Properties

Label 819.2.s.g.289.8
Level $819$
Weight $2$
Character 819.289
Analytic conductor $6.540$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(289,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,44,0,0,4,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.8
Character \(\chi\) \(=\) 819.289
Dual form 819.2.s.g.802.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.883334 q^{2} -1.21972 q^{4} +(-0.803460 + 1.39163i) q^{5} +(0.969010 + 2.46191i) q^{7} +2.84409 q^{8} +(0.709724 - 1.22928i) q^{10} +(2.72405 - 4.71819i) q^{11} +(-3.59111 + 0.322418i) q^{13} +(-0.855960 - 2.17469i) q^{14} -0.0728419 q^{16} +4.79892 q^{17} +(2.78511 + 4.82396i) q^{19} +(0.979997 - 1.69740i) q^{20} +(-2.40625 + 4.16774i) q^{22} -7.52514 q^{23} +(1.20890 + 2.09388i) q^{25} +(3.17215 - 0.284803i) q^{26} +(-1.18192 - 3.00285i) q^{28} +(0.471280 + 0.816281i) q^{29} +(-0.198822 - 0.344370i) q^{31} -5.62384 q^{32} -4.23905 q^{34} +(-4.20464 - 0.629543i) q^{35} -3.86353 q^{37} +(-2.46019 - 4.26117i) q^{38} +(-2.28511 + 3.95793i) q^{40} +(2.37243 + 4.10917i) q^{41} +(-5.30416 + 9.18707i) q^{43} +(-3.32258 + 5.75487i) q^{44} +6.64722 q^{46} +(-0.143183 + 0.247999i) q^{47} +(-5.12204 + 4.77124i) q^{49} +(-1.06787 - 1.84960i) q^{50} +(4.38015 - 0.393259i) q^{52} +(-0.0573682 - 0.0993647i) q^{53} +(4.37733 + 7.58176i) q^{55} +(2.75595 + 7.00190i) q^{56} +(-0.416298 - 0.721049i) q^{58} +9.23340 q^{59} +(5.19136 + 8.99170i) q^{61} +(0.175626 + 0.304194i) q^{62} +5.11341 q^{64} +(2.43662 - 5.25656i) q^{65} +(-2.38954 + 4.13881i) q^{67} -5.85334 q^{68} +(3.71411 + 0.556097i) q^{70} +(-6.93681 + 12.0149i) q^{71} +(-3.63370 - 6.29375i) q^{73} +3.41279 q^{74} +(-3.39706 - 5.88388i) q^{76} +(14.2554 + 2.13440i) q^{77} +(-2.55189 + 4.42000i) q^{79} +(0.0585256 - 0.101369i) q^{80} +(-2.09565 - 3.62977i) q^{82} -2.73115 q^{83} +(-3.85574 + 6.67834i) q^{85} +(4.68535 - 8.11526i) q^{86} +(7.74744 - 13.4190i) q^{88} -4.28738 q^{89} +(-4.27358 - 8.52857i) q^{91} +9.17857 q^{92} +(0.126478 - 0.219066i) q^{94} -8.95091 q^{95} +(0.544831 - 0.943675i) q^{97} +(4.52447 - 4.21460i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 44 q^{4} + 4 q^{7} + 8 q^{10} + 20 q^{16} + 4 q^{19} - 10 q^{22} - 22 q^{25} + 16 q^{28} - 18 q^{31} + 8 q^{34} - 20 q^{37} + 14 q^{40} + 20 q^{43} + 8 q^{46} - 12 q^{49} + 10 q^{52} + 42 q^{55}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.883334 −0.624612 −0.312306 0.949982i \(-0.601101\pi\)
−0.312306 + 0.949982i \(0.601101\pi\)
\(3\) 0 0
\(4\) −1.21972 −0.609860
\(5\) −0.803460 + 1.39163i −0.359318 + 0.622358i −0.987847 0.155429i \(-0.950324\pi\)
0.628529 + 0.777786i \(0.283657\pi\)
\(6\) 0 0
\(7\) 0.969010 + 2.46191i 0.366251 + 0.930516i
\(8\) 2.84409 1.00554
\(9\) 0 0
\(10\) 0.709724 1.22928i 0.224435 0.388732i
\(11\) 2.72405 4.71819i 0.821332 1.42259i −0.0833590 0.996520i \(-0.526565\pi\)
0.904691 0.426069i \(-0.140102\pi\)
\(12\) 0 0
\(13\) −3.59111 + 0.322418i −0.995994 + 0.0894225i
\(14\) −0.855960 2.17469i −0.228765 0.581211i
\(15\) 0 0
\(16\) −0.0728419 −0.0182105
\(17\) 4.79892 1.16391 0.581954 0.813222i \(-0.302288\pi\)
0.581954 + 0.813222i \(0.302288\pi\)
\(18\) 0 0
\(19\) 2.78511 + 4.82396i 0.638949 + 1.10669i 0.985664 + 0.168721i \(0.0539638\pi\)
−0.346715 + 0.937971i \(0.612703\pi\)
\(20\) 0.979997 1.69740i 0.219134 0.379551i
\(21\) 0 0
\(22\) −2.40625 + 4.16774i −0.513013 + 0.888565i
\(23\) −7.52514 −1.56910 −0.784550 0.620065i \(-0.787106\pi\)
−0.784550 + 0.620065i \(0.787106\pi\)
\(24\) 0 0
\(25\) 1.20890 + 2.09388i 0.241781 + 0.418776i
\(26\) 3.17215 0.284803i 0.622109 0.0558544i
\(27\) 0 0
\(28\) −1.18192 3.00285i −0.223362 0.567485i
\(29\) 0.471280 + 0.816281i 0.0875145 + 0.151580i 0.906460 0.422292i \(-0.138774\pi\)
−0.818945 + 0.573871i \(0.805441\pi\)
\(30\) 0 0
\(31\) −0.198822 0.344370i −0.0357095 0.0618506i 0.847618 0.530606i \(-0.178036\pi\)
−0.883328 + 0.468756i \(0.844702\pi\)
\(32\) −5.62384 −0.994163
\(33\) 0 0
\(34\) −4.23905 −0.726991
\(35\) −4.20464 0.629543i −0.710715 0.106412i
\(36\) 0 0
\(37\) −3.86353 −0.635161 −0.317580 0.948231i \(-0.602870\pi\)
−0.317580 + 0.948231i \(0.602870\pi\)
\(38\) −2.46019 4.26117i −0.399095 0.691253i
\(39\) 0 0
\(40\) −2.28511 + 3.95793i −0.361308 + 0.625804i
\(41\) 2.37243 + 4.10917i 0.370511 + 0.641744i 0.989644 0.143542i \(-0.0458492\pi\)
−0.619133 + 0.785286i \(0.712516\pi\)
\(42\) 0 0
\(43\) −5.30416 + 9.18707i −0.808877 + 1.40102i 0.104766 + 0.994497i \(0.466591\pi\)
−0.913643 + 0.406519i \(0.866743\pi\)
\(44\) −3.32258 + 5.75487i −0.500898 + 0.867580i
\(45\) 0 0
\(46\) 6.64722 0.980079
\(47\) −0.143183 + 0.247999i −0.0208853 + 0.0361744i −0.876279 0.481804i \(-0.839982\pi\)
0.855394 + 0.517978i \(0.173315\pi\)
\(48\) 0 0
\(49\) −5.12204 + 4.77124i −0.731720 + 0.681605i
\(50\) −1.06787 1.84960i −0.151019 0.261573i
\(51\) 0 0
\(52\) 4.38015 0.393259i 0.607417 0.0545352i
\(53\) −0.0573682 0.0993647i −0.00788013 0.0136488i 0.862058 0.506809i \(-0.169175\pi\)
−0.869939 + 0.493160i \(0.835842\pi\)
\(54\) 0 0
\(55\) 4.37733 + 7.58176i 0.590239 + 1.02232i
\(56\) 2.75595 + 7.00190i 0.368279 + 0.935669i
\(57\) 0 0
\(58\) −0.416298 0.721049i −0.0546626 0.0946784i
\(59\) 9.23340 1.20209 0.601043 0.799217i \(-0.294752\pi\)
0.601043 + 0.799217i \(0.294752\pi\)
\(60\) 0 0
\(61\) 5.19136 + 8.99170i 0.664686 + 1.15127i 0.979370 + 0.202073i \(0.0647678\pi\)
−0.314685 + 0.949196i \(0.601899\pi\)
\(62\) 0.175626 + 0.304194i 0.0223046 + 0.0386326i
\(63\) 0 0
\(64\) 5.11341 0.639176
\(65\) 2.43662 5.25656i 0.302226 0.651996i
\(66\) 0 0
\(67\) −2.38954 + 4.13881i −0.291929 + 0.505636i −0.974266 0.225402i \(-0.927630\pi\)
0.682337 + 0.731038i \(0.260964\pi\)
\(68\) −5.85334 −0.709821
\(69\) 0 0
\(70\) 3.71411 + 0.556097i 0.443921 + 0.0664663i
\(71\) −6.93681 + 12.0149i −0.823248 + 1.42591i 0.0800027 + 0.996795i \(0.474507\pi\)
−0.903251 + 0.429113i \(0.858826\pi\)
\(72\) 0 0
\(73\) −3.63370 6.29375i −0.425292 0.736628i 0.571156 0.820842i \(-0.306495\pi\)
