Properties

Label 819.2.s.g.289.13
Level $819$
Weight $2$
Character 819.289
Analytic conductor $6.540$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(289,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,44,0,0,4,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.13
Character \(\chi\) \(=\) 819.289
Dual form 819.2.s.g.802.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.14867 q^{2} -0.680564 q^{4} +(-0.912102 + 1.57981i) q^{5} +(0.248536 - 2.63405i) q^{7} -3.07908 q^{8} +(-1.04770 + 1.81467i) q^{10} +(-0.248306 + 0.430078i) q^{11} +(-2.92318 - 2.11069i) q^{13} +(0.285485 - 3.02565i) q^{14} -2.17570 q^{16} +0.327463 q^{17} +(-2.30843 - 3.99832i) q^{19} +(0.620744 - 1.07516i) q^{20} +(-0.285221 + 0.494016i) q^{22} -4.71380 q^{23} +(0.836140 + 1.44824i) q^{25} +(-3.35776 - 2.42448i) q^{26} +(-0.169145 + 1.79264i) q^{28} +(-4.87261 - 8.43961i) q^{29} +(-2.01021 - 3.48178i) q^{31} +3.65899 q^{32} +0.376146 q^{34} +(3.93460 + 2.79516i) q^{35} -8.86196 q^{37} +(-2.65162 - 4.59274i) q^{38} +(2.80843 - 4.86435i) q^{40} +(3.37948 + 5.85344i) q^{41} +(-0.285886 + 0.495170i) q^{43} +(0.168988 - 0.292696i) q^{44} -5.41459 q^{46} +(3.64243 - 6.30887i) q^{47} +(-6.87646 - 1.30931i) q^{49} +(0.960446 + 1.66354i) q^{50} +(1.98941 + 1.43646i) q^{52} +(6.74741 + 11.6869i) q^{53} +(-0.452960 - 0.784550i) q^{55} +(-0.765261 + 8.11045i) q^{56} +(-5.59701 - 9.69430i) q^{58} -0.421318 q^{59} +(-2.02321 - 3.50430i) q^{61} +(-2.30906 - 3.99940i) q^{62} +8.55437 q^{64} +(6.00072 - 2.69289i) q^{65} +(3.30454 - 5.72363i) q^{67} -0.222860 q^{68} +(4.51955 + 3.21071i) q^{70} +(-5.61749 + 9.72977i) q^{71} +(-3.47946 - 6.02659i) q^{73} -10.1794 q^{74} +(1.57104 + 2.72111i) q^{76} +(1.07113 + 0.760940i) q^{77} +(-0.921823 + 1.59664i) q^{79} +(1.98446 - 3.43719i) q^{80} +(3.88190 + 6.72365i) q^{82} +16.4203 q^{83} +(-0.298680 + 0.517329i) q^{85} +(-0.328388 + 0.568785i) q^{86} +(0.764552 - 1.32424i) q^{88} -0.00916326 q^{89} +(-6.28619 + 7.17522i) q^{91} +3.20805 q^{92} +(4.18393 - 7.24679i) q^{94} +8.42210 q^{95} +(0.162372 - 0.281237i) q^{97} +(-7.89876 - 1.50397i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 44 q^{4} + 4 q^{7} + 8 q^{10} + 20 q^{16} + 4 q^{19} - 10 q^{22} - 22 q^{25} + 16 q^{28} - 18 q^{31} + 8 q^{34} - 20 q^{37} + 14 q^{40} + 20 q^{43} + 8 q^{46} - 12 q^{49} + 10 q^{52} + 42 q^{55}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14867 0.812230 0.406115 0.913822i \(-0.366883\pi\)
0.406115 + 0.913822i \(0.366883\pi\)
\(3\) 0 0
\(4\) −0.680564 −0.340282
\(5\) −0.912102 + 1.57981i −0.407904 + 0.706511i −0.994655 0.103257i \(-0.967074\pi\)
0.586750 + 0.809768i \(0.300407\pi\)
\(6\) 0 0
\(7\) 0.248536 2.63405i 0.0939378 0.995578i
\(8\) −3.07908 −1.08862
\(9\) 0 0
\(10\) −1.04770 + 1.81467i −0.331312 + 0.573850i
\(11\) −0.248306 + 0.430078i −0.0748670 + 0.129673i −0.901028 0.433760i \(-0.857187\pi\)
0.826161 + 0.563433i \(0.190520\pi\)
\(12\) 0 0
\(13\) −2.92318 2.11069i −0.810744 0.585401i
\(14\) 0.285485 3.02565i 0.0762991 0.808639i
\(15\) 0 0
\(16\) −2.17570 −0.543926
\(17\) 0.327463 0.0794215 0.0397108 0.999211i \(-0.487356\pi\)
0.0397108 + 0.999211i \(0.487356\pi\)
\(18\) 0 0
\(19\) −2.30843 3.99832i −0.529590 0.917277i −0.999404 0.0345120i \(-0.989012\pi\)
0.469814 0.882765i \(-0.344321\pi\)
\(20\) 0.620744 1.07516i 0.138803 0.240413i
\(21\) 0 0
\(22\) −0.285221 + 0.494016i −0.0608092 + 0.105325i
\(23\) −4.71380 −0.982896 −0.491448 0.870907i \(-0.663532\pi\)
−0.491448 + 0.870907i \(0.663532\pi\)
\(24\) 0 0
\(25\) 0.836140 + 1.44824i 0.167228 + 0.289647i
\(26\) −3.35776 2.42448i −0.658511 0.475480i
\(27\) 0 0
\(28\) −0.169145 + 1.79264i −0.0319654 + 0.338777i
\(29\) −4.87261 8.43961i −0.904821 1.56720i −0.821157 0.570702i \(-0.806671\pi\)
−0.0836643 0.996494i \(-0.526662\pi\)
\(30\) 0 0
\(31\) −2.01021 3.48178i −0.361043 0.625346i 0.627089 0.778947i \(-0.284246\pi\)
−0.988133 + 0.153602i \(0.950913\pi\)
\(32\) 3.65899 0.646824
\(33\) 0 0
\(34\) 0.376146 0.0645086
\(35\) 3.93460 + 2.79516i 0.665069 + 0.472469i
\(36\) 0 0
\(37\) −8.86196 −1.45690 −0.728448 0.685101i \(-0.759758\pi\)
−0.728448 + 0.685101i \(0.759758\pi\)
\(38\) −2.65162 4.59274i −0.430149 0.745040i
\(39\) 0 0
\(40\) 2.80843 4.86435i 0.444052 0.769120i
\(41\) 3.37948 + 5.85344i 0.527787 + 0.914154i 0.999475 + 0.0323883i \(0.0103113\pi\)
−0.471689 + 0.881765i \(0.656355\pi\)
\(42\) 0 0
\(43\) −0.285886 + 0.495170i −0.0435973 + 0.0755127i −0.887001 0.461768i \(-0.847215\pi\)
0.843403 + 0.537281i \(0.180549\pi\)
\(44\) 0.168988 0.292696i 0.0254759 0.0441255i
\(45\) 0 0
\(46\) −5.41459 −0.798338
\(47\) 3.64243 6.30887i 0.531303 0.920243i −0.468030 0.883713i \(-0.655036\pi\)
0.999333 0.0365304i \(-0.0116306\pi\)
\(48\) 0 0
\(49\) −6.87646 1.30931i −0.982351 0.187045i
\(50\) 0.960446 + 1.66354i 0.135828 + 0.235260i
\(51\) 0 0
\(52\) 1.98941 + 1.43646i 0.275882 + 0.199201i
\(53\) 6.74741 + 11.6869i 0.926828 + 1.60531i 0.788595 + 0.614913i \(0.210809\pi\)
0.138233 + 0.990400i \(0.455858\pi\)
\(54\) 0 0
\(55\) −0.452960 0.784550i −0.0610771 0.105789i
\(56\) −0.765261 + 8.11045i −0.102262 + 1.08380i
\(57\) 0 0
\(58\) −5.59701 9.69430i −0.734923 1.27292i
\(59\) −0.421318 −0.0548509 −0.0274255 0.999624i \(-0.508731\pi\)
−0.0274255 + 0.999624i \(0.508731\pi\)
\(60\) 0 0
\(61\) −2.02321 3.50430i −0.259046 0.448680i 0.706941 0.707273i \(-0.250075\pi\)
−0.965986 + 0.258593i \(0.916741\pi\)
\(62\) −2.30906 3.99940i −0.293250 0.507925i
\(63\) 0 0
\(64\) 8.55437 1.06930
\(65\) 6.00072 2.69289i 0.744298 0.334012i
\(66\) 0 0
\(67\) 3.30454 5.72363i 0.403713 0.699252i −0.590457 0.807069i \(-0.701053\pi\)
0.994171 + 0.107817i \(0.0343859\pi\)
\(68\) −0.222860 −0.0270257
\(69\) 0 0
\(70\) 4.51955 + 3.21071i 0.540189 + 0.383753i
\(71\) −5.61749 + 9.72977i −0.666673 + 1.15471i 0.312156 + 0.950031i \(0.398949\pi\)
−0.978829 + 0.204681i \(0.934384\pi\)
\(72\) 0 0
\(73\) −3.47946 6.02659i −0.407240 0.705360i 0.587340 0.809340i \(-0.300175\pi\)
