Properties

Label 819.2.s.g.289.5
Level $819$
Weight $2$
Character 819.289
Analytic conductor $6.540$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(289,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,44,0,0,4,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.5
Character \(\chi\) \(=\) 819.289
Dual form 819.2.s.g.802.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.85815 q^{2} +1.45273 q^{4} +(-1.41690 + 2.45414i) q^{5} +(-2.59533 - 0.514050i) q^{7} +1.01691 q^{8} +(2.63281 - 4.56016i) q^{10} +(-2.68094 + 4.64352i) q^{11} +(-1.80766 - 3.11967i) q^{13} +(4.82252 + 0.955184i) q^{14} -4.79504 q^{16} +0.835344 q^{17} +(1.94086 + 3.36167i) q^{19} +(-2.05837 + 3.56520i) q^{20} +(4.98159 - 8.62837i) q^{22} -4.10954 q^{23} +(-1.51520 - 2.62440i) q^{25} +(3.35892 + 5.79682i) q^{26} +(-3.77031 - 0.746775i) q^{28} +(-2.20885 - 3.82585i) q^{29} +(-0.678792 - 1.17570i) q^{31} +6.87608 q^{32} -1.55220 q^{34} +(4.93887 - 5.64095i) q^{35} +9.07618 q^{37} +(-3.60642 - 6.24650i) q^{38} +(-1.44086 + 2.49565i) q^{40} +(1.58802 + 2.75053i) q^{41} +(1.24815 - 2.16186i) q^{43} +(-3.89468 + 6.74578i) q^{44} +7.63615 q^{46} +(-0.0166628 + 0.0288608i) q^{47} +(6.47150 + 2.66826i) q^{49} +(2.81547 + 4.87653i) q^{50} +(-2.62604 - 4.53203i) q^{52} +(-5.18049 - 8.97288i) q^{53} +(-7.59723 - 13.1588i) q^{55} +(-2.63923 - 0.522745i) q^{56} +(4.10439 + 7.10901i) q^{58} -1.74373 q^{59} +(-3.04073 - 5.26670i) q^{61} +(1.26130 + 2.18463i) q^{62} -3.18672 q^{64} +(10.2174 - 0.0160046i) q^{65} +(-1.41231 + 2.44620i) q^{67} +1.21353 q^{68} +(-9.17717 + 10.4817i) q^{70} +(7.26976 - 12.5916i) q^{71} +(-2.16106 - 3.74307i) q^{73} -16.8649 q^{74} +(2.81955 + 4.88360i) q^{76} +(9.34494 - 10.6734i) q^{77} +(-2.96381 + 5.13347i) q^{79} +(6.79408 - 11.7677i) q^{80} +(-2.95078 - 5.11091i) q^{82} +3.75778 q^{83} +(-1.18360 + 2.05005i) q^{85} +(-2.31925 + 4.01706i) q^{86} +(-2.72629 + 4.72207i) q^{88} -12.3110 q^{89} +(3.08782 + 9.02582i) q^{91} -5.97004 q^{92} +(0.0309620 - 0.0536277i) q^{94} -11.0000 q^{95} +(8.56830 - 14.8407i) q^{97} +(-12.0250 - 4.95804i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 44 q^{4} + 4 q^{7} + 8 q^{10} + 20 q^{16} + 4 q^{19} - 10 q^{22} - 22 q^{25} + 16 q^{28} - 18 q^{31} + 8 q^{34} - 20 q^{37} + 14 q^{40} + 20 q^{43} + 8 q^{46} - 12 q^{49} + 10 q^{52} + 42 q^{55}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.85815 −1.31391 −0.656956 0.753929i \(-0.728156\pi\)
−0.656956 + 0.753929i \(0.728156\pi\)
\(3\) 0 0
\(4\) 1.45273 0.726364
\(5\) −1.41690 + 2.45414i −0.633656 + 1.09752i 0.353142 + 0.935570i \(0.385113\pi\)
−0.986798 + 0.161954i \(0.948220\pi\)
\(6\) 0 0
\(7\) −2.59533 0.514050i −0.980944 0.194293i
\(8\) 1.01691 0.359534
\(9\) 0 0
\(10\) 2.63281 4.56016i 0.832568 1.44205i
\(11\) −2.68094 + 4.64352i −0.808334 + 1.40008i 0.105683 + 0.994400i \(0.466297\pi\)
−0.914017 + 0.405675i \(0.867036\pi\)
\(12\) 0 0
\(13\) −1.80766 3.11967i −0.501356 0.865241i
\(14\) 4.82252 + 0.955184i 1.28887 + 0.255284i
\(15\) 0 0
\(16\) −4.79504 −1.19876
\(17\) 0.835344 0.202601 0.101300 0.994856i \(-0.467700\pi\)
0.101300 + 0.994856i \(0.467700\pi\)
\(18\) 0 0
\(19\) 1.94086 + 3.36167i 0.445265 + 0.771221i 0.998071 0.0620890i \(-0.0197763\pi\)
−0.552806 + 0.833310i \(0.686443\pi\)
\(20\) −2.05837 + 3.56520i −0.460265 + 0.797202i
\(21\) 0 0
\(22\) 4.98159 8.62837i 1.06208 1.83958i
\(23\) −4.10954 −0.856898 −0.428449 0.903566i \(-0.640940\pi\)
−0.428449 + 0.903566i \(0.640940\pi\)
\(24\) 0 0
\(25\) −1.51520 2.62440i −0.303039 0.524880i
\(26\) 3.35892 + 5.79682i 0.658737 + 1.13685i
\(27\) 0 0
\(28\) −3.77031 0.746775i −0.712522 0.141127i
\(29\) −2.20885 3.82585i −0.410174 0.710442i 0.584735 0.811225i \(-0.301199\pi\)
−0.994908 + 0.100783i \(0.967865\pi\)
\(30\) 0 0
\(31\) −0.678792 1.17570i −0.121915 0.211162i 0.798608 0.601852i \(-0.205570\pi\)
−0.920523 + 0.390689i \(0.872237\pi\)
\(32\) 6.87608 1.21553
\(33\) 0 0
\(34\) −1.55220 −0.266199
\(35\) 4.93887 5.64095i 0.834822 0.953494i
\(36\) 0 0
\(37\) 9.07618 1.49212 0.746058 0.665881i \(-0.231944\pi\)
0.746058 + 0.665881i \(0.231944\pi\)
\(38\) −3.60642 6.24650i −0.585038 1.01332i
\(39\) 0 0
\(40\) −1.44086 + 2.49565i −0.227821 + 0.394597i
\(41\) 1.58802 + 2.75053i 0.248007 + 0.429561i 0.962973 0.269599i \(-0.0868910\pi\)
−0.714966 + 0.699160i \(0.753558\pi\)
\(42\) 0 0
\(43\) 1.24815 2.16186i 0.190341 0.329680i −0.755022 0.655699i \(-0.772374\pi\)
0.945363 + 0.326019i \(0.105707\pi\)
\(44\) −3.89468 + 6.74578i −0.587145 + 1.01696i
\(45\) 0 0
\(46\) 7.63615 1.12589
\(47\) −0.0166628 + 0.0288608i −0.00243052 + 0.00420978i −0.867238 0.497894i \(-0.834107\pi\)
0.864808 + 0.502103i \(0.167440\pi\)
\(48\) 0 0
\(49\) 6.47150 + 2.66826i 0.924501 + 0.381180i
\(50\) 2.81547 + 4.87653i 0.398167 + 0.689645i
\(51\) 0 0
\(52\) −2.62604 4.53203i −0.364167 0.628480i
\(53\) −5.18049 8.97288i −0.711595 1.23252i −0.964258 0.264965i \(-0.914640\pi\)
0.252663 0.967554i \(-0.418694\pi\)
\(54\) 0 0
\(55\) −7.59723 13.1588i −1.02441 1.77433i
\(56\) −2.63923 0.522745i −0.352682 0.0698548i
\(57\) 0 0
\(58\) 4.10439 + 7.10901i 0.538932 + 0.933458i
\(59\) −1.74373 −0.227014 −0.113507 0.993537i \(-0.536208\pi\)
−0.113507 + 0.993537i \(0.536208\pi\)
\(60\) 0 0
\(61\) −3.04073 5.26670i −0.389325 0.674332i 0.603033 0.797716i \(-0.293959\pi\)
−0.992359 + 0.123384i \(0.960625\pi\)
\(62\) 1.26130 + 2.18463i 0.160185 + 0.277449i
\(63\) 0 0
\(64\) −3.18672 −0.398340
\(65\) 10.2174 0.0160046i 1.26731 0.00198513i
\(66\) 0 0
\(67\) −1.41231 + 2.44620i −0.172542 + 0.298851i −0.939308 0.343076i \(-0.888531\pi\)
0.766766 + 0.641927i \(0.221865\pi\)
\(68\) 1.21353 0.147162
\(69\) 0 0
\(70\) −9.17717 + 10.4817i −1.09688 + 1.25281i
\(71\) 7.26976 12.5916i 0.862762 1.49435i −0.00649110 0.999979i \(-0.502066\pi\)
0.869253 0.494368i \(-0.164600\pi\)
\(72\) 0 0
\(73\) −2.16106 3.74307i −0.252933 0.438093i 0.711399 0.702788i \(-0.248062\pi\)
