Properties

Label 819.2.s.g.289.12
Level $819$
Weight $2$
Character 819.289
Analytic conductor $6.540$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(289,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,44,0,0,4,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.12
Character \(\chi\) \(=\) 819.289
Dual form 819.2.s.g.802.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.09380 q^{2} -0.803600 q^{4} +(-0.179458 + 0.310830i) q^{5} +(2.59911 + 0.494573i) q^{7} -3.06658 q^{8} +(-0.196291 + 0.339986i) q^{10} +(0.697132 - 1.20747i) q^{11} +(3.19831 - 1.66457i) q^{13} +(2.84291 + 0.540964i) q^{14} -1.74703 q^{16} +6.02773 q^{17} +(-0.0503215 - 0.0871594i) q^{19} +(0.144212 - 0.249783i) q^{20} +(0.762523 - 1.32073i) q^{22} -2.30972 q^{23} +(2.43559 + 4.21857i) q^{25} +(3.49832 - 1.82071i) q^{26} +(-2.08865 - 0.397439i) q^{28} +(4.04339 + 7.00337i) q^{29} +(2.94949 + 5.10866i) q^{31} +4.22226 q^{32} +6.59314 q^{34} +(-0.620159 + 0.719128i) q^{35} +5.28441 q^{37} +(-0.0550417 - 0.0953350i) q^{38} +(0.550322 - 0.953185i) q^{40} +(-5.97937 - 10.3566i) q^{41} +(5.43548 - 9.41454i) q^{43} +(-0.560215 + 0.970321i) q^{44} -2.52638 q^{46} +(-4.67269 + 8.09334i) q^{47} +(6.51079 + 2.57090i) q^{49} +(2.66405 + 4.61427i) q^{50} +(-2.57017 + 1.33765i) q^{52} +(-5.20881 - 9.02192i) q^{53} +(0.250211 + 0.433379i) q^{55} +(-7.97039 - 1.51665i) q^{56} +(4.42267 + 7.66029i) q^{58} -9.03407 q^{59} +(-0.812845 - 1.40789i) q^{61} +(3.22615 + 5.58786i) q^{62} +8.11236 q^{64} +(-0.0565649 + 1.29285i) q^{65} +(3.12115 - 5.40599i) q^{67} -4.84389 q^{68} +(-0.678331 + 0.786582i) q^{70} +(2.36071 - 4.08886i) q^{71} +(-1.63045 - 2.82402i) q^{73} +5.78010 q^{74} +(0.0404384 + 0.0700413i) q^{76} +(2.40911 - 2.79356i) q^{77} +(-3.65397 + 6.32887i) q^{79} +(0.313517 - 0.543028i) q^{80} +(-6.54024 - 11.3280i) q^{82} +8.23791 q^{83} +(-1.08172 + 1.87360i) q^{85} +(5.94534 - 10.2976i) q^{86} +(-2.13781 + 3.70280i) q^{88} -11.8662 q^{89} +(9.13604 - 2.74460i) q^{91} +1.85609 q^{92} +(-5.11099 + 8.85250i) q^{94} +0.0361224 q^{95} +(-3.37036 + 5.83763i) q^{97} +(7.12151 + 2.81206i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 44 q^{4} + 4 q^{7} + 8 q^{10} + 20 q^{16} + 4 q^{19} - 10 q^{22} - 22 q^{25} + 16 q^{28} - 18 q^{31} + 8 q^{34} - 20 q^{37} + 14 q^{40} + 20 q^{43} + 8 q^{46} - 12 q^{49} + 10 q^{52} + 42 q^{55}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.09380 0.773434 0.386717 0.922198i \(-0.373609\pi\)
0.386717 + 0.922198i \(0.373609\pi\)
\(3\) 0 0
\(4\) −0.803600 −0.401800
\(5\) −0.179458 + 0.310830i −0.0802560 + 0.139007i −0.903360 0.428883i \(-0.858907\pi\)
0.823104 + 0.567891i \(0.192240\pi\)
\(6\) 0 0
\(7\) 2.59911 + 0.494573i 0.982373 + 0.186931i
\(8\) −3.06658 −1.08420
\(9\) 0 0
\(10\) −0.196291 + 0.339986i −0.0620727 + 0.107513i
\(11\) 0.697132 1.20747i 0.210193 0.364065i −0.741582 0.670863i \(-0.765924\pi\)
0.951775 + 0.306797i \(0.0992574\pi\)
\(12\) 0 0
\(13\) 3.19831 1.66457i 0.887053 0.461668i
\(14\) 2.84291 + 0.540964i 0.759801 + 0.144579i
\(15\) 0 0
\(16\) −1.74703 −0.436757
\(17\) 6.02773 1.46194 0.730970 0.682409i \(-0.239068\pi\)
