Properties

Label 819.2.s.g.802.16
Level $819$
Weight $2$
Character 819.802
Analytic conductor $6.540$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(289,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,44,0,0,4,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 802.16
Character \(\chi\) \(=\) 819.802
Dual form 819.2.s.g.289.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.20299 q^{2} +2.85316 q^{4} +(1.98729 + 3.44208i) q^{5} +(1.55404 + 2.14125i) q^{7} +1.87950 q^{8} +(4.37797 + 7.58287i) q^{10} +(-2.61882 - 4.53594i) q^{11} +(0.0218968 - 3.60548i) q^{13} +(3.42354 + 4.71715i) q^{14} -1.56580 q^{16} +2.66417 q^{17} +(-3.23511 + 5.60337i) q^{19} +(5.67005 + 9.82081i) q^{20} +(-5.76924 - 9.99262i) q^{22} +0.120947 q^{23} +(-5.39862 + 9.35068i) q^{25} +(0.0482383 - 7.94284i) q^{26} +(4.43393 + 6.10933i) q^{28} +(0.968879 - 1.67815i) q^{29} +(3.99935 - 6.92708i) q^{31} -7.20844 q^{32} +5.86914 q^{34} +(-4.28204 + 9.60442i) q^{35} +3.65036 q^{37} +(-7.12690 + 12.3442i) q^{38} +(3.73511 + 6.46939i) q^{40} +(4.53942 - 7.86251i) q^{41} +(0.749656 + 1.29844i) q^{43} +(-7.47193 - 12.9418i) q^{44} +0.266446 q^{46} +(-3.08306 - 5.34002i) q^{47} +(-2.16991 + 6.65518i) q^{49} +(-11.8931 + 20.5994i) q^{50} +(0.0624750 - 10.2870i) q^{52} +(0.337881 - 0.585227i) q^{53} +(10.4087 - 18.0284i) q^{55} +(2.92082 + 4.02448i) q^{56} +(2.13443 - 3.69694i) q^{58} +2.22033 q^{59} +(2.53414 - 4.38925i) q^{61} +(8.81053 - 15.2603i) q^{62} -12.7485 q^{64} +(12.4539 - 7.08976i) q^{65} +(6.99863 + 12.1220i) q^{67} +7.60130 q^{68} +(-9.43328 + 21.1584i) q^{70} +(-5.13356 - 8.89159i) q^{71} +(-0.362401 + 0.627696i) q^{73} +8.04170 q^{74} +(-9.23027 + 15.9873i) q^{76} +(5.64282 - 12.6566i) q^{77} +(-2.09215 - 3.62371i) q^{79} +(-3.11169 - 5.38961i) q^{80} +(10.0003 - 17.3210i) q^{82} -13.7071 q^{83} +(5.29447 + 9.17029i) q^{85} +(1.65148 + 2.86045i) q^{86} +(-4.92208 - 8.52530i) q^{88} -0.253553 q^{89} +(7.75428 - 5.55619i) q^{91} +0.345082 q^{92} +(-6.79195 - 11.7640i) q^{94} -25.7163 q^{95} +(6.46607 + 11.1996i) q^{97} +(-4.78029 + 14.6613i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 44 q^{4} + 4 q^{7} + 8 q^{10} + 20 q^{16} + 4 q^{19} - 10 q^{22} - 22 q^{25} + 16 q^{28} - 18 q^{31} + 8 q^{34} - 20 q^{37} + 14 q^{40} + 20 q^{43} + 8 q^{46} - 12 q^{49} + 10 q^{52} + 42 q^{55}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.20299 1.55775 0.778874 0.627180i \(-0.215791\pi\)
0.778874 + 0.627180i \(0.215791\pi\)
\(3\) 0 0
\(4\) 2.85316 1.42658
\(5\) 1.98729 + 3.44208i 0.888742 + 1.53935i 0.841364 + 0.540469i \(0.181753\pi\)
0.0473774 + 0.998877i \(0.484914\pi\)
\(6\) 0 0
\(7\) 1.55404 + 2.14125i 0.587372 + 0.809317i
\(8\) 1.87950 0.664504
\(9\) 0 0
\(10\) 4.37797 + 7.58287i 1.38444 + 2.39791i
\(11\) −2.61882 4.53594i −0.789605 1.36764i −0.926209 0.377011i \(-0.876952\pi\)
0.136603 0.990626i \(-0.456381\pi\)
\(12\) 0 0
\(13\) 0.0218968 3.60548i 0.00607307 0.999982i
\(14\) 3.42354 + 4.71715i 0.914978 + 1.26071i
\(15\) 0 0
\(16\) −1.56580 −0.391450
\(17\) 2.66417 0.646156 0.323078 0.946372i \(-0.395282\pi\)
0.323078 + 0.946372i \(0.395282\pi\)
\(18\) 0 0
\(19\) −3.23511 + 5.60337i −0.742184 + 1.28550i 0.209315 + 0.977848i \(0.432877\pi\)
−0.951499 + 0.307652i \(0.900457\pi\)
\(20\) 5.67005 + 9.82081i 1.26786 + 2.19600i
\(21\) 0 0
\(22\) −5.76924 9.99262i −1.23001 2.13043i
\(23\) 0.120947 0.0252193 0.0126096 0.999920i \(-0.495986\pi\)
0.0126096 + 0.999920i \(0.495986\pi\)
\(24\) 0 0
\(25\) −5.39862 + 9.35068i −1.07972 + 1.87014i
\(26\) 0.0482383 7.94284i 0.00946032 1.55772i
\(27\) 0 0
\(28\) 4.43393 + 6.10933i 0.837933 + 1.15455i
\(29\) 0.968879 1.67815i 0.179916 0.311624i −0.761935 0.647653i \(-0.775751\pi\)
0.941852 + 0.336029i \(0.109084\pi\)
\(30\) 0 0
\(31\) 3.99935 6.92708i 0.718305 1.24414i −0.243366 0.969934i \(-0.578252\pi\)
0.961671 0.274206i \(-0.0884150\pi\)
\(32\) −7.20844 −1.27428
\(33\) 0 0
\(34\) 5.86914 1.00655
\(35\) −4.28204 + 9.60442i −0.723796 + 1.62344i
\(36\) 0 0
\(37\) 3.65036 0.600115 0.300058 0.953921i \(-0.402994\pi\)
0.300058 + 0.953921i \(0.402994\pi\)
\(38\) −7.12690 + 12.3442i −1.15614 + 2.00249i
\(39\) 0 0
\(40\) 3.73511 + 6.46939i 0.590572 + 1.02290i
\(41\) 4.53942 7.86251i 0.708939 1.22792i −0.256313 0.966594i \(-0.582508\pi\)
0.965251 0.261324i \(-0.0841590\pi\)
\(42\) 0 0
\(43\) 0.749656 + 1.29844i 0.114321 + 0.198010i 0.917508 0.397717i \(-0.130197\pi\)
−0.803187 + 0.595727i \(0.796864\pi\)
\(44\) −7.47193 12.9418i −1.12644 1.95104i
\(45\) 0 0
\(46\) 0.266446 0.0392853
\(47\) −3.08306 5.34002i −0.449711 0.778922i 0.548656 0.836048i \(-0.315140\pi\)
−0.998367 + 0.0571262i \(0.981806\pi\)
\(48\) 0 0
\(49\) −2.16991 + 6.65518i −0.309987 + 0.950741i
\(50\) −11.8931 + 20.5994i −1.68194 + 2.91320i
\(51\) 0 0
\(52\) 0.0624750 10.2870i 0.00866372 1.42655i
\(53\) 0.337881 0.585227i 0.0464115 0.0803871i −0.841886 0.539655i \(-0.818555\pi\)
0.888298 + 0.459268i \(0.151888\pi\)
\(54\) 0 0
\(55\) 10.4087 18.0284i 1.40351 2.43095i
\(56\) 2.92082 + 4.02448i 0.390311 + 0.537794i
\(57\) 0 0
\(58\) 2.13443 3.69694i 0.280264 0.485432i
\(59\) 2.22033 0.289063 0.144531 0.989500i \(-0.453833\pi\)
0.144531 + 0.989500i \(0.453833\pi\)
\(60\) 0 0
\(61\) 2.53414 4.38925i 0.324463 0.561986i −0.656941 0.753942i \(-0.728150\pi\)
0.981404 + 0.191956i \(0.0614831\pi\)
\(62\) 8.81053 15.2603i 1.11894 1.93806i
\(63\) 0 0
\(64\) −12.7485 −1.59356
\(65\) 12.4539 7.08976i 1.54471 0.879377i
\(66\) 0 0
\(67\) 6.99863 + 12.1220i 0.855018 + 1.48094i 0.876628 + 0.481169i \(0.159788\pi\)
−0.0216096 + 0.999766i \(0.506879\pi\)
\(68\) 7.60130 0.921793
\(69\) 0 0
\(70\) −9.43328 + 21.1584i −1.12749 + 2.52891i
\(71\) −5.13356 8.89159i −0.609242 1.05524i −0.991366 0.131126i \(-0.958141\pi\)
0.382124 0.924111i \(-0.375193\pi\)
\(72\) 0 0
\(73\) −0.362401 + 0.627696i −0.0424158 + 0.0734663i −0.886454 0.462817i \(-0.846839\pi\)
0.844038 + 0.536283i \(0.180172\pi\)