−0.994579 + 0.103981i \(0.966842\pi\)
\(74\) −10.1794 −1.18334
\(75\) 0 0
\(76\) 1.57104 + 2.72111i 0.180210 + 0.312133i
\(77\) 1.07113 + 0.760940i 0.122067 + 0.0867172i
\(78\) 0 0
\(79\) −0.921823 + 1.59664i −0.103713 + 0.179637i −0.913212 0.407485i \(-0.866406\pi\)
0.809499 + 0.587122i \(0.199739\pi\)
\(80\) 1.98446 3.43719i 0.221870 0.384290i
\(81\) 0 0
\(82\) 3.88190 + 6.72365i 0.428684 + 0.742503i
\(83\) 16.4203 1.80237 0.901184 0.433438i \(-0.142700\pi\)
0.901184 + 0.433438i \(0.142700\pi\)
\(84\) 0 0
\(85\) −0.298680 + 0.517329i −0.0323964 + 0.0561122i
\(86\) −0.328388 + 0.568785i −0.0354110 + 0.0613337i
\(87\) 0 0
\(88\) 0.764552 1.32424i 0.0815015 0.141165i
\(89\) −0.00916326 −0.000971304 −0.000485652 1.00000i \(-0.500155\pi\)
−0.000485652 1.00000i \(0.500155\pi\)
\(90\) 0 0
\(91\) −6.28619 + 7.17522i −0.658971 + 0.752168i
\(92\) 3.20805 0.334462
\(93\) 0 0
\(94\) 4.18393 7.24679i 0.431540 0.747449i
\(95\) 8.42210 0.864089
\(96\) 0 0
\(97\) 0.162372 0.281237i 0.0164864 0.0285553i −0.857665 0.514210i \(-0.828085\pi\)
0.874151 + 0.485654i \(0.161419\pi\)
\(98\) −7.89876 1.50397i −0.797895 0.151923i
\(99\) 0 0
\(100\) −0.569047 0.985618i −0.0569047 0.0985618i
\(101\) −2.07095 + 3.58699i −0.206067 + 0.356919i −0.950472 0.310809i \(-0.899400\pi\)
0.744405 + 0.667728i \(0.232733\pi\)
\(102\) 0 0
\(103\) −5.15653 + 8.93137i −0.508088 + 0.880034i 0.491868 + 0.870670i \(0.336314\pi\)
−0.999956 + 0.00936420i \(0.997019\pi\)
\(104\) 9.00069 + 6.49898i 0.882590 + 0.637277i
\(105\) 0 0
\(106\) 7.75052 + 13.4243i 0.752798 + 1.30388i
\(107\) −10.7439 −1.03865 −0.519326 0.854576i \(-0.673817\pi\)
−0.519326 + 0.854576i \(0.673817\pi\)
\(108\) 0 0
\(109\) 0.992640 + 1.71930i 0.0950777 + 0.164679i 0.909641 0.415395i \(-0.136357\pi\)
−0.814563 + 0.580075i \(0.803023\pi\)
\(110\) −0.520300 0.901187i −0.0496087 0.0859248i
\(111\) 0 0
\(112\) −0.540741 + 5.73092i −0.0510952 + 0.541521i
\(113\) −6.12608 + 10.6107i −0.576293 + 0.998170i 0.419606 + 0.907706i \(0.362168\pi\)
−0.995900 + 0.0904633i \(0.971165\pi\)
\(114\) 0 0
\(115\) 4.29947 7.44690i 0.400928 0.694427i
\(116\) 3.31612 + 5.74370i 0.307894 + 0.533289i
\(117\) 0 0
\(118\) −0.483954 −0.0445516
\(119\) 0.0813865 0.862556i 0.00746069 0.0790703i
\(120\) 0 0
\(121\) 5.37669 + 9.31270i 0.488790 + 0.846609i
\(122\) −2.32399 4.02528i −0.210405 0.364431i
\(123\) 0 0
\(124\) 1.36807 + 2.36957i 0.122857 + 0.212794i
\(125\) −12.1716 −1.08866
\(126\) 0 0
\(127\) 2.59497 + 4.49461i 0.230266 + 0.398833i 0.957886 0.287148i \(-0.0927070\pi\)
−0.727620 + 0.685980i \(0.759374\pi\)
\(128\) 2.50814 0.221690
\(129\) 0 0
\(130\) 6.89283 3.09324i 0.604541 0.271295i
\(131\) 9.40287 16.2863i 0.821533 1.42294i −0.0830079 0.996549i \(-0.526453\pi\)
0.904541 0.426388i \(-0.140214\pi\)
\(132\) 0 0
\(133\) −11.1055 + 5.08680i −0.962970 + 0.441082i
\(134\) 3.79581 6.57454i 0.327908 0.567954i
\(135\) 0 0
\(136\) −1.00828 −0.0864597
\(137\) 8.66474 0.740279 0.370140 0.928976i \(-0.379310\pi\)
0.370140 + 0.928976i \(0.379310\pi\)
\(138\) 0 0
\(139\) 4.94885 8.57165i 0.419756 0.727038i −0.576159 0.817338i \(-0.695449\pi\)
0.995915 + 0.0902994i \(0.0287824\pi\)
\(140\) −2.67775 1.90229i −0.226311 0.160773i
\(141\) 0 0
\(142\) −6.45262 + 11.1763i −0.541492 + 0.937892i
\(143\) 1.63360 0.733099i 0.136609 0.0613048i
\(144\) 0 0
\(145\) 17.7773 1.47632
\(146\) −3.99674 6.92255i −0.330772 0.572914i
\(147\) 0 0
\(148\) 6.03113 0.495756
\(149\) 3.99337 + 6.91671i 0.327149 + 0.566639i 0.981945 0.189167i \(-0.0605787\pi\)
−0.654796 + 0.755806i \(0.727245\pi\)
\(150\) 0 0
\(151\) 2.45028 + 4.24402i 0.199401 + 0.345373i 0.948334 0.317272i \(-0.102767\pi\)
−0.748933 + 0.662646i \(0.769434\pi\)
\(152\) 7.10783 + 12.3111i 0.576521 + 0.998564i
\(153\) 0 0
\(154\) 1.23038 + 0.874067i 0.0991466 + 0.0704343i
\(155\) 7.33405 0.589085
\(156\) 0 0
\(157\) −10.2163 17.6952i −0.815350 1.41223i −0.909076 0.416630i \(-0.863211\pi\)
0.0937259 0.995598i \(-0.470122\pi\)
\(158\) −1.05887 + 1.83401i −0.0842390 + 0.145906i
\(159\) 0 0
\(160\) −3.33737 + 5.78050i −0.263843 + 0.456989i
\(161\) −1.17155 + 12.4164i −0.0923311 + 0.978550i
\(162\) 0 0
\(163\) 0.599918 + 1.03909i 0.0469892 + 0.0813877i 0.888563 0.458754i \(-0.151704\pi\)
−0.841574 + 0.540142i \(0.818371\pi\)
\(164\) −2.29996 3.98364i −0.179596 0.311070i
\(165\) 0 0
\(166\) 18.8615 1.46394
\(167\) −8.84735 15.3241i −0.684628 1.18581i −0.973553 0.228460i \(-0.926631\pi\)
0.288925 0.957352i \(-0.406702\pi\)
\(168\) 0 0
\(169\) 4.08996 + 12.3399i 0.314612 + 0.949220i
\(170\) −0.343084 + 0.594239i −0.0263133 + 0.0455760i
\(171\) 0 0
\(172\) 0.194564 0.336995i 0.0148354 0.0256956i
\(173\) −8.83439 15.3016i −0.671666 1.16336i −0.977431 0.211253i \(-0.932246\pi\)
0.305765 0.952107i \(-0.401088\pi\)
\(174\) 0 0
\(175\) 4.02254 1.84250i 0.304076 0.139280i
\(176\) 0.540240 0.935722i 0.0407221 0.0705327i
\(177\) 0 0
\(178\) −0.0105255 −0.000788923
\(179\) 6.30863 10.9269i 0.471529 0.816712i −0.527940 0.849281i \(-0.677036\pi\)
0.999469 + 0.0325690i \(0.0103689\pi\)
\(180\) 0 0
\(181\) −16.3943 −1.21858 −0.609288 0.792949i \(-0.708545\pi\)
−0.609288 + 0.792949i \(0.708545\pi\)
\(182\) −7.22074 + 8.24194i −0.535237 + 0.610934i
\(183\) 0 0
\(184\) 14.5142 1.07000
\(185\) 8.08301 14.0002i 0.594275 1.02931i
\(186\) 0 0
\(187\) −0.0813110 + 0.140835i −0.00594605 + 0.0102989i
\(188\) −2.47891 + 4.29359i −0.180793 + 0.313142i
\(189\) 0 0
\(190\) 9.67419 0.701839
\(191\) −4.06797 7.04593i −0.294348 0.509825i 0.680485 0.732762i \(-0.261769\pi\)
−0.974833 + 0.222937i \(0.928436\pi\)
\(192\) 0 0
\(193\) 13.0818 22.6584i 0.941650 1.63099i 0.179326 0.983790i \(-0.442608\pi\)
0.762324 0.647196i \(-0.224058\pi\)
\(194\) 0.186511 0.323047i 0.0133907 0.0231934i
\(195\) 0 0
\(196\) 4.67987 + 0.891072i 0.334277 + 0.0636480i
\(197\) 2.28537 + 3.95838i 0.162826 + 0.282023i 0.935881 0.352316i \(-0.114606\pi\)
−0.773055 + 0.634339i \(0.781272\pi\)
\(198\) 0 0
\(199\) 20.7656 1.47204 0.736019 0.676961i \(-0.236704\pi\)