0.730970 + 0.682409i \(0.239068\pi\)
\(18\) 0 0
\(19\) −0.0503215 0.0871594i −0.0115445 0.0199957i 0.860195 0.509965i \(-0.170341\pi\)
−0.871740 + 0.489969i \(0.837008\pi\)
\(20\) 0.144212 0.249783i 0.0322468 0.0558532i
\(21\) 0 0
\(22\) 0.762523 1.32073i 0.162570 0.281580i
\(23\) −2.30972 −0.481611 −0.240805 0.970573i \(-0.577412\pi\)
−0.240805 + 0.970573i \(0.577412\pi\)
\(24\) 0 0
\(25\) 2.43559 + 4.21857i 0.487118 + 0.843713i
\(26\) 3.49832 1.82071i 0.686077 0.357070i
\(27\) 0 0
\(28\) −2.08865 0.397439i −0.394718 0.0751089i
\(29\) 4.04339 + 7.00337i 0.750840 + 1.30049i 0.947416 + 0.320004i \(0.103684\pi\)
−0.196577 + 0.980488i \(0.562982\pi\)
\(30\) 0 0
\(31\) 2.94949 + 5.10866i 0.529744 + 0.917543i 0.999398 + 0.0346927i \(0.0110452\pi\)
−0.469654 + 0.882850i \(0.655621\pi\)
\(32\) 4.22226 0.746397
\(33\) 0 0
\(34\) 6.59314 1.13071
\(35\) −0.620159 + 0.719128i −0.104826 + 0.121555i
\(36\) 0 0
\(37\) 5.28441 0.868752 0.434376 0.900732i \(-0.356969\pi\)
0.434376 + 0.900732i \(0.356969\pi\)
\(38\) −0.0550417 0.0953350i −0.00892895 0.0154654i
\(39\) 0 0
\(40\) 0.550322 0.953185i 0.0870135 0.150712i
\(41\) −5.97937 10.3566i −0.933821 1.61743i −0.776723 0.629843i \(-0.783119\pi\)
−0.157098 0.987583i \(-0.550214\pi\)
\(42\) 0 0
\(43\) 5.43548 9.41454i 0.828904 1.43570i −0.0699953 0.997547i \(-0.522298\pi\)
0.898899 0.438156i \(-0.144368\pi\)
\(44\) −0.560215 + 0.970321i −0.0844556 + 0.146281i
\(45\) 0 0
\(46\) −2.52638 −0.372494
\(47\) −4.67269 + 8.09334i −0.681582 + 1.18054i 0.292916 + 0.956138i \(0.405375\pi\)
−0.974498 + 0.224397i \(0.927959\pi\)
\(48\) 0 0
\(49\) 6.51079 + 2.57090i 0.930114 + 0.367272i
\(50\) 2.66405 + 4.61427i 0.376754 + 0.652556i
\(51\) 0 0
\(52\) −2.57017 + 1.33765i −0.356418 + 0.185498i
\(53\) −5.20881 9.02192i −0.715485 1.23926i −0.962772 0.270314i \(-0.912873\pi\)
0.247288 0.968942i \(-0.420461\pi\)
\(54\) 0 0
\(55\) 0.250211 + 0.433379i 0.0337385 + 0.0584368i
\(56\) −7.97039 1.51665i −1.06509 0.202671i
\(57\) 0 0
\(58\) 4.42267 + 7.66029i 0.580725 + 1.00584i
\(59\) −9.03407 −1.17614 −0.588068 0.808811i \(-0.700111\pi\)
−0.588068 + 0.808811i \(0.700111\pi\)
\(60\) 0 0
\(61\) −0.812845 1.40789i −0.104074 0.180262i 0.809285 0.587416i \(-0.199855\pi\)
−0.913360 + 0.407154i \(0.866521\pi\)
\(62\) 3.22615 + 5.58786i 0.409722 + 0.709659i
\(63\) 0 0
\(64\) 8.11236 1.01405
\(65\) −0.0565649 + 1.29285i −0.00701601 + 0.160358i
\(66\) 0 0
\(67\) 3.12115 5.40599i 0.381309 0.660447i −0.609941 0.792447i \(-0.708807\pi\)
0.991250 + 0.132000i \(0.0421400\pi\)
\(68\) −4.84389 −0.587408
\(69\) 0 0
\(70\) −0.678331 + 0.786582i −0.0810760 + 0.0940146i
\(71\) 2.36071 4.08886i 0.280164 0.485259i −0.691261 0.722605i \(-0.742944\pi\)
0.971425 + 0.237347i \(0.0762777\pi\)
\(72\) 0 0
\(73\) −1.63045 2.82402i −0.190830 0.330527i 0.754696 0.656075i \(-0.227784\pi\)
−0.945525 + 0.325548i \(0.894451\pi\)
\(74\) 5.78010 0.671923
\(75\) 0 0
\(76\) 0.0404384 + 0.0700413i 0.00463860 + 0.00803429i
\(77\) 2.40911 2.79356i 0.274543 0.318356i
\(78\) 0 0
\(79\) −3.65397 + 6.32887i −0.411104 + 0.712053i −0.995011 0.0997675i \(-0.968190\pi\)