\(74\) 8.04170 0.934829
\(75\) 0 0
\(76\) −9.23027 + 15.9873i −1.05878 + 1.83387i
\(77\) 5.64282 12.6566i 0.643059 1.44235i
\(78\) 0 0
\(79\) −2.09215 3.62371i −0.235385 0.407699i 0.723999 0.689801i \(-0.242302\pi\)
−0.959385 + 0.282101i \(0.908969\pi\)
\(80\) −3.11169 5.38961i −0.347898 0.602577i
\(81\) 0 0
\(82\) 10.0003 17.3210i 1.10435 1.91279i
\(83\) −13.7071 −1.50455 −0.752275 0.658850i \(-0.771043\pi\)
−0.752275 + 0.658850i \(0.771043\pi\)
\(84\) 0 0
\(85\) 5.29447 + 9.17029i 0.574266 + 0.994658i
\(86\) 1.65148 + 2.86045i 0.178084 + 0.308450i
\(87\) 0 0
\(88\) −4.92208 8.52530i −0.524696 0.908800i
\(89\) −0.253553 −0.0268766 −0.0134383 0.999910i \(-0.504278\pi\)
−0.0134383 + 0.999910i \(0.504278\pi\)
\(90\) 0 0
\(91\) 7.75428 5.55619i 0.812869 0.582446i
\(92\) 0.345082 0.0359773
\(93\) 0 0
\(94\) −6.79195 11.7640i −0.700536 1.21336i
\(95\) −25.7163 −2.63844
\(96\) 0 0
\(97\) 6.46607 + 11.1996i 0.656530 + 1.13714i 0.981508 + 0.191421i \(0.0613097\pi\)
−0.324978 + 0.945722i \(0.605357\pi\)
\(98\) −4.78029 + 14.6613i −0.482882 + 1.48101i
\(99\) 0 0
\(100\) −15.4031 + 26.6790i −1.54031 + 2.66790i
\(101\) 6.40829 + 11.0995i 0.637649 + 1.10444i 0.985947 + 0.167056i \(0.0534262\pi\)
−0.348299 + 0.937384i \(0.613240\pi\)
\(102\) 0 0
\(103\) 0.116274 + 0.201392i 0.0114568 + 0.0198437i 0.871697 0.490045i \(-0.163020\pi\)
−0.860240 + 0.509889i \(0.829686\pi\)
\(104\) 0.0411550 6.77651i 0.00403558 0.664492i
\(105\) 0 0
\(106\) 0.744348 1.28925i 0.0722975 0.125223i
\(107\) −12.2876 −1.18789 −0.593943 0.804507i \(-0.702429\pi\)
−0.593943 + 0.804507i \(0.702429\pi\)
\(108\) 0 0
\(109\) 2.81785 4.88066i 0.269901 0.467483i −0.698935 0.715185i \(-0.746342\pi\)
0.968836 + 0.247703i \(0.0796756\pi\)
\(110\) 22.9303 39.7164i 2.18632 3.78681i
\(111\) 0 0
\(112\) −2.43332 3.35277i −0.229927 0.316807i
\(113\) −6.11906 10.5985i −0.575632 0.997024i −0.995973 0.0896579i \(-0.971423\pi\)
0.420340 0.907367i \(-0.361911\pi\)
\(114\) 0 0
\(115\) 0.240357 + 0.416311i 0.0224134 + 0.0388212i
\(116\) 2.76437 4.78802i 0.256665 0.444557i
\(117\) 0 0
\(118\) 4.89137 0.450287
\(119\) 4.14023 + 5.70466i 0.379534 + 0.522945i
\(120\) 0 0
\(121\) −8.21649 + 14.2314i −0.746954 + 1.29376i
\(122\) 5.58267 9.66947i 0.505431 0.875433i
\(123\) 0 0
\(124\) 11.4108 19.7641i 1.02472 1.77487i
\(125\) −23.0415 −2.06090
\(126\) 0 0
\(127\) −1.59001 + 2.75397i −0.141090 + 0.244376i −0.927907 0.372811i \(-0.878394\pi\)
0.786817 + 0.617186i \(0.211727\pi\)
\(128\) −13.6680 −1.20809
\(129\) 0 0
\(130\) 27.4358 15.6187i 2.40628 1.36985i
\(131\) 1.57705 + 2.73152i 0.137787 + 0.238654i 0.926659 0.375904i \(-0.122668\pi\)
−0.788872 + 0.614558i \(0.789334\pi\)
\(132\) 0 0
\(133\) −17.0257 + 1.78069i −1.47632 + 0.154405i
\(134\) 15.4179 + 26.7046i 1.33190 + 2.30692i
\(135\) 0 0
\(136\) 5.00731 0.429373
\(137\) −10.1389 −0.866222 −0.433111 0.901341i \(-0.642584\pi\)
−0.433111 + 0.901341i \(0.642584\pi\)
\(138\) 0 0
\(139\) 2.40158 + 4.15966i 0.203699 + 0.352817i 0.949718 0.313108i \(-0.101370\pi\)
−0.746018 + 0.665925i \(0.768037\pi\)
\(140\) −12.2173 + 27.4029i −1.03255 + 2.31597i
\(141\) 0 0
\(142\) −11.3092 19.5881i −0.949045 1.64379i
\(143\) −16.4116 + 9.34281i −1.37241 + 0.781285i
\(144\) 0 0
\(145\) 7.70176 0.639597
\(146\) −0.798365 + 1.38281i −0.0660731 + 0.114442i
\(147\) 0 0
\(148\) 10.4151 0.856112
\(149\) 2.70998 4.69383i 0.222011 0.384534i −0.733408 0.679789i \(-0.762071\pi\)
0.955418 + 0.295255i \(0.0954047\pi\)
\(150\) 0 0
\(151\) −7.81955 + 13.5439i −0.636346 + 1.10218i 0.349882 + 0.936794i \(0.386222\pi\)
−0.986228 + 0.165390i \(0.947112\pi\)
\(152\) −6.08038 + 10.5315i −0.493184 + 0.854220i
\(153\) 0 0
\(154\) 12.4311 27.8823i 1.00172 2.24682i
\(155\) 31.7914 2.55355
\(156\) 0 0
\(157\) 2.31526 4.01015i 0.184778 0.320045i −0.758724 0.651413i \(-0.774177\pi\)
0.943502 + 0.331368i \(0.107510\pi\)
\(158\) −4.60898 7.98300i −0.366671 0.635093i
\(159\) 0 0
\(160\) −14.3252 24.8120i −1.13251 1.96156i
\(161\) 0.187957 + 0.258979i 0.0148131 + 0.0204104i
\(162\) 0 0
\(163\) −7.89229 + 13.6699i −0.618172 + 1.07071i 0.371647 + 0.928374i \(0.378793\pi\)
−0.989819 + 0.142331i \(0.954540\pi\)
\(164\) 12.9517 22.4330i 1.01136 1.75172i
\(165\) 0 0
\(166\) −30.1966 −2.34371
\(167\) −3.03381 + 5.25471i −0.234763 + 0.406621i −0.959204 0.282716i \(-0.908765\pi\)
0.724441 + 0.689337i \(0.242098\pi\)
\(168\) 0 0
\(169\) −12.9990 0.157897i −0.999926 0.0121459i
\(170\) 11.6637 + 20.2021i 0.894562 + 1.54943i
\(171\) 0 0
\(172\) 2.13889 + 3.70466i 0.163089 + 0.282478i
\(173\) 0.714296 1.23720i 0.0543069 0.0940624i −0.837594 0.546293i \(-0.816038\pi\)
0.891901 + 0.452231i \(0.149372\pi\)
\(174\) 0 0
\(175\) −28.4118 + 2.97154i −2.14773 + 0.224628i
\(176\) 4.10056 + 7.10237i 0.309091 + 0.535362i
\(177\) 0 0
\(178\) −0.558574 −0.0418669
\(179\) −10.0281 17.3692i −0.749535 1.29823i −0.948046 0.318133i \(-0.896944\pi\)
0.198511 0.980099i \(-0.436389\pi\)
\(180\) 0 0
\(181\) 13.2079 0.981739 0.490870 0.871233i \(-0.336679\pi\)
0.490870 + 0.871233i \(0.336679\pi\)
\(182\) 17.0826 12.2402i 1.26625 0.907305i
\(183\) 0 0
\(184\) 0.227321 0.0167583
\(185\) 7.25431 + 12.5648i 0.533347 + 0.923785i
\(186\) 0 0
\(187\) −6.97700 12.0845i −0.510209 0.883707i
\(188\) −8.79647 15.2359i −0.641548 1.11119i
\(189\) 0 0
\(190\) −56.6528 −4.11003
\(191\) 0.0857988 0.148608i 0.00620819 0.0107529i −0.862905 0.505367i \(-0.831357\pi\)
0.869113 + 0.494614i \(0.164691\pi\)
\(192\) 0 0
\(193\) −12.7178 22.0279i −0.915450 1.58561i −0.806242 0.591586i \(-0.798502\pi\)
−0.109208 0.994019i \(-0.534831\pi\)
\(194\) 14.2447 + 24.6725i 1.02271 + 1.77138i
\(195\) 0 0
\(196\) −6.19111 + 18.9883i −0.442222 + 1.35631i
\(197\) −12.6455 + 21.9026i −0.900953 + 1.56050i −0.0746927 + 0.997207i \(0.523798\pi\)
−0.826260 + 0.563289i \(0.809536\pi\)
\(198\) 0 0
\(199\) −17.1032 −1.21242 −0.606208 0.795306i \(-0.707310\pi\)
