Properties

Label 820.2.bg.a.701.1
Level $820$
Weight $2$
Character 820.701
Analytic conductor $6.548$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(441,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.441"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bg (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 701.1
Character \(\chi\) \(=\) 820.701
Dual form 820.2.bg.a.441.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.32495i q^{3} +(-0.309017 + 0.951057i) q^{5} +(-1.65518 + 2.27816i) q^{7} -2.40537 q^{9} +(0.385336 - 0.125203i) q^{11} +(-2.97470 - 4.09432i) q^{13} +(2.21115 + 0.718448i) q^{15} +(-5.17450 + 1.68130i) q^{17} +(-3.53396 + 4.86408i) q^{19} +(5.29661 + 3.84821i) q^{21} +(-5.65628 + 4.10953i) q^{23} +(-0.809017 - 0.587785i) q^{25} -1.38247i q^{27} +(0.857577 + 0.278644i) q^{29} +(-2.83372 - 8.72130i) q^{31} +(-0.291091 - 0.895886i) q^{33} +(-1.65518 - 2.27816i) q^{35} +(-3.19931 + 9.84646i) q^{37} +(-9.51907 + 6.91601i) q^{39} +(3.14992 - 5.57476i) q^{41} +(-1.28772 + 0.935586i) q^{43} +(0.743301 - 2.28765i) q^{45} +(0.958207 + 1.31886i) q^{47} +(-0.287280 - 0.884158i) q^{49} +(3.90893 + 12.0304i) q^{51} +(6.06629 + 1.97106i) q^{53} +0.405167i q^{55} +(11.3087 + 8.21627i) q^{57} +(1.37590 - 0.999652i) q^{59} +(10.4083 + 7.56207i) q^{61} +(3.98133 - 5.47983i) q^{63} +(4.81316 - 1.56389i) q^{65} +(-9.68499 - 3.14684i) q^{67} +(9.55444 + 13.1506i) q^{69} +(-7.93370 + 2.57782i) q^{71} +12.5020 q^{73} +(-1.36657 + 1.88092i) q^{75} +(-0.352568 + 1.08509i) q^{77} -5.50739i q^{79} -10.4303 q^{81} -14.1071 q^{83} -5.44080i q^{85} +(0.647831 - 1.99382i) q^{87} +(4.69327 - 6.45973i) q^{89} +14.2512 q^{91} +(-20.2766 + 6.58825i) q^{93} +(-3.53396 - 4.86408i) q^{95} +(-10.1695 - 3.30427i) q^{97} +(-0.926878 + 0.301161i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{5} + 5 q^{7} - 6 q^{9} + 5 q^{11} - 5 q^{13} - 5 q^{17} - 5 q^{19} - 6 q^{21} + 10 q^{23} - 6 q^{25} - 25 q^{29} + 7 q^{31} - 12 q^{33} + 5 q^{35} - 13 q^{37} + 4 q^{39} + 6 q^{41} + 14 q^{43}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.32495i 1.34231i −0.741318 0.671154i \(-0.765799\pi\)
0.741318 0.671154i \(-0.234201\pi\)
\(4\) 0 0
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) −1.65518 + 2.27816i −0.625600 + 0.861065i −0.997746 0.0671096i \(-0.978622\pi\)
0.372145 + 0.928174i \(0.378622\pi\)
\(8\) 0 0
\(9\) −2.40537 −0.801791
\(10\) 0 0
\(11\) 0.385336 0.125203i 0.116183 0.0377502i −0.250348 0.968156i \(-0.580545\pi\)
0.366532 + 0.930406i \(0.380545\pi\)
\(12\) 0 0
\(13\) −2.97470 4.09432i −0.825032 1.13556i −0.988827 0.149065i \(-0.952374\pi\)
0.163795 0.986494i \(-0.447626\pi\)
\(14\) 0 0
\(15\) 2.21115 + 0.718448i 0.570918 + 0.185502i
\(16\) 0 0
\(17\) −5.17450 + 1.68130i −1.25500 + 0.407775i −0.859711 0.510781i \(-0.829356\pi\)
−0.395291 + 0.918556i \(0.629356\pi\)
\(18\) 0 0
\(19\) −3.53396 + 4.86408i −0.810747 + 1.11590i 0.180461 + 0.983582i \(0.442241\pi\)
−0.991208 + 0.132315i \(0.957759\pi\)
\(20\) 0 0
\(21\) 5.29661 + 3.84821i 1.15581 + 0.839748i
\(22\) 0 0
\(23\) −5.65628 + 4.10953i −1.17942 + 0.856897i −0.992106 0.125404i \(-0.959977\pi\)
−0.187311 + 0.982301i \(0.559977\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 0 0
\(27\) 1.38247i 0.266057i
\(28\) 0 0
\(29\) 0.857577 + 0.278644i 0.159248 + 0.0517428i 0.387556 0.921846i \(-0.373319\pi\)
−0.228308 + 0.973589i \(0.573319\pi\)
\(30\) 0 0
\(31\) −2.83372 8.72130i −0.508952 1.56639i −0.794024 0.607886i \(-0.792018\pi\)
0.285072 0.958506i \(-0.407982\pi\)
\(32\) 0 0
\(33\) −0.291091 0.895886i −0.0506725 0.155954i
\(34\) 0 0
\(35\) −1.65518 2.27816i −0.279777 0.385080i
\(36\) 0 0
\(37\) −3.19931 + 9.84646i −0.525963 + 1.61875i 0.236441 + 0.971646i \(0.424019\pi\)
−0.762404 + 0.647102i \(0.775981\pi\)
\(38\) 0 0
\(39\) −9.51907 + 6.91601i −1.52427 + 1.10745i
\(40\) 0 0
\(41\) 3.14992 5.57476i 0.491935 0.870632i
\(42\) 0 0
\(43\) −1.28772 + 0.935586i −0.196376 + 0.142675i −0.681628 0.731699i \(-0.738728\pi\)
0.485252 + 0.874374i \(0.338728\pi\)
\(44\) 0 0
\(45\) 0.743301 2.28765i 0.110805 0.341022i
\(46\) 0 0
\(47\) 0.958207 + 1.31886i 0.139769 + 0.192375i 0.873163 0.487428i \(-0.162065\pi\)
−0.733394 + 0.679804i \(0.762065\pi\)
\(48\) 0 0
\(49\) −0.287280 0.884158i −0.0410400 0.126308i
\(50\) 0 0
\(51\) 3.90893 + 12.0304i 0.547359 + 1.68460i
\(52\) 0 0
\(53\) 6.06629 + 1.97106i 0.833268 + 0.270745i 0.694421 0.719569i \(-0.255660\pi\)
0.138847 + 0.990314i \(0.455660\pi\)
\(54\) 0 0
\(55\) 0.405167i 0.0546327i
\(56\) 0 0
\(57\) 11.3087 + 8.21627i 1.49788 + 1.08827i
\(58\) 0 0
\(59\) 1.37590 0.999652i 0.179127 0.130144i −0.494609 0.869116i \(-0.664689\pi\)
0.673736 + 0.738972i \(0.264689\pi\)
\(60\) 0 0
\(61\) 10.4083 + 7.56207i 1.33265 + 0.968224i 0.999680 + 0.0252844i \(0.00804912\pi\)
0.332965 + 0.942939i \(0.391951\pi\)
\(62\) 0 0
\(63\) 3.98133 5.47983i 0.501601 0.690394i
\(64\) 0 0
\(65\) 4.81316 1.56389i 0.596999 0.193977i
\(66\) 0 0
\(67\) −9.68499 3.14684i −1.18321 0.384448i −0.349652 0.936880i \(-0.613700\pi\)
−0.833558 + 0.552431i \(0.813700\pi\)
\(68\) 0 0
\(69\) 9.55444 + 13.1506i 1.15022 + 1.58314i
\(70\) 0 0
\(71\) −7.93370 + 2.57782i −0.941557 + 0.305931i −0.739280 0.673398i \(-0.764834\pi\)
−0.202277 + 0.979328i \(0.564834\pi\)
\(72\) 0 0