0.583907 + 0.811821i \(0.301523\pi\)
\(80\) 0.313517 0.543028i 0.0350523 0.0607124i
\(81\) 0 0
\(82\) −6.54024 11.3280i −0.722249 1.25097i
\(83\) 8.23791 0.904228 0.452114 0.891960i \(-0.350670\pi\)
0.452114 + 0.891960i \(0.350670\pi\)
\(84\) 0 0
\(85\) −1.08172 + 1.87360i −0.117329 + 0.203220i
\(86\) 5.94534 10.2976i 0.641102 1.11042i
\(87\) 0 0
\(88\) −2.13781 + 3.70280i −0.227891 + 0.394719i
\(89\) −11.8662 −1.25782 −0.628909 0.777479i \(-0.716498\pi\)
−0.628909 + 0.777479i \(0.716498\pi\)
\(90\) 0 0
\(91\) 9.13604 2.74460i 0.957717 0.287712i
\(92\) 1.85609 0.193511
\(93\) 0 0
\(94\) −5.11099 + 8.85250i −0.527159 + 0.913066i
\(95\) 0.0361224 0.00370608
\(96\) 0 0
\(97\) −3.37036 + 5.83763i −0.342208 + 0.592722i −0.984842 0.173451i \(-0.944508\pi\)
0.642635 + 0.766173i \(0.277841\pi\)
\(98\) 7.12151 + 2.81206i 0.719381 + 0.284061i
\(99\) 0 0
\(100\) −1.95724 3.39004i −0.195724 0.339004i
\(101\) −7.06616 + 12.2390i −0.703109 + 1.21782i 0.264260 + 0.964451i \(0.414872\pi\)
−0.967370 + 0.253370i \(0.918461\pi\)
\(102\) 0 0
\(103\) −3.40155 + 5.89166i −0.335165 + 0.580523i −0.983516 0.180818i \(-0.942125\pi\)
0.648352 + 0.761341i \(0.275459\pi\)
\(104\) −9.80789 + 5.10453i −0.961742 + 0.500540i
\(105\) 0 0
\(106\) −5.69740 9.86818i −0.553380 0.958482i
\(107\) −18.0865 −1.74849 −0.874246 0.485483i \(-0.838644\pi\)
−0.874246 + 0.485483i \(0.838644\pi\)
\(108\) 0 0
\(109\) −0.968032 1.67668i −0.0927207 0.160597i 0.815934 0.578145i \(-0.196223\pi\)
−0.908655 + 0.417548i \(0.862890\pi\)
\(110\) 0.273681 + 0.474030i 0.0260945 + 0.0451970i
\(111\) 0 0
\(112\) −4.54072 0.864032i −0.429058 0.0816434i
\(113\) 0.793136 1.37375i 0.0746119 0.129232i −0.826306 0.563222i \(-0.809562\pi\)
0.900917 + 0.433990i \(0.142895\pi\)
\(114\) 0 0
\(115\) 0.414498 0.717931i 0.0386521 0.0669474i
\(116\) −3.24927 5.62791i −0.301687 0.522538i
\(117\) 0 0
\(118\) −9.88147 −0.909663
\(119\) 15.6668 + 2.98116i 1.43617 + 0.273282i
\(120\) 0 0
\(121\) 4.52801 + 7.84275i 0.411638 + 0.712977i
\(122\) −0.889090 1.53995i −0.0804944 0.139420i
\(123\) 0 0
\(124\) −2.37021 4.10532i −0.212851 0.368669i
\(125\) −3.54292 −0.316888
\(126\) 0 0
\(127\) −7.35093 12.7322i −0.652290 1.12980i −0.982566 0.185915i \(-0.940475\pi\)
0.330276 0.943884i \(-0.392858\pi\)
\(128\) 0.428789 0.0378999
\(129\) 0 0
\(130\) −0.0618707 + 1.41412i −0.00542642 + 0.124027i
\(131\) 3.10064 5.37046i 0.270904 0.469220i −0.698190 0.715913i \(-0.746011\pi\)
0.969094 + 0.246693i \(0.0793440\pi\)
\(132\) 0 0
\(133\) −0.0876847 0.251425i −0.00760323 0.0218013i
\(134\) 3.41392 5.91307i 0.294917 0.510812i
\(135\) 0 0
\(136\) −18.4845 −1.58504
\(137\) −5.65097 −0.482795 −0.241398 0.970426i \(-0.577606\pi\)
−0.241398 + 0.970426i \(0.577606\pi\)
\(138\) 0 0
\(139\) −8.97874 + 15.5516i −0.761567 + 1.31907i 0.180476 + 0.983579i \(0.442236\pi\)
−0.942043 + 0.335493i \(0.891097\pi\)
\(140\) 0.498360 0.577891i 0.0421191 0.0488407i
\(141\) 0 0
\(142\) 2.58214 4.47240i 0.216689 0.375316i
\(143\) 0.219735 5.02228i 0.0183752 0.419985i
\(144\) 0 0
\(145\) −2.90247 −0.241037
\(146\) −1.78339 3.08891i −0.147594 0.255640i
\(147\) 0 0
\(148\) −4.24656 −0.349065