−0.606208 + 0.795306i \(0.707310\pi\)
\(200\) −10.1467 + 17.5746i −0.717480 + 1.24271i
\(201\) 0 0
\(202\) 14.1174 + 24.4520i 0.993296 + 1.72044i
\(203\) 5.09901 0.533297i 0.357881 0.0374301i
\(204\) 0 0
\(205\) 36.0845 2.52025
\(206\) 0.256149 + 0.443664i 0.0178468 + 0.0309115i
\(207\) 0 0
\(208\) −0.0342860 + 5.64547i −0.00237730 + 0.391443i
\(209\) 33.8887 2.34413
\(210\) 0 0
\(211\) 8.47490 14.6790i 0.583436 1.01054i −0.411632 0.911350i \(-0.635041\pi\)
0.995068 0.0991908i \(-0.0316254\pi\)
\(212\) 0.964028 1.66975i 0.0662097 0.114679i
\(213\) 0 0
\(214\) −27.0694 −1.85043
\(215\) −2.97956 + 5.16075i −0.203204 + 0.351960i
\(216\) 0 0
\(217\) 21.0478 2.20135i 1.42882 0.149437i
\(218\) 6.20770 10.7520i 0.420438 0.728220i
\(219\) 0 0
\(220\) 29.6977 51.4379i 2.00222 3.46795i
\(221\) 0.0583367 9.60563i 0.00392415 0.646144i
\(222\) 0 0
\(223\) 2.70463 4.68455i 0.181115 0.313701i −0.761145 0.648581i \(-0.775363\pi\)
0.942261 + 0.334881i \(0.108696\pi\)
\(224\) −11.2022 15.4351i −0.748479 1.03130i
\(225\) 0 0
\(226\) −13.4802 23.3484i −0.896690 1.55311i
\(227\) 15.9364 1.05773 0.528867 0.848705i \(-0.322617\pi\)
0.528867 + 0.848705i \(0.322617\pi\)
\(228\) 0 0
\(229\) 5.73283 + 9.92955i 0.378836 + 0.656163i 0.990893 0.134650i \(-0.0429911\pi\)
−0.612057 + 0.790814i \(0.709658\pi\)
\(230\) 0.529504 + 0.917128i 0.0349145 + 0.0604736i
\(231\) 0 0
\(232\) 1.82101 3.15408i 0.119555 0.207076i
\(233\) 9.83721 + 17.0386i 0.644457 + 1.11623i 0.984427 + 0.175796i \(0.0562500\pi\)
−0.339969 + 0.940437i \(0.610417\pi\)
\(234\) 0 0
\(235\) 12.2539 21.2243i 0.799353 1.38452i
\(236\) 6.33497 0.412371
\(237\) 0 0
\(238\) 9.12088 + 12.5673i 0.591219 + 0.814617i
\(239\) −0.192393 −0.0124449 −0.00622245 0.999981i \(-0.501981\pi\)
−0.00622245 + 0.999981i \(0.501981\pi\)
\(240\) 0 0
\(241\) 12.6467 0.814648 0.407324 0.913284i \(-0.366462\pi\)
0.407324 + 0.913284i \(0.366462\pi\)
\(242\) −18.1008 + 31.3516i −1.16357 + 2.01535i
\(243\) 0 0
\(244\) 7.23029 12.5232i 0.462872 0.801718i
\(245\) −27.2199 + 5.75674i −1.73902 + 0.367785i
\(246\) 0 0
\(247\) 20.1320 + 11.7868i 1.28097 + 0.749978i
\(248\) 7.51678 13.0194i 0.477316 0.826736i
\(249\) 0 0
\(250\) −50.7602 −3.21036
\(251\) −1.61782 2.80215i −0.102116 0.176870i 0.810440 0.585821i \(-0.199228\pi\)
−0.912556 + 0.408951i \(0.865895\pi\)
\(252\) 0 0
\(253\) −0.316740 0.548610i −0.0199133 0.0344908i
\(254\) −3.50277 + 6.06697i −0.219783 + 0.380676i
\(255\) 0 0
\(256\) −4.61331 −0.288332
\(257\) −2.13109 −0.132934 −0.0664668 0.997789i \(-0.521173\pi\)
−0.0664668 + 0.997789i \(0.521173\pi\)
\(258\) 0 0
\(259\) 5.67281 + 7.81633i 0.352491 + 0.485683i
\(260\) 35.5329 20.2282i 2.20366 1.25450i
\(261\) 0 0
\(262\) 3.47422 + 6.01752i 0.214638 + 0.371763i
\(263\) 6.35331 + 11.0043i 0.391762 + 0.678552i 0.992682 0.120757i \(-0.0385323\pi\)
−0.600920 + 0.799309i \(0.705199\pi\)
\(264\) 0 0
\(265\) 2.68586 0.164991
\(266\) −37.5074 + 3.92284i −2.29973 + 0.240525i
\(267\) 0 0
\(268\) 19.9682 + 34.5859i 1.21975 + 2.11267i
\(269\) 25.6727 1.56529 0.782646 0.622467i \(-0.213869\pi\)
0.782646 + 0.622467i \(0.213869\pi\)
\(270\) 0 0
\(271\) −15.1084 −0.917770 −0.458885 0.888496i \(-0.651751\pi\)
−0.458885 + 0.888496i \(0.651751\pi\)
\(272\) −4.17156 −0.252938
\(273\) 0 0
\(274\) −22.3358 −1.34936
\(275\) 56.5521 3.41022
\(276\) 0 0
\(277\) 13.5695 0.815311 0.407655 0.913136i \(-0.366346\pi\)
0.407655 + 0.913136i \(0.366346\pi\)
\(278\) 5.29065 + 9.16367i 0.317312 + 0.549601i
\(279\) 0 0
\(280\) −8.04809 + 18.0515i −0.480965 + 1.07878i
\(281\) −6.47090 −0.386021 −0.193011 0.981197i \(-0.561825\pi\)
−0.193011 + 0.981197i \(0.561825\pi\)
\(282\) 0 0
\(283\) 8.80760 + 15.2552i 0.523557 + 0.906828i 0.999624 + 0.0274188i \(0.00872877\pi\)
−0.476067 + 0.879409i \(0.657938\pi\)
\(284\) −14.6469 25.3691i −0.869132 1.50538i
\(285\) 0 0
\(286\) −36.1546 + 20.5821i −2.13786 + 1.21705i
\(287\) 23.8901 2.49862i 1.41019 0.147489i
\(288\) 0 0
\(289\) −9.90219 −0.582482
\(290\) 16.9669 0.996331
\(291\) 0 0
\(292\) −1.03399 + 1.79092i −0.0605095 + 0.104806i
\(293\) −3.94143 6.82676i −0.230261 0.398824i 0.727624 0.685976i \(-0.240625\pi\)
−0.957885 + 0.287153i \(0.907291\pi\)
\(294\) 0 0
\(295\) 4.41244 + 7.64257i 0.256902 + 0.444968i
\(296\) 6.86085 0.398779
\(297\) 0 0
\(298\) 5.97006 10.3405i 0.345837 0.599006i
\(299\) 0.00264836 0.436074i 0.000153158 0.0252188i
\(300\) 0 0
\(301\) −1.61529 + 3.62303i −0.0931040 + 0.208828i
\(302\) −17.2264 + 29.8370i −0.991267 + 1.71693i
\(303\) 0 0
\(304\) 5.06553 8.77376i 0.290528 0.503209i
\(305\) 20.1442 1.15345
\(306\) 0 0
\(307\) −19.0783 −1.08885 −0.544427 0.838808i \(-0.683253\pi\)
−0.544427 + 0.838808i \(0.683253\pi\)
\(308\) 16.0999 36.1113i 0.917375 2.05763i
\(309\) 0 0
\(310\) 70.0362 3.97779
\(311\) 10.6629 18.4686i 0.604635 1.04726i −0.387474 0.921881i \(-0.626652\pi\)
0.992109 0.125378i \(-0.0400143\pi\)
\(312\) 0 0
\(313\) 6.27658 + 10.8714i 0.354773 + 0.614485i 0.987079 0.160233i \(-0.0512247\pi\)
−0.632306 + 0.774719i \(0.717891\pi\)
\(314\) 5.10049 8.83432i 0.287838 0.498549i
\(315\) 0 0
\(316\) −5.96924 10.3390i −0.335796 0.581616i
\(317\) 6.11756 + 10.5959i 0.343596 + 0.595126i 0.985098 0.171996i \(-0.0550215\pi\)
−0.641502 + 0.767122i \(0.721688\pi\)
\(318\) 0 0
\(319\) −10.1493 −0.568252
\(320\) −25.3350 43.8814i −1.41627 2.45305i
\(321\) 0 0
\(322\) 0.414067 + 0.570527i 0.0230751 + 0.0317942i
\(323\) −8.61887 + 14.9283i −0.479567 + 0.830634i
\(324\) 0 0
\(325\) 33.5955 + 19.6694i 1.86354 + 1.09106i
\(326\) −17.3866 + 30.1145i −0.962956 + 1.66789i
\(327\) 0 0
\(328\) 8.53185 14.7776i 0.471092 0.815956i
\(329\) 6.64312 14.9002i 0.366247 0.821476i
\(330\) 0 0
\(331\) 2.19019 3.79352i 0.120384 0.208510i −0.799535 0.600619i \(-0.794921\pi\)
0.919919 + 0.392108i \(0.128254\pi\)
\(332\) −39.1085 −2.14636
\(333\) 0 0
\(334\) −6.68344 + 11.5761i −0.365702 + 0.633414i
\(335\) −27.8166 + 48.1797i −1.51978 + 2.63234i