\(73\) 12.5020 1.46325 0.731626 0.681706i \(-0.238762\pi\)
0.731626 + 0.681706i \(0.238762\pi\)
\(74\) 0 0
\(75\) −1.36657 + 1.88092i −0.157798 + 0.217190i
\(76\) 0 0
\(77\) −0.352568 + 1.08509i −0.0401789 + 0.123658i
\(78\) 0 0
\(79\) 5.50739i 0.619630i −0.950797 0.309815i \(-0.899733\pi\)
0.950797 0.309815i \(-0.100267\pi\)
\(80\) 0 0
\(81\) −10.4303 −1.15892
\(82\) 0 0
\(83\) −14.1071 −1.54846 −0.774229 0.632905i \(-0.781862\pi\)
−0.774229 + 0.632905i \(0.781862\pi\)
\(84\) 0 0
\(85\) 5.44080i 0.590137i
\(86\) 0 0
\(87\) 0.647831 1.99382i 0.0694548 0.213760i
\(88\) 0 0
\(89\) 4.69327 6.45973i 0.497485 0.684730i −0.484261 0.874923i \(-0.660912\pi\)
0.981747 + 0.190194i \(0.0609116\pi\)
\(90\) 0 0
\(91\) 14.2512 1.49393
\(92\) 0 0
\(93\) −20.2766 + 6.58825i −2.10258 + 0.683170i
\(94\) 0 0
\(95\) −3.53396 4.86408i −0.362577 0.499044i
\(96\) 0 0
\(97\) −10.1695 3.30427i −1.03256 0.335498i −0.256756 0.966476i \(-0.582654\pi\)
−0.775800 + 0.630978i \(0.782654\pi\)
\(98\) 0 0
\(99\) −0.926878 + 0.301161i −0.0931547 + 0.0302678i
\(100\) 0 0
\(101\) 4.84588 6.66978i 0.482183 0.663668i −0.496740 0.867900i \(-0.665470\pi\)
0.978923 + 0.204232i \(0.0654696\pi\)
\(102\) 0 0
\(103\) −0.447482 0.325115i −0.0440917 0.0320345i 0.565521 0.824734i \(-0.308675\pi\)
−0.609613 + 0.792699i \(0.708675\pi\)
\(104\) 0 0
\(105\) −5.29661 + 3.84821i −0.516896 + 0.375547i
\(106\) 0 0
\(107\) 2.58966 + 1.88150i 0.250352 + 0.181892i 0.705883 0.708329i \(-0.250550\pi\)
−0.455531 + 0.890220i \(0.650550\pi\)
\(108\) 0 0
\(109\) 6.05732i 0.580186i 0.956998 + 0.290093i \(0.0936862\pi\)
−0.956998 + 0.290093i \(0.906314\pi\)
\(110\) 0 0
\(111\) 22.8925 + 7.43822i 2.17286 + 0.706004i
\(112\) 0 0
\(113\) −4.58613 14.1146i −0.431427 1.32779i −0.896704 0.442630i \(-0.854046\pi\)
0.465278 0.885165i \(-0.345954\pi\)
\(114\) 0 0
\(115\) −2.16051 6.64936i −0.201468 0.620056i
\(116\) 0 0
\(117\) 7.15525 + 9.84836i 0.661503 + 0.910481i
\(118\) 0 0
\(119\) 4.73448 14.5712i 0.434009 1.33574i
\(120\) 0 0
\(121\) −8.76638 + 6.36915i −0.796944 + 0.579013i
\(122\) 0 0
\(123\) −12.9610 7.32340i −1.16866 0.660329i
\(124\) 0 0
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) −0.324433 + 0.998501i −0.0287887 + 0.0886027i −0.964419 0.264380i \(-0.914833\pi\)
0.935630 + 0.352983i \(0.114833\pi\)
\(128\) 0 0
\(129\) 2.17519 + 2.99389i 0.191514 + 0.263597i
\(130\) 0 0
\(131\) 1.30645 + 4.02083i 0.114145 + 0.351302i 0.991768 0.128050i \(-0.0408718\pi\)
−0.877623 + 0.479352i \(0.840872\pi\)
\(132\) 0 0
\(133\) −5.23182 16.1019i −0.453656 1.39621i
\(134\) 0 0
\(135\) 1.31481 + 0.427208i 0.113161 + 0.0367682i
\(136\) 0 0
\(137\) 21.4792i 1.83509i −0.397633 0.917545i \(-0.630168\pi\)
0.397633 0.917545i \(-0.369832\pi\)
\(138\) 0 0
\(139\) −18.6449 13.5463i −1.58144 1.14899i −0.915018 0.403414i \(-0.867823\pi\)
−0.666425 0.745572i \(-0.732177\pi\)
\(140\) 0 0
\(141\) 3.06628 2.22778i 0.258227 0.187613i
\(142\) 0 0
\(143\) −1.65888 1.20525i −0.138723 0.100788i
\(144\) 0 0
\(145\) −0.530012 + 0.729498i −0.0440151 + 0.0605815i
\(146\) 0 0
\(147\) −2.05562 + 0.667911i −0.169545 + 0.0550884i
\(148\) 0 0
\(149\) 15.3930 + 5.00148i 1.26104 + 0.409737i 0.861865 0.507137i \(-0.169296\pi\)
0.399176 + 0.916874i \(0.369296\pi\)
\(150\) 0 0
\(151\) 2.70210 + 3.71912i 0.219894 + 0.302658i 0.904685 0.426082i \(-0.140106\pi\)
−0.684791 + 0.728740i \(0.740106\pi\)
\(152\) 0 0
\(153\) 12.4466 4.04415i 1.00625 0.326950i
\(154\) 0 0
\(155\) 9.17012 0.736562
\(156\) 0 0
\(157\) −6.29764 + 8.66796i −0.502606 + 0.691778i −0.982651 0.185466i \(-0.940621\pi\)
0.480044 + 0.877244i \(0.340621\pi\)
\(158\) 0 0
\(159\) 4.58260 14.1038i 0.363424 1.11850i
\(160\) 0 0
\(161\) 19.6880i 1.55163i
\(162\) 0 0
\(163\) −3.65736 −0.286466 −0.143233 0.989689i \(-0.545750\pi\)
−0.143233 + 0.989689i \(0.545750\pi\)
\(164\) 0 0
\(165\) 0.941991 0.0733339
\(166\) 0 0
\(167\) 10.6890i 0.827139i 0.910473 + 0.413570i \(0.135718\pi\)
−0.910473 + 0.413570i \(0.864282\pi\)
\(168\) 0 0
\(169\) −3.89740 + 11.9950i −0.299800 + 0.922689i
\(170\) 0 0
\(171\) 8.50050 11.6999i 0.650049 0.894716i
\(172\) 0 0
\(173\) 14.7704 1.12297 0.561486 0.827486i \(-0.310230\pi\)
0.561486 + 0.827486i \(0.310230\pi\)
\(174\) 0 0
\(175\) 2.67814 0.870181i 0.202448 0.0657795i
\(176\) 0 0
\(177\) −2.32414 3.19890i −0.174693 0.240444i
\(178\) 0 0
\(179\) −9.38842 3.05048i −0.701723 0.228004i −0.0636420 0.997973i \(-0.520272\pi\)
−0.638081 + 0.769969i \(0.720272\pi\)
\(180\) 0 0
\(181\) −12.3848 + 4.02405i −0.920551 + 0.299105i −0.730693 0.682706i \(-0.760803\pi\)
−0.189858 + 0.981811i \(0.560803\pi\)
\(182\) 0 0
\(183\) 17.5814 24.1987i 1.29965 1.78882i
\(184\) 0 0
\(185\) −8.37590 6.08545i −0.615808 0.447411i
\(186\) 0 0
\(187\) −1.78342 + 1.29573i −0.130417 + 0.0947532i
\(188\) 0 0
\(189\) 3.14950 + 2.28825i 0.229093 + 0.166446i
\(190\) 0 0
\(191\) 7.77636i 0.562677i 0.959609 + 0.281339i \(0.0907784\pi\)
−0.959609 + 0.281339i \(0.909222\pi\)
\(192\) 0 0
\(193\) −20.2129 6.56758i −1.45496 0.472745i −0.528433 0.848975i \(-0.677220\pi\)
−0.926526 + 0.376230i \(0.877220\pi\)
\(194\) 0 0
\(195\) −3.63596 11.1903i −0.260376 0.801356i
\(196\) 0 0
\(197\) −0.491778 1.51354i −0.0350378 0.107835i 0.932008 0.362438i \(-0.118055\pi\)
−0.967046 + 0.254602i \(0.918055\pi\)
\(198\) 0 0