\(149\) 11.1029 + 19.2308i 0.909584 + 1.57545i 0.814642 + 0.579964i \(0.196933\pi\)
0.0949421 + 0.995483i \(0.469733\pi\)
\(150\) 0 0
\(151\) −6.95630 12.0487i −0.566095 0.980506i −0.996947 0.0780832i \(-0.975120\pi\)
0.430851 0.902423i \(-0.358213\pi\)
\(152\) 0.154315 + 0.267281i 0.0125166 + 0.0216794i
\(153\) 0 0
\(154\) 2.63508 3.05560i 0.212341 0.246227i
\(155\) −2.11723 −0.170060
\(156\) 0 0
\(157\) −6.11973 10.5997i −0.488408 0.845947i 0.511503 0.859281i \(-0.329089\pi\)
−0.999911 + 0.0133340i \(0.995756\pi\)
\(158\) −3.99672 + 6.92252i −0.317962 + 0.550726i
\(159\) 0 0
\(160\) −0.757717 + 1.31241i −0.0599028 + 0.103755i
\(161\) −6.00324 1.14233i −0.473121 0.0900280i
\(162\) 0 0
\(163\) 7.77814 + 13.4721i 0.609231 + 1.05522i 0.991367 + 0.131113i \(0.0418549\pi\)
−0.382137 + 0.924106i \(0.624812\pi\)
\(164\) 4.80502 + 8.32255i 0.375209 + 0.649882i
\(165\) 0 0
\(166\) 9.01063 0.699361
\(167\) −0.0298989 0.0517864i −0.00231365 0.00400735i 0.864866 0.502002i \(-0.167403\pi\)
−0.867180 + 0.497995i \(0.834070\pi\)
\(168\) 0 0
\(169\) 7.45843 10.6476i 0.573725 0.819048i
\(170\) −1.18319 + 2.04935i −0.0907465 + 0.157178i
\(171\) 0 0
\(172\) −4.36796 + 7.56552i −0.333054 + 0.576866i
\(173\) −7.32243 12.6828i −0.556714 0.964257i −0.997768 0.0667767i \(-0.978728\pi\)
0.441054 0.897481i \(-0.354605\pi\)
\(174\) 0 0
\(175\) 4.24399 + 12.1691i 0.320815 + 0.919898i
\(176\) −1.21791 + 2.10948i −0.0918033 + 0.159008i
\(177\) 0 0
\(178\) −12.9793 −0.972840
\(179\) 12.4461 21.5573i 0.930268 1.61127i 0.147406 0.989076i \(-0.452908\pi\)
0.782862 0.622195i \(-0.213759\pi\)
\(180\) 0 0
\(181\) 10.8716 0.808081 0.404040 0.914741i \(-0.367605\pi\)
0.404040 + 0.914741i \(0.367605\pi\)
\(182\) 9.99300 3.00205i 0.740731 0.222527i
\(183\) 0 0
\(184\) 7.08295 0.522162
\(185\) −0.948329 + 1.64255i −0.0697226 + 0.120763i
\(186\) 0 0
\(187\) 4.20213 7.27829i 0.307290 0.532242i
\(188\) 3.75498 6.50381i 0.273860 0.474339i
\(189\) 0 0
\(190\) 0.0395107 0.00286640
\(191\) 3.02442 + 5.23844i 0.218839 + 0.379040i 0.954453 0.298360i \(-0.0964397\pi\)
−0.735614 + 0.677401i \(0.763106\pi\)
\(192\) 0 0
\(193\) 2.29217 3.97016i 0.164994 0.285778i −0.771659 0.636036i \(-0.780573\pi\)
0.936653 + 0.350258i \(0.113906\pi\)
\(194\) −3.68650 + 6.38520i −0.264675 + 0.458431i
\(195\) 0 0
\(196\) −5.23208 2.06598i −0.373720 0.147570i
\(197\) 3.85123 + 6.67053i 0.274389 + 0.475256i 0.969981 0.243182i \(-0.0781911\pi\)
−0.695592 + 0.718437i \(0.744858\pi\)
\(198\) 0 0
\(199\) −4.37138 −0.309879 −0.154940 0.987924i \(-0.549518\pi\)
−0.154940 + 0.987924i \(0.549518\pi\)
\(200\) −7.46893 12.9366i −0.528133 0.914753i
\(201\) 0 0
\(202\) −7.72897 + 13.3870i −0.543809 + 0.941904i
\(203\) 7.04557 + 20.2023i 0.494502 + 1.41792i
\(204\) 0 0
\(205\) 4.29218 0.299779
\(206\) −3.72062 + 6.44430i −0.259228 + 0.448996i
\(207\) 0 0
\(208\) −5.58754 + 2.90804i −0.387426 + 0.201637i
\(209\) −0.140323 −0.00970634
\(210\) 0 0
\(211\) 0.357428 + 0.619084i 0.0246064 + 0.0426195i 0.878066 0.478539i \(-0.158833\pi\)
−0.853460 + 0.521158i \(0.825500\pi\)
\(212\) 4.18580 + 7.25001i 0.287482 + 0.497933i
\(213\) 0 0
