Properties

Label 820.2.a.d.1.2
Level $820$
Weight $2$
Character 820.1
Self dual yes
Analytic conductor $6.548$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(1,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13068.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.548230\) of defining polynomial
Character \(\chi\) \(=\) 820.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.27582 q^{3} +1.00000 q^{5} -3.97526 q^{7} -1.37228 q^{9} -1.27582 q^{11} +5.97526 q^{13} -1.27582 q^{15} +3.27582 q^{17} +0.769298 q^{19} +5.07172 q^{21} +4.37228 q^{23} +1.00000 q^{25} +5.57825 q^{27} +1.67284 q^{29} -2.04512 q^{31} +1.62772 q^{33} -3.97526 q^{35} +4.87880 q^{37} -7.62337 q^{39} +1.00000 q^{41} +9.62337 q^{43} -1.37228 q^{45} -3.79590 q^{47} +8.80273 q^{49} -4.17936 q^{51} +4.90354 q^{53} -1.27582 q^{55} -0.981487 q^{57} -0.327162 q^{59} -10.1299 q^{61} +5.45518 q^{63} +5.97526 q^{65} +9.73287 q^{67} -5.57825 q^{69} -6.67471 q^{71} -11.8559 q^{73} -1.27582 q^{75} +5.07172 q^{77} +12.7595 q^{79} -3.00000 q^{81} +13.8027 q^{83} +3.27582 q^{85} -2.13424 q^{87} +13.3359 q^{89} -23.7533 q^{91} +2.60921 q^{93} +0.769298 q^{95} +10.7514 q^{97} +1.75079 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + q^{7} + 6 q^{9} + 7 q^{13} + 8 q^{17} - 3 q^{19} - 3 q^{21} + 6 q^{23} + 4 q^{25} + 7 q^{29} + 3 q^{31} + 18 q^{33} + q^{35} + 9 q^{37} + 3 q^{39} + 4 q^{41} + 5 q^{43} + 6 q^{45} + 3 q^{47}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.27582 −0.736595 −0.368298 0.929708i \(-0.620059\pi\)
−0.368298 + 0.929708i \(0.620059\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.97526 −1.50251 −0.751254 0.660013i \(-0.770551\pi\)
−0.751254 + 0.660013i \(0.770551\pi\)
\(8\) 0 0
\(9\) −1.37228 −0.457427
\(10\) 0 0
\(11\) −1.27582 −0.384674 −0.192337 0.981329i \(-0.561607\pi\)
−0.192337 + 0.981329i \(0.561607\pi\)
\(12\) 0 0
\(13\) 5.97526 1.65724 0.828620 0.559811i \(-0.189126\pi\)
0.828620 + 0.559811i \(0.189126\pi\)
\(14\) 0 0
\(15\) −1.27582 −0.329416
\(16\) 0 0
\(17\) 3.27582 0.794503 0.397252 0.917710i \(-0.369964\pi\)
0.397252 + 0.917710i \(0.369964\pi\)
\(18\) 0 0
\(19\) 0.769298 0.176489 0.0882446 0.996099i \(-0.471874\pi\)
0.0882446 + 0.996099i \(0.471874\pi\)
\(20\) 0 0
\(21\) 5.07172 1.10674
\(22\) 0 0
\(23\) 4.37228 0.911684 0.455842 0.890061i \(-0.349338\pi\)
0.455842 + 0.890061i \(0.349338\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.57825 1.07353
\(28\) 0 0
\(29\) 1.67284 0.310638 0.155319 0.987864i \(-0.450359\pi\)
0.155319 + 0.987864i \(0.450359\pi\)
\(30\) 0 0
\(31\) −2.04512 −0.367314 −0.183657 0.982990i \(-0.558794\pi\)
−0.183657 + 0.982990i \(0.558794\pi\)
\(32\) 0 0
\(33\) 1.62772 0.283349
\(34\) 0 0
\(35\) −3.97526 −0.671942
\(36\) 0 0
\(37\) 4.87880 0.802070 0.401035 0.916063i \(-0.368650\pi\)
0.401035 + 0.916063i \(0.368650\pi\)
\(38\) 0 0
\(39\) −7.62337 −1.22072
\(40\) 0 0
\(41\) 1.00000 0.156174
\(42\) 0 0
\(43\) 9.62337 1.46755 0.733775 0.679393i \(-0.237757\pi\)
0.733775 + 0.679393i \(0.237757\pi\)
\(44\) 0 0
\(45\) −1.37228 −0.204568
\(46\) 0 0
\(47\) −3.79590 −0.553690 −0.276845 0.960915i \(-0.589289\pi\)
−0.276845 + 0.960915i \(0.589289\pi\)
\(48\) 0 0
\(49\) 8.80273 1.25753
\(50\) 0 0
\(51\) −4.17936 −0.585227
\(52\) 0 0
\(53\) 4.90354 0.673553 0.336776 0.941585i \(-0.390663\pi\)
0.336776 + 0.941585i \(0.390663\pi\)
\(54\) 0 0
\(55\) −1.27582 −0.172032
\(56\) 0 0
\(57\) −0.981487 −0.130001
\(58\) 0 0
\(59\) −0.327162 −0.0425929 −0.0212964 0.999773i \(-0.506779\pi\)
−0.0212964 + 0.999773i \(0.506779\pi\)
\(60\) 0 0
\(61\) −10.1299 −1.29700 −0.648500 0.761215i \(-0.724603\pi\)
−0.648500 + 0.761215i \(0.724603\pi\)
\(62\) 0 0
\(63\) 5.45518 0.687288
\(64\) 0 0
\(65\) 5.97526 0.741140
\(66\) 0 0
\(67\) 9.73287 1.18906 0.594530 0.804074i \(-0.297338\pi\)
0.594530 + 0.804074i \(0.297338\pi\)
\(68\) 0 0
\(69\) −5.57825 −0.671542
\(70\) 0 0
\(71\) −6.67471 −0.792142 −0.396071 0.918220i \(-0.629627\pi\)
−0.396071 + 0.918220i \(0.629627\pi\)
\(72\) 0 0
\(73\) −11.8559 −1.38763 −0.693816 0.720152i \(-0.744072\pi\)
−0.693816 + 0.720152i \(0.744072\pi\)
\(74\) 0 0
\(75\) −1.27582 −0.147319
\(76\) 0 0