−0.996448 + 0.0842143i \(0.973162\pi\)
\(74\) 3.41279 0.396729
\(75\) 0 0
\(76\) −3.39706 5.88388i −0.389669 0.674927i
\(77\) 14.2554 + 2.13440i 1.62456 + 0.243237i
\(78\) 0 0
\(79\) −2.55189 + 4.42000i −0.287110 + 0.497289i −0.973119 0.230304i \(-0.926028\pi\)
0.686009 + 0.727593i \(0.259361\pi\)
\(80\) 0.0585256 0.101369i 0.00654336 0.0113334i
\(81\) 0 0
\(82\) −2.09565 3.62977i −0.231426 0.400841i
\(83\) −2.73115 −0.299782 −0.149891 0.988703i \(-0.547892\pi\)
−0.149891 + 0.988703i \(0.547892\pi\)
\(84\) 0 0
\(85\) −3.85574 + 6.67834i −0.418214 + 0.724367i
\(86\) 4.68535 8.11526i 0.505234 0.875091i
\(87\) 0 0
\(88\) 7.74744 13.4190i 0.825880 1.43047i
\(89\) −4.28738 −0.454461 −0.227230 0.973841i \(-0.572967\pi\)
−0.227230 + 0.973841i \(0.572967\pi\)
\(90\) 0 0
\(91\) −4.27358 8.52857i −0.447993 0.894037i
\(92\) 9.17857 0.956932
\(93\) 0 0
\(94\) 0.126478 0.219066i 0.0130452 0.0225950i
\(95\) −8.95091 −0.918344
\(96\) 0 0
\(97\) 0.544831 0.943675i 0.0553192 0.0958157i −0.837040 0.547142i \(-0.815716\pi\)
0.892359 + 0.451326i \(0.149049\pi\)
\(98\) 4.52447 4.21460i 0.457041 0.425739i
\(99\) 0 0
\(100\) −1.47452 2.55395i −0.147452 0.255395i
\(101\) −4.59397 + 7.95699i −0.457117 + 0.791750i −0.998807 0.0488281i \(-0.984451\pi\)
0.541690 + 0.840578i \(0.317785\pi\)
\(102\) 0 0
\(103\) 7.28534 12.6186i 0.717846 1.24335i −0.244006 0.969774i \(-0.578462\pi\)
0.961852 0.273571i \(-0.0882050\pi\)
\(104\) −10.2134 + 0.916984i −1.00151 + 0.0899177i
\(105\) 0 0
\(106\) 0.0506753 + 0.0877723i 0.00492202 + 0.00852520i
\(107\) 0.290702 0.0281032 0.0140516 0.999901i \(-0.495527\pi\)
0.0140516 + 0.999901i \(0.495527\pi\)
\(108\) 0 0
\(109\) 1.08666 + 1.88215i 0.104083 + 0.180278i 0.913363 0.407145i \(-0.133476\pi\)
−0.809280 + 0.587423i \(0.800142\pi\)
\(110\) −3.86665 6.69723i −0.368670 0.638556i
\(111\) 0 0
\(112\) −0.0705845 0.179331i −0.00666961 0.0169451i
\(113\) 6.13563 10.6272i 0.577191 0.999725i −0.418609 0.908167i \(-0.637482\pi\)
0.995800 0.0915578i \(-0.0291846\pi\)
\(114\) 0 0
\(115\) 6.04615 10.4722i 0.563807 0.976542i
\(116\) −0.574830 0.995635i −0.0533716 0.0924424i
\(117\) 0 0
\(118\) −8.15618 −0.750837
\(119\) 4.65020 + 11.8145i 0.426283 + 1.08304i
\(120\) 0 0
\(121\) −9.34089 16.1789i −0.849172 1.47081i
\(122\) −4.58571 7.94268i −0.415170 0.719096i
\(123\) 0 0
\(124\) 0.242507 + 0.420035i 0.0217778 + 0.0377202i
\(125\) −11.9198 −1.06614
\(126\) 0 0
\(127\) 3.64434 + 6.31219i 0.323383 + 0.560116i 0.981184 0.193076i \(-0.0618464\pi\)
−0.657801 + 0.753192i \(0.728513\pi\)
\(128\) 6.73082 0.594926
\(129\) 0 0
\(130\) −2.15235 + 4.64330i −0.188774 + 0.407244i
\(131\) −10.5108 + 18.2052i −0.918329 + 1.59059i −0.116376 + 0.993205i \(0.537128\pi\)
−0.801953 + 0.597388i \(0.796205\pi\)
\(132\) 0 0
\(133\) −9.17737 + 11.5312i −0.795779 + 0.999879i
\(134\) 2.11077 3.65595i 0.182342 0.315826i
\(135\) 0 0
\(136\) 13.6485 1.17035
\(137\) −0.545710 −0.0466232 −0.0233116 0.999728i \(-0.507421\pi\)
−0.0233116 + 0.999728i \(0.507421\pi\)
\(138\) 0 0
\(139\) 1.17958 2.04308i 0.100050 0.173292i −0.811655 0.584137i \(-0.801433\pi\)
0.911705 + 0.410845i \(0.134766\pi\)
\(140\) 5.12849 + 0.767866i 0.433437 + 0.0648965i
\(141\) 0 0
\(142\) 6.12753 10.6132i 0.514210 0.890639i
\(143\) −8.26112 + 17.8218i −0.690830 + 1.49033i
\(144\) 0 0
\(145\) −1.51462 −0.125782
\(146\) 3.20977 + 5.55948i 0.265642 + 0.460106i
\(147\) 0 0
\(148\) 4.71243 0.387359
\(149\) 7.50416 + 12.9976i 0.614765 + 1.06480i 0.990426 + 0.138047i \(0.0440824\pi\)
−0.375661 + 0.926757i \(0.622584\pi\)
\(150\) 0 0
\(151\) −3.49582 6.05495i −0.284486 0.492744i 0.687998 0.725712i \(-0.258490\pi\)
−0.972484 + 0.232968i \(0.925156\pi\)
\(152\) 7.92111 + 13.7198i 0.642487 + 1.11282i
\(153\) 0 0
\(154\) −12.5923 1.88539i −1.01472 0.151929i
\(155\) 0.638982 0.0513243
\(156\) 0 0
\(157\) 2.04859 + 3.54826i 0.163495 + 0.283182i 0.936120 0.351681i \(-0.114390\pi\)
−0.772625 + 0.634863i \(0.781057\pi\)
\(158\) 2.25417 3.90434i 0.179332 0.310612i
\(159\) 0 0
\(160\) 4.51853 7.82632i 0.357221 0.618725i
\(161\) −7.29194 18.5263i −0.574685 1.46007i
\(162\) 0 0
\(163\) −1.29159 2.23711i −0.101166 0.175224i 0.811000 0.585047i \(-0.198924\pi\)
−0.912165 + 0.409823i \(0.865590\pi\)
\(164\) −2.89370 5.01203i −0.225960 0.391374i
\(165\) 0 0
\(166\) 2.41252 0.187248
\(167\) −9.57784 16.5893i −0.741155 1.28372i −0.951970 0.306193i \(-0.900945\pi\)
0.210814 0.977526i \(-0.432389\pi\)
\(168\) 0 0
\(169\) 12.7921 2.31567i 0.984007 0.178129i
\(170\) 3.40591 5.89920i 0.261221 0.452448i
\(171\) 0 0
\(172\) 6.46959 11.2057i 0.493302 0.854424i
\(173\) −3.56228 6.17004i −0.270835 0.469100i 0.698241 0.715863i \(-0.253966\pi\)
−0.969076 + 0.246763i \(0.920633\pi\)
\(174\) 0 0
\(175\) −3.98352 + 5.00521i −0.301126 + 0.378358i
\(176\) −0.198425 + 0.343682i −0.0149568 + 0.0259060i
\(177\) 0 0
\(178\) 3.78719 0.283862
\(179\) 12.1275 21.0054i 0.906450 1.57002i 0.0874919 0.996165i \(-0.472115\pi\)
0.818958 0.573853i \(-0.194552\pi\)
\(180\) 0 0
\(181\) 21.6218 1.60714 0.803569 0.595212i \(-0.202932\pi\)
0.803569 + 0.595212i \(0.202932\pi\)
\(182\) 3.77500 + 7.53358i 0.279822 + 0.558426i
\(183\) 0 0
\(184\) −21.4022 −1.57779
\(185\) 3.10419 5.37662i 0.228225 0.395297i
\(186\) 0 0
\(187\) 13.0725 22.6422i 0.955955 1.65576i
\(188\) 0.174643 0.302490i 0.0127371 0.0220613i
\(189\) 0 0
\(190\) 7.90665 0.573609
\(191\) −1.77703 3.07790i −0.128581 0.222709i 0.794546 0.607204i \(-0.207709\pi\)
−0.923127 + 0.384495i \(0.874376\pi\)
\(192\) 0 0
\(193\) −9.27331 + 16.0618i −0.667507 + 1.15616i 0.311091 + 0.950380i \(0.399305\pi\)
−0.978599 + 0.205777i \(0.934028\pi\)
\(194\) −0.481268 + 0.833581i −0.0345530 + 0.0598476i
\(195\) 0 0
\(196\) 6.24746 5.81958i 0.446247 0.415684i
\(197\) −5.77712 10.0063i −0.411603 0.712917i 0.583462 0.812140i \(-0.301698\pi\)
−0.995065 + 0.0992233i \(0.968364\pi\)
\(198\) 0 0
\(199\) 3.48474 0.247026 0.123513 0.992343i \(-0.460584\pi\)