−0.964332 + 0.264695i \(0.914729\pi\)
\(74\) −16.8649 −1.96051
\(75\) 0 0
\(76\) 2.81955 + 4.88360i 0.323424 + 0.560187i
\(77\) 9.34494 10.6734i 1.06495 1.21634i
\(78\) 0 0
\(79\) −2.96381 + 5.13347i −0.333455 + 0.577561i −0.983187 0.182603i \(-0.941548\pi\)
0.649732 + 0.760163i \(0.274881\pi\)
\(80\) 6.79408 11.7677i 0.759601 1.31567i
\(81\) 0 0
\(82\) −2.95078 5.11091i −0.325860 0.564405i
\(83\) 3.75778 0.412470 0.206235 0.978503i \(-0.433879\pi\)
0.206235 + 0.978503i \(0.433879\pi\)
\(84\) 0 0
\(85\) −1.18360 + 2.05005i −0.128379 + 0.222359i
\(86\) −2.31925 + 4.01706i −0.250091 + 0.433170i
\(87\) 0 0
\(88\) −2.72629 + 4.72207i −0.290623 + 0.503374i
\(89\) −12.3110 −1.30496 −0.652480 0.757806i \(-0.726271\pi\)
−0.652480 + 0.757806i \(0.726271\pi\)
\(90\) 0 0
\(91\) 3.08782 + 9.02582i 0.323692 + 0.946163i
\(92\) −5.97004 −0.622420
\(93\) 0 0
\(94\) 0.0309620 0.0536277i 0.00319349 0.00553128i
\(95\) −11.0000 −1.12858
\(96\) 0 0
\(97\) 8.56830 14.8407i 0.869979 1.50685i 0.00796140 0.999968i \(-0.497466\pi\)
0.862017 0.506879i \(-0.169201\pi\)
\(98\) −12.0250 4.95804i −1.21471 0.500837i
\(99\) 0 0
\(100\) −2.20117 3.81254i −0.220117 0.381254i
\(101\) 2.43524 4.21797i 0.242316 0.419703i −0.719058 0.694950i \(-0.755426\pi\)
0.961374 + 0.275247i \(0.0887596\pi\)
\(102\) 0 0
\(103\) 8.77482 15.1984i 0.864609 1.49755i −0.00282630 0.999996i \(-0.500900\pi\)
0.867435 0.497550i \(-0.165767\pi\)
\(104\) −1.83824 3.17244i −0.180254 0.311083i
\(105\) 0 0
\(106\) 9.62614 + 16.6730i 0.934973 + 1.61942i
\(107\) 4.88317 0.472074 0.236037 0.971744i \(-0.424151\pi\)
0.236037 + 0.971744i \(0.424151\pi\)
\(108\) 0 0
\(109\) −6.88804 11.9304i −0.659755 1.14273i −0.980679 0.195624i \(-0.937327\pi\)
0.320925 0.947105i \(-0.396006\pi\)
\(110\) 14.1168 + 24.4510i 1.34599 + 2.33131i
\(111\) 0 0
\(112\) 12.4447 + 2.46489i 1.17592 + 0.232910i
\(113\) 1.17062 2.02758i 0.110123 0.190739i −0.805697 0.592328i \(-0.798209\pi\)
0.915820 + 0.401590i \(0.131542\pi\)
\(114\) 0 0
\(115\) 5.82280 10.0854i 0.542979 0.940467i
\(116\) −3.20886 5.55792i −0.297936 0.516039i
\(117\) 0 0
\(118\) 3.24012 0.298277
\(119\) −2.16800 0.429409i −0.198740 0.0393639i
\(120\) 0 0
\(121\) −8.87488 15.3717i −0.806807 1.39743i
\(122\) 5.65014 + 9.78632i 0.511539 + 0.886012i
\(123\) 0 0
\(124\) −0.986101 1.70798i −0.0885545 0.153381i
\(125\) −5.58146 −0.499221
\(126\) 0 0
\(127\) 7.91555 + 13.7101i 0.702392 + 1.21658i 0.967625 + 0.252394i \(0.0812178\pi\)
−0.265233 + 0.964184i \(0.585449\pi\)
\(128\) −7.83074 −0.692147
\(129\) 0 0
\(130\) −18.9854 + 0.0297390i −1.66513 + 0.00260828i
\(131\) 10.7165 18.5616i 0.936309 1.62173i 0.164025 0.986456i \(-0.447552\pi\)
0.772283 0.635278i \(-0.219115\pi\)
\(132\) 0 0
\(133\) −3.30912 9.72237i −0.286937 0.843036i
\(134\) 2.62429 4.54541i 0.226704 0.392664i
\(135\) 0 0
\(136\) 0.849474 0.0728418
\(137\) −21.2927 −1.81916 −0.909579 0.415530i \(-0.863596\pi\)
−0.909579 + 0.415530i \(0.863596\pi\)
\(138\) 0 0
\(139\) −9.47654 + 16.4139i −0.803790 + 1.39220i 0.113315 + 0.993559i \(0.463853\pi\)
−0.917105 + 0.398646i \(0.869480\pi\)
\(140\) 7.17484 8.19476i 0.606384 0.692584i
\(141\) 0 0
\(142\) −13.5083 + 23.3971i −1.13359 + 1.96344i
\(143\) 19.3325 0.0302826i 1.61667 0.00253236i
\(144\) 0 0
\(145\) 12.5189 1.03964
\(146\) 4.01558 + 6.95519i 0.332332 + 0.575615i
\(147\) 0 0
\(148\) 13.1852 1.08382
\(149\) 7.10716 + 12.3100i 0.582241 + 1.00847i 0.995213 + 0.0977279i \(0.0311575\pi\)
−0.412972 + 0.910744i \(0.635509\pi\)
\(150\) 0 0
\(151\) 2.81984 + 4.88411i 0.229476 + 0.397463i 0.957653 0.287925i \(-0.0929655\pi\)
−0.728177 + 0.685389i \(0.759632\pi\)
\(152\) 1.97369 + 3.41854i 0.160088 + 0.277280i
\(153\) 0 0
\(154\) −17.3643 + 19.8327i −1.39926 + 1.59817i
\(155\) 3.84712 0.309008
\(156\) 0 0
\(157\) −2.47825 4.29245i −0.197786 0.342575i 0.750024 0.661410i \(-0.230042\pi\)
−0.947810 + 0.318835i \(0.896708\pi\)
\(158\) 5.50721 9.53877i 0.438130 0.758864i
\(159\) 0 0
\(160\) −9.74270 + 16.8748i −0.770228 + 1.33407i
\(161\) 10.6656 + 2.11251i 0.840569 + 0.166489i
\(162\) 0 0
\(163\) 10.3317 + 17.8950i 0.809239 + 1.40164i 0.913392 + 0.407081i \(0.133453\pi\)
−0.104154 + 0.994561i \(0.533213\pi\)
\(164\) 2.30696 + 3.99578i 0.180143 + 0.312018i
\(165\) 0 0
\(166\) −6.98252 −0.541949
\(167\) −4.16321 7.21090i −0.322159 0.557996i 0.658774 0.752341i \(-0.271075\pi\)
−0.980933 + 0.194345i \(0.937742\pi\)
\(168\) 0 0
\(169\) −6.46470 + 11.2786i −0.497284 + 0.867588i
\(170\) 2.19930 3.80930i 0.168679 0.292160i
\(171\) 0 0
\(172\) 1.81322 3.14059i 0.138257 0.239468i
\(173\) 3.72209 + 6.44684i 0.282985 + 0.490144i 0.972119 0.234490i \(-0.0753420\pi\)
−0.689134 + 0.724634i \(0.742009\pi\)
\(174\) 0 0
\(175\) 2.58337 + 7.59007i 0.195284 + 0.573756i
\(176\) 12.8552 22.2659i 0.968998 1.67835i
\(177\) 0 0
\(178\) 22.8757 1.71460
\(179\) −2.08557 + 3.61231i −0.155883 + 0.269997i −0.933380 0.358889i \(-0.883156\pi\)
0.777497 + 0.628886i \(0.216489\pi\)
\(180\) 0 0
\(181\) −9.67165 −0.718888 −0.359444 0.933167i \(-0.617034\pi\)
−0.359444 + 0.933167i \(0.617034\pi\)
\(182\) −5.73764 16.7713i −0.425302 1.24317i
\(183\) 0 0
\(184\) −4.17905 −0.308084
\(185\) −12.8600 + 22.2742i −0.945488 + 1.63763i
\(186\) 0 0
\(187\) −2.23951 + 3.87894i −0.163769 + 0.283656i
\(188\) −0.0242065 + 0.0419269i −0.00176544 + 0.00305783i
\(189\) 0 0
\(190\) 20.4397 1.48285
\(191\) 5.75225 + 9.96319i 0.416218 + 0.720911i 0.995555 0.0941770i \(-0.0300220\pi\)
−0.579337 + 0.815088i \(0.696689\pi\)
\(192\) 0 0
\(193\) −5.44302 + 9.42759i −0.391797 + 0.678613i −0.992687 0.120719i \(-0.961480\pi\)
0.600889 + 0.799332i \(0.294813\pi\)
\(194\) −15.9212 + 27.5763i −1.14308 + 1.97986i
\(195\) 0 0
\(196\) 9.40134 + 3.87626i 0.671524 + 0.276876i
\(197\) 3.89465 + 6.74574i 0.277483 + 0.480614i 0.970758 0.240058i \(-0.0771666\pi\)
−0.693276 + 0.720672i \(0.743833\pi\)
\(198\) 0 0
\(199\) −23.0342 −1.63285 −0.816426 0.577449i \(-0.804048\pi\)