\(77\) 5.07172 0.577977
\(78\) 0 0
\(79\) 12.7595 1.43555 0.717777 0.696273i \(-0.245160\pi\)
0.717777 + 0.696273i \(0.245160\pi\)
\(80\) 0 0
\(81\) −3.00000 −0.333333
\(82\) 0 0
\(83\) 13.8027 1.51505 0.757523 0.652808i \(-0.226409\pi\)
0.757523 + 0.652808i \(0.226409\pi\)
\(84\) 0 0
\(85\) 3.27582 0.355313
\(86\) 0 0
\(87\) −2.13424 −0.228815
\(88\) 0 0
\(89\) 13.3359 1.41360 0.706799 0.707415i \(-0.250139\pi\)
0.706799 + 0.707415i \(0.250139\pi\)
\(90\) 0 0
\(91\) −23.7533 −2.49002
\(92\) 0 0
\(93\) 2.60921 0.270562
\(94\) 0 0
\(95\) 0.769298 0.0789283
\(96\) 0 0
\(97\) 10.7514 1.09164 0.545819 0.837903i \(-0.316219\pi\)
0.545819 + 0.837903i \(0.316219\pi\)
\(98\) 0 0
\(99\) 1.75079 0.175961
\(100\) 0 0
\(101\) 12.6500 1.25872 0.629360 0.777114i \(-0.283317\pi\)
0.629360 + 0.777114i \(0.283317\pi\)
\(102\) 0 0
\(103\) 2.56520 0.252757 0.126378 0.991982i \(-0.459665\pi\)
0.126378 + 0.991982i \(0.459665\pi\)
\(104\) 0 0
\(105\) 5.07172 0.494950
\(106\) 0 0
\(107\) −15.7576 −1.52335 −0.761673 0.647962i \(-0.775622\pi\)
−0.761673 + 0.647962i \(0.775622\pi\)
\(108\) 0 0
\(109\) 0.372281 0.0356581 0.0178290 0.999841i \(-0.494325\pi\)
0.0178290 + 0.999841i \(0.494325\pi\)
\(110\) 0 0
\(111\) −6.22448 −0.590801
\(112\) 0 0
\(113\) 1.07608 0.101229 0.0506144 0.998718i \(-0.483882\pi\)
0.0506144 + 0.998718i \(0.483882\pi\)
\(114\) 0 0
\(115\) 4.37228 0.407717
\(116\) 0 0
\(117\) −8.19974 −0.758067
\(118\) 0 0
\(119\) −13.0223 −1.19375
\(120\) 0 0
\(121\) −9.37228 −0.852026
\(122\) 0 0
\(123\) −1.27582 −0.115037
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 9.57390 0.849546 0.424773 0.905300i \(-0.360354\pi\)
0.424773 + 0.905300i \(0.360354\pi\)
\(128\) 0 0
\(129\) −12.2777 −1.08099
\(130\) 0 0
\(131\) −8.23804 −0.719761 −0.359880 0.932998i \(-0.617183\pi\)
−0.359880 + 0.932998i \(0.617183\pi\)
\(132\) 0 0
\(133\) −3.05816 −0.265176
\(134\) 0 0
\(135\) 5.57825 0.480099
\(136\) 0 0
\(137\) −14.3432 −1.22542 −0.612711 0.790307i \(-0.709921\pi\)
−0.612711 + 0.790307i \(0.709921\pi\)
\(138\) 0 0
\(139\) −8.74456 −0.741704 −0.370852 0.928692i \(-0.620934\pi\)
−0.370852 + 0.928692i \(0.620934\pi\)
\(140\) 0 0
\(141\) 4.84289 0.407845
\(142\) 0 0
\(143\) −7.62337 −0.637498
\(144\) 0 0
\(145\) 1.67284 0.138922
\(146\) 0 0
\(147\) −11.2307 −0.926293
\(148\) 0 0
\(149\) 6.41740 0.525734 0.262867 0.964832i \(-0.415332\pi\)
0.262867 + 0.964832i \(0.415332\pi\)
\(150\) 0 0
\(151\) −5.75079 −0.467992 −0.233996 0.972238i \(-0.575180\pi\)
−0.233996 + 0.972238i \(0.575180\pi\)
\(152\) 0 0
\(153\) −4.49535 −0.363427
\(154\) 0 0
\(155\) −2.04512 −0.164268
\(156\) 0 0
\(157\) −23.2671 −1.85692 −0.928459 0.371435i \(-0.878866\pi\)
−0.928459 + 0.371435i \(0.878866\pi\)
\(158\) 0 0
\(159\) −6.25604 −0.496136
\(160\) 0 0
\(161\) −17.3810 −1.36981
\(162\) 0 0
\(163\) −14.8429 −1.16259 −0.581293 0.813695i \(-0.697453\pi\)
−0.581293 + 0.813695i \(0.697453\pi\)
\(164\) 0 0
\(165\) 1.62772 0.126718
\(166\) 0 0
\(167\) −10.9938 −0.850724 −0.425362 0.905023i \(-0.639853\pi\)
−0.425362 + 0.905023i \(0.639853\pi\)
\(168\) 0 0
\(169\) 22.7038 1.74644
\(170\) 0 0
\(171\) −1.05569 −0.0807309
\(172\) 0 0
\(173\) 8.52008 0.647770 0.323885 0.946096i \(-0.395011\pi\)
0.323885 + 0.946096i \(0.395011\pi\)
\(174\) 0 0
\(175\) −3.97526 −0.300502
\(176\) 0 0
\(177\) 0.417400 0.0313737
\(178\) 0 0
\(179\) 5.22635 0.390636 0.195318 0.980740i \(-0.437426\pi\)
0.195318 + 0.980740i \(0.437426\pi\)
\(180\) 0 0
\(181\) −6.56520 −0.487988 −0.243994 0.969777i \(-0.578458\pi\)
−0.243994 + 0.969777i \(0.578458\pi\)
\(182\) 0 0
\(183\) 12.9239 0.955364
\(184\) 0 0
\(185\) 4.87880 0.358697
\(186\) 0 0
\(187\) −4.17936 −0.305625
\(188\) 0 0
\(189\) −22.1750 −1.61299
\(190\) 0 0
\(191\) 23.6394 1.71049 0.855243 0.518227i \(-0.173408\pi\)
0.855243 + 0.518227i \(0.173408\pi\)
\(192\) 0 0
\(193\) −11.2579 −0.810362 −0.405181 0.914237i \(-0.632791\pi\)
−0.405181 + 0.914237i \(0.632791\pi\)
\(194\) 0 0
\(195\) −7.62337 −0.545921
\(196\) 0 0
\(197\) −0.264130 −0.0188185 −0.00940925 0.999956i \(-0.502995\pi\)
−0.00940925 + 0.999956i \(0.502995\pi\)
\(198\) 0 0
\(199\) −3.55786 −0.252210 −0.126105 0.992017i \(-0.540248\pi\)
