761.3 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bg.b.681.6 32 1.1 even 1 trivial
820.2.bg.b.761.3 yes 32 41.23 even 10 inner