Properties

Label 820.2.a.d.1.3
Level $820$
Weight $2$
Character 820.1
Self dual yes
Analytic conductor $6.548$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(1,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13068.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.82405\) of defining polynomial
Character \(\chi\) \(=\) 820.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.27582 q^{3} +1.00000 q^{5} +1.60298 q^{7} -1.37228 q^{9} +1.27582 q^{11} +0.397017 q^{13} +1.27582 q^{15} +0.724179 q^{17} +6.34755 q^{19} +2.04512 q^{21} +4.37228 q^{23} +1.00000 q^{25} -5.57825 q^{27} +4.69944 q^{29} -5.07172 q^{31} +1.62772 q^{33} +1.60298 q^{35} -3.25109 q^{37} +0.506522 q^{39} +1.00000 q^{41} +1.49348 q^{43} -1.37228 q^{45} -3.32094 q^{47} -4.43045 q^{49} +0.923923 q^{51} +2.35190 q^{53} +1.27582 q^{55} +8.09833 q^{57} +2.69944 q^{59} +6.12989 q^{61} -2.19974 q^{63} +0.397017 q^{65} -12.1052 q^{67} +5.57825 q^{69} +1.93015 q^{71} +13.4837 q^{73} +1.27582 q^{75} +2.04512 q^{77} -15.1318 q^{79} -3.00000 q^{81} +0.569555 q^{83} +0.724179 q^{85} +5.99565 q^{87} -14.0804 q^{89} +0.636411 q^{91} -6.47061 q^{93} +6.34755 q^{95} -2.00682 q^{97} -1.75079 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + q^{7} + 6 q^{9} + 7 q^{13} + 8 q^{17} - 3 q^{19} - 3 q^{21} + 6 q^{23} + 4 q^{25} + 7 q^{29} + 3 q^{31} + 18 q^{33} + q^{35} + 9 q^{37} + 3 q^{39} + 4 q^{41} + 5 q^{43} + 6 q^{45} + 3 q^{47}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.27582 0.736595 0.368298 0.929708i \(-0.379941\pi\)
0.368298 + 0.929708i \(0.379941\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.60298 0.605871 0.302935 0.953011i \(-0.402033\pi\)
0.302935 + 0.953011i \(0.402033\pi\)
\(8\) 0 0
\(9\) −1.37228 −0.457427
\(10\) 0 0
\(11\) 1.27582 0.384674 0.192337 0.981329i \(-0.438393\pi\)
0.192337 + 0.981329i \(0.438393\pi\)
\(12\) 0 0
\(13\) 0.397017 0.110113 0.0550563 0.998483i \(-0.482466\pi\)
0.0550563 + 0.998483i \(0.482466\pi\)
\(14\) 0 0
\(15\) 1.27582 0.329416
\(16\) 0 0
\(17\) 0.724179 0.175639 0.0878196 0.996136i \(-0.472010\pi\)
0.0878196 + 0.996136i \(0.472010\pi\)
\(18\) 0 0
\(19\) 6.34755 1.45623 0.728113 0.685457i \(-0.240397\pi\)
0.728113 + 0.685457i \(0.240397\pi\)
\(20\) 0 0
\(21\) 2.04512 0.446282
\(22\) 0 0
\(23\) 4.37228 0.911684 0.455842 0.890061i \(-0.349338\pi\)
0.455842 + 0.890061i \(0.349338\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.57825 −1.07353
\(28\) 0 0
\(29\) 4.69944 0.872665 0.436332 0.899786i \(-0.356277\pi\)
0.436332 + 0.899786i \(0.356277\pi\)
\(30\) 0 0
\(31\) −5.07172 −0.910909 −0.455454 0.890259i \(-0.650523\pi\)
−0.455454 + 0.890259i \(0.650523\pi\)
\(32\) 0 0
\(33\) 1.62772 0.283349
\(34\) 0 0
\(35\) 1.60298 0.270954
\(36\) 0 0
\(37\) −3.25109 −0.534475 −0.267238 0.963631i \(-0.586111\pi\)
−0.267238 + 0.963631i \(0.586111\pi\)
\(38\) 0 0
\(39\) 0.506522 0.0811085
\(40\) 0 0
\(41\) 1.00000 0.156174
\(42\) 0 0
\(43\) 1.49348 0.227753 0.113877 0.993495i \(-0.463673\pi\)
0.113877 + 0.993495i \(0.463673\pi\)
\(44\) 0 0
\(45\) −1.37228 −0.204568
\(46\) 0 0
\(47\) −3.32094 −0.484409 −0.242204 0.970225i \(-0.577870\pi\)
−0.242204 + 0.970225i \(0.577870\pi\)
\(48\) 0 0
\(49\) −4.43045 −0.632921
\(50\) 0 0
\(51\) 0.923923 0.129375
\(52\) 0 0
\(53\) 2.35190 0.323058 0.161529 0.986868i \(-0.448357\pi\)
0.161529 + 0.986868i \(0.448357\pi\)
\(54\) 0 0
\(55\) 1.27582 0.172032
\(56\) 0 0
\(57\) 8.09833 1.07265
\(58\) 0 0
\(59\) 2.69944 0.351438 0.175719 0.984440i \(-0.443775\pi\)
0.175719 + 0.984440i \(0.443775\pi\)
\(60\) 0 0
\(61\) 6.12989 0.784852 0.392426 0.919784i \(-0.371636\pi\)
0.392426 + 0.919784i \(0.371636\pi\)
\(62\) 0 0
\(63\) −2.19974 −0.277142
\(64\) 0 0
\(65\) 0.397017 0.0492439
\(66\) 0 0
\(67\) −12.1052 −1.47888 −0.739440 0.673223i \(-0.764910\pi\)
−0.739440 + 0.673223i \(0.764910\pi\)
\(68\) 0 0
\(69\) 5.57825 0.671542
\(70\) 0 0
\(71\) 1.93015 0.229066 0.114533 0.993419i \(-0.463463\pi\)
0.114533 + 0.993419i \(0.463463\pi\)
\(72\) 0 0
\(73\) 13.4837 1.57814 0.789071 0.614302i \(-0.210562\pi\)
0.789071 + 0.614302i \(0.210562\pi\)
\(74\) 0 0
\(75\) 1.27582 0.147319
\(76\) 0 0
\(77\) 2.04512 0.233063
\(78\) 0 0