\(199\) 6.59415 + 9.07607i 0.467447 + 0.643386i 0.976032 0.217626i \(-0.0698313\pi\)
−0.508585 + 0.861012i \(0.669831\pi\)
\(200\) 0 0
\(201\) −7.31624 + 22.5171i −0.516048 + 1.58823i
\(202\) 0 0
\(203\) −2.05424 + 1.49249i −0.144179 + 0.104753i
\(204\) 0 0
\(205\) 4.32854 + 4.71845i 0.302318 + 0.329551i
\(206\) 0 0
\(207\) 13.6055 9.88496i 0.945646 0.687052i
\(208\) 0 0
\(209\) −0.752765 + 2.31677i −0.0520698 + 0.160254i
\(210\) 0 0
\(211\) −0.987209 1.35878i −0.0679622 0.0935420i 0.773683 0.633573i \(-0.218412\pi\)
−0.841645 + 0.540031i \(0.818412\pi\)
\(212\) 0 0
\(213\) 5.99328 + 18.4454i 0.410653 + 1.26386i
\(214\) 0 0
\(215\) −0.491866 1.51381i −0.0335450 0.103241i
\(216\) 0 0
\(217\) 24.5589 + 7.97966i 1.66717 + 0.541695i
\(218\) 0 0
\(219\) 29.0665i 1.96414i
\(220\) 0 0
\(221\) 22.2763 + 16.1847i 1.49847 + 1.08870i
\(222\) 0 0
\(223\) 0.557215 0.404841i 0.0373139 0.0271101i −0.568972 0.822357i \(-0.692659\pi\)
0.606286 + 0.795247i \(0.292659\pi\)
\(224\) 0 0
\(225\) 1.94599 + 1.41384i 0.129733 + 0.0942562i
\(226\) 0 0
\(227\) 16.7380 23.0379i 1.11094 1.52908i 0.290914 0.956749i \(-0.406041\pi\)
0.820025 0.572328i \(-0.193959\pi\)
\(228\) 0 0
\(229\) 6.77124 2.20011i 0.447456 0.145387i −0.0766171 0.997061i \(-0.524412\pi\)
0.524073 + 0.851673i \(0.324412\pi\)
\(230\) 0 0
\(231\) 2.52278 + 0.819702i 0.165987 + 0.0539325i
\(232\) 0 0
\(233\) −8.65265 11.9094i −0.566854 0.780208i 0.425324 0.905041i \(-0.360160\pi\)
−0.992178 + 0.124834i \(0.960160\pi\)
\(234\) 0 0
\(235\) −1.55041 + 0.503759i −0.101138 + 0.0328616i
\(236\) 0 0
\(237\) −12.8044 −0.831734
\(238\) 0 0
\(239\) 5.35759 7.37409i 0.346554 0.476991i −0.599787 0.800159i \(-0.704748\pi\)
0.946341 + 0.323169i \(0.104748\pi\)
\(240\) 0 0
\(241\) −5.09803 + 15.6901i −0.328393 + 1.01069i 0.641493 + 0.767129i \(0.278315\pi\)
−0.969886 + 0.243560i \(0.921685\pi\)
\(242\) 0 0
\(243\) 20.1025i 1.28957i
\(244\) 0 0
\(245\) 0.929658 0.0593937
\(246\) 0 0
\(247\) 30.4276 1.93606
\(248\) 0 0
\(249\) 32.7983i 2.07851i
\(250\) 0 0
\(251\) −5.27292 + 16.2284i −0.332824 + 1.02433i 0.634961 + 0.772545i \(0.281016\pi\)
−0.967784 + 0.251781i \(0.918984\pi\)
\(252\) 0 0
\(253\) −1.66505 + 2.29174i −0.104680 + 0.144080i
\(254\) 0 0
\(255\) −12.6496 −0.792146
\(256\) 0 0
\(257\) 23.6610 7.68792i 1.47593 0.479560i 0.543038 0.839708i \(-0.317274\pi\)
0.932895 + 0.360149i \(0.117274\pi\)
\(258\) 0 0
\(259\) −17.1364 23.5862i −1.06480 1.46558i
\(260\) 0 0
\(261\) −2.06279 0.670242i −0.127684 0.0414869i
\(262\) 0 0
\(263\) 5.11255 1.66117i 0.315253 0.102432i −0.147117 0.989119i \(-0.546999\pi\)
0.462370 + 0.886687i \(0.346999\pi\)
\(264\) 0 0
\(265\) −3.74917 + 5.16029i −0.230310 + 0.316994i
\(266\) 0 0
\(267\) −15.0185 10.9116i −0.919118 0.667778i
\(268\) 0 0
\(269\) 10.8808 7.90538i 0.663416 0.482000i −0.204399 0.978888i \(-0.565524\pi\)
0.867815 + 0.496888i \(0.165524\pi\)
\(270\) 0 0
\(271\) −15.4527 11.2270i −0.938682 0.681992i 0.00942112 0.999956i \(-0.497001\pi\)
−0.948103 + 0.317963i \(0.897001\pi\)
\(272\) 0 0
\(273\) 33.1332i 2.00531i
\(274\) 0 0
\(275\) −0.385336 0.125203i −0.0232367 0.00755005i
\(276\) 0 0
\(277\) 8.56714 + 26.3670i 0.514750 + 1.58424i 0.783737 + 0.621093i \(0.213311\pi\)
−0.268987 + 0.963144i \(0.586689\pi\)
\(278\) 0 0
\(279\) 6.81616 + 20.9780i 0.408073 + 1.25592i
\(280\) 0 0
\(281\) 1.80539 + 2.48490i 0.107700 + 0.148237i 0.859465 0.511195i \(-0.170797\pi\)
−0.751764 + 0.659432i \(0.770797\pi\)
\(282\) 0 0
\(283\) −2.04009 + 6.27875i −0.121271 + 0.373233i −0.993203 0.116393i \(-0.962867\pi\)
0.871932 + 0.489626i \(0.162867\pi\)
\(284\) 0 0
\(285\) −11.3087 + 8.21627i −0.669871 + 0.486690i
\(286\) 0 0
\(287\) 7.48653 + 16.4033i 0.441916 + 0.968256i
\(288\) 0 0
\(289\) 10.1954 7.40742i 0.599732 0.435731i
\(290\) 0 0
\(291\) −7.68225 + 23.6435i −0.450342 + 1.38601i
\(292\) 0 0
\(293\) −10.4051 14.3214i −0.607874 0.836667i 0.388527 0.921438i \(-0.372984\pi\)
−0.996400 + 0.0847708i \(0.972984\pi\)
\(294\) 0 0
\(295\) 0.525548 + 1.61747i 0.0305986 + 0.0941728i
\(296\) 0 0
\(297\) −0.173091 0.532718i −0.0100437 0.0309114i
\(298\) 0 0
\(299\) 33.6514 + 10.9340i 1.94611 + 0.632331i
\(300\) 0 0
\(301\) 4.48221i 0.258350i
\(302\) 0 0
\(303\) −15.5069 11.2664i −0.890847 0.647238i
\(304\) 0 0
\(305\) −10.4083 + 7.56207i −0.595977 + 0.433003i
\(306\) 0 0
\(307\) 12.7161 + 9.23882i 0.725748 + 0.527287i 0.888216 0.459427i \(-0.151945\pi\)
−0.162467 + 0.986714i \(0.551945\pi\)
\(308\) 0 0
\(309\) −0.755875 + 1.04037i −0.0430002 + 0.0591847i
\(310\) 0 0
\(311\) −9.37608 + 3.04647i −0.531669 + 0.172750i −0.562534 0.826774i \(-0.690174\pi\)
0.0308655 + 0.999524i \(0.490174\pi\)
\(312\) 0 0
\(313\) −0.0354736 0.0115261i −0.00200508 0.000651491i 0.308014 0.951382i \(-0.400336\pi\)
−0.310019 + 0.950730i \(0.600336\pi\)
\(314\) 0 0
\(315\) 3.98133 + 5.47983i 0.224323 + 0.308754i
\(316\) 0 0
\(317\) −31.4583 + 10.2214i −1.76688 + 0.574092i −0.997875 0.0651563i \(-0.979245\pi\)
−0.769000 + 0.639249i \(0.779245\pi\)
\(318\) 0 0
\(319\) 0.365343 0.0204553
\(320\) 0 0
\(321\) 4.37439 6.02083i 0.244154 0.336050i
\(322\) 0 0
\(323\) 10.1085 31.1109i 0.562454 1.73105i
\(324\) 0 0
\(325\) 5.06085i 0.280726i
\(326\) 0 0
\(327\) 14.0829 0.778788
\(328\) 0 0
\(329\) −4.59058 −0.253087
\(330\) 0 0
\(331\) 16.2440i 0.892852i 0.894820 + 0.446426i \(0.147303\pi\)