0.736019 + 0.676961i \(0.236704\pi\)
\(200\) −2.57454 4.45923i −0.182047 0.315315i
\(201\) 0 0
\(202\) −2.37883 + 4.12026i −0.167374 + 0.289900i
\(203\) −23.4414 + 10.7372i −1.64526 + 0.753601i
\(204\) 0 0
\(205\) −12.3297 −0.861146
\(206\) −5.92313 + 10.2592i −0.412684 + 0.714790i
\(207\) 0 0
\(208\) 6.35997 + 4.59224i 0.440985 + 0.318415i
\(209\) 2.29279 0.158595
\(210\) 0 0
\(211\) 1.42574 + 2.46945i 0.0981517 + 0.170004i 0.910920 0.412584i \(-0.135374\pi\)
−0.812768 + 0.582588i \(0.802040\pi\)
\(212\) −4.59204 7.95365i −0.315383 0.546259i
\(213\) 0 0
\(214\) −12.3412 −0.843625
\(215\) −0.521515 0.903291i −0.0355670 0.0616039i
\(216\) 0 0
\(217\) −9.67079 + 4.42964i −0.656496 + 0.300703i
\(218\) 1.14021 + 1.97491i 0.0772249 + 0.133758i
\(219\) 0 0
\(220\) 0.308268 + 0.533937i 0.0207835 + 0.0359980i
\(221\) −0.957234 0.691174i −0.0643906 0.0464934i
\(222\) 0 0
\(223\) −5.62612 9.74472i −0.376753 0.652555i 0.613835 0.789434i \(-0.289626\pi\)
−0.990588 + 0.136879i \(0.956293\pi\)
\(224\) 0.909392 9.63797i 0.0607613 0.643964i
\(225\) 0 0
\(226\) −7.03683 + 12.1881i −0.468083 + 0.810743i
\(227\) −21.6594 −1.43759 −0.718793 0.695224i \(-0.755305\pi\)
−0.718793 + 0.695224i \(0.755305\pi\)
\(228\) 0 0
\(229\) 4.42401 7.66262i 0.292347 0.506360i −0.682017 0.731336i \(-0.738897\pi\)
0.974364 + 0.224976i \(0.0722304\pi\)
\(230\) 4.93866 8.55401i 0.325646 0.564035i
\(231\) 0 0
\(232\) 15.0031 + 25.9862i 0.985004 + 1.70608i
\(233\) 0.892952 1.54664i 0.0584992 0.101324i −0.835293 0.549806i \(-0.814702\pi\)
0.893792 + 0.448482i \(0.148035\pi\)
\(234\) 0 0
\(235\) 6.64453 + 11.5087i 0.433441 + 0.750742i
\(236\) 0.286734 0.0186648
\(237\) 0 0
\(238\) 0.0934860 0.990789i 0.00605979 0.0642233i
\(239\) −10.0734 −0.651592 −0.325796 0.945440i \(-0.605632\pi\)
−0.325796 + 0.945440i \(0.605632\pi\)
\(240\) 0 0
\(241\) −0.0318609 −0.00205234 −0.00102617 0.999999i \(-0.500327\pi\)
−0.00102617 + 0.999999i \(0.500327\pi\)
\(242\) 6.17602 + 10.6972i 0.397010 + 0.687641i
\(243\) 0 0
\(244\) 1.37692 + 2.38490i 0.0881486 + 0.152678i
\(245\) 8.34050 9.66925i 0.532855 0.617746i
\(246\) 0 0
\(247\) −1.69126 + 16.5602i −0.107612 + 1.05370i
\(248\) 6.18957 + 10.7207i 0.393038 + 0.680762i
\(249\) 0 0
\(250\) −13.9811 −0.884243
\(251\) −8.02759 + 13.9042i −0.506697 + 0.877625i 0.493273 + 0.869875i \(0.335800\pi\)
−0.999970 + 0.00775047i \(0.997533\pi\)
\(252\) 0 0
\(253\) 1.17046 2.02730i 0.0735865 0.127455i
\(254\) 2.98075 + 5.16281i 0.187029 + 0.323944i
\(255\) 0 0
\(256\) −14.2277 −0.889233
\(257\) −7.50163 −0.467939 −0.233969 0.972244i \(-0.575172\pi\)
−0.233969 + 0.972244i \(0.575172\pi\)
\(258\) 0 0
\(259\) −2.20252 + 23.3429i −0.136858 + 1.45045i
\(260\) −4.08388 + 1.83269i −0.253271 + 0.113658i
\(261\) 0 0
\(262\) 10.8008 18.7075i 0.667274 1.15575i
\(263\) −5.44106 + 9.42419i −0.335510 + 0.581120i −0.983583 0.180458i \(-0.942242\pi\)
0.648073 + 0.761579i \(0.275575\pi\)
\(264\) 0 0
\(265\) −24.6173 −1.51223
\(266\) −12.7565 + 5.84304i −0.782153 + 0.358260i
\(267\) 0 0
\(268\) −2.24895 + 3.89529i −0.137376 + 0.237943i
\(269\) 0.664410 0.0405098 0.0202549 0.999795i \(-0.493552\pi\)
0.0202549 + 0.999795i \(0.493552\pi\)
\(270\) 0 0
\(271\) 10.5923 0.643436 0.321718 0.946836i \(-0.395740\pi\)
0.321718 + 0.946836i \(0.395740\pi\)
\(272\) −0.712463 −0.0431994
\(273\) 0 0
\(274\) 9.95291 0.601277
\(275\) −0.830473 −0.0500794
\(276\) 0 0
\(277\) −5.40947 −0.325024 −0.162512 0.986707i \(-0.551960\pi\)
−0.162512 + 0.986707i \(0.551960\pi\)
\(278\) 5.68458 9.84598i 0.340938 0.590522i
\(279\) 0 0
\(280\) −12.1149 8.60652i −0.724006 0.514338i
\(281\) −18.0294 −1.07554 −0.537772 0.843091i \(-0.680734\pi\)
−0.537772 + 0.843091i \(0.680734\pi\)
\(282\) 0 0
\(283\) 11.4478 19.8282i 0.680504 1.17867i −0.294324 0.955706i \(-0.595094\pi\)
0.974827 0.222961i \(-0.0715723\pi\)
\(284\) 3.82306 6.62174i 0.226857 0.392928i
\(285\) 0 0
\(286\) 1.87647 0.842086i 0.110958 0.0497936i
\(287\) 16.2582 7.44695i 0.959690 0.439579i
\(288\) 0 0
\(289\) −16.8928 −0.993692
\(290\) 20.4202 1.19911
\(291\) 0 0
\(292\) 2.36799 + 4.10148i 0.138576 + 0.240021i
\(293\) 6.98624 12.1005i 0.408141 0.706920i −0.586541 0.809920i \(-0.699511\pi\)
0.994681 + 0.102999i \(0.0328440\pi\)
\(294\) 0 0
\(295\) 0.384285 0.665601i 0.0223739 0.0387528i
\(296\) 27.2866 1.58600
\(297\) 0 0
\(298\) 4.58705 + 7.94500i 0.265720 + 0.460241i
\(299\) 13.7793 + 9.94939i 0.796877 + 0.575388i
\(300\) 0 0
\(301\) 1.23325 + 0.876107i 0.0710833 + 0.0504980i
\(302\) 2.81456 + 4.87496i 0.161960 + 0.280523i
\(303\) 0 0
\(304\) 5.02246 + 8.69916i 0.288058 + 0.498931i
\(305\) 7.38150 0.422663
\(306\) 0 0
\(307\) 26.2965 1.50082 0.750409 0.660973i \(-0.229856\pi\)
0.750409 + 0.660973i \(0.229856\pi\)
\(308\) −0.728976 0.517868i −0.0415373 0.0295083i
\(309\) 0 0
\(310\) 8.42438 0.478473
\(311\) 9.81974 + 17.0083i 0.556827 + 0.964452i 0.997759 + 0.0669116i \(0.0213145\pi\)
−0.440932 + 0.897540i \(0.645352\pi\)
\(312\) 0 0
\(313\) 15.0427 26.0547i 0.850264 1.47270i −0.0307058 0.999528i \(-0.509775\pi\)
0.880970 0.473172i \(-0.156891\pi\)
\(314\) −11.7351 20.3259i −0.662252 1.14705i
\(315\) 0 0
\(316\) 0.627360 1.08662i 0.0352917 0.0611271i
\(317\) 7.30518 12.6529i 0.410300 0.710660i −0.584623 0.811305i \(-0.698757\pi\)
0.994922 + 0.100646i \(0.0320908\pi\)
\(318\) 0 0
\(319\) 4.83959 0.270965
\(320\) −7.80246 + 13.5143i −0.436171 + 0.755470i
\(321\) 0 0
\(322\) −1.34572 + 14.2623i −0.0749941 + 0.794808i
\(323\) −0.755927 1.30930i −0.0420609 0.0728516i
\(324\) 0 0
\(325\) 0.612594 5.99829i 0.0339806 0.332725i
\(326\) 0.689106 + 1.19357i 0.0381661 + 0.0661056i
\(327\) 0 0
\(328\) −10.4057 18.0232i −0.574558 0.995164i
\(329\) −15.7126 11.1623i −0.866264 0.615399i
\(330\) 0 0
\(331\) −11.2112 19.4183i −0.616221 1.06733i −0.990169 0.139876i \(-0.955329\pi\)
0.373948 0.927450i \(-0.378004\pi\)
\(332\) −11.1751 −0.613313
\(333\) 0 0
\(334\) −10.1627 17.6022i −0.556076 0.963152i