\(336\) 0 0
\(337\) −8.22172 −0.447866 −0.223933 0.974605i \(-0.571890\pi\)
−0.223933 + 0.974605i \(0.571890\pi\)
\(338\) −28.6367 0.347845i −1.55763 0.0189203i
\(339\) 0 0
\(340\) 15.1060 + 26.1643i 0.819236 + 1.41896i
\(341\) −41.8944 −2.26871
\(342\) 0 0
\(343\) −17.6226 + 5.69610i −0.951528 + 0.307561i
\(344\) 1.40898 + 2.44042i 0.0759670 + 0.131579i
\(345\) 0 0
\(346\) 1.57359 2.72553i 0.0845965 0.146525i
\(347\) 0.0705385 0.00378671 0.00189335 0.999998i \(-0.499397\pi\)
0.00189335 + 0.999998i \(0.499397\pi\)
\(348\) 0 0
\(349\) −16.2677 + 28.1764i −0.870789 + 1.50825i −0.00960659 + 0.999954i \(0.503058\pi\)
−0.861182 + 0.508296i \(0.830275\pi\)
\(350\) −62.5909 + 6.54628i −3.34563 + 0.349913i
\(351\) 0 0
\(352\) 18.8776 + 32.6970i 1.00618 + 1.74276i
\(353\) −3.61431 6.26018i −0.192371 0.333196i 0.753665 0.657259i \(-0.228284\pi\)
−0.946035 + 0.324063i \(0.894951\pi\)
\(354\) 0 0
\(355\) 20.4037 35.3403i 1.08292 1.87567i
\(356\) −0.723427 −0.0383415
\(357\) 0 0
\(358\) −22.0918 38.2641i −1.16759 2.02232i
\(359\) −5.51794 9.55735i −0.291226 0.504418i 0.682874 0.730536i \(-0.260730\pi\)
−0.974100 + 0.226118i \(0.927396\pi\)
\(360\) 0 0
\(361\) −11.4318 19.8005i −0.601675 1.04213i
\(362\) 29.0970 1.52930
\(363\) 0 0
\(364\) 22.1242 15.8527i 1.15962 0.830906i
\(365\) −2.88078 −0.150787
\(366\) 0 0
\(367\) 5.95873 + 10.3208i 0.311043 + 0.538742i 0.978588 0.205827i \(-0.0659883\pi\)
−0.667545 + 0.744569i \(0.732655\pi\)
\(368\) −0.189379 −0.00987208
\(369\) 0 0
\(370\) 15.9812 + 27.6802i 0.830821 + 1.43902i
\(371\) 1.77820 0.185979i 0.0923195 0.00965554i
\(372\) 0 0
\(373\) 1.32566 2.29612i 0.0686402 0.118888i −0.829663 0.558265i \(-0.811467\pi\)
0.898303 + 0.439377i \(0.144801\pi\)
\(374\) −15.3702 26.6220i −0.794776 1.37659i
\(375\) 0 0
\(376\) −5.79462 10.0366i −0.298834 0.517596i
\(377\) −6.02932 3.53003i −0.310526 0.181806i
\(378\) 0 0
\(379\) −4.37607 + 7.57957i −0.224783 + 0.389336i −0.956254 0.292536i \(-0.905501\pi\)
0.731471 + 0.681873i \(0.238834\pi\)
\(380\) −73.3728 −3.76395
\(381\) 0 0
\(382\) 0.189014 0.327382i 0.00967079 0.0167503i
\(383\) 3.46122 5.99501i 0.176860 0.306331i −0.763943 0.645283i \(-0.776739\pi\)
0.940803 + 0.338953i \(0.110073\pi\)
\(384\) 0 0
\(385\) 54.7789 5.72924i 2.79179 0.291989i
\(386\) −28.0172 48.5273i −1.42604 2.46997i
\(387\) 0 0
\(388\) 18.4487 + 31.9541i 0.936592 + 1.62223i
\(389\) 11.3592 19.6747i 0.575933 0.997545i −0.420007 0.907521i \(-0.637972\pi\)
0.995940 0.0900237i \(-0.0286943\pi\)
\(390\) 0 0
\(391\) 0.322224 0.0162956
\(392\) −4.07835 + 12.5084i −0.205988 + 0.631771i
\(393\) 0 0
\(394\) −27.8578 + 48.2512i −1.40346 + 2.43086i
\(395\) 8.31541 14.4027i 0.418394 0.724679i
\(396\) 0 0
\(397\) −12.3811 + 21.4446i −0.621388 + 1.07628i 0.367840 + 0.929889i \(0.380098\pi\)
−0.989228 + 0.146386i \(0.953236\pi\)
\(398\) −37.6782 −1.88864
\(399\) 0 0
\(400\) 8.45316 14.6413i 0.422658 0.732065i
\(401\) 18.4572 0.921707 0.460854 0.887476i \(-0.347543\pi\)
0.460854 + 0.887476i \(0.347543\pi\)
\(402\) 0 0
\(403\) −24.8879 14.5713i −1.23976 0.725847i
\(404\) 18.2839 + 31.6686i 0.909657 + 1.57557i
\(405\) 0 0
\(406\) 11.2331 1.17485i 0.557488 0.0583067i
\(407\) −9.55965 16.5578i −0.473854 0.820740i
\(408\) 0 0
\(409\) 1.82016 0.0900010 0.0450005 0.998987i \(-0.485671\pi\)
0.0450005 + 0.998987i \(0.485671\pi\)
\(410\) 79.4938 3.92592
\(411\) 0 0
\(412\) 0.331747 + 0.574603i 0.0163440 + 0.0283086i
\(413\) 3.45049 + 4.75429i 0.169788 + 0.233944i
\(414\) 0 0
\(415\) −27.2399 47.1809i −1.33716 2.31602i
\(416\) −0.157842 + 25.9899i −0.00773882 + 1.27426i
\(417\) 0 0
\(418\) 74.6564 3.65157
\(419\) −1.35670 + 2.34988i −0.0662793 + 0.114799i −0.897261 0.441501i \(-0.854446\pi\)
0.830981 + 0.556300i \(0.187779\pi\)
\(420\) 0 0
\(421\) −2.33278 −0.113693 −0.0568463 0.998383i \(-0.518104\pi\)
−0.0568463 + 0.998383i \(0.518104\pi\)
\(422\) 18.6701 32.3376i 0.908846 1.57417i
\(423\) 0 0
\(424\) 0.635047 1.09993i 0.0308406 0.0534175i
\(425\) −14.3828 + 24.9118i −0.697670 + 1.20840i
\(426\) 0 0
\(427\) 13.3366 1.39486i 0.645405 0.0675019i
\(428\) −35.0584 −1.69461
\(429\) 0 0
\(430\) −6.56394 + 11.3691i −0.316541 + 0.548266i
\(431\) −4.30893 7.46329i −0.207554 0.359494i 0.743390 0.668859i \(-0.233217\pi\)
−0.950943 + 0.309365i \(0.899884\pi\)
\(432\) 0 0
\(433\) 2.53375 + 4.38858i 0.121764 + 0.210902i 0.920463 0.390829i \(-0.127811\pi\)
−0.798699 + 0.601730i \(0.794478\pi\)
\(434\) 46.3680 4.84955i 2.22574 0.232786i
\(435\) 0 0
\(436\) 8.03978 13.9253i 0.385036 0.666901i
\(437\) −0.391278 + 0.677713i −0.0187173 + 0.0324194i
\(438\) 0 0
\(439\) −1.45113 −0.0692586 −0.0346293 0.999400i \(-0.511025\pi\)
−0.0346293 + 0.999400i \(0.511025\pi\)
\(440\) 19.5632 33.8844i 0.932638 1.61538i
\(441\) 0 0
\(442\) 0.128515 21.1611i 0.00611284 1.00653i
\(443\) −9.05774 15.6885i −0.430346 0.745381i 0.566557 0.824023i \(-0.308275\pi\)
−0.996903 + 0.0786412i \(0.974942\pi\)
\(444\) 0 0
\(445\) −0.503882 0.872750i −0.0238863 0.0413723i
\(446\) 5.95826 10.3200i 0.282132 0.488667i
\(447\) 0 0
\(448\) −19.8117 27.2978i −0.936016 1.28970i
\(449\) −4.27784 7.40943i −0.201884 0.349673i 0.747252 0.664541i \(-0.231373\pi\)
−0.949135 + 0.314868i \(0.898040\pi\)
\(450\) 0 0
\(451\) −47.5518 −2.23913
\(452\) −17.4586 30.2393i −0.821185 1.42233i
\(453\) 0 0
\(454\) 35.1076 1.64768
\(455\) 34.5348 + 15.6491i 1.61902 + 0.733642i
\(456\) 0 0
\(457\) −8.54438 −0.399689 −0.199845 0.979828i \(-0.564044\pi\)
−0.199845 + 0.979828i \(0.564044\pi\)
\(458\) 12.6294 + 21.8747i 0.590131 + 1.02214i
\(459\) 0 0
\(460\) 0.685777 + 1.18780i 0.0319745 + 0.0553815i
\(461\) 11.7203 + 20.3001i 0.545867 + 0.945470i 0.998552 + 0.0537989i \(0.0171330\pi\)
−0.452685 + 0.891671i \(0.649534\pi\)
\(462\) 0 0
\(463\) 22.9217 1.06526 0.532630 0.846348i \(-0.321204\pi\)
0.532630 + 0.846348i \(0.321204\pi\)
\(464\) −1.51707 + 2.62764i −0.0704283 + 0.121985i