−0.816426 + 0.577449i \(0.804048\pi\)
\(200\) −1.54083 2.66879i −0.108953 0.188712i
\(201\) 0 0
\(202\) −4.52505 + 7.83762i −0.318382 + 0.551453i
\(203\) 3.76603 + 11.0648i 0.264324 + 0.776597i
\(204\) 0 0
\(205\) −9.00025 −0.628605
\(206\) −16.3049 + 28.2410i −1.13602 + 1.96764i
\(207\) 0 0
\(208\) 8.66782 + 14.9589i 0.601005 + 1.03722i
\(209\) −20.8134 −1.43969
\(210\) 0 0
\(211\) 3.44245 + 5.96249i 0.236988 + 0.410475i 0.959849 0.280519i \(-0.0905065\pi\)
−0.722861 + 0.690994i \(0.757173\pi\)
\(212\) −7.52585 13.0351i −0.516877 0.895257i
\(213\) 0 0
\(214\) −9.07367 −0.620263
\(215\) 3.53700 + 6.12626i 0.241221 + 0.417807i
\(216\) 0 0
\(217\) 1.15732 + 3.40027i 0.0785641 + 0.230826i
\(218\) 12.7990 + 22.1686i 0.866859 + 1.50144i
\(219\) 0 0
\(220\) −11.0367 19.1161i −0.744095 1.28881i
\(221\) −1.51002 2.60600i −0.101575 0.175298i
\(222\) 0 0
\(223\) 7.93461 + 13.7432i 0.531341 + 0.920309i 0.999331 + 0.0365756i \(0.0116450\pi\)
−0.467990 + 0.883734i \(0.655022\pi\)
\(224\) −17.8457 3.53465i −1.19237 0.236169i
\(225\) 0 0
\(226\) −2.17520 + 3.76755i −0.144692 + 0.250614i
\(227\) 7.43520 0.493491 0.246746 0.969080i \(-0.420639\pi\)
0.246746 + 0.969080i \(0.420639\pi\)
\(228\) 0 0
\(229\) 11.2759 19.5304i 0.745130 1.29060i −0.205005 0.978761i \(-0.565721\pi\)
0.950134 0.311841i \(-0.100946\pi\)
\(230\) −10.8196 + 18.7402i −0.713426 + 1.23569i
\(231\) 0 0
\(232\) −2.24622 3.89056i −0.147471 0.255428i
\(233\) 4.96401 8.59792i 0.325203 0.563269i −0.656350 0.754456i \(-0.727901\pi\)
0.981553 + 0.191188i \(0.0612339\pi\)
\(234\) 0 0
\(235\) −0.0472189 0.0817856i −0.00308022 0.00533510i
\(236\) −2.53317 −0.164895
\(237\) 0 0
\(238\) 4.02847 + 0.797907i 0.261127 + 0.0517206i
\(239\) −17.2944 −1.11868 −0.559340 0.828938i \(-0.688946\pi\)
−0.559340 + 0.828938i \(0.688946\pi\)
\(240\) 0 0
\(241\) −22.2104 −1.43070 −0.715350 0.698766i \(-0.753733\pi\)
−0.715350 + 0.698766i \(0.753733\pi\)
\(242\) 16.4909 + 28.5630i 1.06007 + 1.83610i
\(243\) 0 0
\(244\) −4.41735 7.65108i −0.282792 0.489810i
\(245\) −15.7177 + 12.1013i −1.00417 + 0.773124i
\(246\) 0 0
\(247\) 6.97889 12.1316i 0.444056 0.771918i
\(248\) −0.690274 1.19559i −0.0438324 0.0759200i
\(249\) 0 0
\(250\) 10.3712 0.655932
\(251\) 6.49243 11.2452i 0.409799 0.709792i −0.585068 0.810984i \(-0.698932\pi\)
0.994867 + 0.101192i \(0.0322656\pi\)
\(252\) 0 0
\(253\) 11.0174 19.0827i 0.692660 1.19972i
\(254\) −14.7083 25.4755i −0.922881 1.59848i
\(255\) 0 0
\(256\) 20.9242 1.30776
\(257\) −29.1115 −1.81593 −0.907963 0.419050i \(-0.862363\pi\)
−0.907963 + 0.419050i \(0.862363\pi\)
\(258\) 0 0
\(259\) −23.5557 4.66562i −1.46368 0.289907i
\(260\) 14.8431 0.0232503i 0.920528 0.00144193i
\(261\) 0 0
\(262\) −19.9130 + 34.4903i −1.23023 + 2.13082i
\(263\) −7.36122 + 12.7500i −0.453912 + 0.786199i −0.998625 0.0524239i \(-0.983305\pi\)
0.544713 + 0.838623i \(0.316639\pi\)
\(264\) 0 0
\(265\) 29.3609 1.80363
\(266\) 6.14884 + 18.0656i 0.377010 + 1.10767i
\(267\) 0 0
\(268\) −2.05171 + 3.55366i −0.125328 + 0.217074i
\(269\) 30.8241 1.87938 0.939689 0.342031i \(-0.111115\pi\)
0.939689 + 0.342031i \(0.111115\pi\)
\(270\) 0 0
\(271\) −14.7499 −0.895990 −0.447995 0.894036i \(-0.647862\pi\)
−0.447995 + 0.894036i \(0.647862\pi\)
\(272\) −4.00551 −0.242870
\(273\) 0 0
\(274\) 39.5651 2.39021
\(275\) 16.2486 0.979828
\(276\) 0 0
\(277\) 29.9594 1.80008 0.900042 0.435804i \(-0.143536\pi\)
0.900042 + 0.435804i \(0.143536\pi\)
\(278\) 17.6089 30.4994i 1.05611 1.82923i
\(279\) 0 0
\(280\) 5.02241 5.73636i 0.300146 0.342813i
\(281\) −11.9170 −0.710909 −0.355455 0.934694i \(-0.615674\pi\)
−0.355455 + 0.934694i \(0.615674\pi\)
\(282\) 0 0
\(283\) 11.2509 19.4871i 0.668795 1.15839i −0.309446 0.950917i \(-0.600144\pi\)
0.978241 0.207470i \(-0.0665231\pi\)
\(284\) 10.5610 18.2922i 0.626679 1.08544i
\(285\) 0 0
\(286\) −35.9227 + 0.0562697i −2.12416 + 0.00332730i
\(287\) −2.70753 7.95487i −0.159820 0.469561i
\(288\) 0 0
\(289\) −16.3022 −0.958953
\(290\) −23.2620 −1.36599
\(291\) 0 0
\(292\) −3.13943 5.43766i −0.183721 0.318215i
\(293\) −5.53051 + 9.57913i −0.323096 + 0.559619i −0.981125 0.193374i \(-0.938057\pi\)
0.658029 + 0.752992i \(0.271390\pi\)
\(294\) 0 0
\(295\) 2.47069 4.27936i 0.143849 0.249154i
\(296\) 9.22970 0.536466
\(297\) 0 0
\(298\) −13.2062 22.8738i −0.765014 1.32504i
\(299\) 7.42867 + 12.8204i 0.429611 + 0.741424i
\(300\) 0 0
\(301\) −4.35066 + 4.96912i −0.250768 + 0.286416i
\(302\) −5.23970 9.07542i −0.301511 0.522232i
\(303\) 0 0
\(304\) −9.30651 16.1194i −0.533765 0.924508i
\(305\) 17.2336 0.986793
\(306\) 0 0
\(307\) −2.41729 −0.137962 −0.0689809 0.997618i \(-0.521975\pi\)
−0.0689809 + 0.997618i \(0.521975\pi\)
\(308\) 13.5756 15.5055i 0.773544 0.883507i
\(309\) 0 0
\(310\) −7.14853 −0.406009
\(311\) −2.04788 3.54704i −0.116125 0.201134i 0.802104 0.597184i \(-0.203714\pi\)
−0.918229 + 0.396050i \(0.870381\pi\)
\(312\) 0 0
\(313\) 5.12773 8.88148i 0.289836 0.502011i −0.683934 0.729544i \(-0.739732\pi\)
0.973770 + 0.227533i \(0.0730658\pi\)
\(314\) 4.60496 + 7.97603i 0.259873 + 0.450113i
\(315\) 0 0
\(316\) −4.30561 + 7.45754i −0.242210 + 0.419519i
\(317\) 1.79798 3.11420i 0.100985 0.174911i −0.811106 0.584899i \(-0.801134\pi\)
0.912091 + 0.409989i \(0.134467\pi\)
\(318\) 0 0
\(319\) 23.6872 1.32623
\(320\) 4.51526 7.82066i 0.252411 0.437188i
\(321\) 0 0
\(322\) −19.8183 3.92536i −1.10443 0.218752i
\(323\) 1.62129 + 2.80816i 0.0902110 + 0.156250i
\(324\) 0 0
\(325\) −5.44829 + 9.47095i −0.302217 + 0.525354i
\(326\) −19.1978 33.2516i −1.06327 1.84163i
\(327\) 0 0
\(328\) 1.61488 + 2.79706i 0.0891669 + 0.154442i
\(329\) 0.0580814 0.0663379i 0.00320213 0.00365732i
\(330\) 0 0
\(331\) −5.10390 8.84022i −0.280536 0.485902i 0.690981 0.722873i \(-0.257179\pi\)
−0.971517 + 0.236971i \(0.923846\pi\)
\(332\) 5.45903 0.299603
\(333\) 0 0
\(334\) 7.73588 + 13.3989i 0.423289 + 0.733158i