\(335\) 6.02815 + 10.4411i 0.329353 + 0.570456i
\(336\) 0 0
\(337\) −17.9465 −0.977606 −0.488803 0.872394i \(-0.662566\pi\)
−0.488803 + 0.872394i \(0.662566\pi\)
\(338\) 4.69800 + 14.1744i 0.255538 + 0.770985i
\(339\) 0 0
\(340\) 0.203271 0.352076i 0.0110239 0.0190940i
\(341\) 1.99658 0.108121
\(342\) 0 0
\(343\) −5.15785 + 17.7875i −0.278498 + 0.960437i
\(344\) 0.880266 1.52466i 0.0474607 0.0822044i
\(345\) 0 0
\(346\) −10.1478 17.5765i −0.545548 0.944916i
\(347\) −14.4532 −0.775887 −0.387943 0.921683i \(-0.626814\pi\)
−0.387943 + 0.921683i \(0.626814\pi\)
\(348\) 0 0
\(349\) 4.41584 + 7.64846i 0.236375 + 0.409413i 0.959671 0.281125i \(-0.0907074\pi\)
−0.723297 + 0.690537i \(0.757374\pi\)
\(350\) 4.62056 2.11642i 0.246979 0.113127i
\(351\) 0 0
\(352\) −0.908548 + 1.57365i −0.0484258 + 0.0838759i
\(353\) −17.8226 + 30.8696i −0.948599 + 1.64302i −0.200219 + 0.979751i \(0.564165\pi\)
−0.748380 + 0.663271i \(0.769168\pi\)
\(354\) 0 0
\(355\) −10.2474 17.7491i −0.543878 0.942024i
\(356\) 0.00623619 0.000330517
\(357\) 0 0
\(358\) 7.24651 12.5513i 0.382990 0.663359i
\(359\) 10.3638 17.9506i 0.546980 0.947398i −0.451499 0.892272i \(-0.649111\pi\)
0.998479 0.0551261i \(-0.0175561\pi\)
\(360\) 0 0
\(361\) −1.15771 + 2.00521i −0.0609319 + 0.105537i
\(362\) −18.8316 −0.989765
\(363\) 0 0
\(364\) 4.27815 4.88320i 0.224236 0.255949i
\(365\) 12.6945 0.664459
\(366\) 0 0
\(367\) −8.16891 + 14.1490i −0.426414 + 0.738570i −0.996551 0.0829792i \(-0.973556\pi\)
0.570138 + 0.821549i \(0.306890\pi\)
\(368\) 10.2558 0.534623
\(369\) 0 0
\(370\) 9.28469 16.0815i 0.482688 0.836040i
\(371\) 32.4608 14.8684i 1.68528 0.771930i
\(372\) 0 0
\(373\) −17.8600 30.9344i −0.924755 1.60172i −0.791955 0.610579i \(-0.790937\pi\)
−0.132799 0.991143i \(-0.542397\pi\)
\(374\) −0.0933993 + 0.161772i −0.00482956 + 0.00836505i
\(375\) 0 0
\(376\) −11.2153 + 19.4255i −0.578385 + 1.00179i
\(377\) −3.56990 + 34.9551i −0.183859 + 1.80028i
\(378\) 0 0
\(379\) 13.5707 + 23.5051i 0.697078 + 1.20738i 0.969475 + 0.245190i \(0.0788504\pi\)
−0.272397 + 0.962185i \(0.587816\pi\)
\(380\) −5.73178 −0.294034
\(381\) 0 0
\(382\) −4.67274 8.09342i −0.239078 0.414095i
\(383\) 6.24995 + 10.8252i 0.319357 + 0.553143i 0.980354 0.197246i \(-0.0631996\pi\)
−0.660997 + 0.750389i \(0.729866\pi\)
\(384\) 0 0
\(385\) −2.17912 + 0.998132i −0.111058 + 0.0508695i
\(386\) 15.0267 26.0269i 0.764837 1.32474i
\(387\) 0 0
\(388\) −0.110505 + 0.191400i −0.00561002 + 0.00971684i
\(389\) −15.8307 27.4196i −0.802648 1.39023i −0.917868 0.396886i \(-0.870091\pi\)
0.115220 0.993340i \(-0.463243\pi\)
\(390\) 0 0
\(391\) −1.54360 −0.0780631
\(392\) 21.1731 + 4.03148i 1.06940 + 0.203620i
\(393\) 0 0
\(394\) 2.62513 + 4.54685i 0.132252 + 0.229067i
\(395\) −1.68159 2.91260i −0.0846101 0.146549i
\(396\) 0 0
\(397\) −6.03390 10.4510i −0.302833 0.524521i 0.673944 0.738783i \(-0.264599\pi\)
−0.976776 + 0.214261i \(0.931266\pi\)
\(398\) 23.8528 1.19563
\(399\) 0 0
\(400\) −1.81919 3.15093i −0.0909596 0.157547i
\(401\) −20.7929 −1.03835 −0.519173 0.854669i \(-0.673760\pi\)
−0.519173 + 0.854669i \(0.673760\pi\)
\(402\) 0 0
\(403\) −1.47277 + 14.4208i −0.0733637 + 0.718350i
\(404\) 1.40941 2.44118i 0.0701210 0.121453i
\(405\) 0 0
\(406\) −26.9264 + 12.3334i −1.33633 + 0.612098i
\(407\) 2.20047 3.81133i 0.109073 0.188921i
\(408\) 0 0
\(409\) −25.8758 −1.27948 −0.639738 0.768593i \(-0.720957\pi\)
−0.639738 + 0.768593i \(0.720957\pi\)
\(410\) −14.1628 −0.699449
\(411\) 0 0
\(412\) 3.50935 6.07837i 0.172893 0.299460i
\(413\) −0.104713 + 1.10977i −0.00515257 + 0.0546084i
\(414\) 0 0
\(415\) −14.9770 + 25.9410i −0.735194 + 1.27339i
\(416\) −10.6959 7.72300i −0.524409 0.378651i
\(417\) 0 0
\(418\) 2.63365 0.128816
\(419\) −1.57424 2.72667i −0.0769068 0.133207i 0.825007 0.565122i \(-0.191171\pi\)
−0.901914 + 0.431916i \(0.857838\pi\)
\(420\) 0 0
\(421\) 3.38102 0.164781 0.0823905 0.996600i \(-0.473745\pi\)
0.0823905 + 0.996600i \(0.473745\pi\)
\(422\) 1.63770 + 2.83657i 0.0797218 + 0.138082i
\(423\) 0 0
\(424\) −20.7758 35.9847i −1.00896 1.74757i
\(425\) 0.273805 + 0.474245i 0.0132815 + 0.0230042i
\(426\) 0 0
\(427\) −9.73336 + 4.45830i −0.471030 + 0.215752i
\(428\) 7.31192 0.353435
\(429\) 0 0
\(430\) −0.599047 1.03758i −0.0288886 0.0500365i
\(431\) −9.61470 + 16.6531i −0.463124 + 0.802154i −0.999115 0.0420699i \(-0.986605\pi\)
0.535991 + 0.844224i \(0.319938\pi\)
\(432\) 0 0
\(433\) 9.58693 16.6050i 0.460718 0.797988i −0.538279 0.842767i \(-0.680925\pi\)
0.998997 + 0.0447794i \(0.0142585\pi\)
\(434\) −11.1085 + 5.08818i −0.533226 + 0.244240i
\(435\) 0 0
\(436\) −0.675555 1.17010i −0.0323532 0.0560374i
\(437\) 10.8815 + 18.8473i 0.520532 + 0.901588i
\(438\) 0 0
\(439\) −7.92306 −0.378147 −0.189074 0.981963i \(-0.560548\pi\)
−0.189074 + 0.981963i \(0.560548\pi\)
\(440\) 1.39470 + 2.41569i 0.0664896 + 0.115163i
\(441\) 0 0
\(442\) −1.09954 0.793929i −0.0523000 0.0377634i
\(443\) −5.63224 + 9.75532i −0.267596 + 0.463489i −0.968240 0.250021i \(-0.919562\pi\)
0.700645 + 0.713510i \(0.252896\pi\)
\(444\) 0 0
\(445\) 0.00835783 0.0144762i 0.000396199 0.000686237i
\(446\) −6.46254 11.1934i −0.306010 0.530025i
\(447\) 0 0
\(448\) 2.12607 22.5327i 0.100447 1.06457i
\(449\) 0.249038 0.431347i 0.0117528 0.0203565i −0.860089 0.510144i \(-0.829592\pi\)
0.871842 + 0.489787i \(0.162926\pi\)
\(450\) 0 0
\(451\) −3.35658 −0.158055
\(452\) 4.16919 7.22125i 0.196102 0.339659i
\(453\) 0 0
\(454\) −24.8795 −1.16765
\(455\) −5.60183 16.4755i −0.262618 0.772383i
\(456\) 0 0
\(457\) 18.6139 0.870723 0.435361 0.900256i \(-0.356621\pi\)
0.435361 + 0.900256i \(0.356621\pi\)
\(458\) 5.08172 8.80180i 0.237453 0.411281i
\(459\) 0 0
\(460\) −2.92607 + 5.06809i −0.136429 + 0.236301i
\(461\) −2.92514 + 5.06650i −0.136237 + 0.235970i −0.926069 0.377353i \(-0.876834\pi\)
0.789832 + 0.613323i \(0.210168\pi\)
\(462\) 0 0
\(463\) 23.3439 1.08488 0.542441 0.840094i \(-0.317500\pi\)
0.542441 + 0.840094i \(0.317500\pi\)
\(464\) 10.6014 + 18.3621i 0.492156 + 0.852439i