0.123513 + 0.992343i \(0.460584\pi\)
\(200\) 3.43823 + 5.95519i 0.243119 + 0.421095i
\(201\) 0 0
\(202\) 4.05801 7.02869i 0.285521 0.494537i
\(203\) −1.55294 + 1.95124i −0.108995 + 0.136950i
\(204\) 0 0
\(205\) −7.62461 −0.532526
\(206\) −6.43539 + 11.1464i −0.448375 + 0.776608i
\(207\) 0 0
\(208\) 0.261583 0.0234855i 0.0181375 0.00162843i
\(209\) 30.3471 2.09916
\(210\) 0 0
\(211\) 8.69054 + 15.0525i 0.598282 + 1.03625i 0.993075 + 0.117484i \(0.0374829\pi\)
−0.394793 + 0.918770i \(0.629184\pi\)
\(212\) 0.0699732 + 0.121197i 0.00480578 + 0.00832386i
\(213\) 0 0
\(214\) −0.256787 −0.0175536
\(215\) −8.52336 14.7629i −0.581289 1.00682i
\(216\) 0 0
\(217\) 0.655148 0.823180i 0.0444744 0.0558811i
\(218\) −0.959886 1.66257i −0.0650117 0.112604i
\(219\) 0 0
\(220\) −5.33912 9.24763i −0.359963 0.623475i
\(221\) −17.2334 + 1.54725i −1.15925 + 0.104080i
\(222\) 0 0
\(223\) −12.3847 21.4509i −0.829341 1.43646i −0.898556 0.438859i \(-0.855383\pi\)
0.0692152 0.997602i \(-0.477950\pi\)
\(224\) −5.44955 13.8454i −0.364114 0.925085i
\(225\) 0 0
\(226\) −5.41981 + 9.38739i −0.360520 + 0.624440i
\(227\) 1.77646 0.117908 0.0589538 0.998261i \(-0.481224\pi\)
0.0589538 + 0.998261i \(0.481224\pi\)
\(228\) 0 0
\(229\) −11.5552 + 20.0142i −0.763589 + 1.32258i 0.177400 + 0.984139i \(0.443231\pi\)
−0.940989 + 0.338437i \(0.890102\pi\)
\(230\) −5.34078 + 9.25050i −0.352160 + 0.609960i
\(231\) 0 0
\(232\) 1.34036 + 2.32158i 0.0879991 + 0.152419i
\(233\) −12.6393 + 21.8920i −0.828031 + 1.43419i 0.0715498 + 0.997437i \(0.477206\pi\)
−0.899581 + 0.436755i \(0.856128\pi\)
\(234\) 0 0
\(235\) −0.230083 0.398515i −0.0150090 0.0259963i
\(236\) −11.2622 −0.733104
\(237\) 0 0
\(238\) −4.10768 10.4362i −0.266261 0.676476i
\(239\) 21.6715 1.40181 0.700906 0.713254i \(-0.252779\pi\)
0.700906 + 0.713254i \(0.252779\pi\)
\(240\) 0 0
\(241\) 16.6386 1.07179 0.535894 0.844285i \(-0.319975\pi\)
0.535894 + 0.844285i \(0.319975\pi\)
\(242\) 8.25113 + 14.2914i 0.530403 + 0.918684i
\(243\) 0 0
\(244\) −6.33201 10.9674i −0.405365 0.702113i
\(245\) −2.52446 10.9615i −0.161282 0.700305i
\(246\) 0 0
\(247\) −11.5570 16.4254i −0.735352 1.04512i
\(248\) −0.565468 0.979419i −0.0359072 0.0621932i
\(249\) 0 0
\(250\) 10.5292 0.665925
\(251\) 14.3915 24.9268i 0.908384 1.57337i 0.0920752 0.995752i \(-0.470650\pi\)
0.816309 0.577616i \(-0.196017\pi\)
\(252\) 0 0
\(253\) −20.4989 + 35.5051i −1.28875 + 2.23218i
\(254\) −3.21917 5.57577i −0.201989 0.349855i
\(255\) 0 0
\(256\) −16.1724 −1.01077
\(257\) 30.3644 1.89408 0.947038 0.321121i \(-0.104059\pi\)
0.947038 + 0.321121i \(0.104059\pi\)
\(258\) 0 0
\(259\) −3.74380 9.51168i −0.232628 0.591027i
\(260\) −2.97200 + 6.41153i −0.184316 + 0.397626i
\(261\) 0 0
\(262\) 9.28451 16.0812i 0.573599 0.993503i
\(263\) 9.30715 16.1204i 0.573903 0.994030i −0.422257 0.906476i \(-0.638762\pi\)
0.996160 0.0875532i \(-0.0279048\pi\)
\(264\) 0 0
\(265\) 0.184372 0.0113259
\(266\) 8.10668 10.1859i 0.497053 0.624536i
\(267\) 0 0
\(268\) 2.91457 5.04819i 0.178036 0.308367i
\(269\) 0.0363342 0.00221534 0.00110767 0.999999i \(-0.499647\pi\)
0.00110767 + 0.999999i \(0.499647\pi\)
\(270\) 0 0
\(271\) 11.0401 0.670636 0.335318 0.942105i \(-0.391156\pi\)
0.335318 + 0.942105i \(0.391156\pi\)
\(272\) −0.349562 −0.0211953
\(273\) 0 0
\(274\) 0.482045 0.0291214
\(275\) 13.1724 0.794328
\(276\) 0 0
\(277\) 19.6810 1.18252 0.591258 0.806482i \(-0.298631\pi\)
0.591258 + 0.806482i \(0.298631\pi\)
\(278\) −1.04196 + 1.80473i −0.0624926 + 0.108240i
\(279\) 0 0
\(280\) −11.9584 1.79048i −0.714650 0.107001i
\(281\) −23.2580 −1.38746 −0.693729 0.720236i \(-0.744033\pi\)
−0.693729 + 0.720236i \(0.744033\pi\)
\(282\) 0 0
\(283\) 1.33837 2.31813i 0.0795581 0.137799i −0.823501 0.567314i \(-0.807982\pi\)
0.903059 + 0.429516i \(0.141316\pi\)
\(284\) 8.46097 14.6548i 0.502066 0.869604i
\(285\) 0 0
\(286\) 7.29734 15.7426i 0.431500 0.930881i
\(287\) −7.81751 + 9.82254i −0.461453 + 0.579806i
\(288\) 0 0
\(289\) 6.02960 0.354682
\(290\) 1.33792 0.0785651
\(291\) 0 0
\(292\) 4.43209 + 7.67661i 0.259369 + 0.449240i
\(293\) −12.8781 + 22.3056i −0.752349 + 1.30311i 0.194333 + 0.980936i \(0.437746\pi\)
−0.946682 + 0.322170i \(0.895588\pi\)
\(294\) 0 0
\(295\) −7.41867 + 12.8495i −0.431932 + 0.748128i
\(296\) −10.9882 −0.638678
\(297\) 0 0
\(298\) −6.62868 11.4812i −0.383989 0.665089i
\(299\) 27.0236 2.42624i 1.56281 0.140313i
\(300\) 0 0
\(301\) −27.7576 4.15602i −1.59992 0.239549i
\(302\) 3.08798 + 5.34854i 0.177693 + 0.307774i
\(303\) 0 0
\(304\) −0.202873 0.351386i −0.0116356 0.0201534i
\(305\) −16.6842 −0.955335
\(306\) 0 0
\(307\) 17.3467 0.990028 0.495014 0.868885i \(-0.335163\pi\)
0.495014 + 0.868885i \(0.335163\pi\)
\(308\) −17.3876 2.60337i −0.990751 0.148341i
\(309\) 0 0
\(310\) −0.564435 −0.0320578
\(311\) 8.58893 + 14.8765i 0.487034 + 0.843567i 0.999889 0.0149083i \(-0.00474562\pi\)
−0.512855 + 0.858475i \(0.671412\pi\)
\(312\) 0 0
\(313\) −1.53678 + 2.66179i −0.0868641 + 0.150453i −0.906184 0.422884i \(-0.861018\pi\)
0.819320 + 0.573337i \(0.194351\pi\)
\(314\) −1.80959 3.13430i −0.102121 0.176879i
\(315\) 0 0
\(316\) 3.11259 5.39116i 0.175097 0.303277i
\(317\) −1.19776 + 2.07459i −0.0672731 + 0.116520i −0.897700 0.440607i \(-0.854763\pi\)
0.830427 + 0.557128i \(0.188097\pi\)
\(318\) 0 0
\(319\) 5.13516 0.287514
\(320\) −4.10842 + 7.11600i −0.229668 + 0.397796i
\(321\) 0 0
\(322\) 6.44122 + 16.3649i 0.358955 + 0.911979i
\(323\) 13.3655 + 23.1498i 0.743678 + 1.28809i
\(324\) 0 0
\(325\) −5.01640 7.12958i −0.278260 0.395478i
\(326\) 1.14091 + 1.97611i 0.0631892 + 0.109447i
\(327\) 0 0
\(328\) 6.74740 + 11.6868i 0.372563 + 0.645298i
\(329\) −0.749298 0.112189i −0.0413102 0.00618519i
\(330\) 0 0
\(331\) 12.3711 + 21.4274i 0.679977 + 1.17775i 0.974987 + 0.222261i \(0.0713436\pi\)
−0.295010 + 0.955494i \(0.595323\pi\)
\(332\) 3.33124 0.182825
\(333\) 0 0
\(334\) 8.46044 + 14.6539i 0.462934 + 0.801826i
\(335\) −3.83981 6.65074i −0.209791 0.363369i