−0.894820 + 0.446426i \(0.852697\pi\)
\(332\) 0 0
\(333\) 7.69553 23.6844i 0.421712 1.29790i
\(334\) 0 0
\(335\) 5.98565 8.23855i 0.327031 0.450120i
\(336\) 0 0
\(337\) 25.0946 1.36699 0.683496 0.729954i \(-0.260459\pi\)
0.683496 + 0.729954i \(0.260459\pi\)
\(338\) 0 0
\(339\) −32.8158 + 10.6625i −1.78231 + 0.579107i
\(340\) 0 0
\(341\) −2.18387 3.00584i −0.118263 0.162776i
\(342\) 0 0
\(343\) −16.2572 5.28230i −0.877808 0.285217i
\(344\) 0 0
\(345\) −15.4594 + 5.02307i −0.832306 + 0.270433i
\(346\) 0 0
\(347\) 13.1802 18.1410i 0.707549 0.973858i −0.292297 0.956328i \(-0.594420\pi\)
0.999846 0.0175305i \(-0.00558042\pi\)
\(348\) 0 0
\(349\) −15.0584 10.9406i −0.806058 0.585636i 0.106627 0.994299i \(-0.465995\pi\)
−0.912685 + 0.408663i \(0.865995\pi\)
\(350\) 0 0
\(351\) −5.66029 + 4.11244i −0.302124 + 0.219506i
\(352\) 0 0
\(353\) 9.55008 + 6.93854i 0.508300 + 0.369301i 0.812178 0.583410i \(-0.198282\pi\)
−0.303879 + 0.952711i \(0.598282\pi\)
\(354\) 0 0
\(355\) 8.34199i 0.442747i
\(356\) 0 0
\(357\) −33.8773 11.0074i −1.79298 0.582574i
\(358\) 0 0
\(359\) 4.09571 + 12.6053i 0.216163 + 0.665282i 0.999069 + 0.0431415i \(0.0137366\pi\)
−0.782906 + 0.622140i \(0.786263\pi\)
\(360\) 0 0
\(361\) −5.29908 16.3089i −0.278899 0.858362i
\(362\) 0 0
\(363\) 14.8079 + 20.3814i 0.777214 + 1.06974i
\(364\) 0 0
\(365\) −3.86334 + 11.8901i −0.202216 + 0.622358i
\(366\) 0 0
\(367\) −2.42973 + 1.76530i −0.126831 + 0.0921479i −0.649392 0.760454i \(-0.724977\pi\)
0.522561 + 0.852602i \(0.324977\pi\)
\(368\) 0 0
\(369\) −7.57674 + 13.4094i −0.394429 + 0.698065i
\(370\) 0 0
\(371\) −14.5312 + 10.5575i −0.754422 + 0.548120i
\(372\) 0 0
\(373\) −1.33725 + 4.11563i −0.0692401 + 0.213099i −0.979689 0.200522i \(-0.935736\pi\)
0.910449 + 0.413621i \(0.135736\pi\)
\(374\) 0 0
\(375\) −1.36657 1.88092i −0.0705693 0.0971303i
\(376\) 0 0
\(377\) −1.41017 4.34007i −0.0726277 0.223525i
\(378\) 0 0
\(379\) 3.86555 + 11.8969i 0.198560 + 0.611105i 0.999917 + 0.0129178i \(0.00411199\pi\)
−0.801357 + 0.598187i \(0.795888\pi\)
\(380\) 0 0
\(381\) 2.32146 + 0.754288i 0.118932 + 0.0386434i
\(382\) 0 0
\(383\) 14.4084i 0.736235i 0.929779 + 0.368118i \(0.119998\pi\)
−0.929779 + 0.368118i \(0.880002\pi\)
\(384\) 0 0
\(385\) −0.923036 0.670625i −0.0470423 0.0341782i
\(386\) 0 0
\(387\) 3.09746 2.25043i 0.157452 0.114396i
\(388\) 0 0
\(389\) 12.5266 + 9.10113i 0.635125 + 0.461446i 0.858172 0.513362i \(-0.171600\pi\)
−0.223047 + 0.974808i \(0.571600\pi\)
\(390\) 0 0
\(391\) 22.3591 30.7747i 1.13075 1.55634i
\(392\) 0 0
\(393\) 9.34822 3.03742i 0.471555 0.153218i
\(394\) 0 0
\(395\) 5.23784 + 1.70188i 0.263544 + 0.0856307i
\(396\) 0 0
\(397\) 0.216285 + 0.297690i 0.0108550 + 0.0149407i 0.814410 0.580290i \(-0.197061\pi\)
−0.803555 + 0.595231i \(0.797061\pi\)
\(398\) 0 0
\(399\) −37.4360 + 12.1637i −1.87414 + 0.608947i
\(400\) 0 0
\(401\) −9.76709 −0.487745 −0.243873 0.969807i \(-0.578418\pi\)
−0.243873 + 0.969807i \(0.578418\pi\)
\(402\) 0 0
\(403\) −27.2783 + 37.5454i −1.35883 + 1.87027i
\(404\) 0 0
\(405\) 3.22314 9.91980i 0.160159 0.492919i
\(406\) 0 0
\(407\) 4.19476i 0.207927i
\(408\) 0 0
\(409\) 14.9991 0.741658 0.370829 0.928701i \(-0.379074\pi\)
0.370829 + 0.928701i \(0.379074\pi\)
\(410\) 0 0
\(411\) −49.9379 −2.46326
\(412\) 0 0
\(413\) 4.78914i 0.235658i
\(414\) 0 0
\(415\) 4.35934 13.4167i 0.213992 0.658599i
\(416\) 0 0
\(417\) −31.4945 + 43.3485i −1.54229 + 2.12278i
\(418\) 0 0
\(419\) 15.9163 0.777563 0.388781 0.921330i \(-0.372896\pi\)
0.388781 + 0.921330i \(0.372896\pi\)
\(420\) 0 0
\(421\) −34.3441 + 11.1591i −1.67383 + 0.543861i −0.983699 0.179823i \(-0.942447\pi\)
−0.690132 + 0.723684i \(0.742447\pi\)
\(422\) 0 0
\(423\) −2.30485 3.17235i −0.112065 0.154245i
\(424\) 0 0
\(425\) 5.17450 + 1.68130i 0.251000 + 0.0815549i
\(426\) 0 0
\(427\) −34.4553 + 11.1952i −1.66741 + 0.541773i
\(428\) 0 0
\(429\) −2.80214 + 3.85681i −0.135288 + 0.186208i
\(430\) 0 0
\(431\) −6.56033 4.76636i −0.316000 0.229587i 0.418467 0.908232i \(-0.362568\pi\)
−0.734467 + 0.678645i \(0.762568\pi\)
\(432\) 0 0
\(433\) −19.2638 + 13.9960i −0.925759 + 0.672603i −0.944951 0.327212i \(-0.893891\pi\)
0.0191916 + 0.999816i \(0.493891\pi\)
\(434\) 0 0
\(435\) 1.69604 + 1.23225i 0.0813191 + 0.0590818i
\(436\) 0 0
\(437\) 42.0356i 2.01083i
\(438\) 0 0
\(439\) −3.86662 1.25634i −0.184543 0.0599618i 0.215287 0.976551i \(-0.430931\pi\)
−0.399831 + 0.916589i \(0.630931\pi\)
\(440\) 0 0
\(441\) 0.691016 + 2.12673i 0.0329055 + 0.101273i
\(442\) 0 0
\(443\) −0.880783 2.71077i −0.0418473 0.128793i 0.927950 0.372704i \(-0.121569\pi\)
−0.969798 + 0.243911i \(0.921569\pi\)
\(444\) 0 0
\(445\) 4.69327 + 6.45973i 0.222482 + 0.306220i
\(446\) 0 0
\(447\) 11.6282 35.7878i 0.549994 1.69271i
\(448\) 0 0
\(449\) 8.18631 5.94770i 0.386336 0.280690i −0.377616 0.925962i \(-0.623256\pi\)
0.763952 + 0.645273i \(0.223256\pi\)
\(450\) 0 0
\(451\) 0.515800 2.54254i 0.0242881 0.119724i
\(452\) 0 0
\(453\) 8.64676 6.28224i 0.406260 0.295165i
\(454\) 0 0
\(455\) −4.40386 + 13.5537i −0.206456 + 0.635407i
\(456\) 0 0
\(457\) −20.3206 27.9689i −0.950559 1.30833i −0.951279 0.308332i \(-0.900229\pi\)
0.000720312 1.00000i \(-0.499771\pi\)
\(458\) 0 0
\(459\) 2.32435 + 7.15362i 0.108491 + 0.333902i
\(460\) 0 0