\(335\) −4.00221 6.93203i −0.218664 0.378737i
\(336\) 0 0
\(337\) 6.30217 0.343301 0.171650 0.985158i \(-0.445090\pi\)
0.171650 + 0.985158i \(0.445090\pi\)
\(338\) 12.0124 20.9574i 0.653388 1.13993i
\(339\) 0 0
\(340\) −1.71944 + 2.97817i −0.0932500 + 0.161514i
\(341\) 7.27921 0.394191
\(342\) 0 0
\(343\) −15.4241 10.2517i −0.832822 0.553540i
\(344\) 1.26926 2.19842i 0.0684339 0.118531i
\(345\) 0 0
\(346\) −6.91620 11.9792i −0.371817 0.644006i
\(347\) −10.4379 −0.560338 −0.280169 0.959951i \(-0.590390\pi\)
−0.280169 + 0.959951i \(0.590390\pi\)
\(348\) 0 0
\(349\) −3.99640 6.92197i −0.213923 0.370525i 0.739016 0.673688i \(-0.235291\pi\)
−0.952939 + 0.303163i \(0.901957\pi\)
\(350\) −4.80029 14.1035i −0.256586 0.753864i
\(351\) 0 0
\(352\) −18.4344 + 31.9292i −0.982554 + 1.70183i
\(353\) 8.07999 13.9950i 0.430055 0.744877i −0.566823 0.823840i \(-0.691828\pi\)
0.996878 + 0.0789632i \(0.0251609\pi\)
\(354\) 0 0
\(355\) 20.6010 + 35.6820i 1.09339 + 1.89380i
\(356\) −17.8845 −0.947876
\(357\) 0 0
\(358\) 3.87530 6.71222i 0.204816 0.354752i
\(359\) −15.1209 + 26.1901i −0.798048 + 1.38226i 0.122837 + 0.992427i \(0.460801\pi\)
−0.920885 + 0.389833i \(0.872533\pi\)
\(360\) 0 0
\(361\) 1.96610 3.40538i 0.103479 0.179230i
\(362\) 17.9714 0.944556
\(363\) 0 0
\(364\) 4.48577 + 13.1121i 0.235118 + 0.687258i
\(365\) 12.2480 0.641090
\(366\) 0 0
\(367\) 16.9861 29.4208i 0.886667 1.53575i 0.0428762 0.999080i \(-0.486348\pi\)
0.843791 0.536672i \(-0.180319\pi\)
\(368\) 19.7054 1.02721
\(369\) 0 0
\(370\) 23.8959 41.3889i 1.24229 2.15170i
\(371\) 8.83259 + 25.9506i 0.458565 + 1.34729i
\(372\) 0 0
\(373\) −9.00874 15.6036i −0.466455 0.807923i 0.532811 0.846234i \(-0.321136\pi\)
−0.999266 + 0.0383108i \(0.987802\pi\)
\(374\) 4.16135 7.20766i 0.215178 0.372699i
\(375\) 0 0
\(376\) −0.0169446 + 0.0293490i −0.000873853 + 0.00151356i
\(377\) −7.94252 + 13.8067i −0.409061 + 0.711084i
\(378\) 0 0
\(379\) 4.46667 + 7.73650i 0.229437 + 0.397397i 0.957642 0.287963i \(-0.0929780\pi\)
−0.728204 + 0.685360i \(0.759645\pi\)
\(380\) −15.9800 −0.819759
\(381\) 0 0
\(382\) −10.6885 18.5131i −0.546874 0.947213i
\(383\) −2.78825 4.82938i −0.142473 0.246770i 0.785954 0.618284i \(-0.212172\pi\)
−0.928427 + 0.371514i \(0.878839\pi\)
\(384\) 0 0
\(385\) 12.9531 + 38.0568i 0.660149 + 1.93955i
\(386\) 10.1140 17.5179i 0.514787 0.891638i
\(387\) 0 0
\(388\) 12.4474 21.5595i 0.631921 1.09452i
\(389\) −10.2140 17.6912i −0.517871 0.896979i −0.999784 0.0207599i \(-0.993391\pi\)
0.481914 0.876219i \(-0.339942\pi\)
\(390\) 0 0
\(391\) −3.43288 −0.173608
\(392\) 6.58097 + 2.71340i 0.332389 + 0.137047i
\(393\) 0 0
\(394\) −7.23686 12.5346i −0.364588 0.631484i
\(395\) −8.39884 14.5472i −0.422591 0.731950i
\(396\) 0 0
\(397\) −14.7254 25.5052i −0.739047 1.28007i −0.952925 0.303207i \(-0.901943\pi\)
0.213878 0.976860i \(-0.431391\pi\)
\(398\) 42.8011 2.14542
\(399\) 0 0
\(400\) 7.26543 + 12.5841i 0.363271 + 0.629204i
\(401\) 3.00650 0.150137 0.0750687 0.997178i \(-0.476082\pi\)
0.0750687 + 0.997178i \(0.476082\pi\)
\(402\) 0 0
\(403\) −2.44078 + 4.24289i −0.121584 + 0.211353i
\(404\) 3.53775 6.12756i 0.176010 0.304857i
\(405\) 0 0
\(406\) −6.99786 20.5601i −0.347298 1.02038i
\(407\) −24.3327 + 42.1455i −1.20613 + 2.08907i
\(408\) 0 0
\(409\) 33.1353 1.63843 0.819217 0.573484i \(-0.194409\pi\)
0.819217 + 0.573484i \(0.194409\pi\)
\(410\) 16.7238 0.825931
\(411\) 0 0
\(412\) 12.7474 22.0792i 0.628021 1.08776i
\(413\) 4.52556 + 0.896365i 0.222688 + 0.0441072i
\(414\) 0 0
\(415\) −5.32439 + 9.22211i −0.261364 + 0.452695i
\(416\) −12.4296 21.4511i −0.609413 1.05173i
\(417\) 0 0
\(418\) 38.6744 1.89163
\(419\) −15.7760 27.3249i −0.770709 1.33491i −0.937175 0.348860i \(-0.886569\pi\)
0.166465 0.986047i \(-0.446765\pi\)
\(420\) 0 0
\(421\) −4.20950 −0.205158 −0.102579 0.994725i \(-0.532709\pi\)
−0.102579 + 0.994725i \(0.532709\pi\)
\(422\) −6.39659 11.0792i −0.311381 0.539328i
\(423\) 0 0
\(424\) −5.26812 9.12465i −0.255842 0.443132i
\(425\) −1.26571 2.19228i −0.0613960 0.106341i
\(426\) 0 0
\(427\) 5.18436 + 15.2319i 0.250889 + 0.737124i
\(428\) 7.09392 0.342897
\(429\) 0 0
\(430\) −6.57227 11.3835i −0.316943 0.548962i
\(431\) −5.92949 + 10.2702i −0.285614 + 0.494697i −0.972758 0.231824i \(-0.925531\pi\)
0.687144 + 0.726521i \(0.258864\pi\)
\(432\) 0 0
\(433\) −14.0219 + 24.2867i −0.673851 + 1.16714i 0.302953 + 0.953006i \(0.402028\pi\)
−0.976803 + 0.214138i \(0.931306\pi\)
\(434\) −2.15048 6.31822i −0.103226 0.303285i
\(435\) 0 0
\(436\) −10.0064 17.3317i −0.479222 0.830037i
\(437\) −7.97606 13.8149i −0.381547 0.660858i
\(438\) 0 0
\(439\) −15.7994 −0.754065 −0.377033 0.926200i \(-0.623056\pi\)
−0.377033 + 0.926200i \(0.623056\pi\)
\(440\) −7.72574 13.3814i −0.368310 0.637932i
\(441\) 0 0
\(442\) 2.80585 + 4.84234i 0.133461 + 0.230327i
\(443\) 16.5707 28.7013i 0.787299 1.36364i −0.140317 0.990107i \(-0.544812\pi\)
0.927616 0.373535i \(-0.121855\pi\)
\(444\) 0 0
\(445\) 17.4434 30.2128i 0.826896 1.43223i
\(446\) −14.7437 25.5369i −0.698135 1.20921i
\(447\) 0 0
\(448\) 8.27060 + 1.63814i 0.390749 + 0.0773946i
\(449\) −4.75675 + 8.23894i −0.224485 + 0.388819i −0.956165 0.292829i \(-0.905403\pi\)
0.731680 + 0.681648i \(0.238737\pi\)
\(450\) 0 0
\(451\) −17.0296 −0.801890
\(452\) 1.70060 2.94552i 0.0799893 0.138546i
\(453\) 0 0
\(454\) −13.8157 −0.648404
\(455\) −26.5257 5.21071i −1.24355 0.244282i
\(456\) 0 0
\(457\) −17.2764 −0.808157 −0.404078 0.914724i \(-0.632408\pi\)
−0.404078 + 0.914724i \(0.632408\pi\)
\(458\) −20.9523 + 36.2904i −0.979034 + 1.69574i
\(459\) 0 0
\(460\) 8.45894 14.6513i 0.394400 0.683121i
\(461\) 17.2623 29.8992i 0.803986 1.39254i −0.112988 0.993596i \(-0.536042\pi\)
0.916974 0.398948i \(-0.130625\pi\)
\(462\) 0 0
\(463\) −36.7039 −1.70578 −0.852888 0.522094i \(-0.825151\pi\)
−0.852888 + 0.522094i \(0.825151\pi\)
\(464\) 10.5915 + 18.3451i 0.491700 + 0.851649i
\(465\) 0 0