−0.126105 + 0.992017i \(0.540248\pi\)
\(200\) 0 0
\(201\) −12.4174 −0.875856
\(202\) 0 0
\(203\) −6.64997 −0.466737
\(204\) 0 0
\(205\) 1.00000 0.0698430
\(206\) 0 0
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) −0.981487 −0.0678909
\(210\) 0 0
\(211\) −4.14098 −0.285077 −0.142538 0.989789i \(-0.545526\pi\)
−0.142538 + 0.989789i \(0.545526\pi\)
\(212\) 0 0
\(213\) 8.51573 0.583488
\(214\) 0 0
\(215\) 9.62337 0.656308
\(216\) 0 0
\(217\) 8.12989 0.551893
\(218\) 0 0
\(219\) 15.1261 1.02212
\(220\) 0 0
\(221\) 19.5739 1.31668
\(222\) 0 0
\(223\) 14.1695 0.948863 0.474431 0.880293i \(-0.342654\pi\)
0.474431 + 0.880293i \(0.342654\pi\)
\(224\) 0 0
\(225\) −1.37228 −0.0914854
\(226\) 0 0
\(227\) 5.76443 0.382599 0.191299 0.981532i \(-0.438730\pi\)
0.191299 + 0.981532i \(0.438730\pi\)
\(228\) 0 0
\(229\) −23.2919 −1.53917 −0.769584 0.638545i \(-0.779537\pi\)
−0.769584 + 0.638545i \(0.779537\pi\)
\(230\) 0 0
\(231\) −6.47061 −0.425735
\(232\) 0 0
\(233\) 15.3742 1.00719 0.503597 0.863939i \(-0.332010\pi\)
0.503597 + 0.863939i \(0.332010\pi\)
\(234\) 0 0
\(235\) −3.79590 −0.247617
\(236\) 0 0
\(237\) −16.2788 −1.05742
\(238\) 0 0
\(239\) −4.07360 −0.263499 −0.131749 0.991283i \(-0.542059\pi\)
−0.131749 + 0.991283i \(0.542059\pi\)
\(240\) 0 0
\(241\) 7.20161 0.463897 0.231948 0.972728i \(-0.425490\pi\)
0.231948 + 0.972728i \(0.425490\pi\)
\(242\) 0 0
\(243\) −12.9073 −0.828002
\(244\) 0 0
\(245\) 8.80273 0.562386
\(246\) 0 0
\(247\) 4.59676 0.292485
\(248\) 0 0
\(249\) −17.6098 −1.11598
\(250\) 0 0
\(251\) 10.0272 0.632912 0.316456 0.948607i \(-0.397507\pi\)
0.316456 + 0.948607i \(0.397507\pi\)
\(252\) 0 0
\(253\) −5.57825 −0.350701
\(254\) 0 0
\(255\) −4.17936 −0.261722
\(256\) 0 0
\(257\) 20.8225 1.29887 0.649436 0.760416i \(-0.275005\pi\)
0.649436 + 0.760416i \(0.275005\pi\)
\(258\) 0 0
\(259\) −19.3945 −1.20512
\(260\) 0 0
\(261\) −2.29560 −0.142094
\(262\) 0 0
\(263\) 28.5226 1.75878 0.879388 0.476106i \(-0.157952\pi\)
0.879388 + 0.476106i \(0.157952\pi\)
\(264\) 0 0
\(265\) 4.90354 0.301222
\(266\) 0 0
\(267\) −17.0142 −1.04125
\(268\) 0 0
\(269\) 12.7391 0.776716 0.388358 0.921509i \(-0.373042\pi\)
0.388358 + 0.921509i \(0.373042\pi\)
\(270\) 0 0
\(271\) −12.4255 −0.754795 −0.377397 0.926051i \(-0.623181\pi\)
−0.377397 + 0.926051i \(0.623181\pi\)
\(272\) 0 0
\(273\) 30.3049 1.83414
\(274\) 0 0
\(275\) −1.27582 −0.0769349
\(276\) 0 0
\(277\) 11.8739 0.713431 0.356715 0.934213i \(-0.383897\pi\)
0.356715 + 0.934213i \(0.383897\pi\)
\(278\) 0 0
\(279\) 2.80648 0.168019
\(280\) 0 0
\(281\) 10.7842 0.643332 0.321666 0.946853i \(-0.395757\pi\)
0.321666 + 0.946853i \(0.395757\pi\)
\(282\) 0 0
\(283\) 24.7304 1.47007 0.735035 0.678030i \(-0.237166\pi\)
0.735035 + 0.678030i \(0.237166\pi\)
\(284\) 0 0
\(285\) −0.981487 −0.0581383
\(286\) 0 0
\(287\) −3.97526 −0.234652
\(288\) 0 0
\(289\) −6.26900 −0.368765
\(290\) 0 0
\(291\) −13.7168 −0.804095
\(292\) 0 0
\(293\) 30.1144 1.75930 0.879650 0.475622i \(-0.157777\pi\)
0.879650 + 0.475622i \(0.157777\pi\)
\(294\) 0 0
\(295\) −0.327162 −0.0190481
\(296\) 0 0
\(297\) −7.11684 −0.412961
\(298\) 0 0
\(299\) 26.1255 1.51088
\(300\) 0 0
\(301\) −38.2554 −2.20501
\(302\) 0 0
\(303\) −16.1391 −0.927167
\(304\) 0 0
\(305\) −10.1299 −0.580036
\(306\) 0 0
\(307\) −33.8831 −1.93381 −0.966907 0.255131i \(-0.917882\pi\)
−0.966907 + 0.255131i \(0.917882\pi\)
\(308\) 0 0
\(309\) −3.27274 −0.186180
\(310\) 0 0
\(311\) 20.9388 1.18733 0.593666 0.804711i \(-0.297680\pi\)
0.593666 + 0.804711i \(0.297680\pi\)
\(312\) 0 0
\(313\) 14.9579 0.845469 0.422734 0.906254i \(-0.361070\pi\)
0.422734 + 0.906254i \(0.361070\pi\)
\(314\) 0 0
\(315\) 5.45518 0.307365
\(316\) 0 0
\(317\) 8.45570 0.474919 0.237460 0.971397i \(-0.423685\pi\)
0.237460 + 0.971397i \(0.423685\pi\)
\(318\) 0 0
\(319\) −2.13424 −0.119495
\(320\) 0 0
\(321\) 20.1039 1.12209
\(322\) 0 0
\(323\) 2.52008 0.140221
\(324\) 0 0
\(325\) 5.97526 0.331448
\(326\) 0 0
\(327\) −0.474964 −0.0262656
\(328\) 0 0
\(329\) 15.0897 0.831923
\(330\) 0 0
\(331\) −9.92205 −0.545365 −0.272683 0.962104i \(-0.587911\pi\)
−0.272683 + 0.962104i \(0.587911\pi\)
\(332\) 0 0
