Defining parameters
| Level: | \( N \) | \(=\) | \( 820 = 2^{2} \cdot 5 \cdot 41 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 820.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(252\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(820))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 132 | 12 | 120 |
| Cusp forms | 121 | 12 | 109 |
| Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(41\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(13\) | \(0\) | \(13\) | \(12\) | \(0\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(19\) | \(0\) | \(19\) | \(17\) | \(0\) | \(17\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(16\) | \(0\) | \(16\) | \(14\) | \(0\) | \(14\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(18\) | \(0\) | \(18\) | \(16\) | \(0\) | \(16\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(20\) | \(4\) | \(16\) | \(19\) | \(4\) | \(15\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(14\) | \(2\) | \(12\) | \(13\) | \(2\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(17\) | \(2\) | \(15\) | \(16\) | \(2\) | \(14\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(15\) | \(4\) | \(11\) | \(14\) | \(4\) | \(10\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(62\) | \(4\) | \(58\) | \(57\) | \(4\) | \(53\) | \(5\) | \(0\) | \(5\) | |||||
| Minus space | \(-\) | \(70\) | \(8\) | \(62\) | \(64\) | \(8\) | \(56\) | \(6\) | \(0\) | \(6\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(820))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 41 | |||||||
| 820.2.a.a | $2$ | $6.548$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(2\) | \(-1\) | $-$ | $-$ | $+$ | \(q-q^{3}+q^{5}-\beta q^{7}-2q^{9}+(-1+4\beta )q^{11}+\cdots\) | |
| 820.2.a.b | $2$ | $6.548$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(2\) | \(-2\) | \(-3\) | $-$ | $+$ | $-$ | \(q+q^{3}-q^{5}+(-1-\beta )q^{7}-2q^{9}+(-3+\cdots)q^{11}+\cdots\) | |
| 820.2.a.c | $4$ | $6.548$ | \(\Q(\sqrt{5}, \sqrt{13})\) | None | \(0\) | \(0\) | \(-4\) | \(-1\) | $-$ | $+$ | $+$ | \(q+\beta _{1}q^{3}-q^{5}+(\beta _{1}-\beta _{2})q^{7}+(1+\beta _{2}+\cdots)q^{9}+\cdots\) | |
| 820.2.a.d | $4$ | $6.548$ | 4.4.13068.1 | None | \(0\) | \(0\) | \(4\) | \(1\) | $-$ | $-$ | $-$ | \(q-\beta _{2}q^{3}+q^{5}+\beta _{3}q^{7}+(1-\beta _{1}+\beta _{3})q^{9}+\cdots\) | |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(820))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(820)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(41))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(82))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(164))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(205))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(410))\)\(^{\oplus 2}\)