\(336\) 0 0
\(337\) 25.9308 1.41254 0.706271 0.707941i \(-0.250376\pi\)
0.706271 + 0.707941i \(0.250376\pi\)
\(338\) −11.2997 + 2.04551i −0.614622 + 0.111261i
\(339\) 0 0
\(340\) 4.70292 8.14570i 0.255052 0.441763i
\(341\) −2.16640 −0.117317
\(342\) 0 0
\(343\) −16.7097 7.98664i −0.902238 0.431238i
\(344\) −15.0855 + 26.1289i −0.813356 + 1.40877i
\(345\) 0 0
\(346\) 3.14668 + 5.45021i 0.169167 + 0.293005i
\(347\) −14.5655 −0.781919 −0.390959 0.920408i \(-0.627857\pi\)
−0.390959 + 0.920408i \(0.627857\pi\)
\(348\) 0 0
\(349\) 2.29742 + 3.97924i 0.122978 + 0.213004i 0.920941 0.389703i \(-0.127422\pi\)
−0.797963 + 0.602707i \(0.794089\pi\)
\(350\) 3.51878 4.42127i 0.188087 0.236327i
\(351\) 0 0
\(352\) −15.3196 + 26.5343i −0.816538 + 1.41428i
\(353\) 0.425776 0.737465i 0.0226618 0.0392513i −0.854472 0.519497i \(-0.826119\pi\)
0.877134 + 0.480246i \(0.159453\pi\)
\(354\) 0 0
\(355\) −11.1469 19.3070i −0.591616 1.02471i
\(356\) 5.22940 0.277158
\(357\) 0 0
\(358\) −10.7126 + 18.5548i −0.566180 + 0.980652i
\(359\) −4.81661 + 8.34262i −0.254211 + 0.440307i −0.964681 0.263421i \(-0.915149\pi\)
0.710470 + 0.703728i \(0.248482\pi\)
\(360\) 0 0
\(361\) −6.01371 + 10.4161i −0.316511 + 0.548214i
\(362\) −19.0993 −1.00384
\(363\) 0 0
\(364\) 5.21257 + 10.4025i 0.273213 + 0.545238i
\(365\) 11.6781 0.611261
\(366\) 0 0
\(367\) 12.1901 21.1138i 0.636316 1.10213i −0.349919 0.936780i \(-0.613791\pi\)
0.986235 0.165351i \(-0.0528758\pi\)
\(368\) 0.548146 0.0285741
\(369\) 0 0
\(370\) −2.74204 + 4.74935i −0.142552 + 0.246907i
\(371\) 0.189037 0.237521i 0.00981431 0.0123315i
\(372\) 0 0
\(373\) 8.85917 + 15.3445i 0.458710 + 0.794510i 0.998893 0.0470380i \(-0.0149782\pi\)
−0.540183 + 0.841548i \(0.681645\pi\)
\(374\) −11.5474 + 20.0006i −0.597101 + 1.03421i
\(375\) 0 0
\(376\) −0.407224 + 0.705333i −0.0210010 + 0.0363747i
\(377\) −1.95560 2.77940i −0.100719 0.143147i
\(378\) 0 0
\(379\) −0.0992792 0.171957i −0.00509963 0.00883282i 0.863464 0.504410i \(-0.168290\pi\)
−0.868564 + 0.495577i \(0.834957\pi\)
\(380\) 10.9176 0.560062
\(381\) 0 0
\(382\) 1.56971 + 2.71881i 0.0803132 + 0.139107i
\(383\) −14.7402 25.5308i −0.753191 1.30456i −0.946269 0.323381i \(-0.895180\pi\)
0.193078 0.981183i \(-0.438153\pi\)
\(384\) 0 0
\(385\) −14.4240 + 18.1234i −0.735113 + 0.923655i
\(386\) 8.19143 14.1880i 0.416933 0.722149i
\(387\) 0 0
\(388\) −0.664542 + 1.15102i −0.0337370 + 0.0584342i
\(389\) −4.94238 8.56045i −0.250589 0.434032i 0.713099 0.701063i \(-0.247291\pi\)
−0.963688 + 0.267031i \(0.913957\pi\)
\(390\) 0 0
\(391\) −36.1125 −1.82629
\(392\) −14.5675 + 13.5698i −0.735772 + 0.685380i
\(393\) 0 0
\(394\) 5.10313 + 8.83888i 0.257092 + 0.445296i
\(395\) −4.10068 7.10259i −0.206328 0.357370i
\(396\) 0 0
\(397\) 6.17210 + 10.6904i 0.309769 + 0.536535i 0.978312 0.207138i \(-0.0664151\pi\)
−0.668543 + 0.743673i \(0.733082\pi\)
\(398\) −3.07819 −0.154296
\(399\) 0 0
\(400\) −0.0880588 0.152522i −0.00440294 0.00762612i
\(401\) 6.81721 0.340435 0.170218 0.985407i \(-0.445553\pi\)
0.170218 + 0.985407i \(0.445553\pi\)
\(402\) 0 0
\(403\) 0.825022 + 1.17257i 0.0410973 + 0.0584096i
\(404\) 5.60336 9.70530i 0.278778 0.482857i
\(405\) 0 0
\(406\) 1.37176 1.72359i 0.0680795 0.0855405i
\(407\) −10.5244 + 18.2289i −0.521678 + 0.903572i
\(408\) 0 0
\(409\) −4.79971 −0.237330 −0.118665 0.992934i \(-0.537862\pi\)
−0.118665 + 0.992934i \(0.537862\pi\)
\(410\) 6.73508 0.332622
\(411\) 0 0
\(412\) −8.88607 + 15.3911i −0.437785 + 0.758267i
\(413\) 8.94725 + 22.7318i 0.440266 + 1.11856i
\(414\) 0 0
\(415\) 2.19437 3.80076i 0.107717 0.186572i
\(416\) 20.1958 1.81322i 0.990180 0.0889006i
\(417\) 0 0
\(418\) −26.8067 −1.31116
\(419\) −3.90401 6.76195i −0.190724 0.330343i 0.754767 0.655993i \(-0.227750\pi\)
−0.945490 + 0.325651i \(0.894417\pi\)
\(420\) 0 0
\(421\) −6.33152 −0.308579 −0.154290 0.988026i \(-0.549309\pi\)
−0.154290 + 0.988026i \(0.549309\pi\)
\(422\) −7.67666 13.2964i −0.373694 0.647257i
\(423\) 0 0
\(424\) −0.163160 0.282602i −0.00792377 0.0137244i
\(425\) 5.80142 + 10.0484i 0.281410 + 0.487417i
\(426\) 0 0
\(427\) −17.1063 + 21.4937i −0.827832 + 1.04015i
\(428\) −0.354575 −0.0171390
\(429\) 0 0
\(430\) 7.52898 + 13.0406i 0.363080 + 0.628872i
\(431\) −1.70489 + 2.95296i −0.0821218 + 0.142239i −0.904161 0.427192i \(-0.859503\pi\)
0.822039 + 0.569431i \(0.192836\pi\)
\(432\) 0 0
\(433\) −7.48575 + 12.9657i −0.359742 + 0.623092i −0.987918 0.154980i \(-0.950469\pi\)
0.628175 + 0.778072i \(0.283802\pi\)
\(434\) −0.578715 + 0.727144i −0.0277792 + 0.0349040i
\(435\) 0 0
\(436\) −1.32542 2.29570i −0.0634763 0.109944i
\(437\) −20.9584 36.3010i −1.00258 1.73651i
\(438\) 0 0
\(439\) 22.9999 1.09773 0.548863 0.835913i \(-0.315061\pi\)
0.548863 + 0.835913i \(0.315061\pi\)
\(440\) 12.4495 + 21.5632i 0.593508 + 1.02799i
\(441\) 0 0
\(442\) 15.2229 1.36674i 0.724078 0.0650094i
\(443\) 8.44703 14.6307i 0.401331 0.695125i −0.592556 0.805529i \(-0.701881\pi\)
0.993887 + 0.110404i \(0.0352145\pi\)
\(444\) 0 0
\(445\) 3.44474 5.96646i 0.163296 0.282837i
\(446\) 10.9398 + 18.9483i 0.518016 + 0.897230i
\(447\) 0 0
\(448\) 4.95495 + 12.5888i 0.234099 + 0.594764i
\(449\) 7.11000 12.3149i 0.335542 0.581175i −0.648047 0.761600i \(-0.724414\pi\)
0.983589 + 0.180425i \(0.0577473\pi\)
\(450\) 0 0
\(451\) 25.8505 1.21725
\(452\) −7.48375 + 12.9622i −0.352006 + 0.609692i
\(453\) 0 0
\(454\) −1.56920 −0.0736464
\(455\) 15.3023 + 0.905104i 0.717383 + 0.0424319i
\(456\) 0 0
\(457\) −30.2116 −1.41324 −0.706619 0.707594i \(-0.749780\pi\)
−0.706619 + 0.707594i \(0.749780\pi\)
\(458\) 10.2071 17.6792i 0.476947 0.826096i
\(459\) 0 0
\(460\) −7.37462 + 12.7732i −0.343843 + 0.595554i
\(461\) 1.39657 2.41893i 0.0650447 0.112661i −0.831669 0.555272i \(-0.812614\pi\)
0.896714 + 0.442611i \(0.145948\pi\)
\(462\) 0 0
\(463\) −30.4337 −1.41437 −0.707186 0.707027i \(-0.750036\pi\)
−0.707186 + 0.707027i \(0.750036\pi\)
\(464\) −0.0343289 0.0594595i −0.00159368 0.00276034i