\(79\) −15.1318 −1.70246 −0.851228 0.524796i \(-0.824142\pi\)
−0.851228 + 0.524796i \(0.824142\pi\)
\(80\) 0 0
\(81\) −3.00000 −0.333333
\(82\) 0 0
\(83\) 0.569555 0.0625167 0.0312584 0.999511i \(-0.490049\pi\)
0.0312584 + 0.999511i \(0.490049\pi\)
\(84\) 0 0
\(85\) 0.724179 0.0785483
\(86\) 0 0
\(87\) 5.99565 0.642801
\(88\) 0 0
\(89\) −14.0804 −1.49252 −0.746261 0.665654i \(-0.768153\pi\)
−0.746261 + 0.665654i \(0.768153\pi\)
\(90\) 0 0
\(91\) 0.636411 0.0667140
\(92\) 0 0
\(93\) −6.47061 −0.670971
\(94\) 0 0
\(95\) 6.34755 0.651244
\(96\) 0 0
\(97\) −2.00682 −0.203762 −0.101881 0.994797i \(-0.532486\pi\)
−0.101881 + 0.994797i \(0.532486\pi\)
\(98\) 0 0
\(99\) −1.75079 −0.175961
\(100\) 0 0
\(101\) −1.53313 −0.152552 −0.0762760 0.997087i \(-0.524303\pi\)
−0.0762760 + 0.997087i \(0.524303\pi\)
\(102\) 0 0
\(103\) 7.66849 0.755598 0.377799 0.925888i \(-0.376681\pi\)
0.377799 + 0.925888i \(0.376681\pi\)
\(104\) 0 0
\(105\) 2.04512 0.199583
\(106\) 0 0
\(107\) 0.502170 0.0485466 0.0242733 0.999705i \(-0.492273\pi\)
0.0242733 + 0.999705i \(0.492273\pi\)
\(108\) 0 0
\(109\) 0.372281 0.0356581 0.0178290 0.999841i \(-0.494325\pi\)
0.0178290 + 0.999841i \(0.494325\pi\)
\(110\) 0 0
\(111\) −4.14780 −0.393692
\(112\) 0 0
\(113\) 6.17936 0.581305 0.290653 0.956829i \(-0.406128\pi\)
0.290653 + 0.956829i \(0.406128\pi\)
\(114\) 0 0
\(115\) 4.37228 0.407717
\(116\) 0 0
\(117\) −0.544819 −0.0503685
\(118\) 0 0
\(119\) 1.16085 0.106415
\(120\) 0 0
\(121\) −9.37228 −0.852026
\(122\) 0 0
\(123\) 1.27582 0.115037
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −9.71249 −0.861844 −0.430922 0.902389i \(-0.641812\pi\)
−0.430922 + 0.902389i \(0.641812\pi\)
\(128\) 0 0
\(129\) 1.90541 0.167762
\(130\) 0 0
\(131\) −16.3679 −1.43007 −0.715036 0.699087i \(-0.753590\pi\)
−0.715036 + 0.699087i \(0.753590\pi\)
\(132\) 0 0
\(133\) 10.1750 0.882285
\(134\) 0 0
\(135\) −5.57825 −0.480099
\(136\) 0 0
\(137\) −0.635057 −0.0542566 −0.0271283 0.999632i \(-0.508636\pi\)
−0.0271283 + 0.999632i \(0.508636\pi\)
\(138\) 0 0
\(139\) −8.74456 −0.741704 −0.370852 0.928692i \(-0.620934\pi\)
−0.370852 + 0.928692i \(0.620934\pi\)
\(140\) 0 0
\(141\) −4.23692 −0.356813
\(142\) 0 0
\(143\) 0.506522 0.0423575
\(144\) 0 0
\(145\) 4.69944 0.390268
\(146\) 0 0
\(147\) −5.65245 −0.466207
\(148\) 0 0
\(149\) 9.44401 0.773683 0.386842 0.922146i \(-0.373566\pi\)
0.386842 + 0.922146i \(0.373566\pi\)
\(150\) 0 0
\(151\) −2.24921 −0.183039 −0.0915193 0.995803i \(-0.529172\pi\)
−0.0915193 + 0.995803i \(0.529172\pi\)
\(152\) 0 0
\(153\) −0.993778 −0.0803422
\(154\) 0 0
\(155\) −5.07172 −0.407371
\(156\) 0 0
\(157\) −4.45570 −0.355603 −0.177802 0.984066i \(-0.556899\pi\)
−0.177802 + 0.984066i \(0.556899\pi\)
\(158\) 0 0
\(159\) 3.00060 0.237963
\(160\) 0 0
\(161\) 7.00869 0.552362
\(162\) 0 0
\(163\) −5.76308 −0.451399 −0.225699 0.974197i \(-0.572467\pi\)
−0.225699 + 0.974197i \(0.572467\pi\)
\(164\) 0 0
\(165\) 1.62772 0.126718
\(166\) 0 0
\(167\) −14.4953 −1.12168 −0.560842 0.827923i \(-0.689522\pi\)
−0.560842 + 0.827923i \(0.689522\pi\)
\(168\) 0 0
\(169\) −12.8424 −0.987875
\(170\) 0 0
\(171\) −8.71062 −0.666118
\(172\) 0 0
\(173\) 10.5968 0.805657 0.402828 0.915276i \(-0.368027\pi\)
0.402828 + 0.915276i \(0.368027\pi\)
\(174\) 0 0
\(175\) 1.60298 0.121174
\(176\) 0 0
\(177\) 3.44401 0.258867
\(178\) 0 0
\(179\) −8.48179 −0.633959 −0.316979 0.948432i \(-0.602669\pi\)
−0.316979 + 0.948432i \(0.602669\pi\)
\(180\) 0 0
\(181\) −11.6685 −0.867312 −0.433656 0.901079i \(-0.642777\pi\)
−0.433656 + 0.901079i \(0.642777\pi\)
\(182\) 0 0
\(183\) 7.82064 0.578118
\(184\) 0 0
\(185\) −3.25109 −0.239025
\(186\) 0 0
\(187\) 0.923923 0.0675639
\(188\) 0 0
\(189\) −8.94184 −0.650423
\(190\) 0 0
\(191\) 4.82798 0.349340 0.174670 0.984627i \(-0.444114\pi\)
0.174670 + 0.984627i \(0.444114\pi\)
\(192\) 0 0
\(193\) 9.63019 0.693196 0.346598 0.938014i \(-0.387337\pi\)
0.346598 + 0.938014i \(0.387337\pi\)
\(194\) 0 0
\(195\) 0.506522 0.0362728
\(196\) 0 0
\(197\) 24.1255 1.71887 0.859437 0.511242i \(-0.170814\pi\)
0.859437 + 0.511242i \(0.170814\pi\)
\(198\) 0 0
\(199\) 5.04699 0.357772 0.178886 0.983870i \(-0.442751\pi\)