\(333\) −6.69509 −0.366889
\(334\) 0 0
\(335\) 9.73287 0.531764
\(336\) 0 0
\(337\) 19.8750 1.08266 0.541329 0.840811i \(-0.317921\pi\)
0.541329 + 0.840811i \(0.317921\pi\)
\(338\) 0 0
\(339\) −1.37288 −0.0745647
\(340\) 0 0
\(341\) 2.60921 0.141296
\(342\) 0 0
\(343\) −7.16632 −0.386945
\(344\) 0 0
\(345\) −5.57825 −0.300323
\(346\) 0 0
\(347\) −25.8639 −1.38845 −0.694223 0.719760i \(-0.744252\pi\)
−0.694223 + 0.719760i \(0.744252\pi\)
\(348\) 0 0
\(349\) −17.4250 −0.932738 −0.466369 0.884590i \(-0.654438\pi\)
−0.466369 + 0.884590i \(0.654438\pi\)
\(350\) 0 0
\(351\) 33.3315 1.77910
\(352\) 0 0
\(353\) −23.2424 −1.23707 −0.618534 0.785758i \(-0.712273\pi\)
−0.618534 + 0.785758i \(0.712273\pi\)
\(354\) 0 0
\(355\) −6.67471 −0.354257
\(356\) 0 0
\(357\) 16.6141 0.879309
\(358\) 0 0
\(359\) −10.9908 −0.580071 −0.290036 0.957016i \(-0.593667\pi\)
−0.290036 + 0.957016i \(0.593667\pi\)
\(360\) 0 0
\(361\) −18.4082 −0.968852
\(362\) 0 0
\(363\) 11.9574 0.627598
\(364\) 0 0
\(365\) −11.8559 −0.620568
\(366\) 0 0
\(367\) 14.3283 0.747930 0.373965 0.927443i \(-0.377998\pi\)
0.373965 + 0.927443i \(0.377998\pi\)
\(368\) 0 0
\(369\) −1.37228 −0.0714381
\(370\) 0 0
\(371\) −19.4929 −1.01202
\(372\) 0 0
\(373\) −22.9647 −1.18907 −0.594533 0.804071i \(-0.702663\pi\)
−0.594533 + 0.804071i \(0.702663\pi\)
\(374\) 0 0
\(375\) −1.27582 −0.0658831
\(376\) 0 0
\(377\) 9.99565 0.514802
\(378\) 0 0
\(379\) −13.6190 −0.699562 −0.349781 0.936832i \(-0.613744\pi\)
−0.349781 + 0.936832i \(0.613744\pi\)
\(380\) 0 0
\(381\) −12.2146 −0.625772
\(382\) 0 0
\(383\) 28.7785 1.47051 0.735257 0.677789i \(-0.237062\pi\)
0.735257 + 0.677789i \(0.237062\pi\)
\(384\) 0 0
\(385\) 5.07172 0.258479
\(386\) 0 0
\(387\) −13.2060 −0.671297
\(388\) 0 0
\(389\) −29.4082 −1.49105 −0.745527 0.666475i \(-0.767802\pi\)
−0.745527 + 0.666475i \(0.767802\pi\)
\(390\) 0 0
\(391\) 14.3228 0.724336
\(392\) 0 0
\(393\) 10.5103 0.530173
\(394\) 0 0
\(395\) 12.7595 0.641999
\(396\) 0 0
\(397\) 4.30678 0.216151 0.108076 0.994143i \(-0.465531\pi\)
0.108076 + 0.994143i \(0.465531\pi\)
\(398\) 0 0
\(399\) 3.90167 0.195328
\(400\) 0 0
\(401\) −11.5919 −0.578871 −0.289436 0.957197i \(-0.593468\pi\)
−0.289436 + 0.957197i \(0.593468\pi\)
\(402\) 0 0
\(403\) −12.2201 −0.608728
\(404\) 0 0
\(405\) −3.00000 −0.149071
\(406\) 0 0
\(407\) −6.22448 −0.308536
\(408\) 0 0
\(409\) 19.4614 0.962304 0.481152 0.876637i \(-0.340219\pi\)
0.481152 + 0.876637i \(0.340219\pi\)
\(410\) 0 0
\(411\) 18.2993 0.902640
\(412\) 0 0
\(413\) 1.30056 0.0639962
\(414\) 0 0
\(415\) 13.8027 0.677549
\(416\) 0 0
\(417\) 11.1565 0.546336
\(418\) 0 0
\(419\) −10.7718 −0.526235 −0.263118 0.964764i \(-0.584751\pi\)
−0.263118 + 0.964764i \(0.584751\pi\)
\(420\) 0 0
\(421\) 14.2967 0.696780 0.348390 0.937350i \(-0.386729\pi\)
0.348390 + 0.937350i \(0.386729\pi\)
\(422\) 0 0
\(423\) 5.20905 0.253273
\(424\) 0 0
\(425\) 3.27582 0.158901
\(426\) 0 0
\(427\) 40.2690 1.94875
\(428\) 0 0
\(429\) 9.72605 0.469578
\(430\) 0 0
\(431\) 4.47496 0.215551 0.107776 0.994175i \(-0.465627\pi\)
0.107776 + 0.994175i \(0.465627\pi\)
\(432\) 0 0
\(433\) −22.6772 −1.08980 −0.544898 0.838502i \(-0.683432\pi\)
−0.544898 + 0.838502i \(0.683432\pi\)
\(434\) 0 0
\(435\) −2.13424 −0.102329
\(436\) 0 0
\(437\) 3.36359 0.160902
\(438\) 0 0
\(439\) 17.1046 0.816356 0.408178 0.912902i \(-0.366164\pi\)
0.408178 + 0.912902i \(0.366164\pi\)
\(440\) 0 0
\(441\) −12.0798 −0.575229
\(442\) 0 0
\(443\) −25.0315 −1.18928 −0.594642 0.803990i \(-0.702706\pi\)
−0.594642 + 0.803990i \(0.702706\pi\)
\(444\) 0 0
\(445\) 13.3359 0.632180
\(446\) 0 0
\(447\) −8.18745 −0.387253
\(448\) 0 0
\(449\) 36.7033 1.73213 0.866067 0.499928i \(-0.166640\pi\)
0.866067 + 0.499928i \(0.166640\pi\)
\(450\) 0 0
\(451\) −1.27582 −0.0600761
\(452\) 0 0
\(453\) 7.33697 0.344721
\(454\) 0 0
\(455\) −23.7533 −1.11357
\(456\) 0 0
\(457\) −19.0878 −0.892888 −0.446444 0.894812i \(-0.647310\pi\)
−0.446444 + 0.894812i \(0.647310\pi\)
\(458\) 0 0
\(459\) 18.2733 0.852926
\(460\) 0 0
\(461\) 32.3365 1.50606 0.753029 0.657987i \(-0.228592\pi\)
0.753029 + 0.657987i \(0.228592\pi\)
\(462\) 0 0