\(465\) 0 0
\(466\) 1.02570 1.77657i 0.0475148 0.0822981i
\(467\) −5.90061 + 10.2202i −0.273048 + 0.472933i −0.969641 0.244534i \(-0.921365\pi\)
0.696593 + 0.717467i \(0.254698\pi\)
\(468\) 0 0
\(469\) −14.2550 10.1268i −0.658236 0.467614i
\(470\) 7.63235 + 13.2196i 0.352054 + 0.609776i
\(471\) 0 0
\(472\) 1.29727 0.0597117
\(473\) −0.141974 0.245907i −0.00652799 0.0113068i
\(474\) 0 0
\(475\) 3.86034 6.68631i 0.177125 0.306789i
\(476\) −0.0553887 + 0.587024i −0.00253874 + 0.0269062i
\(477\) 0 0
\(478\) −11.5709 −0.529243
\(479\) 17.0841 29.5905i 0.780592 1.35203i −0.151005 0.988533i \(-0.548251\pi\)
0.931597 0.363492i \(-0.118416\pi\)
\(480\) 0 0
\(481\) 25.9051 + 18.7049i 1.18117 + 0.852868i
\(482\) −0.0365976 −0.00166697
\(483\) 0 0
\(484\) −3.65918 6.33789i −0.166326 0.288086i
\(485\) 0.296200 + 0.513033i 0.0134497 + 0.0232956i
\(486\) 0 0
\(487\) −16.5891 −0.751723 −0.375861 0.926676i \(-0.622653\pi\)
−0.375861 + 0.926676i \(0.622653\pi\)
\(488\) 6.22962 + 10.7900i 0.282002 + 0.488441i
\(489\) 0 0
\(490\) 9.58045 11.1067i 0.432801 0.501752i
\(491\) 6.06699 + 10.5083i 0.273799 + 0.474234i 0.969831 0.243776i \(-0.0783863\pi\)
−0.696032 + 0.718011i \(0.745053\pi\)
\(492\) 0 0
\(493\) −1.59560 2.76366i −0.0718623 0.124469i
\(494\) −1.94270 + 19.0221i −0.0874060 + 0.855847i
\(495\) 0 0
\(496\) 4.37361 + 7.57532i 0.196381 + 0.340142i
\(497\) 24.2326 + 17.2150i 1.08698 + 0.772196i
\(498\) 0 0
\(499\) 8.06176 13.9634i 0.360894 0.625087i −0.627214 0.778847i \(-0.715805\pi\)
0.988108 + 0.153760i \(0.0491383\pi\)
\(500\) 8.28355 0.370452
\(501\) 0 0
\(502\) −9.22103 + 15.9713i −0.411555 + 0.712834i
\(503\) −12.7570 + 22.0958i −0.568806 + 0.985201i 0.427878 + 0.903836i \(0.359261\pi\)
−0.996684 + 0.0813649i \(0.974072\pi\)
\(504\) 0 0
\(505\) −3.77783 6.54340i −0.168111 0.291178i
\(506\) 1.34447 2.32870i 0.0597691 0.103523i
\(507\) 0 0
\(508\) −1.76604 3.05887i −0.0783554 0.135716i
\(509\) 27.1284 1.20244 0.601222 0.799082i \(-0.294681\pi\)
0.601222 + 0.799082i \(0.294681\pi\)
\(510\) 0 0
\(511\) −16.7391 + 7.66724i −0.740496 + 0.339179i
\(512\) −21.3592 −0.943952
\(513\) 0 0
\(514\) −8.61688 −0.380074
\(515\) −9.40656 16.2926i −0.414502 0.717939i
\(516\) 0 0
\(517\) 1.80887 + 3.13306i 0.0795540 + 0.137792i
\(518\) −2.52996 + 26.8132i −0.111160 + 1.17810i
\(519\) 0 0
\(520\) −18.4767 + 8.29162i −0.810256 + 0.363612i
\(521\) −11.1918 19.3847i −0.490320 0.849260i 0.509618 0.860401i \(-0.329787\pi\)
−0.999938 + 0.0111412i \(0.996454\pi\)
\(522\) 0 0
\(523\) −21.7523 −0.951163 −0.475581 0.879672i \(-0.657762\pi\)
−0.475581 + 0.879672i \(0.657762\pi\)
\(524\) −6.39926 + 11.0838i −0.279553 + 0.484200i
\(525\) 0 0
\(526\) −6.24996 + 10.8253i −0.272511 + 0.472004i
\(527\) −0.658269 1.14015i −0.0286746 0.0496659i
\(528\) 0 0
\(529\) −0.780048 −0.0339151
\(530\) −28.2771 −1.22828
\(531\) 0 0
\(532\) 7.55801 3.46189i 0.327681 0.150092i
\(533\) 2.47596 24.2437i 0.107246 1.05011i
\(534\) 0 0
\(535\) 9.79954 16.9733i 0.423671 0.733820i
\(536\) −10.1749 + 17.6235i −0.439490 + 0.761218i
\(537\) 0 0
\(538\) 0.763186 0.0329033
\(539\) 2.27057 2.63230i 0.0978004 0.113381i
\(540\) 0 0
\(541\) 10.5424 18.2599i 0.453252 0.785056i −0.545334 0.838219i \(-0.683597\pi\)
0.998586 + 0.0531634i \(0.0169304\pi\)
\(542\) 12.1670 0.522618
\(543\) 0 0
\(544\) 1.19819 0.0513718
\(545\) −3.62156 −0.155130
\(546\) 0 0
\(547\) 17.6882 0.756293 0.378146 0.925746i \(-0.376562\pi\)
0.378146 + 0.925746i \(0.376562\pi\)
\(548\) −5.89691 −0.251904
\(549\) 0 0
\(550\) −0.953937 −0.0406760
\(551\) −22.4962 + 38.9645i −0.958369 + 1.65994i
\(552\) 0 0
\(553\) 3.97654 + 2.82495i 0.169100 + 0.120129i
\(554\) −6.21368 −0.263994
\(555\) 0 0
\(556\) −3.36801 + 5.83356i −0.142835 + 0.247398i
\(557\) 20.6726 35.8060i 0.875926 1.51715i 0.0201523 0.999797i \(-0.493585\pi\)
0.855773 0.517351i \(-0.173082\pi\)
\(558\) 0 0
\(559\) 1.88085 0.844052i 0.0795514 0.0356996i
\(560\) −8.56053 6.08145i −0.361749 0.256988i
\(561\) 0 0
\(562\) −20.7098 −0.873589
\(563\) 4.33402 0.182657 0.0913287 0.995821i \(-0.470889\pi\)
0.0913287 + 0.995821i \(0.470889\pi\)
\(564\) 0 0
\(565\) −11.1752 19.3561i −0.470145 0.814315i
\(566\) 13.1498 22.7761i 0.552726 0.957349i
\(567\) 0 0
\(568\) 17.2967 29.9587i 0.725752 1.25704i
\(569\) −17.4873 −0.733105 −0.366553 0.930397i \(-0.619462\pi\)
−0.366553 + 0.930397i \(0.619462\pi\)
\(570\) 0 0
\(571\) 21.9017 + 37.9348i 0.916557 + 1.58752i 0.804606 + 0.593809i \(0.202377\pi\)
0.111951 + 0.993714i \(0.464290\pi\)
\(572\) −1.11177 + 0.498921i −0.0464855 + 0.0208609i
\(573\) 0 0
\(574\) 18.6752 8.55406i 0.779489 0.357040i
\(575\) −3.94140 6.82671i −0.164368 0.284693i
\(576\) 0 0
\(577\) −5.53294 9.58333i −0.230339 0.398959i 0.727569 0.686035i \(-0.240650\pi\)
−0.957908 + 0.287076i \(0.907317\pi\)
\(578\) −19.4042 −0.807107
\(579\) 0 0
\(580\) −12.0986 −0.502366
\(581\) 4.08105 43.2520i 0.169310 1.79440i
\(582\) 0 0
\(583\) −6.70168 −0.277555
\(584\) 10.7135 + 18.5563i 0.443328 + 0.767867i
\(585\) 0 0
\(586\) 8.02486 13.8995i 0.331504 0.574182i
\(587\) −16.7991 29.0970i −0.693375 1.20096i −0.970726 0.240191i \(-0.922790\pi\)
0.277351 0.960769i \(-0.410544\pi\)
\(588\) 0 0
\(589\) −9.28084 + 16.0749i −0.382410 + 0.662354i
\(590\) 0.441415 0.764554i 0.0181728 0.0314762i
\(591\) 0 0
\(592\) 19.2810 0.792444
\(593\) 12.6657 21.9376i 0.520118 0.900870i −0.479609 0.877482i \(-0.659221\pi\)
0.999726 0.0233879i \(-0.00744528\pi\)
\(594\) 0 0
\(595\) 1.28844 + 0.915314i 0.0528208 + 0.0375242i
\(596\) −2.71774 4.70727i −0.111323 0.192817i
\(597\) 0 0
\(598\) 15.8278 + 11.4285i 0.647248 + 0.467347i
\(599\) 0.0951740 + 0.164846i 0.00388870 + 0.00673543i 0.867963 0.496629i \(-0.165429\pi\)
−0.864075 + 0.503364i \(0.832096\pi\)
\(600\) 0 0
\(601\) 14.2066 + 24.6066i 0.579501 + 1.00372i 0.995537 + 0.0943767i \(0.0300858\pi\)
−0.416036 + 0.909348i \(0.636581\pi\)
\(602\) 1.41659 + 1.00636i 0.0577360 + 0.0410160i
\(603\) 0 0
\(604\) −1.66758 2.88833i −0.0678527 0.117524i