0.178886 + 0.983870i \(0.442751\pi\)
\(200\) 0 0
\(201\) −15.4440 −1.08934
\(202\) 0 0
\(203\) 7.53313 0.528722
\(204\) 0 0
\(205\) 1.00000 0.0698430
\(206\) 0 0
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) 8.09833 0.560173
\(210\) 0 0
\(211\) −18.9759 −1.30635 −0.653176 0.757206i \(-0.726564\pi\)
−0.653176 + 0.757206i \(0.726564\pi\)
\(212\) 0 0
\(213\) 2.46252 0.168729
\(214\) 0 0
\(215\) 1.49348 0.101854
\(216\) 0 0
\(217\) −8.12989 −0.551893
\(218\) 0 0
\(219\) 17.2027 1.16245
\(220\) 0 0
\(221\) 0.287511 0.0193401
\(222\) 0 0
\(223\) −24.4032 −1.63416 −0.817080 0.576524i \(-0.804409\pi\)
−0.817080 + 0.576524i \(0.804409\pi\)
\(224\) 0 0
\(225\) −1.37228 −0.0914854
\(226\) 0 0
\(227\) −23.2536 −1.54339 −0.771696 0.635991i \(-0.780591\pi\)
−0.771696 + 0.635991i \(0.780591\pi\)
\(228\) 0 0
\(229\) −10.0587 −0.664696 −0.332348 0.943157i \(-0.607841\pi\)
−0.332348 + 0.943157i \(0.607841\pi\)
\(230\) 0 0
\(231\) 2.60921 0.171673
\(232\) 0 0
\(233\) 3.74269 0.245192 0.122596 0.992457i \(-0.460878\pi\)
0.122596 + 0.992457i \(0.460878\pi\)
\(234\) 0 0
\(235\) −3.32094 −0.216634
\(236\) 0 0
\(237\) −19.3054 −1.25402
\(238\) 0 0
\(239\) 10.5845 0.684652 0.342326 0.939581i \(-0.388785\pi\)
0.342326 + 0.939581i \(0.388785\pi\)
\(240\) 0 0
\(241\) −12.0848 −0.778448 −0.389224 0.921143i \(-0.627257\pi\)
−0.389224 + 0.921143i \(0.627257\pi\)
\(242\) 0 0
\(243\) 12.9073 0.828002
\(244\) 0 0
\(245\) −4.43045 −0.283051
\(246\) 0 0
\(247\) 2.52008 0.160349
\(248\) 0 0
\(249\) 0.726650 0.0460495
\(250\) 0 0
\(251\) −5.28264 −0.333437 −0.166719 0.986004i \(-0.553317\pi\)
−0.166719 + 0.986004i \(0.553317\pi\)
\(252\) 0 0
\(253\) 5.57825 0.350701
\(254\) 0 0
\(255\) 0.923923 0.0578583
\(256\) 0 0
\(257\) 14.2943 0.891656 0.445828 0.895119i \(-0.352909\pi\)
0.445828 + 0.895119i \(0.352909\pi\)
\(258\) 0 0
\(259\) −5.21143 −0.323823
\(260\) 0 0
\(261\) −6.44896 −0.399181
\(262\) 0 0
\(263\) 9.71113 0.598814 0.299407 0.954125i \(-0.403211\pi\)
0.299407 + 0.954125i \(0.403211\pi\)
\(264\) 0 0
\(265\) 2.35190 0.144476
\(266\) 0 0
\(267\) −17.9641 −1.09938
\(268\) 0 0
\(269\) −12.6005 −0.768266 −0.384133 0.923278i \(-0.625500\pi\)
−0.384133 + 0.923278i \(0.625500\pi\)
\(270\) 0 0
\(271\) −0.319070 −0.0193821 −0.00969105 0.999953i \(-0.503085\pi\)
−0.00969105 + 0.999953i \(0.503085\pi\)
\(272\) 0 0
\(273\) 0.811947 0.0491413
\(274\) 0 0
\(275\) 1.27582 0.0769349
\(276\) 0 0
\(277\) 4.87071 0.292653 0.146326 0.989236i \(-0.453255\pi\)
0.146326 + 0.989236i \(0.453255\pi\)
\(278\) 0 0
\(279\) 6.95983 0.416674
\(280\) 0 0
\(281\) −11.5288 −0.687749 −0.343875 0.939016i \(-0.611739\pi\)
−0.343875 + 0.939016i \(0.611739\pi\)
\(282\) 0 0
\(283\) −16.8690 −1.00276 −0.501378 0.865228i \(-0.667174\pi\)
−0.501378 + 0.865228i \(0.667174\pi\)
\(284\) 0 0
\(285\) 8.09833 0.479704
\(286\) 0 0
\(287\) 1.60298 0.0946211
\(288\) 0 0
\(289\) −16.4756 −0.969151
\(290\) 0 0
\(291\) −2.56035 −0.150090
\(292\) 0 0
\(293\) 10.3530 0.604830 0.302415 0.953176i \(-0.402207\pi\)
0.302415 + 0.953176i \(0.402207\pi\)
\(294\) 0 0
\(295\) 2.69944 0.157168
\(296\) 0 0
\(297\) −7.11684 −0.412961
\(298\) 0 0
\(299\) 1.73587 0.100388
\(300\) 0 0
\(301\) 2.39402 0.137989
\(302\) 0 0
\(303\) −1.95600 −0.112369
\(304\) 0 0
\(305\) 6.12989 0.350996
\(306\) 0 0
\(307\) 6.76630 0.386173 0.193087 0.981182i \(-0.438150\pi\)
0.193087 + 0.981182i \(0.438150\pi\)
\(308\) 0 0
\(309\) 9.78361 0.556570
\(310\) 0 0
\(311\) −12.0557 −0.683615 −0.341808 0.939770i \(-0.611039\pi\)
−0.341808 + 0.939770i \(0.611039\pi\)
\(312\) 0 0
\(313\) 17.5095 0.989696 0.494848 0.868980i \(-0.335224\pi\)
0.494848 + 0.868980i \(0.335224\pi\)
\(314\) 0 0
\(315\) −2.19974 −0.123942
\(316\) 0 0
\(317\) 27.2671 1.53147 0.765737 0.643154i \(-0.222374\pi\)
0.765737 + 0.643154i \(0.222374\pi\)
\(318\) 0 0
\(319\) 5.99565 0.335692
\(320\) 0 0
\(321\) 0.640679 0.0357592
\(322\) 0 0
\(323\) 4.59676 0.255771
\(324\) 0 0
\(325\) 0.397017 0.0220225
\(326\) 0 0
\(327\) 0.474964 0.0262656
\(328\) 0 0
\(329\) −5.32341 −0.293489
\(330\) 0 0
\(331\) −16.4502 −0.904186 −0.452093 0.891971i \(-0.649323\pi\)
−0.452093 + 0.891971i \(0.649323\pi\)
\(332\) 0 0