\(214\) −19.7831 −1.35234
\(215\) 1.95088 + 3.37902i 0.133049 + 0.230447i
\(216\) 0 0
\(217\) 5.13945 + 14.7367i 0.348889 + 1.00040i
\(218\) −1.05883 1.83395i −0.0717133 0.124211i
\(219\) 0 0
\(220\) −0.201070 0.348263i −0.0135561 0.0234799i
\(221\) 19.2786 10.0336i 1.29682 0.674931i
\(222\) 0 0
\(223\) −12.1944 21.1213i −0.816596 1.41439i −0.908176 0.418588i \(-0.862525\pi\)
0.0915802 0.995798i \(-0.470808\pi\)
\(224\) 10.9741 + 2.08822i 0.733241 + 0.139525i
\(225\) 0 0
\(226\) 0.867533 1.50261i 0.0577074 0.0999522i
\(227\) 16.5604 1.09915 0.549575 0.835445i \(-0.314790\pi\)
0.549575 + 0.835445i \(0.314790\pi\)
\(228\) 0 0
\(229\) −2.41260 + 4.17874i −0.159429 + 0.276139i −0.934663 0.355535i \(-0.884299\pi\)
0.775234 + 0.631674i \(0.217632\pi\)
\(230\) 0.453378 0.785274i 0.0298949 0.0517794i
\(231\) 0 0
\(232\) −12.3994 21.4764i −0.814060 1.40999i
\(233\) 6.70488 11.6132i 0.439251 0.760805i −0.558381 0.829585i \(-0.688577\pi\)
0.997632 + 0.0687796i \(0.0219105\pi\)
\(234\) 0 0
\(235\) −1.67710 2.90483i −0.109402 0.189490i
\(236\) 7.25978 0.472572
\(237\) 0 0
\(238\) 17.1363 + 3.26079i 1.11078 + 0.211366i
\(239\) 5.50569 0.356134 0.178067 0.984018i \(-0.443016\pi\)
0.178067 + 0.984018i \(0.443016\pi\)
\(240\) 0 0
\(241\) −20.4391 −1.31660 −0.658299 0.752757i \(-0.728724\pi\)
−0.658299 + 0.752757i \(0.728724\pi\)
\(242\) 4.95275 + 8.57841i 0.318375 + 0.551441i
\(243\) 0 0
\(244\) 0.653202 + 1.13138i 0.0418170 + 0.0724291i
\(245\) −1.96753 + 1.56238i −0.125701 + 0.0998169i
\(246\) 0 0
\(247\) −0.306027 0.195000i −0.0194720 0.0124075i
\(248\) −9.04484 15.6661i −0.574348 0.994800i
\(249\) 0 0
\(250\) −3.87525 −0.245092
\(251\) −9.68127 + 16.7685i −0.611077 + 1.05842i 0.379983 + 0.924994i \(0.375930\pi\)
−0.991059 + 0.133422i \(0.957403\pi\)
\(252\) 0 0
\(253\) −1.61018 + 2.78892i −0.101231 + 0.175338i
\(254\) −8.04046 13.9265i −0.504503 0.873825i
\(255\) 0 0
\(256\) −15.7557 −0.984732
\(257\) 0.718316 0.0448073 0.0224037 0.999749i \(-0.492868\pi\)
0.0224037 + 0.999749i \(0.492868\pi\)
\(258\) 0 0
\(259\) 13.7348 + 2.61353i 0.853439 + 0.162397i
\(260\) 0.0454555 1.03894i 0.00281903 0.0644321i
\(261\) 0 0
\(262\) 3.39148 5.87422i 0.209526 0.362910i
\(263\) −10.5364 + 18.2496i −0.649702 + 1.12532i 0.333492 + 0.942753i \(0.391773\pi\)
−0.983194 + 0.182564i \(0.941560\pi\)
\(264\) 0 0
\(265\) 3.73904 0.229688
\(266\) −0.0959096 0.275009i −0.00588059 0.0168619i
\(267\) 0 0
\(268\) −2.50816 + 4.34425i −0.153210 + 0.265368i
\(269\) 10.1981 0.621792 0.310896 0.950444i \(-0.399371\pi\)
0.310896 + 0.950444i \(0.399371\pi\)
\(270\) 0 0
\(271\) −25.6733 −1.55954 −0.779771 0.626065i \(-0.784665\pi\)
−0.779771 + 0.626065i \(0.784665\pi\)
\(272\) −10.5306 −0.638512
\(273\) 0 0
\(274\) −6.18104 −0.373410
\(275\) 6.79171 0.409555
\(276\) 0 0
\(277\) 3.97623 0.238908 0.119454 0.992840i \(-0.461886\pi\)
0.119454 + 0.992840i \(0.461886\pi\)
\(278\) −9.82095 + 17.0104i −0.589022 + 1.02022i
\(279\) 0 0
\(280\) 1.90177 2.20526i 0.113652 0.131790i
\(281\) 9.12206 0.544177 0.272088 0.962272i \(-0.412286\pi\)
0.272088 + 0.962272i \(0.412286\pi\)
\(282\) 0 0