\(466\) −9.22389 + 15.9762i −0.427288 + 0.740085i
\(467\) 13.3190 23.0692i 0.616330 1.06751i −0.373820 0.927501i \(-0.621952\pi\)
0.990150 0.140013i \(-0.0447145\pi\)
\(468\) 0 0
\(469\) 4.92289 5.62270i 0.227318 0.259632i
\(470\) 0.0877399 + 0.151970i 0.00404714 + 0.00700985i
\(471\) 0 0
\(472\) −1.77322 −0.0816193
\(473\) 6.69242 + 11.5916i 0.307718 + 0.532983i
\(474\) 0 0
\(475\) 5.88158 10.1872i 0.269865 0.467421i
\(476\) −3.14951 0.623814i −0.144357 0.0285925i
\(477\) 0 0
\(478\) 32.1356 1.46985
\(479\) 0.626483 1.08510i 0.0286247 0.0495795i −0.851358 0.524585i \(-0.824221\pi\)
0.879983 + 0.475005i \(0.157554\pi\)
\(480\) 0 0
\(481\) −16.4067 28.3147i −0.748081 1.29104i
\(482\) 41.2704 1.87981
\(483\) 0 0
\(484\) −12.8928 22.3310i −0.586036 1.01504i
\(485\) 24.2808 + 42.0556i 1.10253 + 1.90965i
\(486\) 0 0
\(487\) 7.63257 0.345865 0.172932 0.984934i \(-0.444676\pi\)
0.172932 + 0.984934i \(0.444676\pi\)
\(488\) −3.09216 5.35578i −0.139976 0.242445i
\(489\) 0 0
\(490\) 29.2060 22.4861i 1.31939 1.01582i
\(491\) −1.12442 1.94755i −0.0507442 0.0878915i 0.839538 0.543302i \(-0.182826\pi\)
−0.890282 + 0.455410i \(0.849493\pi\)
\(492\) 0 0
\(493\) −1.84515 3.19590i −0.0831015 0.143936i
\(494\) −12.9678 + 22.5424i −0.583450 + 1.01423i
\(495\) 0 0
\(496\) 3.25484 + 5.63754i 0.146146 + 0.253133i
\(497\) −25.3402 + 28.9423i −1.13666 + 1.29824i
\(498\) 0 0
\(499\) −17.2321 + 29.8469i −0.771417 + 1.33613i 0.165370 + 0.986232i \(0.447118\pi\)
−0.936787 + 0.349901i \(0.886215\pi\)
\(500\) −8.10834 −0.362616
\(501\) 0 0
\(502\) −12.0639 + 20.8953i −0.538439 + 0.932604i
\(503\) −2.65078 + 4.59128i −0.118192 + 0.204715i −0.919051 0.394138i \(-0.871043\pi\)
0.800859 + 0.598853i \(0.204377\pi\)
\(504\) 0 0
\(505\) 6.90098 + 11.9529i 0.307090 + 0.531895i
\(506\) −20.4721 + 35.4586i −0.910094 + 1.57633i
\(507\) 0 0
\(508\) 11.4991 + 19.9171i 0.510192 + 0.883679i
\(509\) −17.1384 −0.759646 −0.379823 0.925059i \(-0.624015\pi\)
−0.379823 + 0.925059i \(0.624015\pi\)
\(510\) 0 0
\(511\) 3.68455 + 10.8254i 0.162995 + 0.478887i
\(512\) −23.2188 −1.02613
\(513\) 0 0
\(514\) 54.0936 2.38597
\(515\) 24.8660 + 43.0692i 1.09573 + 1.89786i
\(516\) 0 0
\(517\) −0.0893439 0.154748i −0.00392934 0.00680581i
\(518\) 43.7701 + 8.66942i 1.92315 + 0.380913i
\(519\) 0 0
\(520\) 10.3902 0.0162753i 0.455641 0.000713720i
\(521\) −9.32232 16.1467i −0.408418 0.707401i 0.586295 0.810098i \(-0.300586\pi\)
−0.994713 + 0.102697i \(0.967253\pi\)
\(522\) 0 0
\(523\) −31.4131 −1.37360 −0.686800 0.726847i \(-0.740985\pi\)
−0.686800 + 0.726847i \(0.740985\pi\)
\(524\) 15.5682 26.9649i 0.680101 1.17797i
\(525\) 0 0
\(526\) 13.6783 23.6914i 0.596400 1.03300i
\(527\) −0.567025 0.982117i −0.0247000 0.0427817i
\(528\) 0 0
\(529\) −6.11168 −0.265725
\(530\) −54.5570 −2.36981
\(531\) 0 0
\(532\) −4.80725 14.1240i −0.208421 0.612351i
\(533\) 5.71015 9.92614i 0.247334 0.429949i
\(534\) 0 0
\(535\) −6.91895 + 11.9840i −0.299132 + 0.518112i
\(536\) −1.43620 + 2.48758i −0.0620345 + 0.107447i
\(537\) 0 0
\(538\) −57.2758 −2.46934
\(539\) −29.7399 + 22.8971i −1.28099 + 0.986249i
\(540\) 0 0
\(541\) −13.1855 + 22.8379i −0.566887 + 0.981878i 0.429984 + 0.902836i \(0.358519\pi\)
−0.996871 + 0.0790411i \(0.974814\pi\)
\(542\) 27.4075 1.17725
\(543\) 0 0
\(544\) 5.74389 0.246267
\(545\) 39.0386 1.67223
\(546\) 0 0
\(547\) 10.0353 0.429077 0.214539 0.976715i \(-0.431175\pi\)
0.214539 + 0.976715i \(0.431175\pi\)
\(548\) −30.9325 −1.32137
\(549\) 0 0
\(550\) −30.1924 −1.28741
\(551\) 8.57417 14.8509i 0.365272 0.632669i
\(552\) 0 0
\(553\) 10.3309 11.7995i 0.439316 0.501767i
\(554\) −55.6690 −2.36515
\(555\) 0 0
\(556\) −13.7668 + 23.8449i −0.583844 + 1.01125i
\(557\) 18.6341 32.2753i 0.789553 1.36755i −0.136687 0.990614i \(-0.543646\pi\)
0.926241 0.376932i \(-0.123021\pi\)
\(558\) 0 0
\(559\) −9.00051 + 0.0140985i −0.380681 + 0.000596303i
\(560\) −23.6821 + 27.0486i −1.00075 + 1.14301i
\(561\) 0 0
\(562\) 22.1436 0.934072
\(563\) −29.5262 −1.24438 −0.622191 0.782866i \(-0.713757\pi\)
−0.622191 + 0.782866i \(0.713757\pi\)
\(564\) 0 0
\(565\) 3.31731 + 5.74574i 0.139560 + 0.241725i
\(566\) −20.9058 + 36.2100i −0.878738 + 1.52202i
\(567\) 0 0
\(568\) 7.39272 12.8046i 0.310192 0.537268i
\(569\) −35.0103 −1.46771 −0.733854 0.679307i \(-0.762280\pi\)
−0.733854 + 0.679307i \(0.762280\pi\)
\(570\) 0 0
\(571\) −13.5415 23.4546i −0.566696 0.981546i −0.996890 0.0788096i \(-0.974888\pi\)
0.430194 0.902737i \(-0.358445\pi\)
\(572\) 28.0849 0.0439924i 1.17429 0.00183942i
\(573\) 0 0
\(574\) 5.03100 + 14.7814i 0.209990 + 0.616962i
\(575\) 6.22676 + 10.7851i 0.259674 + 0.449768i
\(576\) 0 0
\(577\) 2.11708 + 3.66689i 0.0881353 + 0.152655i 0.906723 0.421727i \(-0.138576\pi\)
−0.818588 + 0.574382i \(0.805243\pi\)
\(578\) 30.2920 1.25998
\(579\) 0 0
\(580\) 18.1865 0.755154
\(581\) −9.75269 1.93169i −0.404610 0.0801399i
\(582\) 0 0
\(583\) 55.5543 2.30083
\(584\) −2.19761 3.80638i −0.0909379 0.157509i
\(585\) 0 0
\(586\) 10.2765 17.7995i 0.424520 0.735289i
\(587\) −10.7462 18.6130i −0.443544 0.768241i 0.554405 0.832247i \(-0.312946\pi\)
−0.997950 + 0.0640058i \(0.979612\pi\)
\(588\) 0 0
\(589\) 2.63489 4.56376i 0.108569 0.188046i
\(590\) −4.59091 + 7.95169i −0.189005 + 0.327366i
\(591\) 0 0
\(592\) −43.5206 −1.78869
\(593\) 2.36578 4.09766i 0.0971511 0.168271i −0.813353 0.581770i \(-0.802360\pi\)
0.910504 + 0.413500i \(0.135694\pi\)
\(594\) 0 0
\(595\) 4.12566 4.71213i 0.169135 0.193179i
\(596\) 10.3248 + 17.8830i 0.422919 + 0.732518i
\(597\) 0 0
\(598\) −13.8036 23.8223i −0.564471 0.974165i
\(599\) 21.1050 + 36.5549i 0.862326 + 1.49359i 0.869678 + 0.493619i \(0.164326\pi\)
−0.00735218 + 0.999973i \(0.502340\pi\)
\(600\) 0 0
\(601\) 19.6243 + 33.9903i 0.800493 + 1.38649i 0.919292 + 0.393576i \(0.128762\pi\)
−0.118800 + 0.992918i \(0.537905\pi\)
\(602\) 8.08419 9.23339i 0.329487 0.376325i
\(603\) 0 0
\(604\) 4.09647 + 7.09529i 0.166683 + 0.288703i