\(333\) 4.46140 0.244483
\(334\) 0 0
\(335\) −12.1052 −0.661375
\(336\) 0 0
\(337\) 30.0815 1.63865 0.819323 0.573333i \(-0.194350\pi\)
0.819323 + 0.573333i \(0.194350\pi\)
\(338\) 0 0
\(339\) 7.88376 0.428187
\(340\) 0 0
\(341\) −6.47061 −0.350403
\(342\) 0 0
\(343\) −18.3228 −0.989339
\(344\) 0 0
\(345\) 5.57825 0.300323
\(346\) 0 0
\(347\) −4.97578 −0.267114 −0.133557 0.991041i \(-0.542640\pi\)
−0.133557 + 0.991041i \(0.542640\pi\)
\(348\) 0 0
\(349\) 21.1478 1.13202 0.566008 0.824400i \(-0.308487\pi\)
0.566008 + 0.824400i \(0.308487\pi\)
\(350\) 0 0
\(351\) −2.21466 −0.118210
\(352\) 0 0
\(353\) 1.14729 0.0610639 0.0305319 0.999534i \(-0.490280\pi\)
0.0305319 + 0.999534i \(0.490280\pi\)
\(354\) 0 0
\(355\) 1.93015 0.102441
\(356\) 0 0
\(357\) 1.48103 0.0783846
\(358\) 0 0
\(359\) 31.7353 1.67493 0.837464 0.546493i \(-0.184038\pi\)
0.837464 + 0.546493i \(0.184038\pi\)
\(360\) 0 0
\(361\) 21.2913 1.12060
\(362\) 0 0
\(363\) −11.9574 −0.627598
\(364\) 0 0
\(365\) 13.4837 0.705767
\(366\) 0 0
\(367\) 28.5114 1.48828 0.744141 0.668023i \(-0.232859\pi\)
0.744141 + 0.668023i \(0.232859\pi\)
\(368\) 0 0
\(369\) −1.37228 −0.0714381
\(370\) 0 0
\(371\) 3.77005 0.195731
\(372\) 0 0
\(373\) −12.7581 −0.660591 −0.330295 0.943878i \(-0.607148\pi\)
−0.330295 + 0.943878i \(0.607148\pi\)
\(374\) 0 0
\(375\) 1.27582 0.0658831
\(376\) 0 0
\(377\) 1.86576 0.0960915
\(378\) 0 0
\(379\) 2.64076 0.135647 0.0678235 0.997697i \(-0.478395\pi\)
0.0678235 + 0.997697i \(0.478395\pi\)
\(380\) 0 0
\(381\) −12.3914 −0.634830
\(382\) 0 0
\(383\) 36.4334 1.86166 0.930831 0.365451i \(-0.119085\pi\)
0.930831 + 0.365451i \(0.119085\pi\)
\(384\) 0 0
\(385\) 2.04512 0.104229
\(386\) 0 0
\(387\) −2.04947 −0.104180
\(388\) 0 0
\(389\) 10.2913 0.521791 0.260896 0.965367i \(-0.415982\pi\)
0.260896 + 0.965367i \(0.415982\pi\)
\(390\) 0 0
\(391\) 3.16632 0.160127
\(392\) 0 0
\(393\) −20.8825 −1.05339
\(394\) 0 0
\(395\) −15.1318 −0.761361
\(396\) 0 0
\(397\) 3.83181 0.192313 0.0961566 0.995366i \(-0.469345\pi\)
0.0961566 + 0.995366i \(0.469345\pi\)
\(398\) 0 0
\(399\) 12.9815 0.649887
\(400\) 0 0
\(401\) 25.0810 1.25249 0.626243 0.779628i \(-0.284592\pi\)
0.626243 + 0.779628i \(0.284592\pi\)
\(402\) 0 0
\(403\) −2.01356 −0.100303
\(404\) 0 0
\(405\) −3.00000 −0.149071
\(406\) 0 0
\(407\) −4.14780 −0.205599
\(408\) 0 0
\(409\) −32.3445 −1.59933 −0.799667 0.600443i \(-0.794991\pi\)
−0.799667 + 0.600443i \(0.794991\pi\)
\(410\) 0 0
\(411\) −0.810219 −0.0399652
\(412\) 0 0
\(413\) 4.32716 0.212926
\(414\) 0 0
\(415\) 0.569555 0.0279583
\(416\) 0 0
\(417\) −11.1565 −0.546336
\(418\) 0 0
\(419\) 4.53808 0.221700 0.110850 0.993837i \(-0.464643\pi\)
0.110850 + 0.993837i \(0.464643\pi\)
\(420\) 0 0
\(421\) 35.6598 1.73795 0.868976 0.494855i \(-0.164779\pi\)
0.868976 + 0.494855i \(0.164779\pi\)
\(422\) 0 0
\(423\) 4.55726 0.221582
\(424\) 0 0
\(425\) 0.724179 0.0351279
\(426\) 0 0
\(427\) 9.82611 0.475519
\(428\) 0 0
\(429\) 0.646232 0.0312004
\(430\) 0 0
\(431\) 3.52504 0.169795 0.0848975 0.996390i \(-0.472944\pi\)
0.0848975 + 0.996390i \(0.472944\pi\)
\(432\) 0 0
\(433\) 6.81577 0.327545 0.163773 0.986498i \(-0.447634\pi\)
0.163773 + 0.986498i \(0.447634\pi\)
\(434\) 0 0
\(435\) 5.99565 0.287469
\(436\) 0 0
\(437\) 27.7533 1.32762
\(438\) 0 0
\(439\) 4.52317 0.215879 0.107939 0.994157i \(-0.465575\pi\)
0.107939 + 0.994157i \(0.465575\pi\)
\(440\) 0 0
\(441\) 6.07982 0.289515
\(442\) 0 0
\(443\) 22.7979 1.08316 0.541579 0.840650i \(-0.317827\pi\)
0.541579 + 0.840650i \(0.317827\pi\)
\(444\) 0 0
\(445\) −14.0804 −0.667476
\(446\) 0 0
\(447\) 12.0489 0.569891
\(448\) 0 0
\(449\) −25.3092 −1.19442 −0.597208 0.802086i \(-0.703723\pi\)
−0.597208 + 0.802086i \(0.703723\pi\)
\(450\) 0 0
\(451\) 1.27582 0.0600761
\(452\) 0 0
\(453\) −2.86960 −0.134825
\(454\) 0 0
\(455\) 0.636411 0.0298354
\(456\) 0 0
\(457\) −5.37962 −0.251648 −0.125824 0.992053i \(-0.540157\pi\)
−0.125824 + 0.992053i \(0.540157\pi\)
\(458\) 0 0
\(459\) −4.03965 −0.188555
\(460\) 0 0
\(461\) −4.33646 −0.201969 −0.100984 0.994888i \(-0.532199\pi\)
−0.100984 + 0.994888i \(0.532199\pi\)
\(462\) 0 0
\(463\) 8.21219 0.381653 0.190826 0.981624i \(-0.438883\pi\)