\(463\) −6.44588 −0.299565 −0.149783 0.988719i \(-0.547857\pi\)
−0.149783 + 0.988719i \(0.547857\pi\)
\(464\) 0 0
\(465\) 2.60921 0.120999
\(466\) 0 0
\(467\) 20.3049 0.939599 0.469799 0.882773i \(-0.344326\pi\)
0.469799 + 0.882773i \(0.344326\pi\)
\(468\) 0 0
\(469\) −38.6907 −1.78657
\(470\) 0 0
\(471\) 29.6847 1.36780
\(472\) 0 0
\(473\) −12.2777 −0.564529
\(474\) 0 0
\(475\) 0.769298 0.0352978
\(476\) 0 0
\(477\) −6.72904 −0.308101
\(478\) 0 0
\(479\) 31.9177 1.45836 0.729178 0.684324i \(-0.239902\pi\)
0.729178 + 0.684324i \(0.239902\pi\)
\(480\) 0 0
\(481\) 29.1521 1.32922
\(482\) 0 0
\(483\) 22.1750 1.00900
\(484\) 0 0
\(485\) 10.7514 0.488195
\(486\) 0 0
\(487\) −34.0049 −1.54091 −0.770455 0.637494i \(-0.779971\pi\)
−0.770455 + 0.637494i \(0.779971\pi\)
\(488\) 0 0
\(489\) 18.9369 0.856355
\(490\) 0 0
\(491\) 10.9196 0.492793 0.246397 0.969169i \(-0.420753\pi\)
0.246397 + 0.969169i \(0.420753\pi\)
\(492\) 0 0
\(493\) 5.47992 0.246803
\(494\) 0 0
\(495\) 1.75079 0.0786919
\(496\) 0 0
\(497\) 26.5337 1.19020
\(498\) 0 0
\(499\) 10.0612 0.450399 0.225199 0.974313i \(-0.427697\pi\)
0.225199 + 0.974313i \(0.427697\pi\)
\(500\) 0 0
\(501\) 14.0261 0.626639
\(502\) 0 0
\(503\) −20.3334 −0.906620 −0.453310 0.891353i \(-0.649757\pi\)
−0.453310 + 0.891353i \(0.649757\pi\)
\(504\) 0 0
\(505\) 12.6500 0.562916
\(506\) 0 0
\(507\) −28.9660 −1.28642
\(508\) 0 0
\(509\) −11.6271 −0.515362 −0.257681 0.966230i \(-0.582958\pi\)
−0.257681 + 0.966230i \(0.582958\pi\)
\(510\) 0 0
\(511\) 47.1305 2.08493
\(512\) 0 0
\(513\) 4.29134 0.189467
\(514\) 0 0
\(515\) 2.56520 0.113036
\(516\) 0 0
\(517\) 4.84289 0.212990
\(518\) 0 0
\(519\) −10.8701 −0.477144
\(520\) 0 0
\(521\) −43.6228 −1.91115 −0.955576 0.294746i \(-0.904765\pi\)
−0.955576 + 0.294746i \(0.904765\pi\)
\(522\) 0 0
\(523\) 18.9016 0.826508 0.413254 0.910616i \(-0.364392\pi\)
0.413254 + 0.910616i \(0.364392\pi\)
\(524\) 0 0
\(525\) 5.07172 0.221348
\(526\) 0 0
\(527\) −6.69944 −0.291832
\(528\) 0 0
\(529\) −3.88316 −0.168833
\(530\) 0 0
\(531\) 0.448959 0.0194831
\(532\) 0 0
\(533\) 5.97526 0.258817
\(534\) 0 0
\(535\) −15.7576 −0.681261
\(536\) 0 0
\(537\) −6.66789 −0.287740
\(538\) 0 0
\(539\) −11.2307 −0.483741
\(540\) 0 0
\(541\) −22.1299 −0.951438 −0.475719 0.879597i \(-0.657812\pi\)
−0.475719 + 0.879597i \(0.657812\pi\)
\(542\) 0 0
\(543\) 8.37602 0.359449
\(544\) 0 0
\(545\) 0.372281 0.0159468
\(546\) 0 0
\(547\) 33.8437 1.44705 0.723527 0.690296i \(-0.242520\pi\)
0.723527 + 0.690296i \(0.242520\pi\)
\(548\) 0 0
\(549\) 13.9011 0.593283
\(550\) 0 0
\(551\) 1.28691 0.0548243
\(552\) 0 0
\(553\) −50.7223 −2.15693
\(554\) 0 0
\(555\) −6.22448 −0.264214
\(556\) 0 0
\(557\) −3.39650 −0.143914 −0.0719572 0.997408i \(-0.522924\pi\)
−0.0719572 + 0.997408i \(0.522924\pi\)
\(558\) 0 0
\(559\) 57.5022 2.43208
\(560\) 0 0
\(561\) 5.33211 0.225122
\(562\) 0 0
\(563\) 32.9617 1.38917 0.694585 0.719411i \(-0.255588\pi\)
0.694585 + 0.719411i \(0.255588\pi\)
\(564\) 0 0
\(565\) 1.07608 0.0452709
\(566\) 0 0
\(567\) 11.9258 0.500836
\(568\) 0 0
\(569\) −38.9809 −1.63416 −0.817082 0.576522i \(-0.804410\pi\)
−0.817082 + 0.576522i \(0.804410\pi\)
\(570\) 0 0
\(571\) −39.2041 −1.64064 −0.820320 0.571905i \(-0.806205\pi\)
−0.820320 + 0.571905i \(0.806205\pi\)
\(572\) 0 0
\(573\) −30.1596 −1.25994
\(574\) 0 0
\(575\) 4.37228 0.182337
\(576\) 0 0
\(577\) −28.6344 −1.19207 −0.596034 0.802959i \(-0.703258\pi\)
−0.596034 + 0.802959i \(0.703258\pi\)
\(578\) 0 0
\(579\) 14.3631 0.596909
\(580\) 0 0
\(581\) −54.8695 −2.27637
\(582\) 0 0
\(583\) −6.25604 −0.259099
\(584\) 0 0
\(585\) −8.19974 −0.339018
\(586\) 0 0
\(587\) −28.4323 −1.17353 −0.586764 0.809758i \(-0.699598\pi\)
−0.586764 + 0.809758i \(0.699598\pi\)
\(588\) 0 0
\(589\) −1.57331 −0.0648270
\(590\) 0 0
\(591\) 0.336983 0.0138616
\(592\) 0 0
\(593\) −31.1411 −1.27881 −0.639405 0.768870i \(-0.720819\pi\)
−0.639405 + 0.768870i \(0.720819\pi\)
\(594\) 0 0
\(595\) −13.0223 −0.533860
\(596\) 0 0
\(597\) 4.53920 0.185777
\(598\) 0 0
\(599\) 15.4917 0.632976 0.316488 0.948597i \(-0.397496\pi\)
0.316488 + 0.948597i \(0.397496\pi\)
\(600\) 0 0
\(601\) 5.62225 0.229336 0.114668 0.993404i \(-0.463420\pi\)