\(461\) 6.07680 + 18.7025i 0.283025 + 0.871061i 0.986984 + 0.160820i \(0.0514140\pi\)
−0.703959 + 0.710241i \(0.748586\pi\)
\(462\) 0 0
\(463\) 26.2768 + 8.53784i 1.22119 + 0.396787i 0.847514 0.530774i \(-0.178099\pi\)
0.373672 + 0.927561i \(0.378099\pi\)
\(464\) 0 0
\(465\) 21.3200i 0.988693i
\(466\) 0 0
\(467\) −15.2598 11.0869i −0.706141 0.513042i 0.175785 0.984429i \(-0.443754\pi\)
−0.881926 + 0.471387i \(0.843754\pi\)
\(468\) 0 0
\(469\) 23.1995 16.8554i 1.07125 0.778310i
\(470\) 0 0
\(471\) 20.1525 + 14.6417i 0.928580 + 0.674653i
\(472\) 0 0
\(473\) −0.379068 + 0.521743i −0.0174296 + 0.0239897i
\(474\) 0 0
\(475\) 5.71807 1.85791i 0.262363 0.0852469i
\(476\) 0 0
\(477\) −14.5917 4.74112i −0.668107 0.217081i
\(478\) 0 0
\(479\) −25.1229 34.5787i −1.14789 1.57994i −0.748464 0.663176i \(-0.769208\pi\)
−0.399430 0.916764i \(-0.630792\pi\)
\(480\) 0 0
\(481\) 49.8315 16.1912i 2.27212 0.738257i
\(482\) 0 0
\(483\) −45.7735 −2.08276
\(484\) 0 0
\(485\) 6.28510 8.65069i 0.285392 0.392808i
\(486\) 0 0
\(487\) −8.42293 + 25.9231i −0.381680 + 1.17469i 0.557181 + 0.830391i \(0.311883\pi\)
−0.938860 + 0.344298i \(0.888117\pi\)
\(488\) 0 0
\(489\) 8.50316i 0.384526i
\(490\) 0 0
\(491\) −3.69878 −0.166924 −0.0834619 0.996511i \(-0.526598\pi\)
−0.0834619 + 0.996511i \(0.526598\pi\)
\(492\) 0 0
\(493\) −4.90602 −0.220956
\(494\) 0 0
\(495\) 0.974577i 0.0438040i
\(496\) 0 0
\(497\) 7.25904 22.3410i 0.325612 1.00213i
\(498\) 0 0
\(499\) −16.7812 + 23.0973i −0.751228 + 1.03398i 0.246665 + 0.969101i \(0.420665\pi\)
−0.997893 + 0.0648760i \(0.979335\pi\)
\(500\) 0 0
\(501\) 24.8513 1.11028
\(502\) 0 0
\(503\) 20.7450 6.74044i 0.924972 0.300542i 0.192467 0.981303i \(-0.438351\pi\)
0.732505 + 0.680762i \(0.238351\pi\)
\(504\) 0 0
\(505\) 4.84588 + 6.66978i 0.215639 + 0.296801i
\(506\) 0 0
\(507\) 27.8876 + 9.06124i 1.23853 + 0.402424i
\(508\) 0 0
\(509\) −28.3138 + 9.19972i −1.25499 + 0.407770i −0.859706 0.510790i \(-0.829353\pi\)
−0.395282 + 0.918560i \(0.629353\pi\)
\(510\) 0 0
\(511\) −20.6931 + 28.4817i −0.915411 + 1.25996i
\(512\) 0 0
\(513\) 6.72447 + 4.88561i 0.296893 + 0.215705i
\(514\) 0 0
\(515\) 0.447482 0.325115i 0.0197184 0.0143263i
\(516\) 0 0
\(517\) 0.534358 + 0.388234i 0.0235010 + 0.0170745i
\(518\) 0 0
\(519\) 34.3403i 1.50737i
\(520\) 0 0
\(521\) 23.8783 + 7.75852i 1.04613 + 0.339907i 0.781147 0.624347i \(-0.214635\pi\)
0.264979 + 0.964254i \(0.414635\pi\)
\(522\) 0 0
\(523\) 13.0386 + 40.1287i 0.570139 + 1.75471i 0.652165 + 0.758077i \(0.273861\pi\)
−0.0820265 + 0.996630i \(0.526139\pi\)
\(524\) 0 0
\(525\) −2.02312 6.22653i −0.0882964 0.271748i
\(526\) 0 0
\(527\) 29.3262 + 40.3641i 1.27747 + 1.75829i
\(528\) 0 0
\(529\) 7.99792 24.6151i 0.347736 1.07022i
\(530\) 0 0
\(531\) −3.30956 + 2.40454i −0.143623 + 0.104348i
\(532\) 0 0
\(533\) −32.1949 + 3.68645i −1.39452 + 0.159678i
\(534\) 0 0
\(535\) −2.58966 + 1.88150i −0.111961 + 0.0813444i
\(536\) 0 0
\(537\) −7.09220 + 21.8276i −0.306051 + 0.941929i
\(538\) 0 0
\(539\) −0.221399 0.304730i −0.00953633 0.0131256i
\(540\) 0 0
\(541\) 6.71264 + 20.6594i 0.288599 + 0.888216i 0.985297 + 0.170851i \(0.0546518\pi\)
−0.696698 + 0.717365i \(0.745348\pi\)
\(542\) 0 0
\(543\) 9.35570 + 28.7939i 0.401491 + 1.23566i
\(544\) 0 0
\(545\) −5.76085 1.87181i −0.246768 0.0801797i
\(546\) 0 0
\(547\) 32.7600i 1.40072i 0.713791 + 0.700359i \(0.246977\pi\)
−0.713791 + 0.700359i \(0.753023\pi\)
\(548\) 0 0
\(549\) −25.0358 18.1896i −1.06850 0.776313i
\(550\) 0 0
\(551\) −4.38599 + 3.18661i −0.186849 + 0.135754i
\(552\) 0 0
\(553\) 12.5467 + 9.11574i 0.533541 + 0.387641i
\(554\) 0 0
\(555\) −14.1483 + 19.4735i −0.600563 + 0.826604i
\(556\) 0 0
\(557\) −39.2807 + 12.7631i −1.66437 + 0.540788i −0.981782 0.190011i \(-0.939148\pi\)
−0.682593 + 0.730799i \(0.739148\pi\)
\(558\) 0 0
\(559\) 7.66117 + 2.48926i 0.324033 + 0.105285i
\(560\) 0 0
\(561\) 3.01250 + 4.14636i 0.127188 + 0.175059i
\(562\) 0 0
\(563\) −4.57254 + 1.48571i −0.192710 + 0.0626151i −0.403782 0.914855i \(-0.632304\pi\)
0.211072 + 0.977470i \(0.432304\pi\)
\(564\) 0 0
\(565\) 14.8410 0.624366
\(566\) 0 0
\(567\) 17.2640 23.7619i 0.725022 0.997907i
\(568\) 0 0
\(569\) 1.55126 4.77429i 0.0650322 0.200148i −0.913261 0.407376i \(-0.866444\pi\)
0.978293 + 0.207227i \(0.0664440\pi\)
\(570\) 0 0
\(571\) 24.4013i 1.02116i −0.859830 0.510581i \(-0.829430\pi\)
0.859830 0.510581i \(-0.170570\pi\)
\(572\) 0 0
\(573\) 18.0796 0.755286
\(574\) 0 0
\(575\) 6.99155 0.291568
\(576\) 0 0
\(577\) 6.17215i 0.256950i 0.991713 + 0.128475i \(0.0410082\pi\)
−0.991713 + 0.128475i \(0.958992\pi\)
\(578\) 0 0
\(579\) −15.2693 + 46.9940i −0.634570 + 1.95300i
\(580\) 0 0
\(581\) 23.3499 32.1384i 0.968716 1.33332i
\(582\) 0 0
\(583\) 2.58434 0.107033
\(584\) 0 0
\(585\) −11.5774 + 3.76174i −0.478668 + 0.155529i
\(586\) 0 0
\(587\) −14.7932 20.3611i −0.610581 0.840392i 0.386044 0.922480i \(-0.373841\pi\)
−0.996625 + 0.0820880i \(0.973841\pi\)
\(588\) 0 0
\(589\) 52.4354 + 17.0373i 2.16056 + 0.702009i
\(590\) 0 0
\(591\) −3.51889 + 1.14336i −0.144748 + 0.0470315i
\(592\) 0 0
\(593\) −2.85396 + 3.92814i −0.117198 + 0.161309i −0.863586 0.504202i \(-0.831787\pi\)
0.746388 + 0.665512i \(0.231787\pi\)
\(594\) 0 0
\(595\) 12.3950 + 9.00551i 0.508146 + 0.369190i
\(596\) 0 0
\(597\) 21.1014 15.3311i 0.863622 0.627458i