0.190826 + 0.981624i \(0.438883\pi\)
\(464\) 0 0
\(465\) −6.47061 −0.300067
\(466\) 0 0
\(467\) −9.18805 −0.425172 −0.212586 0.977142i \(-0.568189\pi\)
−0.212586 + 0.977142i \(0.568189\pi\)
\(468\) 0 0
\(469\) −19.4044 −0.896010
\(470\) 0 0
\(471\) −5.68467 −0.261936
\(472\) 0 0
\(473\) 1.90541 0.0876108
\(474\) 0 0
\(475\) 6.34755 0.291245
\(476\) 0 0
\(477\) −3.22747 −0.147775
\(478\) 0 0
\(479\) 30.3160 1.38517 0.692586 0.721335i \(-0.256471\pi\)
0.692586 + 0.721335i \(0.256471\pi\)
\(480\) 0 0
\(481\) −1.29074 −0.0588525
\(482\) 0 0
\(483\) 8.94184 0.406868
\(484\) 0 0
\(485\) −2.00682 −0.0911251
\(486\) 0 0
\(487\) 7.77125 0.352149 0.176075 0.984377i \(-0.443660\pi\)
0.176075 + 0.984377i \(0.443660\pi\)
\(488\) 0 0
\(489\) −7.35265 −0.332498
\(490\) 0 0
\(491\) −2.31360 −0.104411 −0.0522057 0.998636i \(-0.516625\pi\)
−0.0522057 + 0.998636i \(0.516625\pi\)
\(492\) 0 0
\(493\) 3.40324 0.153274
\(494\) 0 0
\(495\) −1.75079 −0.0786919
\(496\) 0 0
\(497\) 3.09399 0.138784
\(498\) 0 0
\(499\) 2.40623 0.107717 0.0538587 0.998549i \(-0.482848\pi\)
0.0538587 + 0.998549i \(0.482848\pi\)
\(500\) 0 0
\(501\) −18.4935 −0.826227
\(502\) 0 0
\(503\) 26.8442 1.19693 0.598463 0.801151i \(-0.295778\pi\)
0.598463 + 0.801151i \(0.295778\pi\)
\(504\) 0 0
\(505\) −1.53313 −0.0682233
\(506\) 0 0
\(507\) −16.3846 −0.727664
\(508\) 0 0
\(509\) 19.7657 0.876099 0.438050 0.898951i \(-0.355669\pi\)
0.438050 + 0.898951i \(0.355669\pi\)
\(510\) 0 0
\(511\) 21.6141 0.956150
\(512\) 0 0
\(513\) −35.4082 −1.56331
\(514\) 0 0
\(515\) 7.66849 0.337914
\(516\) 0 0
\(517\) −4.23692 −0.186340
\(518\) 0 0
\(519\) 13.5196 0.593443
\(520\) 0 0
\(521\) 31.6228 1.38542 0.692711 0.721215i \(-0.256416\pi\)
0.692711 + 0.721215i \(0.256416\pi\)
\(522\) 0 0
\(523\) 23.0549 1.00812 0.504061 0.863668i \(-0.331839\pi\)
0.504061 + 0.863668i \(0.331839\pi\)
\(524\) 0 0
\(525\) 2.04512 0.0892563
\(526\) 0 0
\(527\) −3.67284 −0.159991
\(528\) 0 0
\(529\) −3.88316 −0.168833
\(530\) 0 0
\(531\) −3.70440 −0.160757
\(532\) 0 0
\(533\) 0.397017 0.0171967
\(534\) 0 0
\(535\) 0.502170 0.0217107
\(536\) 0 0
\(537\) −10.8212 −0.466971
\(538\) 0 0
\(539\) −5.65245 −0.243468
\(540\) 0 0
\(541\) −5.87011 −0.252376 −0.126188 0.992006i \(-0.540274\pi\)
−0.126188 + 0.992006i \(0.540274\pi\)
\(542\) 0 0
\(543\) −14.8869 −0.638858
\(544\) 0 0
\(545\) 0.372281 0.0159468
\(546\) 0 0
\(547\) −39.8002 −1.70174 −0.850868 0.525380i \(-0.823923\pi\)
−0.850868 + 0.525380i \(0.823923\pi\)
\(548\) 0 0
\(549\) −8.41193 −0.359013
\(550\) 0 0
\(551\) 29.8299 1.27080
\(552\) 0 0
\(553\) −24.2560 −1.03147
\(554\) 0 0
\(555\) −4.14780 −0.176064
\(556\) 0 0
\(557\) 17.4916 0.741143 0.370571 0.928804i \(-0.379162\pi\)
0.370571 + 0.928804i \(0.379162\pi\)
\(558\) 0 0
\(559\) 0.592936 0.0250785
\(560\) 0 0
\(561\) 1.17876 0.0497673
\(562\) 0 0
\(563\) −23.4726 −0.989251 −0.494625 0.869106i \(-0.664695\pi\)
−0.494625 + 0.869106i \(0.664695\pi\)
\(564\) 0 0
\(565\) 6.17936 0.259968
\(566\) 0 0
\(567\) −4.80895 −0.201957
\(568\) 0 0
\(569\) 1.49175 0.0625374 0.0312687 0.999511i \(-0.490045\pi\)
0.0312687 + 0.999511i \(0.490045\pi\)
\(570\) 0 0
\(571\) 0.970396 0.0406098 0.0203049 0.999794i \(-0.493536\pi\)
0.0203049 + 0.999794i \(0.493536\pi\)
\(572\) 0 0
\(573\) 6.15963 0.257322
\(574\) 0 0
\(575\) 4.37228 0.182337
\(576\) 0 0
\(577\) −10.9498 −0.455845 −0.227923 0.973679i \(-0.573193\pi\)
−0.227923 + 0.973679i \(0.573193\pi\)
\(578\) 0 0
\(579\) 12.2864 0.510605
\(580\) 0 0
\(581\) 0.912986 0.0378771
\(582\) 0 0
\(583\) 3.00060 0.124272
\(584\) 0 0
\(585\) −0.544819 −0.0225255
\(586\) 0 0
\(587\) −3.56768 −0.147254 −0.0736270 0.997286i \(-0.523457\pi\)
−0.0736270 + 0.997286i \(0.523457\pi\)
\(588\) 0 0
\(589\) −32.1930 −1.32649
\(590\) 0 0
\(591\) 30.7799 1.26611
\(592\) 0 0
\(593\) 30.3965 1.24823 0.624117 0.781331i \(-0.285459\pi\)
0.624117 + 0.781331i \(0.285459\pi\)
\(594\) 0 0
\(595\) 1.16085 0.0475901
\(596\) 0 0
\(597\) 6.43905 0.263533
\(598\) 0 0
\(599\) −24.9809 −1.02069 −0.510345 0.859969i \(-0.670482\pi\)
−0.510345 + 0.859969i \(0.670482\pi\)
\(600\) 0 0
\(601\) −19.7173 −0.804287 −0.402144 0.915577i \(-0.631735\pi\)