\(605\) −19.6164 −0.797518
\(606\) 0 0
\(607\) 3.76150 + 6.51512i 0.152675 + 0.264440i 0.932210 0.361918i \(-0.117878\pi\)
−0.779535 + 0.626358i \(0.784545\pi\)
\(608\) −8.44653 14.6298i −0.342552 0.593318i
\(609\) 0 0
\(610\) 8.47888 0.343300
\(611\) −23.9635 + 10.7539i −0.969461 + 0.435057i
\(612\) 0 0
\(613\) −0.0687133 + 0.119015i −0.00277530 + 0.00480696i −0.867410 0.497595i \(-0.834217\pi\)
0.864634 + 0.502402i \(0.167550\pi\)
\(614\) 30.2059 1.21901
\(615\) 0 0
\(616\) −3.29811 2.34299i −0.132884 0.0944018i
\(617\) −3.53171 + 6.11709i −0.142181 + 0.246265i −0.928318 0.371788i \(-0.878745\pi\)
0.786137 + 0.618053i \(0.212078\pi\)
\(618\) 0 0
\(619\) 1.01040 + 1.75007i 0.0406115 + 0.0703412i 0.885617 0.464417i \(-0.153736\pi\)
−0.845005 + 0.534758i \(0.820403\pi\)
\(620\) −4.99129 −0.200455
\(621\) 0 0
\(622\) 11.2796 + 19.5369i 0.452271 + 0.783357i
\(623\) −0.00227740 + 0.0241365i −9.12422e−5 + 0.000967009i
\(624\) 0 0
\(625\) 6.92104 11.9876i 0.276842 0.479504i
\(626\) 17.2791 29.9282i 0.690610 1.19617i
\(627\) 0 0
\(628\) 6.95285 + 12.0427i 0.277449 + 0.480556i
\(629\) −2.90197 −0.115709
\(630\) 0 0
\(631\) −10.3447 + 17.9176i −0.411816 + 0.713287i −0.995088 0.0989901i \(-0.968439\pi\)
0.583272 + 0.812277i \(0.301772\pi\)
\(632\) 2.83836 4.91619i 0.112904 0.195555i
\(633\) 0 0
\(634\) 8.39121 14.5340i 0.333258 0.577219i
\(635\) −9.46750 −0.375706
\(636\) 0 0
\(637\) 17.3376 + 18.3414i 0.686940 + 0.726715i
\(638\) 5.55907 0.220086
\(639\) 0 0
\(640\) −2.28768 + 3.96238i −0.0904285 + 0.156627i
\(641\) 16.6246 0.656632 0.328316 0.944568i \(-0.393519\pi\)
0.328316 + 0.944568i \(0.393519\pi\)
\(642\) 0 0
\(643\) 19.4799 33.7401i 0.768212 1.33058i −0.170320 0.985389i \(-0.554480\pi\)
0.938532 0.345193i \(-0.112186\pi\)
\(644\) 0.797315 8.45016i 0.0314186 0.332983i
\(645\) 0 0
\(646\) −0.868308 1.50395i −0.0341631 0.0591723i
\(647\) −3.91165 + 6.77518i −0.153783 + 0.266360i −0.932615 0.360872i \(-0.882479\pi\)
0.778832 + 0.627232i \(0.215812\pi\)
\(648\) 0 0
\(649\) 0.104616 0.181200i 0.00410652 0.00711270i
\(650\) 0.703666 6.89004i 0.0276001 0.270250i
\(651\) 0 0
\(652\) −0.408283 0.707167i −0.0159896 0.0276948i
\(653\) −38.1430 −1.49265 −0.746326 0.665580i \(-0.768184\pi\)
−0.746326 + 0.665580i \(0.768184\pi\)
\(654\) 0 0
\(655\) 17.1528 + 29.7094i 0.670214 + 1.16084i
\(656\) −7.35276 12.7353i −0.287077 0.497232i
\(657\) 0 0
\(658\) −18.0486 12.8218i −0.703606 0.499845i
\(659\) 4.06002 7.03216i 0.158156 0.273934i −0.776048 0.630674i \(-0.782778\pi\)
0.934204 + 0.356740i \(0.116112\pi\)
\(660\) 0 0
\(661\) 7.74977 13.4230i 0.301431 0.522094i −0.675029 0.737791i \(-0.735869\pi\)
0.976460 + 0.215697i \(0.0692024\pi\)
\(662\) −12.8779 22.3052i −0.500513 0.866915i
\(663\) 0 0
\(664\) −50.5595 −1.96209
\(665\) 2.09320 22.1842i 0.0811706 0.860268i
\(666\) 0 0
\(667\) 22.9685 + 39.7827i 0.889345 + 1.54039i
\(668\) 6.02119 + 10.4290i 0.232967 + 0.403510i
\(669\) 0 0
\(670\) 6.92434 + 11.9933i 0.267510 + 0.463342i
\(671\) 2.00950 0.0775758
\(672\) 0 0
\(673\) −0.244034 0.422680i −0.00940684 0.0162931i 0.861284 0.508124i \(-0.169661\pi\)
−0.870691 + 0.491831i \(0.836328\pi\)
\(674\) −20.6145 −0.794041
\(675\) 0 0
\(676\) −2.78348 8.39807i −0.107057 0.323003i
\(677\) −22.8264 + 39.5366i −0.877292 + 1.51951i −0.0229904 + 0.999736i \(0.507319\pi\)
−0.854301 + 0.519778i \(0.826015\pi\)
\(678\) 0 0
\(679\) −0.700437 0.497594i −0.0268803 0.0190959i
\(680\) 0.919658 1.59290i 0.0352673 0.0610847i
\(681\) 0 0
\(682\) 2.29341 0.0878191
\(683\) −23.1964 −0.887585 −0.443793 0.896130i \(-0.646367\pi\)
−0.443793 + 0.896130i \(0.646367\pi\)
\(684\) 0 0
\(685\) −7.90313 + 13.6886i −0.301963 + 0.523015i
\(686\) −5.92465 + 20.4320i −0.226204 + 0.780096i
\(687\) 0 0
\(688\) 0.622004 1.07734i 0.0237137 0.0410733i
\(689\) 4.94346 48.4045i 0.188331 1.84406i
\(690\) 0 0
\(691\) 42.7318 1.62559 0.812796 0.582548i \(-0.197944\pi\)
0.812796 + 0.582548i \(0.197944\pi\)
\(692\) 6.01237 + 10.4137i 0.228556 + 0.395871i
\(693\) 0 0
\(694\) −16.6019 −0.630199
\(695\) 9.02771 + 15.6364i 0.342440 + 0.593124i
\(696\) 0 0
\(697\) 1.10666 + 1.91679i 0.0419176 + 0.0726035i
\(698\) 5.07233 + 8.78554i 0.191991 + 0.332537i
\(699\) 0 0
\(700\) −2.73760 + 1.25394i −0.103471 + 0.0473944i
\(701\) 35.9248 1.35686 0.678430 0.734665i \(-0.262661\pi\)
0.678430 + 0.734665i \(0.262661\pi\)
\(702\) 0 0
\(703\) 20.4572 + 35.4329i 0.771559 + 1.33638i
\(704\) −2.12410 + 3.67905i −0.0800550 + 0.138659i
\(705\) 0 0
\(706\) −20.4722 + 35.4589i −0.770481 + 1.33451i
\(707\) 8.93361 + 6.34649i 0.335983 + 0.238684i
\(708\) 0 0
\(709\) −2.85298 4.94150i −0.107146 0.185582i 0.807467 0.589913i \(-0.200838\pi\)
−0.914613 + 0.404331i \(0.867504\pi\)
\(710\) −11.7709 20.3878i −0.441754 0.765140i
\(711\) 0 0
\(712\) 0.0282144 0.00105738
\(713\) 9.47571 + 16.4124i 0.354868 + 0.614650i
\(714\) 0 0
\(715\) −0.331859 + 3.24944i −0.0124108 + 0.121522i
\(716\) −4.29343 + 7.43644i −0.160453 + 0.277913i
\(717\) 0 0
\(718\) 11.9046 20.6193i 0.444274 0.769505i
\(719\) 0.427075 + 0.739715i 0.0159272 + 0.0275867i 0.873879 0.486143i \(-0.161597\pi\)
−0.857952 + 0.513730i \(0.828263\pi\)
\(720\) 0 0
\(721\) 22.2441 + 15.8023i 0.828414 + 0.588509i
\(722\) −1.32982 + 2.30332i −0.0494908 + 0.0857205i
\(723\) 0 0
\(724\) 11.1574 0.414660
\(725\) 8.14837 14.1134i 0.302623 0.524158i
\(726\) 0 0
\(727\) −15.2191 −0.564444 −0.282222 0.959349i \(-0.591071\pi\)
−0.282222 + 0.959349i \(0.591071\pi\)
\(728\) 19.3556 22.0931i 0.717368 0.818823i
\(729\) 0 0
\(730\) 14.5817 0.539694
\(731\) −0.0936173 + 0.162150i −0.00346256 + 0.00599733i
\(732\) 0 0
\(733\) 7.18875 12.4513i 0.265523 0.459899i −0.702178 0.712002i \(-0.747789\pi\)
0.967700 + 0.252103i \(0.0811222\pi\)
\(734\) −9.38336 + 16.2524i −0.346346 + 0.599889i
\(735\) 0 0
\(736\) −17.2478 −0.635761
\(737\) 1.64107 + 2.84242i 0.0604496 + 0.104702i
\(738\) 0 0
\(739\) −2.53508 + 4.39089i −0.0932544 + 0.161521i −0.908879 0.417060i \(-0.863060\pi\)