\(598\) 0 0
\(599\) 10.0339 + 7.29005i 0.409973 + 0.297863i 0.773591 0.633685i \(-0.218459\pi\)
−0.363618 + 0.931548i \(0.618459\pi\)
\(600\) 0 0
\(601\) 26.2292i 1.06991i −0.844880 0.534955i \(-0.820329\pi\)
0.844880 0.534955i \(-0.179671\pi\)
\(602\) 0 0
\(603\) 23.2960 + 7.56934i 0.948687 + 0.308247i
\(604\) 0 0
\(605\) −3.34846 10.3055i −0.136134 0.418978i
\(606\) 0 0
\(607\) 12.1184 + 37.2966i 0.491871 + 1.51382i 0.821776 + 0.569810i \(0.192983\pi\)
−0.329905 + 0.944014i \(0.607017\pi\)
\(608\) 0 0
\(609\) 3.46997 + 4.77600i 0.140610 + 0.193533i
\(610\) 0 0
\(611\) 2.54945 7.84641i 0.103140 0.317432i
\(612\) 0 0
\(613\) −18.1605 + 13.1944i −0.733496 + 0.532916i −0.890667 0.454655i \(-0.849762\pi\)
0.157171 + 0.987571i \(0.449762\pi\)
\(614\) 0 0
\(615\) 10.9701 10.0636i 0.442359 0.405804i
\(616\) 0 0
\(617\) 7.76290 5.64007i 0.312522 0.227061i −0.420456 0.907313i \(-0.638130\pi\)
0.732978 + 0.680252i \(0.238130\pi\)
\(618\) 0 0
\(619\) 7.06024 21.7292i 0.283775 0.873370i −0.702988 0.711202i \(-0.748151\pi\)
0.986763 0.162168i \(-0.0518488\pi\)
\(620\) 0 0
\(621\) 5.68132 + 7.81967i 0.227984 + 0.313793i
\(622\) 0 0
\(623\) 6.94810 + 21.3841i 0.278370 + 0.856734i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 0 0
\(627\) 5.38637 + 1.75014i 0.215111 + 0.0698938i
\(628\) 0 0
\(629\) 56.3295i 2.24601i
\(630\) 0 0
\(631\) −1.59850 1.16138i −0.0636352 0.0462336i 0.555513 0.831508i \(-0.312522\pi\)
−0.619148 + 0.785274i \(0.712522\pi\)
\(632\) 0 0
\(633\) −3.15908 + 2.29521i −0.125562 + 0.0912263i
\(634\) 0 0
\(635\) −0.849376 0.617108i −0.0337065 0.0244892i
\(636\) 0 0
\(637\) −2.76545 + 3.80632i −0.109571 + 0.150812i
\(638\) 0 0
\(639\) 19.0835 6.20061i 0.754932 0.245292i
\(640\) 0 0
\(641\) 2.86950 + 0.932358i 0.113339 + 0.0368259i 0.365137 0.930954i \(-0.381022\pi\)
−0.251799 + 0.967780i \(0.581022\pi\)
\(642\) 0 0
\(643\) −11.9916 16.5050i −0.472902 0.650894i 0.504220 0.863576i \(-0.331780\pi\)
−0.977122 + 0.212682i \(0.931780\pi\)
\(644\) 0 0
\(645\) −3.51952 + 1.14356i −0.138581 + 0.0450277i
\(646\) 0 0
\(647\) 1.04860 0.0412249 0.0206124 0.999788i \(-0.493438\pi\)
0.0206124 + 0.999788i \(0.493438\pi\)
\(648\) 0 0
\(649\) 0.405026 0.557470i 0.0158986 0.0218826i
\(650\) 0 0
\(651\) 18.5523 57.0981i 0.727122 2.23785i
\(652\) 0 0
\(653\) 16.5195i 0.646459i −0.946321 0.323229i \(-0.895231\pi\)
0.946321 0.323229i \(-0.104769\pi\)
\(654\) 0 0
\(655\) −4.22776 −0.165192
\(656\) 0 0
\(657\) −30.0721 −1.17322
\(658\) 0 0
\(659\) 30.3738i 1.18320i 0.806233 + 0.591598i \(0.201503\pi\)
−0.806233 + 0.591598i \(0.798497\pi\)
\(660\) 0 0
\(661\) 0.921102 2.83486i 0.0358267 0.110263i −0.931544 0.363629i \(-0.881538\pi\)
0.967371 + 0.253366i \(0.0815376\pi\)
\(662\) 0 0
\(663\) 37.6286 51.7913i 1.46137 2.01141i
\(664\) 0 0
\(665\) 16.9305 0.656538
\(666\) 0 0
\(667\) −5.99579 + 1.94815i −0.232158 + 0.0754327i
\(668\) 0 0
\(669\) −0.941233 1.29550i −0.0363902 0.0500867i
\(670\) 0 0
\(671\) 4.95749 + 1.61079i 0.191382 + 0.0621837i
\(672\) 0 0
\(673\) −10.8983 + 3.54107i −0.420098 + 0.136498i −0.511435 0.859322i \(-0.670886\pi\)
0.0913369 + 0.995820i \(0.470886\pi\)
\(674\) 0 0
\(675\) −0.812598 + 1.11845i −0.0312769 + 0.0430490i
\(676\) 0 0
\(677\) −14.7150 10.6911i −0.565542 0.410891i 0.267941 0.963435i \(-0.413657\pi\)
−0.833483 + 0.552545i \(0.813657\pi\)
\(678\) 0 0
\(679\) 24.3601 17.6986i 0.934853 0.679210i
\(680\) 0 0
\(681\) −53.5618 38.9149i −2.05249 1.49122i
\(682\) 0 0
\(683\) 37.5823i 1.43805i 0.694985 + 0.719024i \(0.255411\pi\)
−0.694985 + 0.719024i \(0.744589\pi\)
\(684\) 0 0
\(685\) 20.4279 + 6.63743i 0.780510 + 0.253603i
\(686\) 0 0
\(687\) −5.11513 15.7428i −0.195154 0.600624i
\(688\) 0 0
\(689\) −9.97522 30.7006i −0.380026 1.16960i
\(690\) 0 0
\(691\) −3.70830 5.10404i −0.141070 0.194167i 0.732636 0.680621i \(-0.238290\pi\)
−0.873706 + 0.486454i \(0.838290\pi\)
\(692\) 0 0
\(693\) 0.848059 2.61006i 0.0322151 0.0991478i
\(694\) 0 0
\(695\) 18.6449 13.5463i 0.707243 0.513842i
\(696\) 0 0
\(697\) −6.92644 + 34.1426i −0.262358 + 1.29324i
\(698\) 0 0
\(699\) −27.6886 + 20.1170i −1.04728 + 0.760893i
\(700\) 0 0
\(701\) 0.637975 1.96348i 0.0240960 0.0741598i −0.938285 0.345862i \(-0.887587\pi\)
0.962381 + 0.271702i \(0.0875866\pi\)
\(702\) 0 0
\(703\) −36.5877 50.3587i −1.37993 1.89931i
\(704\) 0 0
\(705\) 1.17121 + 3.60462i 0.0441104 + 0.135758i
\(706\) 0 0
\(707\) 7.17404 + 22.0794i 0.269807 + 0.830382i
\(708\) 0 0
\(709\) −14.5949 4.74217i −0.548122 0.178096i 0.0218475 0.999761i \(-0.493045\pi\)
−0.569970 + 0.821666i \(0.693045\pi\)
\(710\) 0 0
\(711\) 13.2473i 0.496814i
\(712\) 0 0
\(713\) 51.8688 + 37.6849i 1.94250 + 1.41131i
\(714\) 0 0
\(715\) 1.65888 1.20525i 0.0620386 0.0450737i
\(716\) 0 0
\(717\) −17.1444 12.4561i −0.640268 0.465182i
\(718\) 0 0
\(719\) −10.4061 + 14.3227i −0.388081 + 0.534147i −0.957703 0.287760i \(-0.907090\pi\)
0.569622 + 0.821907i \(0.307090\pi\)
\(720\) 0 0
\(721\) 1.48133 0.481313i 0.0551676 0.0179250i
\(722\) 0 0
\(723\) 36.4787 + 11.8526i 1.35666 + 0.440804i
\(724\) 0 0
\(725\) −0.530012 0.729498i −0.0196841 0.0270929i
\(726\) 0 0
\(727\) 1.92943 0.626910i 0.0715586 0.0232508i −0.273019 0.962009i \(-0.588022\pi\)
0.344578 + 0.938758i \(0.388022\pi\)
\(728\) 0 0
\(729\) 15.4462 0.572083
\(730\) 0 0