0.114668 + 0.993404i \(0.463420\pi\)
\(602\) 0 0
\(603\) −13.3562 −0.543908
\(604\) 0 0
\(605\) −9.37228 −0.381037
\(606\) 0 0
\(607\) 21.9109 0.889335 0.444668 0.895696i \(-0.353322\pi\)
0.444668 + 0.895696i \(0.353322\pi\)
\(608\) 0 0
\(609\) 8.48417 0.343796
\(610\) 0 0
\(611\) −22.6815 −0.917597
\(612\) 0 0
\(613\) 24.8918 1.00537 0.502686 0.864469i \(-0.332345\pi\)
0.502686 + 0.864469i \(0.332345\pi\)
\(614\) 0 0
\(615\) −1.27582 −0.0514461
\(616\) 0 0
\(617\) 38.3637 1.54446 0.772231 0.635341i \(-0.219141\pi\)
0.772231 + 0.635341i \(0.219141\pi\)
\(618\) 0 0
\(619\) −26.4706 −1.06394 −0.531972 0.846762i \(-0.678549\pi\)
−0.531972 + 0.846762i \(0.678549\pi\)
\(620\) 0 0
\(621\) 24.3897 0.978724
\(622\) 0 0
\(623\) −53.0135 −2.12394
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 1.25220 0.0500081
\(628\) 0 0
\(629\) 15.9821 0.637248
\(630\) 0 0
\(631\) 13.1707 0.524316 0.262158 0.965025i \(-0.415566\pi\)
0.262158 + 0.965025i \(0.415566\pi\)
\(632\) 0 0
\(633\) 5.28315 0.209986
\(634\) 0 0
\(635\) 9.57390 0.379928
\(636\) 0 0
\(637\) 52.5986 2.08403
\(638\) 0 0
\(639\) 9.15958 0.362347
\(640\) 0 0
\(641\) −3.59189 −0.141871 −0.0709356 0.997481i \(-0.522598\pi\)
−0.0709356 + 0.997481i \(0.522598\pi\)
\(642\) 0 0
\(643\) 18.7155 0.738066 0.369033 0.929416i \(-0.379689\pi\)
0.369033 + 0.929416i \(0.379689\pi\)
\(644\) 0 0
\(645\) −12.2777 −0.483434
\(646\) 0 0
\(647\) 8.58320 0.337440 0.168720 0.985664i \(-0.446037\pi\)
0.168720 + 0.985664i \(0.446037\pi\)
\(648\) 0 0
\(649\) 0.417400 0.0163844
\(650\) 0 0
\(651\) −10.3723 −0.406522
\(652\) 0 0
\(653\) −29.5905 −1.15797 −0.578984 0.815339i \(-0.696550\pi\)
−0.578984 + 0.815339i \(0.696550\pi\)
\(654\) 0 0
\(655\) −8.23804 −0.321887
\(656\) 0 0
\(657\) 16.2697 0.634741
\(658\) 0 0
\(659\) 20.8589 0.812548 0.406274 0.913751i \(-0.366828\pi\)
0.406274 + 0.913751i \(0.366828\pi\)
\(660\) 0 0
\(661\) 25.6370 0.997164 0.498582 0.866842i \(-0.333854\pi\)
0.498582 + 0.866842i \(0.333854\pi\)
\(662\) 0 0
\(663\) −24.9728 −0.969862
\(664\) 0 0
\(665\) −3.05816 −0.118591
\(666\) 0 0
\(667\) 7.31412 0.283204
\(668\) 0 0
\(669\) −18.0778 −0.698928
\(670\) 0 0
\(671\) 12.9239 0.498923
\(672\) 0 0
\(673\) 29.6698 1.14369 0.571844 0.820362i \(-0.306228\pi\)
0.571844 + 0.820362i \(0.306228\pi\)
\(674\) 0 0
\(675\) 5.57825 0.214707
\(676\) 0 0
\(677\) −17.7228 −0.681143 −0.340572 0.940219i \(-0.610621\pi\)
−0.340572 + 0.940219i \(0.610621\pi\)
\(678\) 0 0
\(679\) −42.7396 −1.64020
\(680\) 0 0
\(681\) −7.35438 −0.281820
\(682\) 0 0
\(683\) 11.5975 0.443767 0.221883 0.975073i \(-0.428780\pi\)
0.221883 + 0.975073i \(0.428780\pi\)
\(684\) 0 0
\(685\) −14.3432 −0.548025
\(686\) 0 0
\(687\) 29.7162 1.13374
\(688\) 0 0
\(689\) 29.2999 1.11624
\(690\) 0 0
\(691\) −1.60298 −0.0609803 −0.0304902 0.999535i \(-0.509707\pi\)
−0.0304902 + 0.999535i \(0.509707\pi\)
\(692\) 0 0
\(693\) −6.95983 −0.264382
\(694\) 0 0
\(695\) −8.74456 −0.331700
\(696\) 0 0
\(697\) 3.27582 0.124081
\(698\) 0 0
\(699\) −19.6147 −0.741895
\(700\) 0 0
\(701\) −28.2572 −1.06726 −0.533629 0.845719i \(-0.679172\pi\)
−0.533629 + 0.845719i \(0.679172\pi\)
\(702\) 0 0
\(703\) 3.75326 0.141557
\(704\) 0 0
\(705\) 4.84289 0.182394
\(706\) 0 0
\(707\) −50.2870 −1.89124
\(708\) 0 0
\(709\) −1.08590 −0.0407817 −0.0203909 0.999792i \(-0.506491\pi\)
−0.0203909 + 0.999792i \(0.506491\pi\)
\(710\) 0 0
\(711\) −17.5096 −0.656661
\(712\) 0 0
\(713\) −8.94184 −0.334874
\(714\) 0 0
\(715\) −7.62337 −0.285098
\(716\) 0 0
\(717\) 5.19718 0.194092
\(718\) 0 0
\(719\) 44.3074 1.65239 0.826193 0.563387i \(-0.190502\pi\)
0.826193 + 0.563387i \(0.190502\pi\)
\(720\) 0 0
\(721\) −10.1974 −0.379769
\(722\) 0 0
\(723\) −9.18797 −0.341704
\(724\) 0 0
\(725\) 1.67284 0.0621276
\(726\) 0 0
\(727\) 28.5214 1.05780 0.528901 0.848684i \(-0.322604\pi\)
0.528901 + 0.848684i \(0.322604\pi\)
\(728\) 0 0
\(729\) 25.4674 0.943236
\(730\) 0 0
\(731\) 31.5244 1.16597
\(732\) 0 0
\(733\) −46.4897 −1.71714 −0.858569 0.512699i \(-0.828646\pi\)
−0.858569 + 0.512699i \(0.828646\pi\)
\(734\) 0 0
\(735\) −11.2307 −0.414251
\(736\) 0 0
\(737\) −12.4174 −0.457401
\(738\) 0 0