\(283\) −10.4761 + 18.1452i −0.622742 + 1.07862i 0.366231 + 0.930524i \(0.380648\pi\)
−0.988973 + 0.148097i \(0.952685\pi\)
\(284\) −1.89706 + 3.28581i −0.112570 + 0.194977i
\(285\) 0 0
\(286\) 0.240346 5.49338i 0.0142120 0.324830i
\(287\) −10.4190 29.8752i −0.615014 1.76348i
\(288\) 0 0
\(289\) 19.3336 1.13727
\(290\) −3.17473 −0.186426
\(291\) 0 0
\(292\) 1.31023 + 2.26938i 0.0766753 + 0.132806i
\(293\) 9.84030 17.0439i 0.574876 0.995715i −0.421179 0.906978i \(-0.638383\pi\)
0.996055 0.0887375i \(-0.0282832\pi\)
\(294\) 0 0
\(295\) 1.62123 2.80806i 0.0943919 0.163492i
\(296\) −16.2051 −0.941901
\(297\) 0 0
\(298\) 12.1444 + 21.0346i 0.703503 + 1.21850i
\(299\) −7.38722 + 3.84469i −0.427214 + 0.222344i
\(300\) 0 0
\(301\) 18.7836 21.7812i 1.08267 1.25545i
\(302\) −7.60880 13.1788i −0.437837 0.758357i
\(303\) 0 0
\(304\) 0.0879130 + 0.152270i 0.00504216 + 0.00873327i
\(305\) 0.583485 0.0334103
\(306\) 0 0
\(307\) −14.0883 −0.804061 −0.402031 0.915626i \(-0.631696\pi\)
−0.402031 + 0.915626i \(0.631696\pi\)
\(308\) −1.93596 + 2.24491i −0.110311 + 0.127916i
\(309\) 0 0
\(310\) −2.31583 −0.131530
\(311\) −0.493701 0.855116i −0.0279952 0.0484892i 0.851688 0.524049i \(-0.175579\pi\)
−0.879684 + 0.475559i \(0.842246\pi\)
\(312\) 0 0
\(313\) 1.34562 2.33069i 0.0760591 0.131738i −0.825487 0.564421i \(-0.809100\pi\)
0.901546 + 0.432683i \(0.142433\pi\)
\(314\) −6.69377 11.5939i −0.377751 0.654284i
\(315\) 0 0
\(316\) 2.93633 5.08588i 0.165182 0.286103i
\(317\) 3.19625 5.53606i 0.179519 0.310936i −0.762197 0.647345i \(-0.775879\pi\)
0.941716 + 0.336409i \(0.109213\pi\)
\(318\) 0 0
\(319\) 11.2751 0.631285
\(320\) −1.45583 + 2.52157i −0.0813832 + 0.140960i
\(321\) 0 0
\(322\) −6.56634 1.24948i −0.365928 0.0696307i
\(323\) −0.303325 0.525374i −0.0168774 0.0292326i
\(324\) 0 0
\(325\) 14.8119 + 9.43809i 0.821615 + 0.523531i
\(326\) 8.50773 + 14.7358i 0.471200 + 0.816142i
\(327\) 0 0
\(328\) 18.3362 + 31.7593i 1.01245 + 1.75361i
\(329\) −16.1476 + 18.7245i −0.890247 + 1.03232i
\(330\) 0 0
\(331\) −8.63916 14.9635i −0.474851 0.822467i 0.524734 0.851266i \(-0.324165\pi\)
−0.999585 + 0.0287997i \(0.990832\pi\)
\(332\) −6.61999 −0.363319
\(333\) 0 0
\(334\) −0.0327034 0.0566440i −0.00178945 0.00309942i
\(335\) 1.12023 + 1.94029i 0.0612046 + 0.106010i
\(336\) 0 0
\(337\) 32.8157 1.78759 0.893793 0.448480i \(-0.148034\pi\)
0.893793 + 0.448480i \(0.148034\pi\)
\(338\) 8.15804 11.6464i 0.443739 0.633479i
\(339\) 0 0
\(340\) 0.869273 1.50563i 0.0471430 0.0816540i
\(341\) 8.22473 0.445394
\(342\) 0 0
\(343\) 15.6508 + 9.90214i 0.845064 + 0.534665i
\(344\) −16.6683 + 28.8704i −0.898697 + 1.55659i
\(345\) 0 0
\(346\) −8.00928 13.8725i −0.430582 0.745789i
\(347\) −24.5955 −1.32036 −0.660179 0.751108i \(-0.729519\pi\)
−0.660179 + 0.751108i \(0.729519\pi\)
\(348\) 0 0
\(349\) 5.72238 + 9.91146i 0.306312 + 0.530548i 0.977553 0.210691i \(-0.0675715\pi\)
−0.671240 + 0.741240i \(0.734238\pi\)
\(350\) 4.64208 + 13.3106i 0.248129 + 0.711481i
\(351\) 0 0
\(352\) 2.94347 5.09824i 0.156888 0.271737i
\(353\) −0.435031 + 0.753497i −0.0231544 + 0.0401046i −0.877370 0.479814i \(-0.840704\pi\)