\(731\) 5.09033 7.00624i 0.188273 0.259135i
\(732\) 0 0
\(733\) −1.46928 + 4.52199i −0.0542692 + 0.167023i −0.974517 0.224312i \(-0.927987\pi\)
0.920248 + 0.391335i \(0.127987\pi\)
\(734\) 0 0
\(735\) 2.16141i 0.0797246i
\(736\) 0 0
\(737\) −4.12598 −0.151982
\(738\) 0 0
\(739\) −49.9496 −1.83743 −0.918713 0.394926i \(-0.870770\pi\)
−0.918713 + 0.394926i \(0.870770\pi\)
\(740\) 0 0
\(741\) 70.7424i 2.59879i
\(742\) 0 0
\(743\) −2.07778 + 6.39474i −0.0762263 + 0.234600i −0.981908 0.189357i \(-0.939360\pi\)
0.905682 + 0.423958i \(0.139360\pi\)
\(744\) 0 0
\(745\) −9.51338 + 13.0940i −0.348543 + 0.479729i
\(746\) 0 0
\(747\) 33.9329 1.24154
\(748\) 0 0
\(749\) −8.57273 + 2.78545i −0.313241 + 0.101778i
\(750\) 0 0
\(751\) −27.9581 38.4810i −1.02020 1.40419i −0.912061 0.410055i \(-0.865510\pi\)
−0.108143 0.994135i \(-0.534490\pi\)
\(752\) 0 0
\(753\) 37.7301 + 12.2592i 1.37496 + 0.446752i
\(754\) 0 0
\(755\) −4.37209 + 1.42058i −0.159117 + 0.0517002i
\(756\) 0 0
\(757\) 15.8440 21.8074i 0.575860 0.792603i −0.417374 0.908735i \(-0.637050\pi\)
0.993234 + 0.116132i \(0.0370495\pi\)
\(758\) 0 0
\(759\) 5.32817 + 3.87114i 0.193400 + 0.140513i
\(760\) 0 0
\(761\) −34.3567 + 24.9616i −1.24543 + 0.904857i −0.997948 0.0640359i \(-0.979603\pi\)
−0.247481 + 0.968893i \(0.579603\pi\)
\(762\) 0 0
\(763\) −13.7996 10.0260i −0.499578 0.362964i
\(764\) 0 0
\(765\) 13.0871i 0.473167i
\(766\) 0 0
\(767\) −8.18578 2.65972i −0.295571 0.0960370i
\(768\) 0 0
\(769\) −0.424876 1.30763i −0.0153214 0.0471545i 0.943104 0.332499i \(-0.107892\pi\)
−0.958425 + 0.285345i \(0.907892\pi\)
\(770\) 0 0
\(771\) −17.8740 55.0105i −0.643717 1.98116i
\(772\) 0 0
\(773\) 15.0643 + 20.7342i 0.541825 + 0.745758i 0.988875 0.148751i \(-0.0475254\pi\)
−0.447050 + 0.894509i \(0.647525\pi\)
\(774\) 0 0
\(775\) −2.83372 + 8.72130i −0.101790 + 0.313278i
\(776\) 0 0
\(777\) −54.8367 + 39.8412i −1.96726 + 1.42930i
\(778\) 0 0
\(779\) 15.9844 + 35.0225i 0.572701 + 1.25481i
\(780\) 0 0
\(781\) −2.73439 + 1.98665i −0.0978443 + 0.0710880i
\(782\) 0 0
\(783\) 0.385218 1.18558i 0.0137666 0.0423691i
\(784\) 0 0
\(785\) −6.29764 8.66796i −0.224772 0.309373i
\(786\) 0 0
\(787\) 1.26430 + 3.89110i 0.0450673 + 0.138703i 0.971058 0.238843i \(-0.0767681\pi\)
−0.925991 + 0.377546i \(0.876768\pi\)
\(788\) 0 0
\(789\) −3.86213 11.8864i −0.137495 0.423167i
\(790\) 0 0
\(791\) 39.7464 + 12.9144i 1.41322 + 0.459182i
\(792\) 0 0
\(793\) 65.1097i 2.31211i
\(794\) 0 0
\(795\) 11.9974 + 8.71662i 0.425504 + 0.309147i
\(796\) 0 0
\(797\) 30.4676 22.1360i 1.07922 0.784096i 0.101670 0.994818i \(-0.467581\pi\)
0.977546 + 0.210722i \(0.0675814\pi\)
\(798\) 0 0
\(799\) −7.17564 5.21341i −0.253856 0.184437i
\(800\) 0 0
\(801\) −11.2891 + 15.5381i −0.398879 + 0.549010i
\(802\) 0 0
\(803\) 4.81749 1.56530i 0.170005 0.0552381i
\(804\) 0 0
\(805\) 18.7244 + 6.08392i 0.659947 + 0.214430i
\(806\) 0 0
\(807\) −18.3796 25.2973i −0.646992 0.890508i
\(808\) 0 0
\(809\) 33.6932 10.9476i 1.18459 0.384897i 0.350520 0.936555i \(-0.386005\pi\)
0.834070 + 0.551659i \(0.186005\pi\)
\(810\) 0 0
\(811\) 42.3997 1.48885 0.744427 0.667704i \(-0.232723\pi\)
0.744427 + 0.667704i \(0.232723\pi\)
\(812\) 0 0
\(813\) −26.1022 + 35.9266i −0.915444 + 1.26000i
\(814\) 0 0
\(815\) 1.13019 3.47835i 0.0395887 0.121841i
\(816\) 0 0
\(817\) 9.56992i 0.334809i
\(818\) 0 0
\(819\) −34.2794 −1.19782
\(820\) 0 0
\(821\) 14.6675 0.511898 0.255949 0.966690i \(-0.417612\pi\)
0.255949 + 0.966690i \(0.417612\pi\)
\(822\) 0 0
\(823\) 6.71194i 0.233964i −0.993134 0.116982i \(-0.962678\pi\)
0.993134 0.116982i \(-0.0373219\pi\)
\(824\) 0 0
\(825\) −0.291091 + 0.895886i −0.0101345 + 0.0311908i
\(826\) 0 0
\(827\) 28.1028 38.6803i 0.977232 1.34504i 0.0389243 0.999242i \(-0.487607\pi\)
0.938308 0.345802i \(-0.112393\pi\)
\(828\) 0 0
\(829\) 7.39404 0.256806 0.128403 0.991722i \(-0.459015\pi\)
0.128403 + 0.991722i \(0.459015\pi\)
\(830\) 0 0
\(831\) 61.3017 19.9181i 2.12653 0.690953i
\(832\) 0 0
\(833\) 2.97307 + 4.09207i 0.103011 + 0.141782i
\(834\) 0 0
\(835\) −10.1658 3.30308i −0.351803 0.114308i
\(836\) 0 0
\(837\) −12.0570 + 3.91755i −0.416750 + 0.135410i
\(838\) 0 0
\(839\) −13.3186 + 18.3315i −0.459808 + 0.632872i −0.974469 0.224522i \(-0.927918\pi\)
0.514661 + 0.857394i \(0.327918\pi\)
\(840\) 0 0
\(841\) −22.8037 16.5679i −0.786334 0.571305i
\(842\) 0 0
\(843\) 5.77727 4.19743i 0.198980 0.144567i
\(844\) 0 0
\(845\) −10.2035 7.41329i −0.351012 0.255025i
\(846\) 0 0
\(847\) 30.5133i 1.04845i
\(848\) 0 0
\(849\) 14.5978 + 4.74310i 0.500994 + 0.162783i
\(850\) 0 0
\(851\) −22.3681 68.8420i −0.766770 2.35987i
\(852\) 0 0
\(853\) 2.47707 + 7.62362i 0.0848131 + 0.261028i 0.984465 0.175579i \(-0.0561799\pi\)
−0.899652 + 0.436607i \(0.856180\pi\)
\(854\) 0 0
\(855\) 8.50050 + 11.6999i 0.290711 + 0.400129i
\(856\) 0 0
\(857\) −11.1936 + 34.4503i −0.382366 + 1.17680i 0.556008 + 0.831177i \(0.312332\pi\)
−0.938373 + 0.345623i \(0.887668\pi\)
\(858\) 0 0
\(859\) 16.3393 11.8712i 0.557491 0.405041i −0.273049 0.962000i \(-0.588032\pi\)
0.830540 + 0.556959i \(0.188032\pi\)
\(860\) 0 0
\(861\) 38.1368 17.4058i 1.29970 0.593187i
\(862\) 0 0
\(863\) −23.6435 + 17.1780i −0.804832 + 0.584745i −0.912328 0.409461i \(-0.865717\pi\)
0.107495 + 0.994206i \(0.465717\pi\)
\(864\) 0 0
\(865\) −4.56430 + 14.0475i −0.155191 + 0.477628i