\(465\) 0 0
\(466\) 21.6713 + 37.5357i 1.00390 + 1.73881i
\(467\) −5.81820 10.0774i −0.269234 0.466327i 0.699430 0.714701i \(-0.253437\pi\)
−0.968664 + 0.248374i \(0.920104\pi\)
\(468\) 0 0
\(469\) −15.0800 + 33.8239i −0.696332 + 1.56184i
\(470\) 26.9951 46.7569i 1.24519 2.15673i
\(471\) 0 0
\(472\) 4.17312 0.192083
\(473\) 3.92643 6.80078i 0.180538 0.312700i
\(474\) 0 0
\(475\) −34.9302 60.5009i −1.60271 2.77597i
\(476\) 11.8127 + 16.2763i 0.541436 + 0.746023i
\(477\) 0 0
\(478\) −0.423841 −0.0193860
\(479\) 9.30624 + 16.1189i 0.425213 + 0.736491i 0.996440 0.0843014i \(-0.0268658\pi\)
−0.571227 + 0.820792i \(0.693533\pi\)
\(480\) 0 0
\(481\) 0.0799311 13.1613i 0.00364454 0.600104i
\(482\) 27.8606 1.26902
\(483\) 0 0
\(484\) −23.4430 + 40.6044i −1.06559 + 1.84565i
\(485\) −25.6999 + 44.5135i −1.16697 + 2.02125i
\(486\) 0 0
\(487\) −30.0759 −1.36287 −0.681434 0.731879i \(-0.738643\pi\)
−0.681434 + 0.731879i \(0.738643\pi\)
\(488\) 4.76291 8.24960i 0.215607 0.373442i
\(489\) 0 0
\(490\) −59.9652 + 12.6820i −2.70895 + 0.572916i
\(491\) −6.52770 + 11.3063i −0.294591 + 0.510246i −0.974890 0.222689i \(-0.928517\pi\)
0.680299 + 0.732935i \(0.261850\pi\)
\(492\) 0 0
\(493\) 2.58126 4.47087i 0.116254 0.201358i
\(494\) 44.3506 + 25.9662i 1.99543 + 1.16828i
\(495\) 0 0
\(496\) −6.26219 + 10.8464i −0.281180 + 0.487019i
\(497\) 11.0614 24.8101i 0.496170 1.11289i
\(498\) 0 0
\(499\) 12.1509 + 21.0461i 0.543951 + 0.942151i 0.998672 + 0.0515169i \(0.0164056\pi\)
−0.454721 + 0.890634i \(0.650261\pi\)
\(500\) −65.7411 −2.94003
\(501\) 0 0
\(502\) −3.56405 6.17311i −0.159071 0.275519i
\(503\) 0.976641 + 1.69159i 0.0435463 + 0.0754244i 0.886977 0.461814i \(-0.152801\pi\)
−0.843431 + 0.537238i \(0.819468\pi\)
\(504\) 0 0
\(505\) −25.4702 + 44.1157i −1.13341 + 1.96312i
\(506\) −0.697775 1.20858i −0.0310199 0.0537280i
\(507\) 0 0
\(508\) −4.53654 + 7.85753i −0.201277 + 0.348621i
\(509\) −26.3433 −1.16765 −0.583823 0.811881i \(-0.698444\pi\)
−0.583823 + 0.811881i \(0.698444\pi\)
\(510\) 0 0
\(511\) −1.90724 + 0.199475i −0.0843714 + 0.00882426i
\(512\) 17.1728 0.758939
\(513\) 0 0
\(514\) −4.69476 −0.207077
\(515\) −0.462138 + 0.800446i −0.0203642 + 0.0352719i
\(516\) 0 0
\(517\) −16.1480 + 27.9692i −0.710188 + 1.23008i
\(518\) 12.4971 + 17.2193i 0.549092 + 0.756572i
\(519\) 0 0
\(520\) 23.4071 13.3252i 1.02647 0.584349i
\(521\) −15.0429 + 26.0551i −0.659043 + 1.14150i 0.321821 + 0.946801i \(0.395705\pi\)
−0.980864 + 0.194695i \(0.937628\pi\)
\(522\) 0 0
\(523\) 27.2949 1.19352 0.596762 0.802418i \(-0.296454\pi\)
0.596762 + 0.802418i \(0.296454\pi\)
\(524\) 4.49956 + 7.79347i 0.196564 + 0.340459i
\(525\) 0 0
\(526\) 13.9963 + 24.2423i 0.610267 + 1.05701i
\(527\) 10.6550 18.4549i 0.464137 0.803909i
\(528\) 0 0
\(529\) −22.9854 −0.999364
\(530\) 5.91693 0.257015
\(531\) 0 0
\(532\) −48.5771 + 5.08059i −2.10608 + 0.220272i
\(533\) −28.2488 16.5390i −1.22359 0.716383i
\(534\) 0 0
\(535\) −24.4190 42.2949i −1.05572 1.82857i
\(536\) 13.1539 + 22.7833i 0.568163 + 0.984087i
\(537\) 0 0
\(538\) 56.5567 2.43833
\(539\) 35.8701 7.58618i 1.54504 0.326760i
\(540\) 0 0
\(541\) 2.22209 + 3.84877i 0.0955350 + 0.165471i 0.909832 0.414977i \(-0.136210\pi\)
−0.814297 + 0.580449i \(0.802877\pi\)
\(542\) −33.2836 −1.42965
\(543\) 0 0
\(544\) −19.2045 −0.823387
\(545\) 22.3995 0.959490
\(546\) 0 0
\(547\) 3.18590 0.136219 0.0681095 0.997678i \(-0.478303\pi\)
0.0681095 + 0.997678i \(0.478303\pi\)
\(548\) −28.9278 −1.23574
\(549\) 0 0
\(550\) 124.584 5.31227
\(551\) 6.26885 + 10.8580i 0.267062 + 0.462565i
\(552\) 0 0
\(553\) 4.50799 10.1112i 0.191699 0.429973i
\(554\) 29.8934 1.27005
\(555\) 0 0
\(556\) 6.85209 + 11.8682i 0.290593 + 0.503322i
\(557\) 18.0888 + 31.3307i 0.766448 + 1.32753i 0.939478 + 0.342610i \(0.111311\pi\)
−0.173030 + 0.984917i \(0.555356\pi\)
\(558\) 0 0
\(559\) 4.69793 2.67444i 0.198701 0.113117i
\(560\) 6.70481 15.0386i 0.283330 0.635497i
\(561\) 0 0
\(562\) −14.2553 −0.601324
\(563\) −1.22095 −0.0514568 −0.0257284 0.999669i \(-0.508191\pi\)
−0.0257284 + 0.999669i \(0.508191\pi\)
\(564\) 0 0
\(565\) 24.3206 42.1246i 1.02318 1.77219i
\(566\) 19.4030 + 33.6071i 0.815571 + 1.41261i
\(567\) 0 0
\(568\) −9.64853 16.7117i −0.404843 0.701209i
\(569\) 40.2208 1.68614 0.843072 0.537801i \(-0.180745\pi\)
0.843072 + 0.537801i \(0.180745\pi\)
\(570\) 0 0
\(571\) 5.24994 9.09316i 0.219703 0.380537i −0.735014 0.678052i \(-0.762825\pi\)
0.954717 + 0.297515i \(0.0961578\pi\)
\(572\) −46.8249 + 26.6565i −1.95785 + 1.11457i
\(573\) 0 0
\(574\) 52.6295 5.50443i 2.19671 0.229751i
\(575\) −0.652948 + 1.13094i −0.0272298 + 0.0471634i
\(576\) 0 0
\(577\) 11.4400 19.8146i 0.476252 0.824893i −0.523378 0.852101i \(-0.675328\pi\)
0.999630 + 0.0272078i \(0.00866158\pi\)
\(578\) −21.8144 −0.907360
\(579\) 0 0
\(580\) 21.9744 0.912436
\(581\) −21.3014 29.3503i −0.883731 1.21766i
\(582\) 0 0
\(583\) −3.53940 −0.146587
\(584\) −0.681132 + 1.17976i −0.0281855 + 0.0488186i
\(585\) 0 0
\(586\) −8.68293 15.0393i −0.358689 0.621267i
\(587\) −8.19671 + 14.1971i −0.338314 + 0.585977i −0.984116 0.177528i \(-0.943190\pi\)
0.645802 + 0.763505i \(0.276523\pi\)
\(588\) 0 0
\(589\) 25.8767 + 44.8197i 1.06623 + 1.84676i
\(590\) 9.72056 + 16.8365i 0.400189 + 0.693148i
\(591\) 0 0
\(592\) −5.71573 −0.234915
\(593\) 10.1736 + 17.6211i 0.417778 + 0.723613i 0.995716 0.0924682i \(-0.0294757\pi\)
−0.577938 + 0.816081i \(0.696142\pi\)
\(594\) 0 0
\(595\) −11.4081 + 25.5878i −0.467685 + 1.04900i
\(596\) 7.73202 13.3922i 0.316716 0.548568i
\(597\) 0 0
\(598\) 0.00583430 0.960666i 0.000238582 0.0392845i
\(599\) 19.8375 34.3596i 0.810540 1.40390i −0.101947 0.994790i \(-0.532507\pi\)
0.912487 0.409106i \(-0.134159\pi\)
\(600\) 0 0
\(601\) −14.3611 + 24.8742i −0.585803 + 1.01464i 0.408972 + 0.912547i \(0.365887\pi\)
−0.994775 + 0.102093i \(0.967446\pi\)
\(602\) −3.55847 + 7.98150i −0.145033 + 0.325302i
\(603\) 0 0