\(605\) 50.2992 2.04495
\(606\) 0 0
\(607\) −8.70003 15.0689i −0.353123 0.611628i 0.633672 0.773602i \(-0.281547\pi\)
−0.986795 + 0.161975i \(0.948214\pi\)
\(608\) 13.3455 + 23.1151i 0.541233 + 0.937443i
\(609\) 0 0
\(610\) −32.0227 −1.29656
\(611\) 0.120157 0.000188215i 0.00486103 7.61437e-6i
\(612\) 0 0
\(613\) 0.595546 1.03152i 0.0240539 0.0416625i −0.853748 0.520687i \(-0.825676\pi\)
0.877802 + 0.479024i \(0.159009\pi\)
\(614\) 4.49168 0.181270
\(615\) 0 0
\(616\) 9.50300 10.8539i 0.382887 0.437316i
\(617\) 5.79049 10.0294i 0.233116 0.403769i −0.725607 0.688109i \(-0.758441\pi\)
0.958724 + 0.284340i \(0.0917744\pi\)
\(618\) 0 0
\(619\) 17.5041 + 30.3179i 0.703547 + 1.21858i 0.967213 + 0.253966i \(0.0817350\pi\)
−0.263666 + 0.964614i \(0.584932\pi\)
\(620\) 5.58881 0.224452
\(621\) 0 0
\(622\) 3.80528 + 6.59094i 0.152578 + 0.264272i
\(623\) 31.9511 + 6.32846i 1.28009 + 0.253544i
\(624\) 0 0
\(625\) 15.4843 26.8197i 0.619374 1.07279i
\(626\) −9.52810 + 16.5031i −0.380819 + 0.659598i
\(627\) 0 0
\(628\) −3.60022 6.23577i −0.143664 0.248834i
\(629\) 7.58174 0.302304
\(630\) 0 0
\(631\) 0.511253 0.885516i 0.0203527 0.0352518i −0.855670 0.517522i \(-0.826854\pi\)
0.876022 + 0.482271i \(0.160188\pi\)
\(632\) −3.01394 + 5.22030i −0.119888 + 0.207653i
\(633\) 0 0
\(634\) −3.34093 + 5.78666i −0.132685 + 0.229818i
\(635\) −44.8621 −1.78030
\(636\) 0 0
\(637\) −3.37420 25.0123i −0.133691 0.991023i
\(638\) −44.0144 −1.74255
\(639\) 0 0
\(640\) 11.0954 19.2177i 0.438583 0.759647i
\(641\) 44.3676 1.75242 0.876208 0.481933i \(-0.160065\pi\)
0.876208 + 0.481933i \(0.160065\pi\)
\(642\) 0 0
\(643\) 4.17452 7.23048i 0.164627 0.285142i −0.771896 0.635749i \(-0.780691\pi\)
0.936523 + 0.350607i \(0.114025\pi\)
\(644\) 15.4942 + 3.06890i 0.610559 + 0.120932i
\(645\) 0 0
\(646\) −3.01260 5.21798i −0.118529 0.205299i
\(647\) 13.2862 23.0124i 0.522334 0.904709i −0.477328 0.878725i \(-0.658395\pi\)
0.999662 0.0259840i \(-0.00827191\pi\)
\(648\) 0 0
\(649\) 4.67484 8.09705i 0.183503 0.317837i
\(650\) 10.1238 17.5985i 0.397086 0.690268i
\(651\) 0 0
\(652\) 15.0091 + 25.9965i 0.587802 + 1.01810i
\(653\) 41.6970 1.63173 0.815864 0.578243i \(-0.196262\pi\)
0.815864 + 0.578243i \(0.196262\pi\)
\(654\) 0 0
\(655\) 30.3685 + 52.5998i 1.18659 + 2.05524i
\(656\) −7.61462 13.1889i −0.297301 0.514940i
\(657\) 0 0
\(658\) −0.107924 + 0.123266i −0.00420732 + 0.00480540i
\(659\) −12.7312 + 22.0510i −0.495936 + 0.858986i −0.999989 0.00468666i \(-0.998508\pi\)
0.504053 + 0.863673i \(0.331842\pi\)
\(660\) 0 0
\(661\) −13.2426 + 22.9368i −0.515076 + 0.892137i 0.484771 + 0.874641i \(0.338903\pi\)
−0.999847 + 0.0174961i \(0.994431\pi\)
\(662\) 9.48383 + 16.4265i 0.368599 + 0.638433i
\(663\) 0 0
\(664\) 3.82134 0.148297
\(665\) 28.5487 + 5.65456i 1.10707 + 0.219275i
\(666\) 0 0
\(667\) 9.07737 + 15.7225i 0.351477 + 0.608777i
\(668\) −6.04802 10.4755i −0.234005 0.405308i
\(669\) 0 0
\(670\) 7.43671 + 12.8808i 0.287305 + 0.497627i
\(671\) 32.6080 1.25882
\(672\) 0 0
\(673\) −6.25914 10.8411i −0.241272 0.417895i 0.719805 0.694176i \(-0.244231\pi\)
−0.961077 + 0.276281i \(0.910898\pi\)
\(674\) −11.7104 −0.451067
\(675\) 0 0
\(676\) −9.39145 + 16.3848i −0.361209 + 0.630184i
\(677\) −0.555472 + 0.962106i −0.0213485 + 0.0369767i −0.876502 0.481398i \(-0.840129\pi\)
0.855154 + 0.518374i \(0.173463\pi\)
\(678\) 0 0
\(679\) −29.8665 + 34.1121i −1.14617 + 1.30910i
\(680\) −1.20362 + 2.08473i −0.0461566 + 0.0799456i
\(681\) 0 0
\(682\) −13.5259 −0.517932
\(683\) −14.3258 −0.548160 −0.274080 0.961707i \(-0.588373\pi\)
−0.274080 + 0.961707i \(0.588373\pi\)
\(684\) 0 0
\(685\) 30.1696 52.2552i 1.15272 1.99657i
\(686\) 28.6603 + 19.0492i 1.09426 + 0.727303i
\(687\) 0 0
\(688\) −5.98492 + 10.3662i −0.228173 + 0.395207i
\(689\) −18.6278 + 32.3814i −0.709664 + 1.23363i
\(690\) 0 0
\(691\) −1.03759 −0.0394718 −0.0197359 0.999805i \(-0.506283\pi\)
−0.0197359 + 0.999805i \(0.506283\pi\)
\(692\) 5.40718 + 9.36551i 0.205550 + 0.356023i
\(693\) 0 0
\(694\) 19.3953 0.736235
\(695\) −26.8546 46.5135i −1.01865 1.76436i
\(696\) 0 0
\(697\) 1.32654 + 2.29764i 0.0502464 + 0.0870294i
\(698\) 7.42592 + 12.8621i 0.281075 + 0.486837i
\(699\) 0 0
\(700\) 3.75293 + 11.0263i 0.141847 + 0.416755i
\(701\) 13.5992 0.513635 0.256818 0.966460i \(-0.417326\pi\)
0.256818 + 0.966460i \(0.417326\pi\)
\(702\) 0 0
\(703\) 17.6156 + 30.5112i 0.664386 + 1.15075i
\(704\) 8.54341 14.7976i 0.321992 0.557706i
\(705\) 0 0
\(706\) −15.0139 + 26.0048i −0.565054 + 0.978702i
\(707\) −8.48852 + 9.69519i −0.319244 + 0.364625i
\(708\) 0 0
\(709\) −4.16384 7.21198i −0.156376 0.270852i 0.777183 0.629275i \(-0.216648\pi\)
−0.933559 + 0.358423i \(0.883315\pi\)
\(710\) −38.2798 66.3025i −1.43662 2.48829i
\(711\) 0 0
\(712\) −12.5192 −0.469177
\(713\) 2.78952 + 4.83160i 0.104469 + 0.180945i
\(714\) 0 0
\(715\) −27.3179 + 47.4876i −1.02163 + 1.77593i
\(716\) −3.02976 + 5.24770i −0.113228 + 0.196116i
\(717\) 0 0
\(718\) 28.0968 48.6652i 1.04856 1.81617i
\(719\) 0.808178 + 1.39981i 0.0301400 + 0.0522039i 0.880702 0.473671i \(-0.157071\pi\)
−0.850562 + 0.525875i \(0.823738\pi\)
\(720\) 0 0
\(721\) −30.5863 + 34.9343i −1.13909 + 1.30102i
\(722\) −3.65330 + 6.32771i −0.135962 + 0.235493i
\(723\) 0 0
\(724\) −14.0503 −0.522175
\(725\) −6.69370 + 11.5938i −0.248598 + 0.430584i
\(726\) 0 0
\(727\) −27.3732 −1.01522 −0.507609 0.861588i \(-0.669470\pi\)
−0.507609 + 0.861588i \(0.669470\pi\)
\(728\) 3.14005 + 9.17848i 0.116378 + 0.340177i
\(729\) 0 0
\(730\) −22.7587 −0.842336
\(731\) 1.04263 1.80589i 0.0385632 0.0667934i
\(732\) 0 0
\(733\) −7.61372 + 13.1874i −0.281219 + 0.487086i −0.971685 0.236279i \(-0.924072\pi\)
0.690466 + 0.723365i \(0.257405\pi\)
\(734\) −31.5627 + 54.6683i −1.16500 + 2.01784i
\(735\) 0 0
\(736\) −28.2575 −1.04159
\(737\) −7.57266 13.1162i −0.278942 0.483142i
\(738\) 0 0
\(739\) 1.23392 2.13720i 0.0453903 0.0786183i −0.842438 0.538794i \(-0.818880\pi\)