\(465\) 0 0
\(466\) 11.1648 19.3379i 0.517198 0.895813i
\(467\) 1.78815 3.09716i 0.0827456 0.143320i −0.821683 0.569945i \(-0.806964\pi\)
0.904428 + 0.426626i \(0.140298\pi\)
\(468\) 0 0
\(469\) −12.5049 1.87230i −0.577422 0.0864548i
\(470\) 0.203240 + 0.352022i 0.00937477 + 0.0162376i
\(471\) 0 0
\(472\) 26.2606 1.20874
\(473\) 28.8976 + 50.0521i 1.32871 + 2.30140i
\(474\) 0 0
\(475\) −6.73386 + 11.6634i −0.308971 + 0.535153i
\(476\) −5.67194 14.4104i −0.259973 0.660500i
\(477\) 0 0
\(478\) −19.1432 −0.875588
\(479\) 12.8645 22.2820i 0.587795 1.01809i −0.406725 0.913551i \(-0.633329\pi\)
0.994521 0.104541i \(-0.0333373\pi\)
\(480\) 0 0
\(481\) 13.8744 1.24567i 0.632616 0.0567977i
\(482\) −14.6975 −0.669452
\(483\) 0 0
\(484\) 11.3933 + 19.7337i 0.517876 + 0.896988i
\(485\) 0.875501 + 1.51641i 0.0397544 + 0.0688567i
\(486\) 0 0
\(487\) −22.6393 −1.02589 −0.512943 0.858423i \(-0.671445\pi\)
−0.512943 + 0.858423i \(0.671445\pi\)
\(488\) 14.7647 + 25.5732i 0.668366 + 1.15764i
\(489\) 0 0
\(490\) 2.22994 + 9.68268i 0.100739 + 0.437419i
\(491\) −15.4236 26.7144i −0.696057 1.20561i −0.969823 0.243810i \(-0.921603\pi\)
0.273766 0.961796i \(-0.411731\pi\)
\(492\) 0 0
\(493\) 2.26163 + 3.91726i 0.101859 + 0.176425i
\(494\) 10.2087 + 14.5091i 0.459310 + 0.652795i
\(495\) 0 0
\(496\) 0.0144826 + 0.0250846i 0.000650287 + 0.00112633i
\(497\) −36.3015 5.43527i −1.62835 0.243805i
\(498\) 0 0
\(499\) 8.82877 15.2919i 0.395230 0.684558i −0.597901 0.801570i \(-0.703998\pi\)
0.993131 + 0.117012i \(0.0373316\pi\)
\(500\) 14.5389 0.650197
\(501\) 0 0
\(502\) −12.7125 + 22.0187i −0.567387 + 0.982744i
\(503\) −8.29312 + 14.3641i −0.369772 + 0.640464i −0.989530 0.144329i \(-0.953897\pi\)
0.619758 + 0.784793i \(0.287231\pi\)
\(504\) 0 0
\(505\) −7.38215 12.7863i −0.328501 0.568981i
\(506\) 18.1074 31.3629i 0.804970 1.39425i
\(507\) 0 0
\(508\) −4.44508 7.69911i −0.197219 0.341593i
\(509\) −6.15538 −0.272833 −0.136416 0.990652i \(-0.543558\pi\)
−0.136416 + 0.990652i \(0.543558\pi\)
\(510\) 0 0
\(511\) 11.9736 15.0446i 0.529680 0.665532i
\(512\) 0.823989 0.0364155
\(513\) 0 0
\(514\) −26.8219 −1.18306
\(515\) 11.7070 + 20.2770i 0.515870 + 0.893514i
\(516\) 0 0
\(517\) 0.780072 + 1.35113i 0.0343075 + 0.0594224i
\(518\) 3.30703 + 8.40199i 0.145302 + 0.369162i
\(519\) 0 0
\(520\) 6.92998 14.9501i 0.303900 0.655606i
\(521\) 6.12942 + 10.6165i 0.268535 + 0.465116i 0.968484 0.249077i \(-0.0801272\pi\)
−0.699949 + 0.714193i \(0.746794\pi\)
\(522\) 0 0
\(523\) 38.1472 1.66806 0.834030 0.551719i \(-0.186028\pi\)
0.834030 + 0.551719i \(0.186028\pi\)
\(524\) 12.8202 22.2052i 0.560052 0.970039i
\(525\) 0 0
\(526\) −8.22132 + 14.2397i −0.358467 + 0.620883i
\(527\) −0.954130 1.65260i −0.0415626 0.0719885i
\(528\) 0 0
\(529\) 33.6278 1.46208
\(530\) −0.162863 −0.00707430
\(531\) 0 0
\(532\) 11.1938 14.0648i 0.485314 0.609787i
\(533\) −9.84451 13.9915i −0.426413 0.606041i
\(534\) 0 0
\(535\) −0.233568 + 0.404551i −0.0100980 + 0.0174903i
\(536\) −6.79607 + 11.7711i −0.293546 + 0.508436i
\(537\) 0 0
\(538\) −0.0320952 −0.00138372
\(539\) 8.55893 + 37.1639i 0.368659 + 1.60076i
\(540\) 0 0
\(541\) −3.75677 + 6.50691i −0.161516 + 0.279754i −0.935413 0.353558i \(-0.884972\pi\)
0.773897 + 0.633312i \(0.218305\pi\)
\(542\) −9.75207 −0.418887
\(543\) 0 0
\(544\) −26.9883 −1.15711
\(545\) −3.49236 −0.149596
\(546\) 0 0
\(547\) −11.4681 −0.490342 −0.245171 0.969480i \(-0.578844\pi\)
−0.245171 + 0.969480i \(0.578844\pi\)
\(548\) 0.665614 0.0284336
\(549\) 0 0
\(550\) −11.6357 −0.496147
\(551\) −2.62514 + 4.54687i −0.111835 + 0.193703i
\(552\) 0 0
\(553\) −13.3545 1.99950i −0.567890 0.0850276i
\(554\) −17.3849 −0.738614
\(555\) 0 0
\(556\) −1.43875 + 2.49199i −0.0610167 + 0.105684i
\(557\) −5.02210 + 8.69854i −0.212793 + 0.368569i −0.952588 0.304264i \(-0.901589\pi\)
0.739794 + 0.672833i \(0.234923\pi\)
\(558\) 0 0
\(559\) 16.0857 34.7019i 0.680354 1.46773i
\(560\) 0.306274 + 0.0458571i 0.0129425 + 0.00193782i
\(561\) 0 0
\(562\) 20.5446 0.866622
\(563\) −45.0566 −1.89891 −0.949455 0.313904i \(-0.898363\pi\)
−0.949455 + 0.313904i \(0.898363\pi\)
\(564\) 0 0
\(565\) 9.85947 + 17.0771i 0.414791 + 0.718439i
\(566\) −1.18223 + 2.04769i −0.0496929 + 0.0860707i
\(567\) 0 0
\(568\) −19.7289 + 34.1715i −0.827807 + 1.43380i
\(569\) −20.5201 −0.860247 −0.430124 0.902770i \(-0.641530\pi\)
−0.430124 + 0.902770i \(0.641530\pi\)
\(570\) 0 0
\(571\) 17.0886 + 29.5984i 0.715136 + 1.23865i 0.962907 + 0.269834i \(0.0869687\pi\)
−0.247771 + 0.968819i \(0.579698\pi\)
\(572\) 10.0763 21.7376i 0.421310 0.908896i
\(573\) 0 0
\(574\) 6.90547 8.67659i 0.288229 0.362154i
\(575\) −9.09717 15.7568i −0.379378 0.657102i
\(576\) 0 0
\(577\) 11.3112 + 19.5916i 0.470893 + 0.815610i 0.999446 0.0332901i \(-0.0105985\pi\)
−0.528553 + 0.848900i \(0.677265\pi\)
\(578\) −5.32615 −0.221539
\(579\) 0 0
\(580\) 1.84741 0.0767096
\(581\) −2.64651 6.72385i −0.109796 0.278952i
\(582\) 0 0
\(583\) −0.625096 −0.0258888
\(584\) −10.3346 17.9000i −0.427647 0.740707i
\(585\) 0 0
\(586\) 11.3757 19.7033i 0.469926 0.813935i
\(587\) 18.3617 + 31.8035i 0.757870 + 1.31267i 0.943935 + 0.330132i \(0.107093\pi\)
−0.186065 + 0.982538i \(0.559573\pi\)
\(588\) 0 0
\(589\) 1.10748 1.91822i 0.0456331 0.0790388i
\(590\) 6.55317 11.3504i 0.269790 0.467289i
\(591\) 0 0
\(592\) 0.281427 0.0115666
\(593\) 23.5959 40.8692i 0.968966 1.67830i 0.270407 0.962746i \(-0.412842\pi\)
0.698559 0.715553i \(-0.253825\pi\)
\(594\) 0 0
\(595\) −20.1777 3.02112i −0.827207 0.123854i
\(596\) −9.15298 15.8534i −0.374921 0.649381i
\(597\) 0 0
\(598\) −23.8709 + 2.14318i −0.976152 + 0.0876411i
\(599\) −4.87939 8.45135i −0.199366 0.345313i 0.748957 0.662619i \(-0.230555\pi\)
−0.948323 + 0.317306i \(0.897222\pi\)
\(600\) 0 0
\(601\) 7.60715 + 13.1760i 0.310302 + 0.537459i 0.978428 0.206590i \(-0.0662365\pi\)
−0.668126 + 0.744048i \(0.732903\pi\)
\(602\) 24.5192 + 3.67115i 0.999329 + 0.149625i
\(603\) 0 0