\(604\) −22.3104 + 38.6428i −0.907799 + 1.57235i
\(605\) −65.3141 −2.65539
\(606\) 0 0
\(607\) 13.8195 23.9361i 0.560917 0.971536i −0.436500 0.899704i \(-0.643782\pi\)
0.997417 0.0718318i \(-0.0228845\pi\)
\(608\) 23.3201 40.3916i 0.945754 1.63809i
\(609\) 0 0
\(610\) 44.3775 1.79679
\(611\) −19.3209 + 10.9990i −0.781639 + 0.444972i
\(612\) 0 0
\(613\) 14.9175 + 25.8380i 0.602514 + 1.04359i 0.992439 + 0.122738i \(0.0391676\pi\)
−0.389925 + 0.920847i \(0.627499\pi\)
\(614\) −42.0292 −1.69616
\(615\) 0 0
\(616\) 10.6057 23.7881i 0.427315 0.958449i
\(617\) 18.3807 + 31.8364i 0.739981 + 1.28168i 0.952503 + 0.304529i \(0.0984989\pi\)
−0.212522 + 0.977156i \(0.568168\pi\)
\(618\) 0 0
\(619\) 16.7456 29.0042i 0.673061 1.16578i −0.303970 0.952682i \(-0.598312\pi\)
0.977032 0.213095i \(-0.0683543\pi\)
\(620\) 90.7060 3.64284
\(621\) 0 0
\(622\) 23.4901 40.6861i 0.941869 1.63137i
\(623\) −0.394032 0.542920i −0.0157865 0.0217516i
\(624\) 0 0
\(625\) −18.7970 32.5574i −0.751881 1.30230i
\(626\) 13.8272 + 23.9495i 0.552648 + 0.957214i
\(627\) 0 0
\(628\) 6.60581 11.4416i 0.263600 0.456569i
\(629\) 9.72518 0.387768
\(630\) 0 0
\(631\) −2.53344 4.38805i −0.100855 0.174685i 0.811182 0.584793i \(-0.198824\pi\)
−0.912037 + 0.410108i \(0.865491\pi\)
\(632\) −3.93220 6.81077i −0.156414 0.270918i
\(633\) 0 0
\(634\) 13.4769 + 23.3427i 0.535236 + 0.927056i
\(635\) −12.6392 −0.501571
\(636\) 0 0
\(637\) 23.9477 + 7.96931i 0.948841 + 0.315756i
\(638\) −22.3588 −0.885193
\(639\) 0 0
\(640\) −27.1621 47.0462i −1.07368 1.85966i
\(641\) −23.1304 −0.913596 −0.456798 0.889571i \(-0.651004\pi\)
−0.456798 + 0.889571i \(0.651004\pi\)
\(642\) 0 0
\(643\) 16.5920 + 28.7382i 0.654325 + 1.13332i 0.982063 + 0.188555i \(0.0603804\pi\)
−0.327738 + 0.944769i \(0.606286\pi\)
\(644\) 0.536272 + 0.738907i 0.0211321 + 0.0291170i
\(645\) 0 0
\(646\) −18.9873 + 32.8869i −0.747045 + 1.29392i
\(647\) 11.9951 + 20.7761i 0.471576 + 0.816793i 0.999471 0.0325163i \(-0.0103521\pi\)
−0.527896 + 0.849309i \(0.677019\pi\)
\(648\) 0 0
\(649\) −5.81467 10.0713i −0.228246 0.395333i
\(650\) 74.0105 + 43.3314i 2.90293 + 1.69960i
\(651\) 0 0
\(652\) −22.5180 + 39.0023i −0.881872 + 1.52745i
\(653\) 16.6097 0.649987 0.324994 0.945716i \(-0.394638\pi\)
0.324994 + 0.945716i \(0.394638\pi\)
\(654\) 0 0
\(655\) −6.26809 + 10.8566i −0.244914 + 0.424204i
\(656\) −7.10783 + 12.3111i −0.277514 + 0.480669i
\(657\) 0 0
\(658\) 14.6347 32.8250i 0.570520 1.27965i
\(659\) −9.95720 17.2464i −0.387878 0.671824i 0.604286 0.796767i \(-0.293458\pi\)
−0.992164 + 0.124944i \(0.960125\pi\)
\(660\) 0 0
\(661\) 14.2839 + 24.7405i 0.555581 + 0.962294i 0.997858 + 0.0654159i \(0.0208374\pi\)
−0.442277 + 0.896878i \(0.645829\pi\)
\(662\) 4.82496 8.35707i 0.187527 0.324807i
\(663\) 0 0
\(664\) −25.7625 −0.999779
\(665\) −39.9642 55.0651i −1.54975 2.13533i
\(666\) 0 0
\(667\) 0.117183 0.202968i 0.00453736 0.00785894i
\(668\) −8.65593 + 14.9925i −0.334908 + 0.580078i
\(669\) 0 0
\(670\) −61.2796 + 106.139i −2.36744 + 4.10052i
\(671\) −26.5458 −1.02479
\(672\) 0 0
\(673\) 23.9929 41.5569i 0.924858 1.60190i 0.133069 0.991107i \(-0.457517\pi\)
0.791789 0.610795i \(-0.209150\pi\)
\(674\) −18.1124 −0.697662
\(675\) 0 0
\(676\) −37.0883 0.450505i −1.42647 0.0173271i
\(677\) 14.8127 + 25.6564i 0.569299 + 0.986055i 0.996635 + 0.0819626i \(0.0261188\pi\)
−0.427336 + 0.904093i \(0.640548\pi\)
\(678\) 0 0
\(679\) −13.9325 + 31.2501i −0.534682 + 1.19927i
\(680\) 9.95096 + 17.2356i 0.381602 + 0.660954i
\(681\) 0 0
\(682\) −92.2929 −3.53408
\(683\) 2.52910 0.0967734 0.0483867 0.998829i \(-0.484592\pi\)
0.0483867 + 0.998829i \(0.484592\pi\)
\(684\) 0 0
\(685\) −20.1488 34.8988i −0.769848 1.33342i
\(686\) −38.8223 + 12.5485i −1.48224 + 0.479102i
\(687\) 0 0
\(688\) −1.17381 2.03310i −0.0447511 0.0775112i
\(689\) −2.10263 1.23104i −0.0801038 0.0468989i
\(690\) 0 0
\(691\) 31.1565 1.18525 0.592625 0.805478i \(-0.298091\pi\)
0.592625 + 0.805478i \(0.298091\pi\)
\(692\) 2.03800 3.52992i 0.0774732 0.134187i
\(693\) 0 0
\(694\) 0.155396 0.00589874
\(695\) −9.54525 + 16.5329i −0.362072 + 0.627127i
\(696\) 0 0
\(697\) 12.0938 20.9471i 0.458085 0.793427i
\(698\) −35.8375 + 62.0724i −1.35647 + 2.34947i
\(699\) 0 0
\(700\) −81.0635 + 8.47829i −3.06391 + 0.320449i
\(701\) −12.7508 −0.481591 −0.240795 0.970576i \(-0.577408\pi\)
−0.240795 + 0.970576i \(0.577408\pi\)
\(702\) 0 0
\(703\) −11.8093 + 20.4543i −0.445396 + 0.771449i
\(704\) 33.3861 + 57.8265i 1.25829 + 2.17942i
\(705\) 0 0
\(706\) −7.96229 13.7911i −0.299665 0.519035i
\(707\) −13.8080 + 30.9708i −0.519305 + 1.16478i
\(708\) 0 0
\(709\) 22.5627 39.0797i 0.847359 1.46767i −0.0361978 0.999345i \(-0.511525\pi\)
0.883557 0.468324i \(-0.155142\pi\)
\(710\) 44.9492 77.8542i 1.68691 2.92182i
\(711\) 0 0
\(712\) −0.476553 −0.0178596
\(713\) 0.483711 0.837812i 0.0181151 0.0313763i
\(714\) 0 0
\(715\) −64.7733 37.9232i −2.42238 1.41825i
\(716\) −28.6117 49.5570i −1.06927 1.85203i
\(717\) 0 0
\(718\) −12.1560 21.0547i −0.453656 0.785756i
\(719\) 23.9848 41.5430i 0.894483 1.54929i 0.0600407 0.998196i \(-0.480877\pi\)
0.834443 0.551095i \(-0.185790\pi\)
\(720\) 0 0
\(721\) −0.250536 + 0.561942i −0.00933046 + 0.0209278i
\(722\) −25.1842 43.6203i −0.937258 1.62338i
\(723\) 0 0
\(724\) 37.6844 1.40053
\(725\) 10.4612 + 18.1194i 0.388520 + 0.672936i
\(726\) 0 0
\(727\) −12.5158 −0.464184 −0.232092 0.972694i \(-0.574557\pi\)
−0.232092 + 0.972694i \(0.574557\pi\)
\(728\) 14.5742 10.4429i 0.540155 0.387038i
\(729\) 0 0
\(730\) −6.34632 −0.234888
\(731\) 1.99721 + 3.45927i 0.0738695 + 0.127946i
\(732\) 0 0
\(733\) −14.7048 25.4694i −0.543133 0.940733i −0.998722 0.0505432i \(-0.983905\pi\)
0.455589 0.890190i \(-0.349429\pi\)
\(734\) 13.1270 + 22.7367i 0.484527 + 0.839225i
\(735\) 0 0
\(736\) −0.871842 −0.0321365
\(737\) 36.6564 63.4907i 1.35025 2.33871i
\(738\) 0 0
\(739\) −3.18599 5.51829i −0.117198 0.202994i 0.801458 0.598051i \(-0.204058\pi\)