0.887828 + 0.460176i \(0.152214\pi\)
\(740\) −18.6821 + 32.3584i −0.686768 + 1.18952i
\(741\) 0 0
\(742\) −16.4123 48.2202i −0.602514 1.77022i
\(743\) −17.7081 30.6713i −0.649646 1.12522i −0.983207 0.182491i \(-0.941584\pi\)
0.333562 0.942728i \(-0.391749\pi\)
\(744\) 0 0
\(745\) −40.2805 −1.47576
\(746\) 16.7396 + 28.9938i 0.612880 + 1.06154i
\(747\) 0 0
\(748\) −3.25340 + 5.63505i −0.118956 + 0.206038i
\(749\) −12.6735 2.51019i −0.463078 0.0917205i
\(750\) 0 0
\(751\) 6.25786 0.228353 0.114176 0.993461i \(-0.463577\pi\)
0.114176 + 0.993461i \(0.463577\pi\)
\(752\) 0.0798987 0.138389i 0.00291361 0.00504651i
\(753\) 0 0
\(754\) 14.7584 25.6550i 0.537469 0.934301i
\(755\) −15.9817 −0.581634
\(756\) 0 0
\(757\) 7.06876 + 12.2435i 0.256918 + 0.444996i 0.965415 0.260719i \(-0.0839595\pi\)
−0.708496 + 0.705714i \(0.750626\pi\)
\(758\) −8.29975 14.3756i −0.301461 0.522145i
\(759\) 0 0
\(760\) −11.1861 −0.405762
\(761\) −9.33281 16.1649i −0.338314 0.585977i 0.645802 0.763505i \(-0.276523\pi\)
−0.984116 + 0.177528i \(0.943190\pi\)
\(762\) 0 0
\(763\) 11.7439 + 34.5042i 0.425158 + 1.24914i
\(764\) 8.35645 + 14.4738i 0.302326 + 0.523644i
\(765\) 0 0
\(766\) 5.18098 + 8.97373i 0.187197 + 0.324234i
\(767\) 3.15208 + 5.43987i 0.113815 + 0.196422i
\(768\) 0 0
\(769\) −4.51337 7.81739i −0.162756 0.281902i 0.773100 0.634284i \(-0.218705\pi\)
−0.935856 + 0.352382i \(0.885372\pi\)
\(770\) −24.0688 70.7153i −0.867378 2.54840i
\(771\) 0 0
\(772\) −7.90723 + 13.6957i −0.284588 + 0.492920i
\(773\) −2.66286 −0.0957765 −0.0478882 0.998853i \(-0.515249\pi\)
−0.0478882 + 0.998853i \(0.515249\pi\)
\(774\) 0 0
\(775\) −2.05701 + 3.56284i −0.0738899 + 0.127981i
\(776\) 8.71323 15.0917i 0.312787 0.541762i
\(777\) 0 0
\(778\) 18.9792 + 32.8729i 0.680437 + 1.17855i
\(779\) −6.16426 + 10.6768i −0.220858 + 0.382537i
\(780\) 0 0
\(781\) 38.9796 + 67.5146i 1.39480 + 2.41586i
\(782\) 6.37881 0.228106
\(783\) 0 0
\(784\) −31.0311 12.7944i −1.10825 0.456944i
\(785\) 14.0457 0.501313
\(786\) 0 0
\(787\) −15.7793 −0.562470 −0.281235 0.959639i \(-0.590744\pi\)
−0.281235 + 0.959639i \(0.590744\pi\)
\(788\) 5.65787 + 9.79972i 0.201553 + 0.349101i
\(789\) 0 0
\(790\) 15.6063 + 27.0309i 0.555248 + 0.961717i
\(791\) −4.08043 + 4.66048i −0.145084 + 0.165708i
\(792\) 0 0
\(793\) −10.9337 + 19.0065i −0.388269 + 0.674941i
\(794\) 27.3620 + 47.3924i 0.971043 + 1.68189i
\(795\) 0 0
\(796\) −33.4625 −1.18605
\(797\) 10.5164 18.2150i 0.372510 0.645207i −0.617441 0.786617i \(-0.711830\pi\)
0.989951 + 0.141411i \(0.0451638\pi\)
\(798\) 0 0
\(799\) −0.0139192 + 0.0241087i −0.000492425 + 0.000852905i
\(800\) −10.4186 18.0456i −0.368354 0.638007i
\(801\) 0 0
\(802\) −5.58653 −0.197267
\(803\) 23.1747 0.817817
\(804\) 0 0
\(805\) −20.2965 + 23.1817i −0.715357 + 0.817048i
\(806\) 4.53534 7.88393i 0.159750 0.277699i
\(807\) 0 0
\(808\) 2.47644 4.28931i 0.0871207 0.150897i
\(809\) 15.3266 26.5465i 0.538855 0.933324i −0.460111 0.887861i \(-0.652190\pi\)
0.998966 0.0454626i \(-0.0144762\pi\)
\(810\) 0 0
\(811\) 8.17525 0.287072 0.143536 0.989645i \(-0.454153\pi\)
0.143536 + 0.989645i \(0.454153\pi\)
\(812\) 5.47102 + 16.0742i 0.191995 + 0.564092i
\(813\) 0 0
\(814\) 45.2139 78.3127i 1.58474 2.74486i
\(815\) −58.5556 −2.05111
\(816\) 0 0
\(817\) 9.68994 0.339008
\(818\) −61.5704 −2.15276
\(819\) 0 0
\(820\) −13.0749 −0.456596
\(821\) 11.9826 0.418195 0.209097 0.977895i \(-0.432947\pi\)
0.209097 + 0.977895i \(0.432947\pi\)
\(822\) 0 0
\(823\) 24.6941 0.860781 0.430390 0.902643i \(-0.358376\pi\)
0.430390 + 0.902643i \(0.358376\pi\)
\(824\) 8.92324 15.4555i 0.310856 0.538418i
\(825\) 0 0
\(826\) −8.40918 1.66558i −0.292593 0.0579530i
\(827\) −18.5259 −0.644210 −0.322105 0.946704i \(-0.604390\pi\)
−0.322105 + 0.946704i \(0.604390\pi\)
\(828\) 0 0
\(829\) 26.0106 45.0516i 0.903384 1.56471i 0.0803132 0.996770i \(-0.474408\pi\)
0.823071 0.567938i \(-0.192259\pi\)
\(830\) 9.89352 17.1361i 0.343409 0.594802i
\(831\) 0 0
\(832\) 5.76052 + 9.94152i 0.199710 + 0.344660i
\(833\) 5.40593 + 2.22892i 0.187305 + 0.0772274i
\(834\) 0 0
\(835\) 23.5954 0.816552
\(836\) −30.2361 −1.04574
\(837\) 0 0
\(838\) 29.3143 + 50.7738i 1.01264 + 1.75395i
\(839\) 17.5146 30.3361i 0.604670 1.04732i −0.387433 0.921898i \(-0.626638\pi\)
0.992104 0.125422i \(-0.0400284\pi\)
\(840\) 0 0
\(841\) 4.74193 8.21326i 0.163515 0.283216i
\(842\) 7.82188 0.269560
\(843\) 0 0
\(844\) 5.00094 + 8.66188i 0.172139 + 0.298154i
\(845\) −18.5195 31.8459i −0.637091 1.09553i
\(846\) 0 0
\(847\) 15.1314 + 44.4569i 0.519921 + 1.52756i
\(848\) 24.8407 + 43.0253i 0.853031 + 1.47749i
\(849\) 0 0
\(850\) 2.35188 + 4.07358i 0.0806689 + 0.139723i
\(851\) −37.2989 −1.27859
\(852\) 0 0
\(853\) 33.9514 1.16247 0.581237 0.813735i \(-0.302569\pi\)
0.581237 + 0.813735i \(0.302569\pi\)
\(854\) −9.63332 28.3032i −0.329645 0.968516i
\(855\) 0 0
\(856\) 4.96577 0.169726
\(857\) −18.8655 32.6759i −0.644432 1.11619i −0.984432 0.175764i \(-0.943761\pi\)
0.340000 0.940425i \(-0.389573\pi\)
\(858\) 0 0
\(859\) −2.63510 + 4.56413i −0.0899086 + 0.155726i −0.907472 0.420112i \(-0.861991\pi\)
0.817564 + 0.575838i \(0.195324\pi\)
\(860\) 5.13829 + 8.89978i 0.175214 + 0.303480i
\(861\) 0 0
\(862\) 11.0179 19.0836i 0.375271 0.649989i
\(863\) 14.5016 25.1175i 0.493640 0.855010i −0.506333 0.862338i \(-0.668999\pi\)
0.999973 + 0.00732829i \(0.00233269\pi\)
\(864\) 0 0
\(865\) −21.0953 −0.717260
\(866\) 26.0549 45.1283i 0.885380 1.53352i
\(867\) 0 0
\(868\) 1.68127 + 4.93967i 0.0570661 + 0.167663i
\(869\) −15.8916 27.5251i −0.539086 0.933724i
\(870\) 0 0
\(871\) 10.1843 0.0159528i 0.345083 0.000540541i
\(872\) −7.00455 12.1322i −0.237204 0.410849i
\(873\) 0 0
\(874\) 14.8207 + 25.6702i 0.501318 + 0.868309i
\(875\) 14.4857 + 2.86915i 0.489708 + 0.0969950i
\(876\) 0 0
\(877\) −8.68615 15.0449i −0.293310 0.508029i 0.681280 0.732023i \(-0.261424\pi\)
−0.974590 + 0.223994i \(0.928090\pi\)