\(604\) 4.26393 + 7.38534i 0.173497 + 0.300505i
\(605\) 30.0201 1.22049
\(606\) 0 0
\(607\) −2.58581 4.47875i −0.104955 0.181787i 0.808765 0.588132i \(-0.200136\pi\)
−0.913720 + 0.406345i \(0.866803\pi\)
\(608\) −15.6630 27.1291i −0.635219 1.10023i
\(609\) 0 0
\(610\) 14.7377 0.596713
\(611\) 0.434224 0.936757i 0.0175668 0.0378971i
\(612\) 0 0
\(613\) −12.5030 + 21.6558i −0.504991 + 0.874670i 0.494993 + 0.868897i \(0.335171\pi\)
−0.999983 + 0.00577250i \(0.998163\pi\)
\(614\) −15.3229 −0.618383
\(615\) 0 0
\(616\) 40.5437 + 6.07042i 1.63355 + 0.244584i
\(617\) 18.0868 31.3273i 0.728148 1.26119i −0.229518 0.973304i \(-0.573715\pi\)
0.957665 0.287884i \(-0.0929518\pi\)
\(618\) 0 0
\(619\) −18.3433 31.7715i −0.737278 1.27700i −0.953717 0.300706i \(-0.902778\pi\)
0.216439 0.976296i \(-0.430556\pi\)
\(620\) −0.779380 −0.0313006
\(621\) 0 0
\(622\) −7.58690 13.1409i −0.304207 0.526902i
\(623\) −4.15451 10.5551i −0.166447 0.422883i
\(624\) 0 0
\(625\) 3.53259 6.11863i 0.141304 0.244745i
\(626\) 1.35749 2.35125i 0.0542563 0.0939747i
\(627\) 0 0
\(628\) −2.49871 4.32789i −0.0997092 0.172701i
\(629\) −18.5408 −0.739268
\(630\) 0 0
\(631\) 22.2013 38.4537i 0.883818 1.53082i 0.0367564 0.999324i \(-0.488297\pi\)
0.847062 0.531494i \(-0.178369\pi\)
\(632\) −7.25780 + 12.5709i −0.288700 + 0.500043i
\(633\) 0 0
\(634\) 1.05803 1.83256i 0.0420196 0.0727801i
\(635\) −11.7123 −0.464790
\(636\) 0 0
\(637\) 16.8555 18.7855i 0.667838 0.744307i
\(638\) −4.53606 −0.179585
\(639\) 0 0
\(640\) −5.40795 + 9.36684i −0.213768 + 0.370257i
\(641\) 14.8405 0.586166 0.293083 0.956087i \(-0.405319\pi\)
0.293083 + 0.956087i \(0.405319\pi\)
\(642\) 0 0
\(643\) 9.38674 16.2583i 0.370177 0.641165i −0.619416 0.785063i \(-0.712630\pi\)
0.989592 + 0.143898i \(0.0459638\pi\)
\(644\) 8.89413 + 22.5968i 0.350478 + 0.890441i
\(645\) 0 0
\(646\) −11.8062 20.4490i −0.464510 0.804555i
\(647\) 14.9328 25.8644i 0.587070 1.01684i −0.407544 0.913186i \(-0.633615\pi\)
0.994614 0.103649i \(-0.0330520\pi\)
\(648\) 0 0
\(649\) 25.1522 43.5649i 0.987311 1.71007i
\(650\) 4.43116 + 6.29780i 0.173804 + 0.247020i
\(651\) 0 0
\(652\) 1.57538 + 2.72865i 0.0616968 + 0.106862i
\(653\) 33.8568 1.32492 0.662459 0.749098i \(-0.269513\pi\)
0.662459 + 0.749098i \(0.269513\pi\)
\(654\) 0 0
\(655\) −16.8900 29.2543i −0.659945 1.14306i
\(656\) −0.172812 0.299320i −0.00674719 0.0116865i
\(657\) 0 0
\(658\) 0.661881 + 0.0991005i 0.0258028 + 0.00386334i
\(659\) −3.37349 + 5.84305i −0.131412 + 0.227613i −0.924221 0.381857i \(-0.875285\pi\)
0.792809 + 0.609470i \(0.208618\pi\)
\(660\) 0 0
\(661\) 5.07786 8.79511i 0.197506 0.342090i −0.750213 0.661196i \(-0.770049\pi\)
0.947719 + 0.319106i \(0.103383\pi\)
\(662\) −10.9278 18.9275i −0.424722 0.735640i
\(663\) 0 0
\(664\) −7.76763 −0.301442
\(665\) −8.67352 22.0364i −0.336345 0.854534i
\(666\) 0 0
\(667\) −3.54645 6.14263i −0.137319 0.237844i
\(668\) 11.6823 + 20.2343i 0.452001 + 0.782889i
\(669\) 0 0
\(670\) 3.39183 + 5.87483i 0.131038 + 0.226964i
\(671\) 56.5661 2.18371
\(672\) 0 0
\(673\) −11.6435 20.1671i −0.448823 0.777384i 0.549487 0.835502i \(-0.314823\pi\)
−0.998310 + 0.0581183i \(0.981490\pi\)
\(674\) −22.9056 −0.882290
\(675\) 0 0
\(676\) −15.6028 + 2.82447i −0.600107 + 0.108634i
\(677\) −2.93169 + 5.07783i −0.112674 + 0.195157i −0.916848 0.399238i \(-0.869275\pi\)
0.804174 + 0.594394i \(0.202608\pi\)
\(678\) 0 0
\(679\) 2.85119 + 0.426897i 0.109419 + 0.0163828i
\(680\) −10.9661 + 18.9938i −0.420529 + 0.728378i
\(681\) 0 0
\(682\) 1.91366 0.0732778
\(683\) −22.1089 −0.845974 −0.422987 0.906136i \(-0.639018\pi\)
−0.422987 + 0.906136i \(0.639018\pi\)
\(684\) 0 0
\(685\) 0.438457 0.759429i 0.0167526 0.0290163i
\(686\) 14.7602 + 7.05488i 0.563549 + 0.269356i
\(687\) 0 0
\(688\) 0.386365 0.669204i 0.0147300 0.0255132i
\(689\) 0.238052 + 0.338333i 0.00906907 + 0.0128895i
\(690\) 0 0
\(691\) −31.2183 −1.18760 −0.593801 0.804612i \(-0.702373\pi\)
−0.593801 + 0.804612i \(0.702373\pi\)
\(692\) 4.34498 + 7.52573i 0.165171 + 0.286085i
\(693\) 0 0
\(694\) 12.8662 0.488396
\(695\) 1.89548 + 3.28307i 0.0718998 + 0.124534i
\(696\) 0 0
\(697\) 11.3851 + 19.7195i 0.431241 + 0.746931i
\(698\) −2.02939 3.51500i −0.0768134 0.133045i
\(699\) 0 0
\(700\) 4.85878 6.10495i 0.183644 0.230745i
\(701\) −8.38392 −0.316656 −0.158328 0.987387i \(-0.550610\pi\)
−0.158328 + 0.987387i \(0.550610\pi\)
\(702\) 0 0
\(703\) −10.7604 18.6375i −0.405835 0.702927i
\(704\) 13.9292 24.1261i 0.524976 0.909285i
\(705\) 0 0
\(706\) −0.376102 + 0.651429i −0.0141548 + 0.0245168i
\(707\) −24.0410 3.59956i −0.904156 0.135375i
\(708\) 0 0
\(709\) 0.0600423 + 0.103996i 0.00225494 + 0.00390566i 0.867151 0.498046i \(-0.165949\pi\)
−0.864896 + 0.501952i \(0.832616\pi\)
\(710\) 9.84645 + 17.0545i 0.369531 + 0.640046i
\(711\) 0 0
\(712\) −12.1937 −0.456977
\(713\) 1.49616 + 2.59143i 0.0560318 + 0.0970499i
\(714\) 0 0
\(715\) −18.1640 25.8156i −0.679293 0.965448i
\(716\) −14.7921 + 25.6207i −0.552808 + 0.957491i
\(717\) 0 0
\(718\) 4.25468 7.36932i 0.158783 0.275021i
\(719\) 4.99233 + 8.64698i 0.186183 + 0.322478i 0.943974 0.330019i \(-0.107055\pi\)
−0.757792 + 0.652496i \(0.773722\pi\)
\(720\) 0 0
\(721\) 38.1254 + 5.70835i 1.41986 + 0.212590i
\(722\) 5.31212 9.20086i 0.197697 0.342421i
\(723\) 0 0
\(724\) −26.3726 −0.980129
\(725\) −1.13946 + 1.97361i −0.0423186 + 0.0732980i
\(726\) 0 0
\(727\) 18.5606 0.688375 0.344188 0.938901i \(-0.388154\pi\)
0.344188 + 0.938901i \(0.388154\pi\)
\(728\) −12.1545 24.2560i −0.450474 0.898988i
\(729\) 0 0
\(730\) −10.3157 −0.381801
\(731\) −25.4542 + 44.0880i −0.941458 + 1.63065i
\(732\) 0 0
\(733\) −1.70446 + 2.95222i −0.0629558 + 0.109043i −0.895785 0.444487i \(-0.853386\pi\)
0.832830 + 0.553529i \(0.186719\pi\)
\(734\) −10.7679 + 18.6505i −0.397450 + 0.688404i
\(735\) 0 0
\(736\) 42.3202 1.55994
\(737\) 13.0185 + 22.5486i 0.479541 + 0.830590i
\(738\) 0 0
\(739\) 19.1586 33.1836i 0.704759 1.22068i −0.262019 0.965063i \(-0.584388\pi\)