0.815624 + 0.578582i \(0.196394\pi\)
\(740\) −5.50101 + 9.52802i −0.202221 + 0.350257i
\(741\) 0 0
\(742\) 37.2866 17.0789i 1.36883 0.626985i
\(743\) 10.6129 + 18.3820i 0.389348 + 0.674371i 0.992362 0.123360i \(-0.0393670\pi\)
−0.603014 + 0.797731i \(0.706034\pi\)
\(744\) 0 0
\(745\) −14.5694 −0.533782
\(746\) −20.5152 35.5333i −0.751114 1.30097i
\(747\) 0 0
\(748\) 0.0553374 0.0958471i 0.00202333 0.00350452i
\(749\) −2.67025 + 28.3000i −0.0975688 + 1.03406i
\(750\) 0 0
\(751\) 33.1636 1.21016 0.605079 0.796166i \(-0.293142\pi\)
0.605079 + 0.796166i \(0.293142\pi\)
\(752\) −7.92484 + 13.7262i −0.288989 + 0.500544i
\(753\) 0 0
\(754\) −4.10062 + 40.1517i −0.149336 + 1.46224i
\(755\) −8.93964 −0.325347
\(756\) 0 0
\(757\) −10.2642 17.7781i −0.373059 0.646157i 0.616976 0.786982i \(-0.288358\pi\)
−0.990034 + 0.140825i \(0.955024\pi\)
\(758\) 15.5882 + 26.9995i 0.566188 + 0.980667i
\(759\) 0 0
\(760\) −25.9323 −0.940662
\(761\) 18.4562 + 31.9671i 0.669036 + 1.15881i 0.978174 + 0.207788i \(0.0666263\pi\)
−0.309137 + 0.951017i \(0.600040\pi\)
\(762\) 0 0
\(763\) 4.77544 2.18736i 0.172883 0.0791876i
\(764\) 2.76851 + 4.79520i 0.100161 + 0.173484i
\(765\) 0 0
\(766\) 7.17911 + 12.4346i 0.259392 + 0.449280i
\(767\) 1.23159 + 0.889272i 0.0444701 + 0.0321097i
\(768\) 0 0
\(769\) 12.7516 + 22.0865i 0.459836 + 0.796460i 0.998952 0.0457720i \(-0.0145748\pi\)
−0.539116 + 0.842232i \(0.681241\pi\)
\(770\) −2.50309 + 1.14652i −0.0902050 + 0.0413177i
\(771\) 0 0
\(772\) −8.90302 + 15.4205i −0.320427 + 0.554995i
\(773\) 22.9043 0.823811 0.411905 0.911227i \(-0.364863\pi\)
0.411905 + 0.911227i \(0.364863\pi\)
\(774\) 0 0
\(775\) 3.36163 5.82251i 0.120753 0.209151i
\(776\) −0.499956 + 0.865949i −0.0179474 + 0.0310858i
\(777\) 0 0
\(778\) −18.1842 31.4959i −0.651935 1.12918i
\(779\) 15.6026 27.0245i 0.559022 0.968254i
\(780\) 0 0
\(781\) −2.78971 4.83192i −0.0998236 0.172900i
\(782\) −1.77308 −0.0634052
\(783\) 0 0
\(784\) 14.9611 + 2.84868i 0.534326 + 0.101739i
\(785\) 37.2733 1.33034
\(786\) 0 0
\(787\) −0.829312 −0.0295618 −0.0147809 0.999891i \(-0.504705\pi\)
−0.0147809 + 0.999891i \(0.504705\pi\)
\(788\) −1.55534 2.69393i −0.0554067 0.0959672i
\(789\) 0 0
\(790\) −1.93159 3.34561i −0.0687229 0.119032i
\(791\) 26.4265 + 18.7736i 0.939620 + 0.667511i
\(792\) 0 0
\(793\) −1.48230 + 14.5141i −0.0526378 + 0.515410i
\(794\) −6.93094 12.0047i −0.245970 0.426032i
\(795\) 0 0
\(796\) −14.1324 −0.500908
\(797\) −15.8043 + 27.3738i −0.559815 + 0.969629i 0.437696 + 0.899123i \(0.355795\pi\)
−0.997511 + 0.0705057i \(0.977539\pi\)
\(798\) 0 0
\(799\) 1.19276 2.06592i 0.0421969 0.0730871i
\(800\) 3.05943 + 5.29909i 0.108167 + 0.187351i
\(801\) 0 0
\(802\) −23.8841 −0.843376
\(803\) 3.45587 0.121955
\(804\) 0 0
\(805\) −18.5470 13.1759i −0.653694 0.464388i
\(806\) −1.69172 + 16.5647i −0.0595882 + 0.583466i
\(807\) 0 0
\(808\) 6.37661 11.0446i 0.224328 0.388548i
\(809\) −17.9240 + 31.0453i −0.630176 + 1.09150i 0.357340 + 0.933974i \(0.383684\pi\)
−0.987515 + 0.157522i \(0.949650\pi\)
\(810\) 0 0
\(811\) 32.5379 1.14256 0.571279 0.820756i \(-0.306447\pi\)
0.571279 + 0.820756i \(0.306447\pi\)
\(812\) 15.9534 7.30733i 0.559854 0.256437i
\(813\) 0 0
\(814\) 2.52761 4.37795i 0.0885928 0.153447i
\(815\) −2.18875 −0.0766684
\(816\) 0 0
\(817\) 2.63980 0.0923548
\(818\) −29.7227 −1.03923
\(819\) 0 0
\(820\) 8.39118 0.293033
\(821\) 3.79577 0.132473 0.0662366 0.997804i \(-0.478901\pi\)
0.0662366 + 0.997804i \(0.478901\pi\)
\(822\) 0 0
\(823\) 47.3353 1.65000 0.825002 0.565130i \(-0.191174\pi\)
0.825002 + 0.565130i \(0.191174\pi\)
\(824\) 15.8773 27.5004i 0.553113 0.958020i
\(825\) 0 0
\(826\) −0.120280 + 1.27476i −0.00418508 + 0.0443546i
\(827\) 41.4999 1.44309 0.721546 0.692367i \(-0.243432\pi\)
0.721546 + 0.692367i \(0.243432\pi\)
\(828\) 0 0
\(829\) −13.5276 + 23.4304i −0.469831 + 0.813772i −0.999405 0.0344923i \(-0.989019\pi\)
0.529574 + 0.848264i \(0.322352\pi\)
\(830\) −17.2036 + 29.7975i −0.597146 + 1.03429i
\(831\) 0 0
\(832\) −25.0060 18.0556i −0.866926 0.625967i
\(833\) −2.25179 0.428752i −0.0780199 0.0148554i
\(834\) 0 0
\(835\) 32.2787 1.11705
\(836\) −1.56039 −0.0539671
\(837\) 0 0
\(838\) −1.80828 3.13203i −0.0624660 0.108194i
\(839\) 4.19837 7.27179i 0.144944 0.251050i −0.784408 0.620245i \(-0.787033\pi\)
0.929352 + 0.369195i \(0.120367\pi\)
\(840\) 0 0
\(841\) −32.9847 + 57.1312i −1.13740 + 1.97004i
\(842\) 3.88367 0.133840
\(843\) 0 0
\(844\) −0.970305 1.68062i −0.0333993 0.0578492i
\(845\) −23.2251 4.79386i −0.798966 0.164914i
\(846\) 0 0
\(847\) 25.8664 11.8479i 0.888781 0.407100i
\(848\) −14.6804 25.4271i −0.504126 0.873171i
\(849\) 0 0
\(850\) 0.314511 + 0.544749i 0.0107876 + 0.0186847i
\(851\) 41.7735 1.43198
\(852\) 0 0
\(853\) 47.6418 1.63122 0.815611 0.578600i \(-0.196401\pi\)
0.815611 + 0.578600i \(0.196401\pi\)
\(854\) −11.1804 + 5.12110i −0.382585 + 0.175240i
\(855\) 0 0
\(856\) 33.0813 1.13070
\(857\) 15.6312 + 27.0740i 0.533952 + 0.924832i 0.999213 + 0.0396584i \(0.0126270\pi\)
−0.465261 + 0.885173i \(0.654040\pi\)
\(858\) 0 0
\(859\) 1.08936 1.88682i 0.0371684 0.0643776i −0.846843 0.531843i \(-0.821500\pi\)
0.884011 + 0.467466i \(0.154833\pi\)
\(860\) 0.354924 + 0.614747i 0.0121028 + 0.0209627i
\(861\) 0 0
\(862\) −11.0441 + 19.1289i −0.376163 + 0.651534i
\(863\) −3.14358 + 5.44484i −0.107009 + 0.185345i −0.914557 0.404457i \(-0.867461\pi\)
0.807548 + 0.589801i \(0.200794\pi\)
\(864\) 0 0
\(865\) 32.2315 1.09590
\(866\) 11.0122 19.0737i 0.374209 0.648150i
\(867\) 0 0
\(868\) 6.58159 3.01465i 0.223394 0.102324i
\(869\) −0.457788 0.792912i −0.0155294 0.0268977i
\(870\) 0 0
\(871\) −21.7406 + 9.75633i −0.736651 + 0.330581i
\(872\) −3.05641 5.29386i −0.103503 0.179273i
\(873\) 0 0
\(874\) 12.4992 + 21.6493i 0.422792 + 0.732297i
\(875\) −3.02508 + 32.0606i −0.102266 + 1.08385i
\(876\) 0 0
\(877\) −23.4247 40.5727i −0.790995 1.37004i −0.925351 0.379111i \(-0.876230\pi\)
0.134356 0.990933i \(-0.457103\pi\)