\(878\) 29.3577 0.990775
\(879\) 0 0
\(880\) 36.4290 + 63.0969i 1.22802 + 2.12700i
\(881\) −9.75793 16.9012i −0.328753 0.569417i 0.653512 0.756916i \(-0.273295\pi\)
−0.982265 + 0.187500i \(0.939962\pi\)
\(882\) 0 0
\(883\) −27.9041 −0.939047 −0.469524 0.882920i \(-0.655574\pi\)
−0.469524 + 0.882920i \(0.655574\pi\)
\(884\) −2.19365 3.78581i −0.0737805 0.127331i
\(885\) 0 0
\(886\) −30.7909 + 53.3315i −1.03444 + 1.79171i
\(887\) 40.6053 1.36339 0.681696 0.731635i \(-0.261243\pi\)
0.681696 + 0.731635i \(0.261243\pi\)
\(888\) 0 0
\(889\) −13.4958 39.6514i −0.452634 1.32986i
\(890\) −32.4125 + 56.1400i −1.08647 + 1.88182i
\(891\) 0 0
\(892\) 11.5268 + 19.9651i 0.385947 + 0.668480i
\(893\) −0.129361 −0.00432889
\(894\) 0 0
\(895\) −5.91007 10.2365i −0.197552 0.342170i
\(896\) 20.3234 + 4.02540i 0.678957 + 0.134479i
\(897\) 0 0
\(898\) 8.83877 15.3092i 0.294953 0.510874i
\(899\) −2.99871 + 5.19391i −0.100012 + 0.173227i
\(900\) 0 0
\(901\) −4.32749 7.49544i −0.144170 0.249709i
\(902\) 31.6435 1.05361
\(903\) 0 0
\(904\) 1.19042 2.06187i 0.0395929 0.0685769i
\(905\) 13.7037 23.7356i 0.455528 0.788997i
\(906\) 0 0
\(907\) −14.6904 + 25.4446i −0.487787 + 0.844872i −0.999901 0.0140450i \(-0.995529\pi\)
0.512114 + 0.858917i \(0.328863\pi\)
\(908\) 10.8013 0.358454
\(909\) 0 0
\(910\) 49.2888 + 9.68229i 1.63391 + 0.320965i
\(911\) 24.7686 0.820622 0.410311 0.911946i \(-0.365420\pi\)
0.410311 + 0.911946i \(0.365420\pi\)
\(912\) 0 0
\(913\) −10.0744 + 17.4493i −0.333413 + 0.577489i
\(914\) 32.1022 1.06185
\(915\) 0 0
\(916\) 16.3808 28.3723i 0.541235 0.937447i
\(917\) −37.3546 + 42.6647i −1.23356 + 1.40891i
\(918\) 0 0
\(919\) 6.38891 + 11.0659i 0.210751 + 0.365031i 0.951950 0.306254i \(-0.0990758\pi\)
−0.741199 + 0.671285i \(0.765743\pi\)
\(920\) 5.92129 10.2560i 0.195219 0.338129i
\(921\) 0 0
\(922\) −32.0760 + 55.5572i −1.05637 + 1.82968i
\(923\) −52.4229 + 0.0821158i −1.72552 + 0.00270287i
\(924\) 0 0
\(925\) −13.7522 23.8195i −0.452170 0.783181i
\(926\) 68.2014 2.24124
\(927\) 0 0
\(928\) −15.1883 26.3068i −0.498579 0.863564i
\(929\) −14.9490 25.8925i −0.490461 0.849504i 0.509478 0.860484i \(-0.329838\pi\)
−0.999940 + 0.0109793i \(0.996505\pi\)
\(930\) 0 0
\(931\) 3.59048 + 26.9338i 0.117673 + 0.882721i
\(932\) 7.21136 12.4904i 0.236216 0.409138i
\(933\) 0 0
\(934\) −24.7487 + 42.8660i −0.809803 + 1.40262i
\(935\) −6.34631 10.9921i −0.207546 0.359481i
\(936\) 0 0
\(937\) −30.8277 −1.00710 −0.503549 0.863967i \(-0.667972\pi\)
−0.503549 + 0.863967i \(0.667972\pi\)
\(938\) −9.14748 + 10.4478i −0.298676 + 0.341134i
\(939\) 0 0
\(940\) −0.0685963 0.118812i −0.00223736 0.00387523i
\(941\) 3.03988 + 5.26522i 0.0990972 + 0.171641i 0.911311 0.411718i \(-0.135071\pi\)
−0.812214 + 0.583360i \(0.801738\pi\)
\(942\) 0 0
\(943\) −6.52604 11.3034i −0.212517 0.368090i
\(944\) 8.36125 0.272136
\(945\) 0 0
\(946\) −12.4355 21.5390i −0.404314 0.700292i
\(947\) 33.6489 1.09344 0.546722 0.837314i \(-0.315876\pi\)
0.546722 + 0.837314i \(0.315876\pi\)
\(948\) 0 0
\(949\) −7.77067 + 13.5080i −0.252247 + 0.438489i
\(950\) −10.9289 + 18.9294i −0.354579 + 0.614149i
\(951\) 0 0
\(952\) −2.20467 0.436672i −0.0714537 0.0141526i
\(953\) −5.48006 + 9.49174i −0.177516 + 0.307468i −0.941029 0.338325i \(-0.890140\pi\)
0.763513 + 0.645793i \(0.223473\pi\)
\(954\) 0 0
\(955\) −32.6014 −1.05496
\(956\) −25.1240 −0.812569
\(957\) 0 0
\(958\) −1.16410 + 2.01628i −0.0376104 + 0.0651431i
\(959\) 55.2617 + 10.9455i 1.78449 + 0.353449i
\(960\) 0 0
\(961\) 14.5785 25.2507i 0.470274 0.814538i
\(962\) 30.4861 + 52.6130i 0.982912 + 1.69631i
\(963\) 0 0
\(964\) −32.2657 −1.03921
\(965\) −15.4244 26.7159i −0.496529 0.860014i
\(966\) 0 0
\(967\) −34.7715 −1.11818 −0.559088 0.829108i \(-0.688849\pi\)
−0.559088 + 0.829108i \(0.688849\pi\)
\(968\) −9.02499 15.6317i −0.290074 0.502423i
\(969\) 0 0
\(970\) −45.1174 78.1456i −1.44863 2.50910i
\(971\) 19.6214 + 33.9852i 0.629680 + 1.09064i 0.987616 + 0.156892i \(0.0501475\pi\)
−0.357935 + 0.933746i \(0.616519\pi\)
\(972\) 0 0
\(973\) 33.0323 37.7280i 1.05897 1.20950i
\(974\) −14.1825 −0.454436
\(975\) 0 0
\(976\) 14.5804 + 25.2540i 0.466708 + 0.808361i
\(977\) −1.28435 + 2.22455i −0.0410898 + 0.0711697i −0.885839 0.463993i \(-0.846416\pi\)
0.844749 + 0.535163i \(0.179750\pi\)
\(978\) 0 0
\(979\) 33.0050 57.1663i 1.05484 1.82704i
\(980\) −22.8336 + 17.5799i −0.729393 + 0.561570i
\(981\) 0 0
\(982\) 2.08934 + 3.61884i 0.0666734 + 0.115482i
\(983\) −17.0691 29.5646i −0.544421 0.942965i −0.998643 0.0520764i \(-0.983416\pi\)
0.454222 0.890888i \(-0.349917\pi\)
\(984\) 0 0
\(985\) −22.0733 −0.703314
\(986\) 3.42858 + 5.93847i 0.109188 + 0.189119i
\(987\) 0 0
\(988\) 10.1384 17.6240i 0.322546 0.560693i
\(989\) −5.12931 + 8.88423i −0.163103 + 0.282502i
\(990\) 0 0
\(991\) −13.1761 + 22.8217i −0.418553 + 0.724955i −0.995794 0.0916188i \(-0.970796\pi\)
0.577241 + 0.816574i \(0.304129\pi\)
\(992\) −4.66743 8.08423i −0.148191 0.256674i
\(993\) 0 0
\(994\) 47.0859 53.7793i 1.49347 1.70577i
\(995\) 32.6371 56.5292i 1.03467 1.79210i
\(996\) 0 0
\(997\) −28.0208 −0.887427 −0.443713 0.896169i \(-0.646339\pi\)
−0.443713 + 0.896169i \(0.646339\pi\)
\(998\) 32.0199 55.4602i 1.01357 1.75556i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.g.289.5 yes 36
3.2 odd 2 inner 819.2.s.g.289.14 yes 36
7.4 even 3 819.2.n.g.172.14 yes 36
13.9 even 3 819.2.n.g.100.14 yes 36
21.11 odd 6 819.2.n.g.172.5 yes 36
39.35 odd 6 819.2.n.g.100.5 36
91.74 even 3 inner 819.2.s.g.802.5 yes 36
273.74 odd 6 inner 819.2.s.g.802.14 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
819.2.n.g.100.5 36 39.35 odd 6
819.2.n.g.100.14 yes 36 13.9 even 3
819.2.n.g.172.5 yes 36 21.11 odd 6
819.2.n.g.172.14 yes 36 7.4 even 3
819.2.s.g.289.5 yes 36 1.1 even 1 trivial
819.2.s.g.289.14 yes 36 3.2 odd 2 inner
819.2.s.g.802.5 yes 36 91.74 even 3 inner
819.2.s.g.802.14 yes 36 273.74 odd 6 inner