Properties

Label 820.2.a
Level $820$
Weight $2$
Character orbit 820.a
Rep. character $\chi_{820}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $4$
Sturm bound $252$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(252\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(820))\).

Total New Old
Modular forms 132 12 120
Cusp forms 121 12 109
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(41\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(13\)\(0\)\(13\)\(12\)\(0\)\(12\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(19\)\(0\)\(19\)\(17\)\(0\)\(17\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(16\)\(0\)\(16\)\(14\)\(0\)\(14\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(18\)\(0\)\(18\)\(16\)\(0\)\(16\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(20\)\(4\)\(16\)\(19\)\(4\)\(15\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(14\)\(2\)\(12\)\(13\)\(2\)\(11\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(17\)\(2\)\(15\)\(16\)\(2\)\(14\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(15\)\(4\)\(11\)\(14\)\(4\)\(10\)\(1\)\(0\)\(1\)
Plus space\(+\)\(62\)\(4\)\(58\)\(57\)\(4\)\(53\)\(5\)\(0\)\(5\)
Minus space\(-\)\(70\)\(8\)\(62\)\(64\)\(8\)\(56\)\(6\)\(0\)\(6\)

Trace form

\( 12 q - 4 q^{7} + 4 q^{9} - 4 q^{11} - 4 q^{15} + 12 q^{17} - 8 q^{19} + 12 q^{21} + 4 q^{23} + 12 q^{25} + 20 q^{31} + 12 q^{33} + 4 q^{35} - 20 q^{37} + 28 q^{39} - 4 q^{43} + 28 q^{47} + 8 q^{49} + 36 q^{53}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(820))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 41
820.2.a.a 820.a 1.a $2$ $6.548$ \(\Q(\sqrt{5}) \) None 820.2.a.a \(0\) \(-2\) \(2\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-\beta q^{7}-2q^{9}+(-1+4\beta )q^{11}+\cdots\)
820.2.a.b 820.a 1.a $2$ $6.548$ \(\Q(\sqrt{13}) \) None 820.2.a.b \(0\) \(2\) \(-2\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+(-1-\beta )q^{7}-2q^{9}+(-3+\cdots)q^{11}+\cdots\)
820.2.a.c 820.a 1.a $4$ $6.548$ \(\Q(\sqrt{5}, \sqrt{13})\) None 820.2.a.c \(0\) \(0\) \(-4\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-q^{5}+(\beta _{1}-\beta _{2})q^{7}+(1+\beta _{2}+\cdots)q^{9}+\cdots\)
820.2.a.d 820.a 1.a $4$ $6.548$ 4.4.13068.1 None 820.2.a.d \(0\) \(0\) \(4\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{3}+q^{5}+\beta _{3}q^{7}+(1-\beta _{1}+\beta _{3})q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(820))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(820)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(41))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(82))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(164))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(205))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(410))\)\(^{\oplus 2}\)