−0.402144 + 0.915577i \(0.631735\pi\)
\(602\) 0 0
\(603\) 16.6117 0.676480
\(604\) 0 0
\(605\) −9.37228 −0.381037
\(606\) 0 0
\(607\) 33.0674 1.34216 0.671082 0.741383i \(-0.265830\pi\)
0.671082 + 0.741383i \(0.265830\pi\)
\(608\) 0 0
\(609\) 9.61092 0.389454
\(610\) 0 0
\(611\) −1.31847 −0.0533396
\(612\) 0 0
\(613\) −40.1473 −1.62153 −0.810767 0.585370i \(-0.800949\pi\)
−0.810767 + 0.585370i \(0.800949\pi\)
\(614\) 0 0
\(615\) 1.27582 0.0514461
\(616\) 0 0
\(617\) −13.6191 −0.548284 −0.274142 0.961689i \(-0.588394\pi\)
−0.274142 + 0.961689i \(0.588394\pi\)
\(618\) 0 0
\(619\) −17.3908 −0.698995 −0.349498 0.936937i \(-0.613648\pi\)
−0.349498 + 0.936937i \(0.613648\pi\)
\(620\) 0 0
\(621\) −24.3897 −0.978724
\(622\) 0 0
\(623\) −22.5707 −0.904275
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 10.3320 0.412621
\(628\) 0 0
\(629\) −2.35437 −0.0938748
\(630\) 0 0
\(631\) 32.4571 1.29209 0.646047 0.763297i \(-0.276421\pi\)
0.646047 + 0.763297i \(0.276421\pi\)
\(632\) 0 0
\(633\) −24.2098 −0.962253
\(634\) 0 0
\(635\) −9.71249 −0.385428
\(636\) 0 0
\(637\) −1.75896 −0.0696926
\(638\) 0 0
\(639\) −2.64870 −0.104781
\(640\) 0 0
\(641\) 33.0810 1.30662 0.653311 0.757090i \(-0.273379\pi\)
0.653311 + 0.757090i \(0.273379\pi\)
\(642\) 0 0
\(643\) 5.00734 0.197470 0.0987351 0.995114i \(-0.468520\pi\)
0.0987351 + 0.995114i \(0.468520\pi\)
\(644\) 0 0
\(645\) 1.90541 0.0750254
\(646\) 0 0
\(647\) −3.70004 −0.145464 −0.0727319 0.997352i \(-0.523172\pi\)
−0.0727319 + 0.997352i \(0.523172\pi\)
\(648\) 0 0
\(649\) 3.44401 0.135189
\(650\) 0 0
\(651\) −10.3723 −0.406522
\(652\) 0 0
\(653\) −31.0154 −1.21373 −0.606864 0.794806i \(-0.707573\pi\)
−0.606864 + 0.794806i \(0.707573\pi\)
\(654\) 0 0
\(655\) −16.3679 −0.639548
\(656\) 0 0
\(657\) −18.5034 −0.721885
\(658\) 0 0
\(659\) 1.09758 0.0427555 0.0213778 0.999771i \(-0.493195\pi\)
0.0213778 + 0.999771i \(0.493195\pi\)
\(660\) 0 0
\(661\) −8.00929 −0.311525 −0.155763 0.987795i \(-0.549784\pi\)
−0.155763 + 0.987795i \(0.549784\pi\)
\(662\) 0 0
\(663\) 0.366813 0.0142458
\(664\) 0 0
\(665\) 10.1750 0.394570
\(666\) 0 0
\(667\) 20.5473 0.795594
\(668\) 0 0
\(669\) −31.1341 −1.20372
\(670\) 0 0
\(671\) 7.82064 0.301912
\(672\) 0 0
\(673\) −13.5312 −0.521591 −0.260796 0.965394i \(-0.583985\pi\)
−0.260796 + 0.965394i \(0.583985\pi\)
\(674\) 0 0
\(675\) −5.57825 −0.214707
\(676\) 0 0
\(677\) −17.7228 −0.681143 −0.340572 0.940219i \(-0.610621\pi\)
−0.340572 + 0.940219i \(0.610621\pi\)
\(678\) 0 0
\(679\) −3.21690 −0.123453
\(680\) 0 0
\(681\) −29.6674 −1.13686
\(682\) 0 0
\(683\) −19.3203 −0.739272 −0.369636 0.929177i \(-0.620518\pi\)
−0.369636 + 0.929177i \(0.620518\pi\)
\(684\) 0 0
\(685\) −0.635057 −0.0242643
\(686\) 0 0
\(687\) −12.8331 −0.489612
\(688\) 0 0
\(689\) 0.933743 0.0355728
\(690\) 0 0
\(691\) 3.97526 0.151226 0.0756131 0.997137i \(-0.475909\pi\)
0.0756131 + 0.997137i \(0.475909\pi\)
\(692\) 0 0
\(693\) −2.80648 −0.106609
\(694\) 0 0
\(695\) −8.74456 −0.331700
\(696\) 0 0
\(697\) 0.724179 0.0274302
\(698\) 0 0
\(699\) 4.77500 0.180607
\(700\) 0 0
\(701\) −36.2102 −1.36764 −0.683821 0.729650i \(-0.739683\pi\)
−0.683821 + 0.729650i \(0.739683\pi\)
\(702\) 0 0
\(703\) −20.6364 −0.778317
\(704\) 0 0
\(705\) −4.23692 −0.159572
\(706\) 0 0
\(707\) −2.45758 −0.0924268
\(708\) 0 0
\(709\) −39.6587 −1.48941 −0.744706 0.667392i \(-0.767410\pi\)
−0.744706 + 0.667392i \(0.767410\pi\)
\(710\) 0 0
\(711\) 20.7650 0.778749
\(712\) 0 0
\(713\) −22.1750 −0.830461
\(714\) 0 0
\(715\) 0.506522 0.0189429
\(716\) 0 0
\(717\) 13.5039 0.504312
\(718\) 0 0
\(719\) −6.07368 −0.226510 −0.113255 0.993566i \(-0.536128\pi\)
−0.113255 + 0.993566i \(0.536128\pi\)
\(720\) 0 0
\(721\) 12.2925 0.457795
\(722\) 0 0
\(723\) −15.4180 −0.573402
\(724\) 0 0
\(725\) 4.69944 0.174533
\(726\) 0 0
\(727\) −7.49969 −0.278148 −0.139074 0.990282i \(-0.544413\pi\)
−0.139074 + 0.990282i \(0.544413\pi\)
\(728\) 0 0
\(729\) 25.4674 0.943236
\(730\) 0 0
\(731\) 1.08155 0.0400024
\(732\) 0 0
\(733\) −37.2331 −1.37524 −0.687618 0.726073i \(-0.741343\pi\)
−0.687618 + 0.726073i \(0.741343\pi\)
\(734\) 0 0
\(735\) −5.65245 −0.208494
\(736\) 0 0