\(739\) −41.4379 −1.52432 −0.762159 0.647389i \(-0.775861\pi\)
−0.762159 + 0.647389i \(0.775861\pi\)
\(740\) 0 0
\(741\) −5.86464 −0.215443
\(742\) 0 0
\(743\) −1.00869 −0.0370053 −0.0185027 0.999829i \(-0.505890\pi\)
−0.0185027 + 0.999829i \(0.505890\pi\)
\(744\) 0 0
\(745\) 6.41740 0.235115
\(746\) 0 0
\(747\) −18.9412 −0.693023
\(748\) 0 0
\(749\) 62.6407 2.28884
\(750\) 0 0
\(751\) −23.1046 −0.843100 −0.421550 0.906805i \(-0.638514\pi\)
−0.421550 + 0.906805i \(0.638514\pi\)
\(752\) 0 0
\(753\) −12.7929 −0.466200
\(754\) 0 0
\(755\) −5.75079 −0.209292
\(756\) 0 0
\(757\) −8.58941 −0.312187 −0.156094 0.987742i \(-0.549890\pi\)
−0.156094 + 0.987742i \(0.549890\pi\)
\(758\) 0 0
\(759\) 7.11684 0.258325
\(760\) 0 0
\(761\) −33.9870 −1.23203 −0.616014 0.787735i \(-0.711254\pi\)
−0.616014 + 0.787735i \(0.711254\pi\)
\(762\) 0 0
\(763\) −1.47992 −0.0535766
\(764\) 0 0
\(765\) −4.49535 −0.162530
\(766\) 0 0
\(767\) −1.95488 −0.0705867
\(768\) 0 0
\(769\) −26.2598 −0.946952 −0.473476 0.880807i \(-0.657001\pi\)
−0.473476 + 0.880807i \(0.657001\pi\)
\(770\) 0 0
\(771\) −26.5658 −0.956744
\(772\) 0 0
\(773\) −31.3822 −1.12874 −0.564370 0.825522i \(-0.690881\pi\)
−0.564370 + 0.825522i \(0.690881\pi\)
\(774\) 0 0
\(775\) −2.04512 −0.0734628
\(776\) 0 0
\(777\) 24.7440 0.887684
\(778\) 0 0
\(779\) 0.769298 0.0275630
\(780\) 0 0
\(781\) 8.51573 0.304717
\(782\) 0 0
\(783\) 9.33150 0.333481
\(784\) 0 0
\(785\) −23.2671 −0.830439
\(786\) 0 0
\(787\) −15.9722 −0.569347 −0.284673 0.958625i \(-0.591885\pi\)
−0.284673 + 0.958625i \(0.591885\pi\)
\(788\) 0 0
\(789\) −36.3897 −1.29551
\(790\) 0 0
\(791\) −4.27769 −0.152097
\(792\) 0 0
\(793\) −60.5288 −2.14944
\(794\) 0 0
\(795\) −6.25604 −0.221879
\(796\) 0 0
\(797\) 27.9419 0.989753 0.494877 0.868963i \(-0.335213\pi\)
0.494877 + 0.868963i \(0.335213\pi\)
\(798\) 0 0
\(799\) −12.4347 −0.439908
\(800\) 0 0
\(801\) −18.3005 −0.646618
\(802\) 0 0
\(803\) 15.1261 0.533787
\(804\) 0 0
\(805\) −17.3810 −0.612599
\(806\) 0 0
\(807\) −16.2528 −0.572126
\(808\) 0 0
\(809\) −40.7044 −1.43109 −0.715545 0.698567i \(-0.753822\pi\)
−0.715545 + 0.698567i \(0.753822\pi\)
\(810\) 0 0
\(811\) 50.2906 1.76594 0.882972 0.469426i \(-0.155539\pi\)
0.882972 + 0.469426i \(0.155539\pi\)
\(812\) 0 0
\(813\) 15.8527 0.555979
\(814\) 0 0
\(815\) −14.8429 −0.519924
\(816\) 0 0
\(817\) 7.40324 0.259007
\(818\) 0 0
\(819\) 32.5961 1.13900
\(820\) 0 0
\(821\) 45.8924 1.60165 0.800827 0.598896i \(-0.204394\pi\)
0.800827 + 0.598896i \(0.204394\pi\)
\(822\) 0 0
\(823\) −36.0861 −1.25788 −0.628942 0.777453i \(-0.716512\pi\)
−0.628942 + 0.777453i \(0.716512\pi\)
\(824\) 0 0
\(825\) 1.62772 0.0566699
\(826\) 0 0
\(827\) −43.6878 −1.51917 −0.759586 0.650407i \(-0.774598\pi\)
−0.759586 + 0.650407i \(0.774598\pi\)
\(828\) 0 0
\(829\) 35.3315 1.22711 0.613557 0.789651i \(-0.289738\pi\)
0.613557 + 0.789651i \(0.289738\pi\)
\(830\) 0 0
\(831\) −15.1489 −0.525510
\(832\) 0 0
\(833\) 28.8362 0.999114
\(834\) 0 0
\(835\) −10.9938 −0.380455
\(836\) 0 0
\(837\) −11.4082 −0.394324
\(838\) 0 0
\(839\) 8.05186 0.277981 0.138990 0.990294i \(-0.455614\pi\)
0.138990 + 0.990294i \(0.455614\pi\)
\(840\) 0 0
\(841\) −26.2016 −0.903504
\(842\) 0 0
\(843\) −13.7587 −0.473876
\(844\) 0 0
\(845\) 22.7038 0.781034
\(846\) 0 0
\(847\) 37.2573 1.28018
\(848\) 0 0
\(849\) −31.5515 −1.08285
\(850\) 0 0
\(851\) 21.3315 0.731234
\(852\) 0 0
\(853\) 31.4793 1.07783 0.538915 0.842360i \(-0.318834\pi\)
0.538915 + 0.842360i \(0.318834\pi\)
\(854\) 0 0
\(855\) −1.05569 −0.0361040
\(856\) 0 0
\(857\) 6.32543 0.216073 0.108036 0.994147i \(-0.465544\pi\)
0.108036 + 0.994147i \(0.465544\pi\)
\(858\) 0 0
\(859\) −27.8516 −0.950284 −0.475142 0.879909i \(-0.657603\pi\)
−0.475142 + 0.879909i \(0.657603\pi\)
\(860\) 0 0
\(861\) 5.07172 0.172844
\(862\) 0 0
\(863\) −10.1001 −0.343810 −0.171905 0.985114i \(-0.554992\pi\)
−0.171905 + 0.985114i \(0.554992\pi\)
\(864\) 0 0
\(865\) 8.52008 0.289692
\(866\) 0 0
\(867\) 7.99812 0.271630
\(868\) 0 0
\(869\) −16.2788 −0.552221
\(870\) 0 0
\(871\) 58.1565 1.97056
\(872\) 0 0
\(873\) −14.7539 −0.499345
\(874\) 0 0
\(875\) −3.97526 −0.134388
\(876\) 0 0