0.966778 0.255616i \(-0.0822783\pi\)
\(740\) −3.78625 + 6.55797i −0.139185 + 0.241076i
\(741\) 0 0
\(742\) −0.166983 + 0.209811i −0.00613013 + 0.00770239i
\(743\) −0.536089 0.928533i −0.0196672 0.0340646i 0.856024 0.516936i \(-0.172927\pi\)
−0.875691 + 0.482871i \(0.839594\pi\)
\(744\) 0 0
\(745\) −24.1172 −0.883585
\(746\) −7.82561 13.5544i −0.286516 0.496260i
\(747\) 0 0
\(748\) −15.9448 + 27.6172i −0.582999 + 1.00978i
\(749\) 0.281693 + 0.715683i 0.0102928 + 0.0261505i
\(750\) 0 0
\(751\) 16.0446 0.585475 0.292737 0.956193i \(-0.405434\pi\)
0.292737 + 0.956193i \(0.405434\pi\)
\(752\) 0.0104297 0.0180648i 0.000380332 0.000658754i
\(753\) 0 0
\(754\) 1.72745 + 2.45514i 0.0629100 + 0.0894110i
\(755\) 11.2350 0.408884
\(756\) 0 0
\(757\) −15.9500 27.6263i −0.579714 1.00409i −0.995512 0.0946374i \(-0.969831\pi\)
0.415798 0.909457i \(-0.363503\pi\)
\(758\) 0.0876968 + 0.151895i 0.00318529 + 0.00551708i
\(759\) 0 0
\(760\) −25.4572 −0.923430
\(761\) −20.4859 35.4826i −0.742612 1.28624i −0.951302 0.308261i \(-0.900253\pi\)
0.208690 0.977982i \(-0.433080\pi\)
\(762\) 0 0
\(763\) −3.58071 + 4.49909i −0.129631 + 0.162878i
\(764\) 2.16747 + 3.75418i 0.0784165 + 0.135821i
\(765\) 0 0
\(766\) 13.0206 + 22.5523i 0.470452 + 0.814847i
\(767\) −33.1581 + 2.97701i −1.19727 + 0.107494i
\(768\) 0 0
\(769\) −19.0536 33.0018i −0.687090 1.19008i −0.972775 0.231752i \(-0.925554\pi\)
0.285685 0.958324i \(-0.407779\pi\)
\(770\) 12.7412 16.0090i 0.459160 0.576926i
\(771\) 0 0
\(772\) 11.3108 19.5910i 0.407086 0.705094i
\(773\) 31.7019 1.14024 0.570119 0.821562i \(-0.306897\pi\)
0.570119 + 0.821562i \(0.306897\pi\)
\(774\) 0 0
\(775\) 0.480713 0.832619i 0.0172677 0.0299086i
\(776\) 1.54955 2.68390i 0.0556256 0.0963463i
\(777\) 0 0
\(778\) 4.36577 + 7.56174i 0.156521 + 0.271102i
\(779\) −13.2150 + 22.8890i −0.473475 + 0.820083i
\(780\) 0 0
\(781\) 37.7924 + 65.4584i 1.35232 + 2.34229i
\(782\) 31.8994 1.14072
\(783\) 0 0
\(784\) 0.373099 0.347546i 0.0133250 0.0124124i
\(785\) −6.58384 −0.234987
\(786\) 0 0
\(787\) 1.72653 0.0615442 0.0307721 0.999526i \(-0.490203\pi\)
0.0307721 + 0.999526i \(0.490203\pi\)
\(788\) 7.04647 + 12.2048i 0.251020 + 0.434780i
\(789\) 0 0
\(790\) 3.62227 + 6.27396i 0.128875 + 0.223218i
\(791\) 32.1088 + 4.80751i 1.14166 + 0.170935i
\(792\) 0 0
\(793\) −21.5418 30.6164i −0.764972 1.08722i
\(794\) −5.45202 9.44318i −0.193485 0.335126i
\(795\) 0 0
\(796\) −4.25040 −0.150652
\(797\) −2.02629 + 3.50963i −0.0717747 + 0.124317i −0.899679 0.436552i \(-0.856200\pi\)
0.827904 + 0.560869i \(0.189533\pi\)
\(798\) 0 0
\(799\) −0.687121 + 1.19013i −0.0243086 + 0.0421037i
\(800\) −6.79867 11.7756i −0.240369 0.416332i
\(801\) 0 0
\(802\) −6.02187 −0.212640
\(803\) −39.5935 −1.39722
\(804\) 0 0
\(805\) 31.6406 + 4.73740i 1.11518 + 0.166971i
\(806\) −0.728770 1.03577i −0.0256698 0.0364833i
\(807\) 0 0
\(808\) −13.0657 + 22.6304i −0.459649 + 0.796135i
\(809\) −4.99676 + 8.65464i −0.175677 + 0.304281i −0.940395 0.340083i \(-0.889545\pi\)
0.764719 + 0.644364i \(0.222878\pi\)
\(810\) 0 0
\(811\) 47.3923 1.66417 0.832085 0.554648i \(-0.187147\pi\)
0.832085 + 0.554648i \(0.187147\pi\)
\(812\) 1.89415 2.37996i 0.0664717 0.0835203i
\(813\) 0 0
\(814\) 9.29661 16.1022i 0.325846 0.564382i
\(815\) 4.15098 0.145403
\(816\) 0 0
\(817\) −59.0907 −2.06732
\(818\) 4.23975 0.148239
\(819\) 0 0
\(820\) 9.29989 0.324766
\(821\) −33.8402 −1.18103 −0.590516 0.807026i \(-0.701076\pi\)
−0.590516 + 0.807026i \(0.701076\pi\)
\(822\) 0 0
\(823\) −13.6533 −0.475924 −0.237962 0.971274i \(-0.576479\pi\)
−0.237962 + 0.971274i \(0.576479\pi\)
\(824\) 20.7202 35.8884i 0.721821 1.25023i
\(825\) 0 0
\(826\) −7.90342 20.0798i −0.274995 0.698666i
\(827\) 27.2276 0.946795 0.473398 0.880849i \(-0.343027\pi\)
0.473398 + 0.880849i \(0.343027\pi\)
\(828\) 0 0
\(829\) −10.3268 + 17.8865i −0.358665 + 0.621225i −0.987738 0.156121i \(-0.950101\pi\)
0.629073 + 0.777346i \(0.283434\pi\)
\(830\) −1.93836 + 3.35734i −0.0672815 + 0.116535i
\(831\) 0 0
\(832\) −18.3628 + 1.64865i −0.636616 + 0.0571568i
\(833\) −24.5802 + 22.8968i −0.851655 + 0.793326i
\(834\) 0 0
\(835\) 30.7817 1.06524
\(836\) −37.0150 −1.28019
\(837\) 0 0
\(838\) 3.44855 + 5.97306i 0.119128 + 0.206336i
\(839\) −3.64540 + 6.31401i −0.125853 + 0.217984i −0.922066 0.387033i \(-0.873500\pi\)
0.796213 + 0.605016i \(0.206833\pi\)
\(840\) 0 0
\(841\) 14.0558 24.3453i 0.484682 0.839495i
\(842\) 5.59285 0.192742
\(843\) 0 0
\(844\) −10.6000 18.3598i −0.364868 0.631970i
\(845\) −7.05537 + 19.6625i −0.242712 + 0.676409i
\(846\) 0 0
\(847\) 30.7796 38.6740i 1.05760 1.32885i
\(848\) 0.00417881 + 0.00723792i 0.000143501 + 0.000248551i
\(849\) 0 0
\(850\) −5.12460 8.87606i −0.175772 0.304446i
\(851\) 29.0736 0.996631
\(852\) 0 0
\(853\) −17.2736 −0.591437 −0.295718 0.955275i \(-0.595559\pi\)
−0.295718 + 0.955275i \(0.595559\pi\)
\(854\) 15.1106 18.9861i 0.517074 0.649693i
\(855\) 0 0
\(856\) 0.826782 0.0282588
\(857\) 13.7728 + 23.8552i 0.470470 + 0.814878i 0.999430 0.0337691i \(-0.0107511\pi\)
−0.528960 + 0.848647i \(0.677418\pi\)
\(858\) 0 0
\(859\) 17.7390 30.7248i 0.605246 1.04832i −0.386767 0.922177i \(-0.626408\pi\)
0.992013 0.126139i \(-0.0402584\pi\)
\(860\) 10.3961 + 18.0066i 0.354505 + 0.614020i
\(861\) 0 0
\(862\) 1.50599 2.60845i 0.0512943 0.0888443i
\(863\) 4.15589 7.19822i 0.141468 0.245030i −0.786581 0.617486i \(-0.788151\pi\)
0.928050 + 0.372456i \(0.121484\pi\)
\(864\) 0 0
\(865\) 11.4486 0.389264
\(866\) 6.61242 11.4530i 0.224699 0.389190i
\(867\) 0 0
\(868\) −0.799098 + 1.00405i −0.0271231 + 0.0340797i
\(869\) 13.9029 + 24.0806i 0.471625 + 0.816878i
\(870\) 0 0
\(871\) 7.24668 15.6333i 0.245544 0.529715i
\(872\) 3.09056 + 5.35302i 0.104660 + 0.181276i
\(873\) 0 0
\(874\) 18.5133 + 32.0659i 0.626220 + 1.08465i
\(875\) −11.5504 29.3456i −0.390476 0.992062i
\(876\) 0 0
\(877\) −20.1954 34.9795i −0.681952 1.18117i −0.974384 0.224889i \(-0.927798\pi\)
0.292433 0.956286i \(-0.405535\pi\)