\(737\) −15.4440 −0.568887
\(738\) 0 0
\(739\) 18.3211 0.673952 0.336976 0.941513i \(-0.390596\pi\)
0.336976 + 0.941513i \(0.390596\pi\)
\(740\) 0 0
\(741\) 3.21517 0.118112
\(742\) 0 0
\(743\) 23.3810 0.857765 0.428882 0.903360i \(-0.358907\pi\)
0.428882 + 0.903360i \(0.358907\pi\)
\(744\) 0 0
\(745\) 9.44401 0.346002
\(746\) 0 0
\(747\) −0.781589 −0.0285969
\(748\) 0 0
\(749\) 0.804970 0.0294130
\(750\) 0 0
\(751\) 25.1997 0.919551 0.459776 0.888035i \(-0.347930\pi\)
0.459776 + 0.888035i \(0.347930\pi\)
\(752\) 0 0
\(753\) −6.73971 −0.245609
\(754\) 0 0
\(755\) −2.24921 −0.0818573
\(756\) 0 0
\(757\) 47.8448 1.73895 0.869475 0.493976i \(-0.164457\pi\)
0.869475 + 0.493976i \(0.164457\pi\)
\(758\) 0 0
\(759\) 7.11684 0.258325
\(760\) 0 0
\(761\) 26.1256 0.947053 0.473527 0.880780i \(-0.342981\pi\)
0.473527 + 0.880780i \(0.342981\pi\)
\(762\) 0 0
\(763\) 0.596761 0.0216042
\(764\) 0 0
\(765\) −0.993778 −0.0359301
\(766\) 0 0
\(767\) 1.07172 0.0386977
\(768\) 0 0
\(769\) 6.25978 0.225733 0.112867 0.993610i \(-0.463997\pi\)
0.112867 + 0.993610i \(0.463997\pi\)
\(770\) 0 0
\(771\) 18.2370 0.656790
\(772\) 0 0
\(773\) −4.61776 −0.166089 −0.0830446 0.996546i \(-0.526464\pi\)
−0.0830446 + 0.996546i \(0.526464\pi\)
\(774\) 0 0
\(775\) −5.07172 −0.182182
\(776\) 0 0
\(777\) −6.64886 −0.238526
\(778\) 0 0
\(779\) 6.34755 0.227424
\(780\) 0 0
\(781\) 2.46252 0.0881159
\(782\) 0 0
\(783\) −26.2147 −0.936835
\(784\) 0 0
\(785\) −4.45570 −0.159031
\(786\) 0 0
\(787\) 0.110775 0.00394872 0.00197436 0.999998i \(-0.499372\pi\)
0.00197436 + 0.999998i \(0.499372\pi\)
\(788\) 0 0
\(789\) 12.3897 0.441084
\(790\) 0 0
\(791\) 9.90541 0.352196
\(792\) 0 0
\(793\) 2.43367 0.0864222
\(794\) 0 0
\(795\) 3.00060 0.106420
\(796\) 0 0
\(797\) −35.1973 −1.24675 −0.623377 0.781921i \(-0.714240\pi\)
−0.623377 + 0.781921i \(0.714240\pi\)
\(798\) 0 0
\(799\) −2.40496 −0.0850812
\(800\) 0 0
\(801\) 19.3223 0.682720
\(802\) 0 0
\(803\) 17.2027 0.607071
\(804\) 0 0
\(805\) 7.00869 0.247024
\(806\) 0 0
\(807\) −16.0760 −0.565901
\(808\) 0 0
\(809\) 4.09842 0.144093 0.0720463 0.997401i \(-0.477047\pi\)
0.0720463 + 0.997401i \(0.477047\pi\)
\(810\) 0 0
\(811\) 14.9213 0.523958 0.261979 0.965074i \(-0.415625\pi\)
0.261979 + 0.965074i \(0.415625\pi\)
\(812\) 0 0
\(813\) −0.407076 −0.0142768
\(814\) 0 0
\(815\) −5.76308 −0.201872
\(816\) 0 0
\(817\) 9.47992 0.331660
\(818\) 0 0
\(819\) −0.873336 −0.0305168
\(820\) 0 0
\(821\) 7.31959 0.255455 0.127728 0.991809i \(-0.459232\pi\)
0.127728 + 0.991809i \(0.459232\pi\)
\(822\) 0 0
\(823\) 21.2981 0.742404 0.371202 0.928552i \(-0.378946\pi\)
0.371202 + 0.928552i \(0.378946\pi\)
\(824\) 0 0
\(825\) 1.62772 0.0566699
\(826\) 0 0
\(827\) −18.8231 −0.654544 −0.327272 0.944930i \(-0.606129\pi\)
−0.327272 + 0.944930i \(0.606129\pi\)
\(828\) 0 0
\(829\) −0.214659 −0.00745541 −0.00372771 0.999993i \(-0.501187\pi\)
−0.00372771 + 0.999993i \(0.501187\pi\)
\(830\) 0 0
\(831\) 6.21415 0.215567
\(832\) 0 0
\(833\) −3.20844 −0.111166
\(834\) 0 0
\(835\) −14.4953 −0.501632
\(836\) 0 0
\(837\) 28.2913 0.977892
\(838\) 0 0
\(839\) 34.0432 1.17530 0.587652 0.809114i \(-0.300053\pi\)
0.587652 + 0.809114i \(0.300053\pi\)
\(840\) 0 0
\(841\) −6.91523 −0.238456
\(842\) 0 0
\(843\) −14.7087 −0.506593
\(844\) 0 0
\(845\) −12.8424 −0.441791
\(846\) 0 0
\(847\) −15.0236 −0.516217
\(848\) 0 0
\(849\) −21.5218 −0.738626
\(850\) 0 0
\(851\) −14.2147 −0.487272
\(852\) 0 0
\(853\) −1.99018 −0.0681424 −0.0340712 0.999419i \(-0.510847\pi\)
−0.0340712 + 0.999419i \(0.510847\pi\)
\(854\) 0 0
\(855\) −8.71062 −0.297897
\(856\) 0 0
\(857\) −45.3037 −1.54754 −0.773772 0.633464i \(-0.781632\pi\)
−0.773772 + 0.633464i \(0.781632\pi\)
\(858\) 0 0
\(859\) 5.61790 0.191680 0.0958401 0.995397i \(-0.469446\pi\)
0.0958401 + 0.995397i \(0.469446\pi\)
\(860\) 0 0
\(861\) 2.04512 0.0696975
\(862\) 0 0
\(863\) −49.6228 −1.68918 −0.844589 0.535415i \(-0.820155\pi\)
−0.844589 + 0.535415i \(0.820155\pi\)
\(864\) 0 0
\(865\) 10.5968 0.360301
\(866\) 0 0
\(867\) −21.0199 −0.713872
\(868\) 0 0
\(869\) −19.3054 −0.654891
\(870\) 0 0
\(871\) −4.80595 −0.162843
\(872\) 0 0
\(873\) 2.75393 0.0932062
\(874\) 0 0