0.854216 + 0.519918i \(0.174038\pi\)
\(354\) 0 0
\(355\) 0.847294 + 1.46756i 0.0449697 + 0.0778898i
\(356\) 9.53571 0.505392
\(357\) 0 0
\(358\) 13.6136 23.5794i 0.719501 1.24621i
\(359\) −3.03021 + 5.24849i −0.159929 + 0.277004i −0.934843 0.355062i \(-0.884460\pi\)
0.774914 + 0.632067i \(0.217793\pi\)
\(360\) 0 0
\(361\) 9.49494 16.4457i 0.499733 0.865564i
\(362\) 11.8914 0.624997
\(363\) 0 0
\(364\) −7.34172 + 2.20556i −0.384811 + 0.115603i
\(365\) 1.17039 0.0612608
\(366\) 0 0
\(367\) −10.3629 + 17.9491i −0.540941 + 0.936938i 0.457909 + 0.888999i \(0.348599\pi\)
−0.998850 + 0.0479388i \(0.984735\pi\)
\(368\) 4.03515 0.210347
\(369\) 0 0
\(370\) −1.03728 + 1.79663i −0.0539258 + 0.0934022i
\(371\) −9.07629 26.0251i −0.471217 1.35116i
\(372\) 0 0
\(373\) 12.4934 + 21.6392i 0.646884 + 1.12044i 0.983863 + 0.178924i \(0.0572617\pi\)
−0.336979 + 0.941512i \(0.609405\pi\)
\(374\) 4.59629 7.96100i 0.237668 0.411654i
\(375\) 0 0
\(376\) 14.3292 24.8189i 0.738971 1.27994i
\(377\) 24.5896 + 15.6685i 1.26643 + 0.806967i
\(378\) 0 0
\(379\) −9.67343 16.7549i −0.496890 0.860640i 0.503103 0.864226i \(-0.332192\pi\)
−0.999994 + 0.00358685i \(0.998858\pi\)
\(380\) −0.0290279 −0.00148910
\(381\) 0 0
\(382\) 3.30811 + 5.72981i 0.169258 + 0.293163i
\(383\) −5.68759 9.85119i −0.290622 0.503372i 0.683335 0.730105i \(-0.260529\pi\)
−0.973957 + 0.226733i \(0.927196\pi\)
\(384\) 0 0
\(385\) 0.435991 + 1.25015i 0.0222201 + 0.0637135i
\(386\) 2.50718 4.34256i 0.127612 0.221030i
\(387\) 0 0
\(388\) 2.70842 4.69112i 0.137499 0.238156i
\(389\) 0.870373 + 1.50753i 0.0441297 + 0.0764348i 0.887247 0.461295i \(-0.152615\pi\)
−0.843117 + 0.537730i \(0.819282\pi\)
\(390\) 0 0
\(391\) −13.9224 −0.704086
\(392\) −19.9659 7.88388i −1.00843 0.398196i
\(393\) 0 0
\(394\) 4.21248 + 7.29623i 0.212222 + 0.367579i
\(395\) −1.31147 2.27153i −0.0659871 0.114293i
\(396\) 0 0
\(397\) −3.64462 6.31267i −0.182918 0.316824i 0.759955 0.649976i \(-0.225221\pi\)
−0.942873 + 0.333152i \(0.891888\pi\)
\(398\) −4.78142 −0.239671
\(399\) 0 0
\(400\) −4.25504 7.36995i −0.212752 0.368497i
\(401\) −28.7557 −1.43599 −0.717996 0.696048i \(-0.754940\pi\)
−0.717996 + 0.696048i \(0.754940\pi\)
\(402\) 0 0
\(403\) 17.9371 + 11.4295i 0.893511 + 0.569343i
\(404\) 5.67837 9.83522i 0.282509 0.489321i
\(405\) 0 0
\(406\) 7.70645 + 22.0973i 0.382465 + 1.09667i
\(407\) 3.68393 6.38076i 0.182606 0.316283i
\(408\) 0 0
\(409\) −15.4719 −0.765037 −0.382518 0.923948i \(-0.624943\pi\)
−0.382518 + 0.923948i \(0.624943\pi\)
\(410\) 4.69479 0.231859
\(411\) 0 0
\(412\) 2.73349 4.73454i 0.134669 0.233254i
\(413\) −23.4806 4.46801i −1.15540 0.219856i
\(414\) 0 0
\(415\) −1.47836 + 2.56059i −0.0725697 + 0.125694i
\(416\) 13.5041 7.02824i 0.662094 0.344588i
\(417\) 0 0
\(418\) −0.153485 −0.00750721
\(419\) 5.20699 + 9.01877i 0.254378 + 0.440596i 0.964726 0.263254i \(-0.0847959\pi\)
−0.710348 + 0.703850i \(0.751463\pi\)
\(420\) 0 0
\(421\) 32.3268 1.57551 0.787755 0.615989i \(-0.211243\pi\)
0.787755 + 0.615989i \(0.211243\pi\)
\(422\) 0.390955 + 0.677154i 0.0190314 + 0.0329633i
\(423\) 0 0
\(424\) 15.9732 + 27.6664i 0.775728 + 1.34360i