\(866\) 0 0
\(867\) −17.2218 23.7038i −0.584885 0.805025i
\(868\) 0 0
\(869\) −0.689544 2.12220i −0.0233912 0.0719906i
\(870\) 0 0
\(871\) 15.9257 + 49.0143i 0.539623 + 1.66079i
\(872\) 0 0
\(873\) 24.4614 + 7.94801i 0.827895 + 0.268999i
\(874\) 0 0
\(875\) 2.81596i 0.0951970i
\(876\) 0 0
\(877\) −15.5810 11.3203i −0.526134 0.382259i 0.292776 0.956181i \(-0.405421\pi\)
−0.818910 + 0.573923i \(0.805421\pi\)
\(878\) 0 0
\(879\) −33.2965 + 24.1914i −1.12306 + 0.815954i
\(880\) 0 0
\(881\) −28.9917 21.0637i −0.976756 0.709655i −0.0197747 0.999804i \(-0.506295\pi\)
−0.956981 + 0.290150i \(0.906295\pi\)
\(882\) 0 0
\(883\) 13.3058 18.3139i 0.447777 0.616313i −0.524141 0.851632i \(-0.675613\pi\)
0.971918 + 0.235319i \(0.0756135\pi\)
\(884\) 0 0
\(885\) 3.76053 1.22187i 0.126409 0.0410727i
\(886\) 0 0
\(887\) −38.0461 12.3619i −1.27746 0.415073i −0.409777 0.912186i \(-0.634394\pi\)
−0.867686 + 0.497113i \(0.834394\pi\)
\(888\) 0 0
\(889\) −1.73775 2.39181i −0.0582824 0.0802188i
\(890\) 0 0
\(891\) −4.01917 + 1.30591i −0.134647 + 0.0437496i
\(892\) 0 0
\(893\) −9.80130 −0.327988
\(894\) 0 0
\(895\) 5.80236 7.98626i 0.193952 0.266951i
\(896\) 0 0
\(897\) 25.4210 78.2378i 0.848783 2.61228i
\(898\) 0 0
\(899\) 8.26878i 0.275779i
\(900\) 0 0
\(901\) −34.7039 −1.15616
\(902\) 0 0
\(903\) −10.4209 −0.346786
\(904\) 0 0
\(905\) 13.0221i 0.432869i
\(906\) 0 0
\(907\) 2.67591 8.23561i 0.0888522 0.273459i −0.896751 0.442536i \(-0.854079\pi\)
0.985603 + 0.169077i \(0.0540788\pi\)
\(908\) 0 0
\(909\) −11.6561 + 16.0433i −0.386610 + 0.532123i
\(910\) 0 0
\(911\) 30.1434 0.998696 0.499348 0.866401i \(-0.333573\pi\)
0.499348 + 0.866401i \(0.333573\pi\)
\(912\) 0 0
\(913\) −5.43599 + 1.76626i −0.179905 + 0.0584547i
\(914\) 0 0
\(915\) 17.5814 + 24.1987i 0.581223 + 0.799985i
\(916\) 0 0
\(917\) −11.3225 3.67891i −0.373903 0.121488i
\(918\) 0 0
\(919\) 12.5886 4.09029i 0.415260 0.134926i −0.0939329 0.995579i \(-0.529944\pi\)
0.509193 + 0.860652i \(0.329944\pi\)
\(920\) 0 0
\(921\) 21.4797 29.5643i 0.707782 0.974178i
\(922\) 0 0
\(923\) 34.1547 + 24.8149i 1.12422 + 0.816792i
\(924\) 0 0
\(925\) 8.37590 6.08545i 0.275398 0.200088i
\(926\) 0 0
\(927\) 1.07636 + 0.782023i 0.0353524 + 0.0256850i
\(928\) 0 0
\(929\) 13.7716i 0.451830i 0.974147 + 0.225915i \(0.0725372\pi\)
−0.974147 + 0.225915i \(0.927463\pi\)
\(930\) 0 0
\(931\) 5.31585 + 1.72723i 0.174220 + 0.0566075i
\(932\) 0 0
\(933\) 7.08289 + 21.7989i 0.231883 + 0.713664i
\(934\) 0 0
\(935\) −0.681206 2.09654i −0.0222778 0.0685641i
\(936\) 0 0
\(937\) −3.95603 5.44501i −0.129238 0.177881i 0.739494 0.673163i \(-0.235065\pi\)
−0.868732 + 0.495282i \(0.835065\pi\)
\(938\) 0 0
\(939\) −0.0267975 + 0.0824741i −0.000874502 + 0.00269144i
\(940\) 0 0
\(941\) 19.7534 14.3517i 0.643943 0.467852i −0.217260 0.976114i \(-0.569712\pi\)
0.861202 + 0.508262i \(0.169712\pi\)
\(942\) 0 0
\(943\) 5.09281 + 44.4772i 0.165845 + 1.44838i
\(944\) 0 0
\(945\) −3.14950 + 2.28825i −0.102453 + 0.0744367i
\(946\) 0 0
\(947\) −1.56232 + 4.80834i −0.0507687 + 0.156250i −0.973227 0.229848i \(-0.926177\pi\)
0.922458 + 0.386098i \(0.126177\pi\)
\(948\) 0 0
\(949\) −37.1897 51.1873i −1.20723 1.66161i
\(950\) 0 0
\(951\) 23.7643 + 73.1389i 0.770609 + 2.37169i
\(952\) 0 0
\(953\) −2.76187 8.50016i −0.0894657 0.275347i 0.896306 0.443436i \(-0.146241\pi\)
−0.985772 + 0.168089i \(0.946241\pi\)
\(954\) 0 0
\(955\) −7.39575 2.40303i −0.239321 0.0777601i
\(956\) 0 0
\(957\) 0.849402i 0.0274573i
\(958\) 0 0
\(959\) 48.9331 + 35.5519i 1.58013 + 1.14803i
\(960\) 0 0
\(961\) −42.9516 + 31.2062i −1.38554 + 1.00665i
\(962\) 0 0
\(963\) −6.22911 4.52571i −0.200730 0.145839i
\(964\) 0 0
\(965\) 12.4923 17.1942i 0.402141 0.553500i
\(966\) 0 0
\(967\) 47.4002 15.4013i 1.52429 0.495271i 0.577297 0.816534i \(-0.304107\pi\)
0.946990 + 0.321263i \(0.104107\pi\)
\(968\) 0 0
\(969\) −72.3311 23.5018i −2.32361 0.754986i
\(970\) 0 0
\(971\) 28.8587 + 39.7205i 0.926118 + 1.27469i 0.961355 + 0.275313i \(0.0887816\pi\)
−0.0352363 + 0.999379i \(0.511218\pi\)
\(972\) 0 0
\(973\) 61.7216 20.0545i 1.97870 0.642919i
\(974\) 0 0
\(975\) 11.7662 0.376820
\(976\) 0 0
\(977\) −4.05110 + 5.57586i −0.129606 + 0.178387i −0.868888 0.495008i \(-0.835165\pi\)
0.739282 + 0.673396i \(0.235165\pi\)
\(978\) 0 0
\(979\) 0.999707 3.07678i 0.0319508 0.0983343i
\(980\) 0 0
\(981\) 14.5701i 0.465188i
\(982\) 0 0
\(983\) −41.4969 −1.32354 −0.661772 0.749705i \(-0.730196\pi\)
−0.661772 + 0.749705i \(0.730196\pi\)
\(984\) 0 0
\(985\) 1.59143 0.0507071
\(986\) 0 0
\(987\) 10.6729i 0.339721i
\(988\) 0 0
\(989\) 3.43891 10.5839i 0.109351 0.336548i
\(990\) 0 0
\(991\) −20.7075 + 28.5015i −0.657796 + 0.905378i −0.999406 0.0344633i \(-0.989028\pi\)
0.341610 + 0.939842i \(0.389028\pi\)
\(992\) 0 0
\(993\) 37.7665 1.19848
\(994\) 0 0
\(995\) −10.6696 + 3.46675i −0.338248 + 0.109903i
\(996\) 0 0
\(997\) 13.1909 + 18.1557i 0.417760 + 0.574998i 0.965090 0.261919i \(-0.0843555\pi\)
−0.547329 + 0.836917i \(0.684355\pi\)
\(998\) 0 0
\(999\) 13.6125 + 4.42296i 0.430680 + 0.139936i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bg.a.701.1 yes 24
41.31 even 10 inner 820.2.bg.a.441.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bg.a.441.6 24 41.31 even 10 inner
820.2.bg.a.701.1 yes 24 1.1 even 1 trivial