\(878\) −20.3166 −0.685652
\(879\) 0 0
\(880\) −0.318853 0.552270i −0.0107485 0.0186170i
\(881\) 22.5508 + 39.0590i 0.759754 + 1.31593i 0.942976 + 0.332861i \(0.108014\pi\)
−0.183222 + 0.983072i \(0.558653\pi\)
\(882\) 0 0
\(883\) 20.9898 0.706363 0.353182 0.935555i \(-0.385100\pi\)
0.353182 + 0.935555i \(0.385100\pi\)
\(884\) 21.0200 1.88722i 0.706977 0.0634740i
\(885\) 0 0
\(886\) −7.46155 + 12.9238i −0.250676 + 0.434183i
\(887\) 45.7555 1.53632 0.768159 0.640259i \(-0.221173\pi\)
0.768159 + 0.640259i \(0.221173\pi\)
\(888\) 0 0
\(889\) −12.0087 + 15.0886i −0.402758 + 0.506057i
\(890\) −3.04285 + 5.27038i −0.101997 + 0.176663i
\(891\) 0 0
\(892\) 15.1059 + 26.1641i 0.505782 + 0.876040i
\(893\) −1.59512 −0.0533786
\(894\) 0 0
\(895\) 19.4879 + 33.7540i 0.651409 + 1.12827i
\(896\) 6.52223 + 16.5707i 0.217892 + 0.553588i
\(897\) 0 0
\(898\) −6.28051 + 10.8782i −0.209583 + 0.363009i
\(899\) 0.187402 0.324589i 0.00625020 0.0108257i
\(900\) 0 0
\(901\) −0.275305 0.476843i −0.00917175 0.0158859i
\(902\) −22.8346 −0.760309
\(903\) 0 0
\(904\) 17.4503 30.2248i 0.580387 1.00526i
\(905\) −17.3723 + 30.0897i −0.577474 + 1.00021i
\(906\) 0 0
\(907\) −1.57210 + 2.72296i −0.0522008 + 0.0904145i −0.890945 0.454111i \(-0.849957\pi\)
0.838744 + 0.544526i \(0.183290\pi\)
\(908\) −2.16678 −0.0719071
\(909\) 0 0
\(910\) −13.5171 0.799510i −0.448086 0.0265035i
\(911\) −45.8072 −1.51766 −0.758829 0.651290i \(-0.774228\pi\)
−0.758829 + 0.651290i \(0.774228\pi\)
\(912\) 0 0
\(913\) −7.43978 + 12.8861i −0.246221 + 0.426467i
\(914\) 26.6869 0.882725
\(915\) 0 0
\(916\) 14.0941 24.4117i 0.465683 0.806586i
\(917\) −55.0046 8.23559i −1.81641 0.271963i
\(918\) 0 0
\(919\) 16.9149 + 29.2975i 0.557972 + 0.966437i 0.997666 + 0.0682886i \(0.0217539\pi\)
−0.439693 + 0.898148i \(0.644913\pi\)
\(920\) 17.1958 29.7840i 0.566929 0.981950i
\(921\) 0 0
\(922\) −1.23364 + 2.13672i −0.0406277 + 0.0703692i
\(923\) 21.0370 45.3834i 0.692442 1.49381i
\(924\) 0 0
\(925\) −4.67063 8.08977i −0.153569 0.265990i
\(926\) 26.8831 0.883434
\(927\) 0 0
\(928\) −2.65040 4.59063i −0.0870037 0.150695i
\(929\) 22.2364 + 38.5145i 0.729551 + 1.26362i 0.957073 + 0.289847i \(0.0936043\pi\)
−0.227522 + 0.973773i \(0.573062\pi\)
\(930\) 0 0
\(931\) −37.2817 11.4201i −1.22186 0.374277i
\(932\) 15.4165 26.7021i 0.504983 0.874656i
\(933\) 0 0
\(934\) −1.57953 + 2.73583i −0.0516839 + 0.0895191i
\(935\) 21.0064 + 36.3842i 0.686984 + 1.18989i
\(936\) 0 0
\(937\) −2.05597 −0.0671657 −0.0335829 0.999436i \(-0.510692\pi\)
−0.0335829 + 0.999436i \(0.510692\pi\)
\(938\) 11.0460 + 1.65387i 0.360664 + 0.0540007i
\(939\) 0 0
\(940\) 0.280637 + 0.486077i 0.00915337 + 0.0158541i
\(941\) −10.6472 18.4415i −0.347089 0.601176i 0.638642 0.769504i \(-0.279497\pi\)
−0.985731 + 0.168328i \(0.946163\pi\)
\(942\) 0 0
\(943\) −17.8529 30.9221i −0.581369 1.00696i
\(944\) −0.672578 −0.0218906
\(945\) 0 0
\(946\) −25.5262 44.2127i −0.829929 1.43748i
\(947\) −15.3455 −0.498661 −0.249331 0.968418i \(-0.580211\pi\)
−0.249331 + 0.968418i \(0.580211\pi\)
\(948\) 0 0
\(949\) 15.0782 + 21.4300i 0.489459 + 0.695646i
\(950\) 5.94825 10.3027i 0.192987 0.334263i
\(951\) 0 0
\(952\) 13.2256 + 33.6015i 0.428643 + 1.08903i
\(953\) −12.2802 + 21.2700i −0.397796 + 0.689002i −0.993454 0.114236i \(-0.963558\pi\)
0.595658 + 0.803238i \(0.296891\pi\)
\(954\) 0 0
\(955\) 5.71108 0.184806
\(956\) −26.4331 −0.854909
\(957\) 0 0
\(958\) −11.3637 + 19.6825i −0.367144 + 0.635912i
\(959\) −0.528799 1.34349i −0.0170758 0.0433836i
\(960\) 0 0
\(961\) 15.4209 26.7099i 0.497450 0.861608i
\(962\) −12.2557 + 1.10034i −0.395139 + 0.0354765i
\(963\) 0 0
\(964\) −20.2945 −0.653641
\(965\) −14.9015 25.8101i −0.479695 0.830857i
\(966\) 0 0
\(967\) −17.8067 −0.572625 −0.286313 0.958136i \(-0.592430\pi\)
−0.286313 + 0.958136i \(0.592430\pi\)
\(968\) −26.5663 46.0142i −0.853874 1.47895i
\(969\) 0 0
\(970\) −0.773360 1.33950i −0.0248311 0.0430087i
\(971\) 7.73741 + 13.4016i 0.248305 + 0.430077i 0.963056 0.269302i \(-0.0867931\pi\)
−0.714750 + 0.699380i \(0.753460\pi\)
\(972\) 0 0
\(973\) 6.17292 + 0.924244i 0.197895 + 0.0296299i
\(974\) 19.9981 0.640780
\(975\) 0 0
\(976\) −0.378149 0.654973i −0.0121042 0.0209652i
\(977\) 6.97273 12.0771i 0.223077 0.386381i −0.732663 0.680591i \(-0.761723\pi\)
0.955741 + 0.294210i \(0.0950564\pi\)
\(978\) 0 0
\(979\) −11.6790 + 20.2287i −0.373263 + 0.646511i
\(980\) 3.07914 + 13.3700i 0.0983594 + 0.427088i
\(981\) 0 0
\(982\) 13.6242 + 23.5978i 0.434765 + 0.753036i
\(983\) −10.0269 17.3671i −0.319809 0.553926i 0.660639 0.750704i \(-0.270285\pi\)
−0.980448 + 0.196778i \(0.936952\pi\)
\(984\) 0 0
\(985\) 18.5667 0.591586
\(986\) −1.99778 3.46025i −0.0636222 0.110197i
\(987\) 0 0
\(988\) 14.0963 + 20.0344i 0.448462 + 0.637378i
\(989\) 39.9146 69.1340i 1.26921 2.19833i
\(990\) 0 0
\(991\) 16.3476 28.3148i 0.519297 0.899449i −0.480451 0.877021i \(-0.659527\pi\)
0.999748 0.0224278i \(-0.00713957\pi\)
\(992\) 1.11814 + 1.93668i 0.0355011 + 0.0614896i
\(993\) 0 0
\(994\) 32.0664 + 4.80116i 1.01708 + 0.152283i
\(995\) −2.79985 + 4.84948i −0.0887611 + 0.153739i
\(996\) 0 0
\(997\) −29.6606 −0.939362 −0.469681 0.882836i \(-0.655631\pi\)
−0.469681 + 0.882836i \(0.655631\pi\)
\(998\) −7.79875 + 13.5078i −0.246865 + 0.427583i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.g.289.8 yes 36
3.2 odd 2 inner 819.2.s.g.289.11 yes 36
7.4 even 3 819.2.n.g.172.11 yes 36
13.9 even 3 819.2.n.g.100.11 yes 36
21.11 odd 6 819.2.n.g.172.8 yes 36
39.35 odd 6 819.2.n.g.100.8 36
91.74 even 3 inner 819.2.s.g.802.8 yes 36
273.74 odd 6 inner 819.2.s.g.802.11 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
819.2.n.g.100.8 36 39.35 odd 6
819.2.n.g.100.11 yes 36 13.9 even 3
819.2.n.g.172.8 yes 36 21.11 odd 6
819.2.n.g.172.11 yes 36 7.4 even 3
819.2.s.g.289.8 yes 36 1.1 even 1 trivial
819.2.s.g.289.11 yes 36 3.2 odd 2 inner
819.2.s.g.802.8 yes 36 91.74 even 3 inner
819.2.s.g.802.11 yes 36 273.74 odd 6 inner