\(878\) −9.10096 −0.307143
\(879\) 0 0
\(880\) 0.985507 + 1.70695i 0.0332214 + 0.0575412i
\(881\) 0.866498 + 1.50082i 0.0291931 + 0.0505639i 0.880253 0.474505i \(-0.157373\pi\)
−0.851060 + 0.525069i \(0.824040\pi\)
\(882\) 0 0
\(883\) −24.9808 −0.840672 −0.420336 0.907369i \(-0.638088\pi\)
−0.420336 + 0.907369i \(0.638088\pi\)
\(884\) 0.651460 + 0.470388i 0.0219110 + 0.0158209i
\(885\) 0 0
\(886\) −6.46956 + 11.2056i −0.217349 + 0.376460i
\(887\) 1.51742 0.0509499 0.0254750 0.999675i \(-0.491890\pi\)
0.0254750 + 0.999675i \(0.491890\pi\)
\(888\) 0 0
\(889\) 12.4840 5.71820i 0.418700 0.191782i
\(890\) 0.00960037 0.0166283i 0.000321805 0.000557383i
\(891\) 0 0
\(892\) 3.82894 + 6.63191i 0.128202 + 0.222053i
\(893\) −33.6332 −1.12549
\(894\) 0 0
\(895\) 11.5082 + 19.9328i 0.384678 + 0.666281i
\(896\) 0.623363 6.60657i 0.0208251 0.220710i
\(897\) 0 0
\(898\) 0.286062 0.495474i 0.00954601 0.0165342i
\(899\) −19.5899 + 33.9307i −0.653360 + 1.13165i
\(900\) 0 0
\(901\) 2.20953 + 3.82702i 0.0736101 + 0.127496i
\(902\) −3.85559 −0.128377
\(903\) 0 0
\(904\) 18.8627 32.6711i 0.627363 1.08662i
\(905\) 14.9532 25.8998i 0.497063 0.860938i
\(906\) 0 0
\(907\) 16.0723 27.8380i 0.533672 0.924347i −0.465555 0.885019i \(-0.654145\pi\)
0.999226 0.0393276i \(-0.0125216\pi\)
\(908\) 14.7406 0.489185
\(909\) 0 0
\(910\) −6.43463 18.9249i −0.213306 0.627353i
\(911\) −33.3781 −1.10587 −0.552934 0.833225i \(-0.686492\pi\)
−0.552934 + 0.833225i \(0.686492\pi\)
\(912\) 0 0
\(913\) −4.07727 + 7.06203i −0.134938 + 0.233719i
\(914\) 21.3812 0.707227
\(915\) 0 0
\(916\) −3.01083 + 5.21490i −0.0994805 + 0.172305i
\(917\) −40.5619 28.8154i −1.33947 0.951568i
\(918\) 0 0
\(919\) 19.3034 + 33.4345i 0.636760 + 1.10290i 0.986139 + 0.165920i \(0.0530593\pi\)
−0.349379 + 0.936982i \(0.613607\pi\)
\(920\) −13.2384 + 22.9296i −0.436457 + 0.755966i
\(921\) 0 0
\(922\) −3.36001 + 5.81972i −0.110656 + 0.191662i
\(923\) 36.9575 16.5851i 1.21647 0.545905i
\(924\) 0 0
\(925\) −7.40984 12.8342i −0.243634 0.421986i
\(926\) 26.8143 0.881174
\(927\) 0 0
\(928\) −17.8288 30.8805i −0.585261 1.01370i
\(929\) −20.8012 36.0287i −0.682465 1.18206i −0.974226 0.225573i \(-0.927575\pi\)
0.291762 0.956491i \(-0.405759\pi\)
\(930\) 0 0
\(931\) 10.6388 + 30.5167i 0.348672 + 1.00015i
\(932\) −0.607711 + 1.05259i −0.0199062 + 0.0344786i
\(933\) 0 0
\(934\) −6.77784 + 11.7396i −0.221778 + 0.384130i
\(935\) −0.148328 0.256911i −0.00485084 0.00840190i
\(936\) 0 0
\(937\) 2.73494 0.0893465 0.0446732 0.999002i \(-0.485775\pi\)
0.0446732 + 0.999002i \(0.485775\pi\)
\(938\) −16.3743 11.6324i −0.534639 0.379811i
\(939\) 0 0
\(940\) −4.52203 7.83238i −0.147492 0.255464i
\(941\) 8.96190 + 15.5225i 0.292150 + 0.506018i 0.974318 0.225177i \(-0.0722961\pi\)
−0.682168 + 0.731195i \(0.738963\pi\)
\(942\) 0 0
\(943\) −15.9302 27.5920i −0.518760 0.898518i
\(944\) 0.916663 0.0298348
\(945\) 0 0
\(946\) −0.163081 0.282465i −0.00530223 0.00918373i
\(947\) 24.7653 0.804766 0.402383 0.915472i \(-0.368182\pi\)
0.402383 + 0.915472i \(0.368182\pi\)
\(948\) 0 0
\(949\) −2.54921 + 24.9609i −0.0827507 + 0.810264i
\(950\) 4.43425 7.68034i 0.143866 0.249183i
\(951\) 0 0
\(952\) −0.250595 + 2.65587i −0.00812183 + 0.0860774i
\(953\) −1.24712 + 2.16007i −0.0403981 + 0.0699715i −0.885517 0.464606i \(-0.846196\pi\)
0.845119 + 0.534578i \(0.179529\pi\)
\(954\) 0 0
\(955\) 14.8416 0.480263
\(956\) 6.85557 0.221725
\(957\) 0 0
\(958\) 19.6239 33.9896i 0.634020 1.09816i
\(959\) 2.15350 22.8234i 0.0695402 0.737006i
\(960\) 0 0
\(961\) 7.41815 12.8486i 0.239295 0.414471i
\(962\) 29.7563 + 21.4857i 0.959383 + 0.692725i
\(963\) 0 0
\(964\) 0.0216834 0.000698375
\(965\) 23.8639 + 41.3335i 0.768206 + 1.33057i
\(966\) 0 0
\(967\) −17.6660 −0.568102 −0.284051 0.958809i \(-0.591678\pi\)
−0.284051 + 0.958809i \(0.591678\pi\)
\(968\) −16.5552 28.6745i −0.532105 0.921633i
\(969\) 0 0
\(970\) 0.340235 + 0.589304i 0.0109243 + 0.0189214i
\(971\) 24.4539 + 42.3553i 0.784761 + 1.35925i 0.929141 + 0.369724i \(0.120548\pi\)
−0.144380 + 0.989522i \(0.546119\pi\)
\(972\) 0 0
\(973\) −21.3482 15.1659i −0.684392 0.486196i
\(974\) −19.0553 −0.610572
\(975\) 0 0
\(976\) 4.40191 + 7.62433i 0.140902 + 0.244049i
\(977\) 15.3944 26.6639i 0.492511 0.853054i −0.507452 0.861680i \(-0.669413\pi\)
0.999963 + 0.00862628i \(0.00274586\pi\)
\(978\) 0 0
\(979\) 0.00227529 0.00394092i 7.27186e−5 0.000125952i
\(980\) −5.67624 + 6.58055i −0.181321 + 0.210208i
\(981\) 0 0
\(982\) 6.96895 + 12.0706i 0.222388 + 0.385187i
\(983\) 12.6951 + 21.9885i 0.404910 + 0.701325i 0.994311 0.106516i \(-0.0339694\pi\)
−0.589401 + 0.807841i \(0.700636\pi\)
\(984\) 0 0
\(985\) −8.33796 −0.265669
\(986\) −1.83282 3.17453i −0.0583687 0.101098i
\(987\) 0 0
\(988\) 1.15101 11.2703i 0.0366186 0.358555i
\(989\) 1.34761 2.33413i 0.0428516 0.0742211i
\(990\) 0 0
\(991\) −15.7060 + 27.2036i −0.498917 + 0.864150i −0.999999 0.00124977i \(-0.999602\pi\)
0.501082 + 0.865400i \(0.332936\pi\)
\(992\) −7.35532 12.7398i −0.233532 0.404489i
\(993\) 0 0
\(994\) 27.8352 + 19.7743i 0.882878 + 0.627201i
\(995\) −18.9404 + 32.8057i −0.600450 + 1.04001i
\(996\) 0 0
\(997\) −52.9958 −1.67840 −0.839198 0.543827i \(-0.816975\pi\)
−0.839198 + 0.543827i \(0.816975\pi\)
\(998\) 9.26028 16.0393i 0.293129 0.507714i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.g.289.13 yes 36
3.2 odd 2 inner 819.2.s.g.289.6 yes 36
7.4 even 3 819.2.n.g.172.6 yes 36
13.9 even 3 819.2.n.g.100.6 36
21.11 odd 6 819.2.n.g.172.13 yes 36
39.35 odd 6 819.2.n.g.100.13 yes 36
91.74 even 3 inner 819.2.s.g.802.13 yes 36
273.74 odd 6 inner 819.2.s.g.802.6 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
819.2.n.g.100.6 36 13.9 even 3
819.2.n.g.100.13 yes 36 39.35 odd 6
819.2.n.g.172.6 yes 36 7.4 even 3
819.2.n.g.172.13 yes 36 21.11 odd 6
819.2.s.g.289.6 yes 36 3.2 odd 2 inner
819.2.s.g.289.13 yes 36 1.1 even 1 trivial
819.2.s.g.802.6 yes 36 273.74 odd 6 inner
819.2.s.g.802.13 yes 36 91.74 even 3 inner