\(877\) −17.4602 −0.589589 −0.294794 0.955561i \(-0.595251\pi\)
−0.294794 + 0.955561i \(0.595251\pi\)
\(878\) 0 0
\(879\) −38.4205 −1.29589
\(880\) 0 0
\(881\) 19.0908 0.643184 0.321592 0.946878i \(-0.395782\pi\)
0.321592 + 0.946878i \(0.395782\pi\)
\(882\) 0 0
\(883\) 22.2802 0.749787 0.374894 0.927068i \(-0.377679\pi\)
0.374894 + 0.927068i \(0.377679\pi\)
\(884\) 0 0
\(885\) 0.417400 0.0140308
\(886\) 0 0
\(887\) 9.05569 0.304060 0.152030 0.988376i \(-0.451419\pi\)
0.152030 + 0.988376i \(0.451419\pi\)
\(888\) 0 0
\(889\) −38.0588 −1.27645
\(890\) 0 0
\(891\) 3.82746 0.128225
\(892\) 0 0
\(893\) −2.92018 −0.0977202
\(894\) 0 0
\(895\) 5.22635 0.174698
\(896\) 0 0
\(897\) −33.3315 −1.11291
\(898\) 0 0
\(899\) −3.42115 −0.114102
\(900\) 0 0
\(901\) 16.0631 0.535140
\(902\) 0 0
\(903\) 48.8071 1.62420
\(904\) 0 0
\(905\) −6.56520 −0.218235
\(906\) 0 0
\(907\) −28.9326 −0.960691 −0.480346 0.877079i \(-0.659489\pi\)
−0.480346 + 0.877079i \(0.659489\pi\)
\(908\) 0 0
\(909\) −17.3593 −0.575772
\(910\) 0 0
\(911\) −11.6859 −0.387170 −0.193585 0.981083i \(-0.562012\pi\)
−0.193585 + 0.981083i \(0.562012\pi\)
\(912\) 0 0
\(913\) −17.6098 −0.582800
\(914\) 0 0
\(915\) 12.9239 0.427252
\(916\) 0 0
\(917\) 32.7484 1.08145
\(918\) 0 0
\(919\) −3.36980 −0.111159 −0.0555797 0.998454i \(-0.517701\pi\)
−0.0555797 + 0.998454i \(0.517701\pi\)
\(920\) 0 0
\(921\) 43.2288 1.42444
\(922\) 0 0
\(923\) −39.8831 −1.31277
\(924\) 0 0
\(925\) 4.87880 0.160414
\(926\) 0 0
\(927\) −3.52018 −0.115618
\(928\) 0 0
\(929\) −55.2140 −1.81151 −0.905757 0.423798i \(-0.860697\pi\)
−0.905757 + 0.423798i \(0.860697\pi\)
\(930\) 0 0
\(931\) 6.77192 0.221941
\(932\) 0 0
\(933\) −26.7142 −0.874584
\(934\) 0 0
\(935\) −4.17936 −0.136680
\(936\) 0 0
\(937\) −4.62524 −0.151100 −0.0755499 0.997142i \(-0.524071\pi\)
−0.0755499 + 0.997142i \(0.524071\pi\)
\(938\) 0 0
\(939\) −19.0836 −0.622768
\(940\) 0 0
\(941\) −18.1255 −0.590873 −0.295436 0.955362i \(-0.595465\pi\)
−0.295436 + 0.955362i \(0.595465\pi\)
\(942\) 0 0
\(943\) 4.37228 0.142381
\(944\) 0 0
\(945\) −22.1750 −0.721353
\(946\) 0 0
\(947\) 5.86523 0.190594 0.0952972 0.995449i \(-0.469620\pi\)
0.0952972 + 0.995449i \(0.469620\pi\)
\(948\) 0 0
\(949\) −70.8424 −2.29964
\(950\) 0 0
\(951\) −10.7880 −0.349823
\(952\) 0 0
\(953\) −32.1255 −1.04065 −0.520324 0.853969i \(-0.674189\pi\)
−0.520324 + 0.853969i \(0.674189\pi\)
\(954\) 0 0
\(955\) 23.6394 0.764953
\(956\) 0 0
\(957\) 2.72291 0.0880192
\(958\) 0 0
\(959\) 57.0180 1.84121
\(960\) 0 0
\(961\) −26.8175 −0.865080
\(962\) 0 0
\(963\) 21.6239 0.696819
\(964\) 0 0
\(965\) −11.2579 −0.362405
\(966\) 0 0
\(967\) −30.2975 −0.974301 −0.487150 0.873318i \(-0.661964\pi\)
−0.487150 + 0.873318i \(0.661964\pi\)
\(968\) 0 0
\(969\) −3.21517 −0.103286
\(970\) 0 0
\(971\) 56.7149 1.82007 0.910035 0.414532i \(-0.136055\pi\)
0.910035 + 0.414532i \(0.136055\pi\)
\(972\) 0 0
\(973\) 34.7619 1.11442
\(974\) 0 0
\(975\) −7.62337 −0.244143
\(976\) 0 0
\(977\) 55.6937 1.78180 0.890900 0.454199i \(-0.150075\pi\)
0.890900 + 0.454199i \(0.150075\pi\)
\(978\) 0 0
\(979\) −17.0142 −0.543775
\(980\) 0 0
\(981\) −0.510875 −0.0163110
\(982\) 0 0
\(983\) 11.1108 0.354378 0.177189 0.984177i \(-0.443300\pi\)
0.177189 + 0.984177i \(0.443300\pi\)
\(984\) 0 0
\(985\) −0.264130 −0.00841589
\(986\) 0 0
\(987\) −19.2518 −0.612791
\(988\) 0 0
\(989\) 42.0761 1.33794
\(990\) 0 0
\(991\) 34.6291 1.10003 0.550014 0.835155i \(-0.314622\pi\)
0.550014 + 0.835155i \(0.314622\pi\)
\(992\) 0 0
\(993\) 12.6588 0.401714
\(994\) 0 0
\(995\) −3.55786 −0.112792
\(996\) 0 0
\(997\) −15.2165 −0.481912 −0.240956 0.970536i \(-0.577461\pi\)
−0.240956 + 0.970536i \(0.577461\pi\)
\(998\) 0 0
\(999\) 27.2152 0.861050
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.a.d.1.2 4
3.2 odd 2 7380.2.a.t.1.1 4
4.3 odd 2 3280.2.a.be.1.3 4
5.2 odd 4 4100.2.d.e.1149.5 8
5.3 odd 4 4100.2.d.e.1149.4 8
5.4 even 2 4100.2.a.d.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.a.d.1.2 4 1.1 even 1 trivial
3280.2.a.be.1.3 4 4.3 odd 2
4100.2.a.d.1.3 4 5.4 even 2
4100.2.d.e.1149.4 8 5.3 odd 4
4100.2.d.e.1149.5 8 5.2 odd 4
7380.2.a.t.1.1 4 3.2 odd 2