−0.918656 + 0.395057i \(0.870725\pi\)
\(740\) 20.6977 + 35.8495i 0.760863 + 1.31785i
\(741\) 0 0
\(742\) 3.91735 0.409709i 0.143810 0.0150409i
\(743\) 4.47867 7.75728i 0.164306 0.284587i −0.772102 0.635498i \(-0.780795\pi\)
0.936409 + 0.350911i \(0.114128\pi\)
\(744\) 0 0
\(745\) 21.5421 0.789240
\(746\) 2.92042 5.05832i 0.106924 0.185198i
\(747\) 0 0
\(748\) −19.9065 34.4790i −0.727853 1.26068i
\(749\) −19.0954 26.3108i −0.697731 0.961376i
\(750\) 0 0
\(751\) −47.0191 −1.71575 −0.857875 0.513859i \(-0.828216\pi\)
−0.857875 + 0.513859i \(0.828216\pi\)
\(752\) 4.82746 + 8.36140i 0.176039 + 0.304909i
\(753\) 0 0
\(754\) −13.2825 7.77661i −0.483721 0.283207i
\(755\) −62.1588 −2.26219
\(756\) 0 0
\(757\) 22.4776 38.9324i 0.816963 1.41502i −0.0909467 0.995856i \(-0.528989\pi\)
0.907910 0.419166i \(-0.137677\pi\)
\(758\) −9.64042 + 16.6977i −0.350156 + 0.606488i
\(759\) 0 0
\(760\) −48.3339 −1.75325
\(761\) 3.18724 5.52046i 0.115537 0.200117i −0.802457 0.596710i \(-0.796474\pi\)
0.917994 + 0.396593i \(0.129808\pi\)
\(762\) 0 0
\(763\) 14.8298 1.55102i 0.536874 0.0561508i
\(764\) 0.244798 0.424002i 0.00885647 0.0153399i
\(765\) 0 0
\(766\) 7.62503 13.2069i 0.275503 0.477186i
\(767\) 0.0486182 8.00538i 0.00175550 0.289058i
\(768\) 0 0
\(769\) 17.8057 30.8404i 0.642091 1.11213i −0.342874 0.939381i \(-0.611400\pi\)
0.984965 0.172753i \(-0.0552663\pi\)
\(770\) 120.677 12.6214i 4.34891 0.454845i
\(771\) 0 0
\(772\) −36.2860 62.8492i −1.30596 2.26199i
\(773\) −37.5227 −1.34960 −0.674798 0.738002i \(-0.735769\pi\)
−0.674798 + 0.738002i \(0.735769\pi\)
\(774\) 0 0
\(775\) 43.1819 + 74.7933i 1.55114 + 2.68665i
\(776\) 12.1530 + 21.0496i 0.436267 + 0.755636i
\(777\) 0 0
\(778\) 25.0241 43.3430i 0.897158 1.55392i
\(779\) 29.3710 + 50.8721i 1.05233 + 1.82268i
\(780\) 0 0
\(781\) −26.8878 + 46.5710i −0.962121 + 1.66644i
\(782\) 0.709857 0.0253844
\(783\) 0 0
\(784\) 3.39765 10.4207i 0.121345 0.372168i
\(785\) 18.4044 0.656879
\(786\) 0 0
\(787\) 10.2884 0.366741 0.183370 0.983044i \(-0.441299\pi\)
0.183370 + 0.983044i \(0.441299\pi\)
\(788\) −36.0795 + 62.4916i −1.28528 + 2.22617i
\(789\) 0 0
\(790\) 18.3187 31.7290i 0.651752 1.12887i
\(791\) 13.1848 29.5730i 0.468798 1.05149i
\(792\) 0 0
\(793\) −15.7699 9.23290i −0.560005 0.327870i
\(794\) −27.2754 + 47.2423i −0.967966 + 1.67657i
\(795\) 0 0
\(796\) −48.7982 −1.72961
\(797\) −10.8455 18.7849i −0.384166 0.665394i 0.607487 0.794329i \(-0.292177\pi\)
−0.991653 + 0.128935i \(0.958844\pi\)
\(798\) 0 0
\(799\) −8.21380 14.2267i −0.290583 0.503305i
\(800\) 38.9156 67.4038i 1.37587 2.38308i
\(801\) 0 0
\(802\) 40.6609 1.43579
\(803\) 3.79626 0.133967
\(804\) 0 0
\(805\) −0.517901 + 1.16163i −0.0182536 + 0.0409420i
\(806\) −54.8278 32.1004i −1.93123 1.13069i
\(807\) 0 0
\(808\) 12.0444 + 20.8615i 0.423720 + 0.733905i
\(809\) −14.4693 25.0615i −0.508712 0.881116i −0.999949 0.0100895i \(-0.996788\pi\)
0.491237 0.871026i \(-0.336545\pi\)
\(810\) 0 0
\(811\) 6.27000 0.220169 0.110085 0.993922i \(-0.464888\pi\)
0.110085 + 0.993922i \(0.464888\pi\)
\(812\) 14.5483 1.52158i 0.510545 0.0533971i
\(813\) 0 0
\(814\) −21.0598 36.4766i −0.738146 1.27851i
\(815\) −62.7370 −2.19758
\(816\) 0 0
\(817\) −9.70086 −0.339390
\(818\) 4.00979 0.140199
\(819\) 0 0
\(820\) 102.955 3.59534
\(821\) −50.2787 −1.75474 −0.877369 0.479817i \(-0.840703\pi\)
−0.877369 + 0.479817i \(0.840703\pi\)
\(822\) 0 0
\(823\) −44.7780 −1.56086 −0.780432 0.625241i \(-0.785001\pi\)
−0.780432 + 0.625241i \(0.785001\pi\)
\(824\) 0.218536 + 0.378516i 0.00761307 + 0.0131862i
\(825\) 0 0
\(826\) 7.60139 + 10.4737i 0.264486 + 0.364425i
\(827\) 57.0079 1.98236 0.991180 0.132522i \(-0.0423075\pi\)
0.991180 + 0.132522i \(0.0423075\pi\)
\(828\) 0 0
\(829\) −19.4987 33.7727i −0.677218 1.17298i −0.975815 0.218596i \(-0.929852\pi\)
0.298598 0.954379i \(-0.403481\pi\)
\(830\) −60.0093 103.939i −2.08295 3.60778i
\(831\) 0 0
\(832\) −0.279151 + 45.9646i −0.00967783 + 1.59353i
\(833\) −5.78102 + 17.7305i −0.200300 + 0.614327i
\(834\) 0 0
\(835\) −24.1162 −0.834574
\(836\) 96.6899 3.34409
\(837\) 0 0
\(838\) −2.98880 + 5.17675i −0.103246 + 0.178828i
\(839\) 22.9552 + 39.7596i 0.792502 + 1.37265i 0.924413 + 0.381393i \(0.124555\pi\)
−0.131911 + 0.991262i \(0.542111\pi\)
\(840\) 0 0
\(841\) 12.6225 + 21.8629i 0.435260 + 0.753893i
\(842\) −5.13908 −0.177104
\(843\) 0 0
\(844\) 24.1802 41.8814i 0.832318 1.44162i
\(845\) −25.2893 45.0575i −0.869979 1.55003i
\(846\) 0 0
\(847\) −43.2417 + 4.52258i −1.48580 + 0.155398i
\(848\) −0.529054 + 0.916349i −0.0181678 + 0.0314675i
\(849\) 0 0
\(850\) −31.6852 + 54.8804i −1.08679 + 1.88238i
\(851\) 0.441501 0.0151345
\(852\) 0 0
\(853\) −14.4116 −0.493444 −0.246722 0.969086i \(-0.579353\pi\)
−0.246722 + 0.969086i \(0.579353\pi\)
\(854\) 29.3805 3.07285i 1.00538 0.105151i
\(855\) 0 0
\(856\) −23.0945 −0.789354
\(857\) 8.00884 13.8717i 0.273577 0.473849i −0.696198 0.717849i \(-0.745127\pi\)
0.969775 + 0.244001i \(0.0784600\pi\)
\(858\) 0 0
\(859\) −9.25285 16.0264i −0.315703 0.546814i 0.663884 0.747836i \(-0.268907\pi\)
−0.979587 + 0.201022i \(0.935574\pi\)
\(860\) −8.50116 + 14.7244i −0.289887 + 0.502099i
\(861\) 0 0
\(862\) −9.49252 16.4415i −0.323317 0.560001i
\(863\) −16.5559 28.6757i −0.563570 0.976132i −0.997181 0.0750320i \(-0.976094\pi\)
0.433611 0.901100i \(-0.357239\pi\)
\(864\) 0 0
\(865\) 5.67804 0.193059
\(866\) 5.58182 + 9.66800i 0.189678 + 0.328532i
\(867\) 0 0
\(868\) 60.0527 6.28081i 2.03832 0.213184i
\(869\) −10.9580 + 18.9797i −0.371723 + 0.643843i
\(870\) 0 0
\(871\) 43.8589 24.9680i 1.48610 0.846009i
\(872\) 5.29615 9.17321i 0.179350 0.310644i
\(873\) 0 0
\(874\) −0.861980 + 1.49299i −0.0291569 + 0.0505012i
\(875\) −35.8075 49.3377i −1.21051 1.66792i
\(876\) 0 0
\(877\) −21.9743 + 38.0607i −0.742021 + 1.28522i 0.209553 + 0.977797i \(0.432799\pi\)
−0.951574 + 0.307420i \(0.900534\pi\)