\(875\) 1.60298 0.0541907
\(876\) 0 0
\(877\) 15.8325 0.534625 0.267312 0.963610i \(-0.413864\pi\)
0.267312 + 0.963610i \(0.413864\pi\)
\(878\) 0 0
\(879\) 13.2086 0.445515
\(880\) 0 0
\(881\) 51.6103 1.73880 0.869398 0.494113i \(-0.164507\pi\)
0.869398 + 0.494113i \(0.164507\pi\)
\(882\) 0 0
\(883\) −12.7910 −0.430453 −0.215226 0.976564i \(-0.569049\pi\)
−0.215226 + 0.976564i \(0.569049\pi\)
\(884\) 0 0
\(885\) 3.44401 0.115769
\(886\) 0 0
\(887\) 16.7106 0.561088 0.280544 0.959841i \(-0.409485\pi\)
0.280544 + 0.959841i \(0.409485\pi\)
\(888\) 0 0
\(889\) −15.5690 −0.522166
\(890\) 0 0
\(891\) −3.82746 −0.128225
\(892\) 0 0
\(893\) −21.0798 −0.705409
\(894\) 0 0
\(895\) −8.48179 −0.283515
\(896\) 0 0
\(897\) 2.21466 0.0739453
\(898\) 0 0
\(899\) −23.8343 −0.794918
\(900\) 0 0
\(901\) 1.70320 0.0567417
\(902\) 0 0
\(903\) 3.05434 0.101642
\(904\) 0 0
\(905\) −11.6685 −0.387874
\(906\) 0 0
\(907\) 41.2098 1.36835 0.684174 0.729319i \(-0.260163\pi\)
0.684174 + 0.729319i \(0.260163\pi\)
\(908\) 0 0
\(909\) 2.10388 0.0697814
\(910\) 0 0
\(911\) 42.1967 1.39804 0.699020 0.715102i \(-0.253620\pi\)
0.699020 + 0.715102i \(0.253620\pi\)
\(912\) 0 0
\(913\) 0.726650 0.0240486
\(914\) 0 0
\(915\) 7.82064 0.258542
\(916\) 0 0
\(917\) −26.2375 −0.866439
\(918\) 0 0
\(919\) 16.3915 0.540707 0.270354 0.962761i \(-0.412859\pi\)
0.270354 + 0.962761i \(0.412859\pi\)
\(920\) 0 0
\(921\) 8.63259 0.284453
\(922\) 0 0
\(923\) 0.766300 0.0252231
\(924\) 0 0
\(925\) −3.25109 −0.106895
\(926\) 0 0
\(927\) −10.5233 −0.345631
\(928\) 0 0
\(929\) 52.3744 1.71835 0.859174 0.511684i \(-0.170978\pi\)
0.859174 + 0.511684i \(0.170978\pi\)
\(930\) 0 0
\(931\) −28.1225 −0.921676
\(932\) 0 0
\(933\) −15.3809 −0.503548
\(934\) 0 0
\(935\) 0.923923 0.0302155
\(936\) 0 0
\(937\) 15.1361 0.494475 0.247238 0.968955i \(-0.420477\pi\)
0.247238 + 0.968955i \(0.420477\pi\)
\(938\) 0 0
\(939\) 22.3390 0.729006
\(940\) 0 0
\(941\) −29.4588 −0.960328 −0.480164 0.877179i \(-0.659423\pi\)
−0.480164 + 0.877179i \(0.659423\pi\)
\(942\) 0 0
\(943\) 4.37228 0.142381
\(944\) 0 0
\(945\) −8.94184 −0.290878
\(946\) 0 0
\(947\) −53.1207 −1.72619 −0.863095 0.505042i \(-0.831477\pi\)
−0.863095 + 0.505042i \(0.831477\pi\)
\(948\) 0 0
\(949\) 5.35324 0.173774
\(950\) 0 0
\(951\) 34.7880 1.12808
\(952\) 0 0
\(953\) −7.73587 −0.250589 −0.125295 0.992120i \(-0.539988\pi\)
−0.125295 + 0.992120i \(0.539988\pi\)
\(954\) 0 0
\(955\) 4.82798 0.156230
\(956\) 0 0
\(957\) 7.64937 0.247269
\(958\) 0 0
\(959\) −1.01799 −0.0328725
\(960\) 0 0
\(961\) −5.27761 −0.170245
\(962\) 0 0
\(963\) −0.689119 −0.0222065
\(964\) 0 0
\(965\) 9.63019 0.310007
\(966\) 0 0
\(967\) 17.8301 0.573377 0.286688 0.958024i \(-0.407446\pi\)
0.286688 + 0.958024i \(0.407446\pi\)
\(968\) 0 0
\(969\) 5.86464 0.188399
\(970\) 0 0
\(971\) −24.1090 −0.773694 −0.386847 0.922144i \(-0.626436\pi\)
−0.386847 + 0.922144i \(0.626436\pi\)
\(972\) 0 0
\(973\) −14.0174 −0.449377
\(974\) 0 0
\(975\) 0.506522 0.0162217
\(976\) 0 0
\(977\) 41.9856 1.34324 0.671619 0.740897i \(-0.265599\pi\)
0.671619 + 0.740897i \(0.265599\pi\)
\(978\) 0 0
\(979\) −17.9641 −0.574135
\(980\) 0 0
\(981\) −0.510875 −0.0163110
\(982\) 0 0
\(983\) −45.6216 −1.45510 −0.727552 0.686052i \(-0.759342\pi\)
−0.727552 + 0.686052i \(0.759342\pi\)
\(984\) 0 0
\(985\) 24.1255 0.768704
\(986\) 0 0
\(987\) −6.79172 −0.216183
\(988\) 0 0
\(989\) 6.52990 0.207639
\(990\) 0 0
\(991\) −44.1182 −1.40146 −0.700730 0.713426i \(-0.747142\pi\)
−0.700730 + 0.713426i \(0.747142\pi\)
\(992\) 0 0
\(993\) −20.9875 −0.666020
\(994\) 0 0
\(995\) 5.04699 0.160000
\(996\) 0 0
\(997\) 31.9611 1.01222 0.506109 0.862470i \(-0.331083\pi\)
0.506109 + 0.862470i \(0.331083\pi\)
\(998\) 0 0
\(999\) 18.1354 0.573777
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.a.d.1.3 4
3.2 odd 2 7380.2.a.t.1.3 4
4.3 odd 2 3280.2.a.be.1.2 4
5.2 odd 4 4100.2.d.e.1149.3 8
5.3 odd 4 4100.2.d.e.1149.6 8
5.4 even 2 4100.2.a.d.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.a.d.1.3 4 1.1 even 1 trivial
3280.2.a.be.1.2 4 4.3 odd 2
4100.2.a.d.1.2 4 5.4 even 2
4100.2.d.e.1149.3 8 5.2 odd 4
4100.2.d.e.1149.6 8 5.3 odd 4
7380.2.a.t.1.3 4 3.2 odd 2