\(878\) −3.19682 −0.107888
\(879\) 0 0
\(880\) −16.2980 + 28.2289i −0.549404 + 0.951596i
\(881\) −15.2635 + 26.4372i −0.514241 + 0.890692i 0.485622 + 0.874169i \(0.338593\pi\)
−0.999863 + 0.0165233i \(0.994740\pi\)
\(882\) 0 0
\(883\) 14.8290 0.499037 0.249518 0.968370i \(-0.419728\pi\)
0.249518 + 0.968370i \(0.419728\pi\)
\(884\) 0.166444 27.4064i 0.00559812 0.921776i
\(885\) 0 0
\(886\) −19.9541 34.5615i −0.670371 1.16112i
\(887\) 22.9865 0.771811 0.385906 0.922538i \(-0.373889\pi\)
0.385906 + 0.922538i \(0.373889\pi\)
\(888\) 0 0
\(889\) −8.36789 + 0.875183i −0.280650 + 0.0293527i
\(890\) −1.11005 1.92266i −0.0372089 0.0644476i
\(891\) 0 0
\(892\) 7.71673 13.3658i 0.258375 0.447519i
\(893\) 39.8961 1.33507
\(894\) 0 0
\(895\) 39.8574 69.0350i 1.33229 2.30759i
\(896\) −21.2406 29.2665i −0.709597 0.977726i
\(897\) 0 0
\(898\) −9.42403 16.3229i −0.314484 0.544702i
\(899\) −7.74978 13.4230i −0.258470 0.447682i
\(900\) 0 0
\(901\) 0.900172 1.55914i 0.0299891 0.0519426i
\(902\) −104.756 −3.48800
\(903\) 0 0
\(904\) −11.5008 19.9199i −0.382510 0.662526i
\(905\) 26.2480 + 45.4628i 0.872512 + 1.51124i
\(906\) 0 0
\(907\) −18.5900 32.1989i −0.617272 1.06915i −0.989981 0.141198i \(-0.954905\pi\)
0.372710 0.927948i \(-0.378429\pi\)
\(908\) 45.4690 1.50894
\(909\) 0 0
\(910\) 76.0798 + 34.4748i 2.52202 + 1.14283i
\(911\) 17.7963 0.589618 0.294809 0.955556i \(-0.404744\pi\)
0.294809 + 0.955556i \(0.404744\pi\)
\(912\) 0 0
\(913\) 35.8965 + 62.1745i 1.18800 + 2.05768i
\(914\) −18.8232 −0.622615
\(915\) 0 0
\(916\) 16.3567 + 28.3306i 0.540440 + 0.936069i
\(917\) −3.39808 + 7.62175i −0.112215 + 0.251692i
\(918\) 0 0
\(919\) 22.6185 39.1763i 0.746114 1.29231i −0.203558 0.979063i \(-0.565251\pi\)
0.949672 0.313245i \(-0.101416\pi\)
\(920\) 0.451751 + 0.782456i 0.0148938 + 0.0257968i
\(921\) 0 0
\(922\) 25.8196 + 44.7209i 0.850324 + 1.47280i
\(923\) −32.1709 + 18.3143i −1.05892 + 0.602822i
\(924\) 0 0
\(925\) −19.7069 + 34.1333i −0.647958 + 1.12230i
\(926\) 50.4962 1.65941
\(927\) 0 0
\(928\) −6.98411 + 12.0968i −0.229265 + 0.397098i
\(929\) −4.54161 + 7.86630i −0.149005 + 0.258085i −0.930860 0.365376i \(-0.880941\pi\)
0.781855 + 0.623461i \(0.214274\pi\)
\(930\) 0 0
\(931\) −30.2716 33.6890i −0.992110 1.10411i
\(932\) 28.0671 + 48.6137i 0.919370 + 1.59239i
\(933\) 0 0
\(934\) −12.8174 22.2004i −0.419399 0.726420i
\(935\) 27.7306 48.0308i 0.906887 1.57077i
\(936\) 0 0
\(937\) −13.3301 −0.435476 −0.217738 0.976007i \(-0.569868\pi\)
−0.217738 + 0.976007i \(0.569868\pi\)
\(938\) −33.2212 + 74.5136i −1.08471 + 2.43296i
\(939\) 0 0
\(940\) 34.9622 60.5563i 1.14034 1.97513i
\(941\) 18.7875 32.5410i 0.612456 1.06080i −0.378369 0.925655i \(-0.623515\pi\)
0.990825 0.135150i \(-0.0431517\pi\)
\(942\) 0 0
\(943\) 0.549031 0.950950i 0.0178789 0.0309672i
\(944\) −3.47660 −0.113154
\(945\) 0 0
\(946\) 8.64989 14.9820i 0.281232 0.487108i
\(947\) −29.1878 −0.948478 −0.474239 0.880396i \(-0.657277\pi\)
−0.474239 + 0.880396i \(0.657277\pi\)
\(948\) 0 0
\(949\) 2.25521 + 1.32037i 0.0732074 + 0.0428612i
\(950\) −76.9508 133.283i −2.49661 4.32426i
\(951\) 0 0
\(952\) 7.78157 + 10.7219i 0.252202 + 0.347499i
\(953\) −7.01755 12.1547i −0.227321 0.393731i 0.729692 0.683775i \(-0.239663\pi\)
−0.957013 + 0.290044i \(0.906330\pi\)
\(954\) 0 0
\(955\) 0.682027 0.0220699
\(956\) −0.548929 −0.0177536
\(957\) 0 0
\(958\) 20.5015 + 35.5097i 0.662375 + 1.14727i
\(959\) −15.7562 21.7099i −0.508795 0.701048i
\(960\) 0 0
\(961\) −16.4896 28.5609i −0.531923 0.921318i
\(962\) 0.176087 28.9942i 0.00567728 0.934811i
\(963\) 0 0
\(964\) 36.0832 1.16216
\(965\) 50.5480 87.5516i 1.62720 2.81839i
\(966\) 0 0
\(967\) −4.76776 −0.153321 −0.0766604 0.997057i \(-0.524426\pi\)
−0.0766604 + 0.997057i \(0.524426\pi\)
\(968\) −15.4429 + 26.7479i −0.496353 + 0.859709i
\(969\) 0 0
\(970\) −56.6165 + 98.0627i −1.81785 + 3.14860i
\(971\) −16.7020 + 28.9288i −0.535994 + 0.928368i 0.463121 + 0.886295i \(0.346730\pi\)
−0.999115 + 0.0420731i \(0.986604\pi\)
\(972\) 0 0
\(973\) −5.17472 + 11.6067i −0.165894 + 0.372092i
\(974\) −66.2568 −2.12301
\(975\) 0 0
\(976\) −3.96795 + 6.87269i −0.127011 + 0.219990i
\(977\) 7.19954 + 12.4700i 0.230334 + 0.398949i 0.957906 0.287081i \(-0.0926849\pi\)
−0.727573 + 0.686031i \(0.759352\pi\)
\(978\) 0 0
\(979\) 0.664011 + 1.15010i 0.0212219 + 0.0367574i
\(980\) −77.6628 + 16.4249i −2.48085 + 0.524674i
\(981\) 0 0
\(982\) −14.3804 + 24.9077i −0.458898 + 0.794835i
\(983\) 9.45401 16.3748i 0.301536 0.522276i −0.674948 0.737865i \(-0.735834\pi\)
0.976484 + 0.215589i \(0.0691673\pi\)
\(984\) 0 0
\(985\) −100.521 −3.20286
\(986\) 5.68649 9.84928i 0.181095 0.313665i
\(987\) 0 0
\(988\) 57.4399 + 33.6297i 1.82741 + 1.06990i
\(989\) 0.0906689 + 0.157043i 0.00288310 + 0.00499368i
\(990\) 0 0
\(991\) 3.03676 + 5.25982i 0.0964659 + 0.167084i 0.910219 0.414126i \(-0.135913\pi\)
−0.813754 + 0.581210i \(0.802579\pi\)
\(992\) −28.8291 + 49.9334i −0.915325 + 1.58539i
\(993\) 0 0
\(994\) 24.3681 54.6565i 0.772908 1.73360i
\(995\) −33.9890 58.8707i −1.07752 1.86633i
\(996\) 0 0
\(997\) −31.6619 −1.00274 −0.501371 0.865232i \(-0.667171\pi\)
−0.501371 + 0.865232i \(0.667171\pi\)
\(998\) 26.7684 + 46.3642i 0.847339 + 1.46763i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.g.802.16 yes 36
3.2 odd 2 inner 819.2.s.g.802.3 yes 36
7.2 even 3 819.2.n.g.100.3 36
13.3 even 3 819.2.n.g.172.3 yes 36
21.2 odd 6 819.2.n.g.100.16 yes 36
39.29 odd 6 819.2.n.g.172.16 yes 36
91.16 even 3 inner 819.2.s.g.289.16 yes 36
273.107 odd 6 inner 819.2.s.g.289.3 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
819.2.n.g.100.3 36 7.2 even 3
819.2.n.g.100.16 yes 36 21.2 odd 6
819.2.n.g.172.3 yes 36 13.3 even 3
819.2.n.g.172.16 yes 36 39.29 odd 6
819.2.s.g.289.3 yes 36 273.107 odd 6 inner
819.2.s.g.289.16 yes 36 91.16 even 3 inner
819.2.s.g.802.3 yes 36 3.2 odd 2 inner
819.2.s.g.802.16 yes 36 1.1 even 1 trivial