\(425\) 14.6811 + 25.4284i 0.712137 + 1.23346i
\(426\) 0 0
\(427\) −1.41637 4.06127i −0.0685431 0.196539i
\(428\) 14.5343 0.702544
\(429\) 0 0
\(430\) 2.13387 + 3.69598i 0.102905 + 0.178236i
\(431\) −3.47837 + 6.02472i −0.167547 + 0.290201i −0.937557 0.347832i \(-0.886918\pi\)
0.770010 + 0.638032i \(0.220251\pi\)
\(432\) 0 0
\(433\) 2.67170 4.62751i 0.128393 0.222384i −0.794661 0.607054i \(-0.792351\pi\)
0.923054 + 0.384670i \(0.125685\pi\)
\(434\) 5.62154 + 16.1191i 0.269842 + 0.773740i
\(435\) 0 0
\(436\) 0.777911 + 1.34738i 0.0372552 + 0.0645279i
\(437\) 0.116229 + 0.201314i 0.00555998 + 0.00963016i
\(438\) 0 0
\(439\) −26.8157 −1.27984 −0.639921 0.768441i \(-0.721033\pi\)
−0.639921 + 0.768441i \(0.721033\pi\)
\(440\) −0.767293 1.32899i −0.0365793 0.0633572i
\(441\) 0 0
\(442\) 21.0869 10.9747i 1.00300 0.522015i
\(443\) 1.50193 2.60143i 0.0713590 0.123597i −0.828138 0.560524i \(-0.810600\pi\)
0.899497 + 0.436927i \(0.143933\pi\)
\(444\) 0 0
\(445\) 2.12949 3.68838i 0.100947 0.174846i
\(446\) −13.3382 23.1025i −0.631583 1.09393i
\(447\) 0 0
\(448\) 21.0850 + 4.01216i 0.996171 + 0.189557i
\(449\) −14.9445 + 25.8846i −0.705273 + 1.22157i 0.261320 + 0.965252i \(0.415842\pi\)
−0.966593 + 0.256317i \(0.917491\pi\)
\(450\) 0 0
\(451\) −16.6736 −0.785131
\(452\) −0.637364 + 1.10395i −0.0299791 + 0.0519253i
\(453\) 0 0
\(454\) 18.1137 0.850119
\(455\) −0.786428 + 3.33229i −0.0368683 + 0.156220i
\(456\) 0 0
\(457\) 1.37753 0.0644383 0.0322192 0.999481i \(-0.489743\pi\)
0.0322192 + 0.999481i \(0.489743\pi\)
\(458\) −2.63890 + 4.57071i −0.123308 + 0.213575i
\(459\) 0 0
\(460\) −0.333090 + 0.576930i −0.0155304 + 0.0268995i
\(461\) −0.314876 + 0.545381i −0.0146652 + 0.0254009i −0.873265 0.487246i \(-0.838002\pi\)
0.858600 + 0.512647i \(0.171335\pi\)
\(462\) 0 0
\(463\) −2.39950 −0.111514 −0.0557572 0.998444i \(-0.517757\pi\)
−0.0557572 + 0.998444i \(0.517757\pi\)
\(464\) −7.06392 12.2351i −0.327934 0.567999i
\(465\) 0 0
\(466\) 7.33380 12.7025i 0.339732 0.588432i
\(467\) 14.2387 24.6622i 0.658889 1.14123i −0.322014 0.946735i \(-0.604360\pi\)
0.980904 0.194495i \(-0.0623067\pi\)
\(468\) 0 0
\(469\) 10.7859 12.5072i 0.498046 0.577527i
\(470\) −1.83442 3.17730i −0.0846153 0.146558i
\(471\) 0 0
\(472\) 27.7037 1.27517
\(473\) −7.57850 13.1263i −0.348460 0.603550i
\(474\) 0 0
\(475\) 0.245125 0.424569i 0.0112471 0.0194806i
\(476\) −12.5898 2.39566i −0.577053 0.109805i
\(477\) 0 0
\(478\) 6.02213 0.275446
\(479\) −0.776598 + 1.34511i −0.0354836 + 0.0614595i −0.883222 0.468955i \(-0.844631\pi\)
0.847738 + 0.530415i \(0.177964\pi\)
\(480\) 0 0
\(481\) 16.9012 8.79627i 0.770629 0.401075i
\(482\) −22.3563 −1.01830
\(483\) 0 0
\(484\) −3.63871 6.30244i −0.165396 0.286474i
\(485\) −1.20967 2.09522i −0.0549284 0.0951389i
\(486\) 0 0
\(487\) −39.8616 −1.80630 −0.903150 0.429325i \(-0.858752\pi\)
−0.903150 + 0.429325i \(0.858752\pi\)
\(488\) 2.49265 + 4.31740i 0.112837 + 0.195440i
\(489\) 0 0
\(490\) −2.15208 + 1.70893i −0.0972212 + 0.0772018i
\(491\) 4.23463 + 7.33460i 0.191106 + 0.331006i 0.945617 0.325282i \(-0.105459\pi\)
−0.754511 + 0.656288i \(0.772126\pi\)
\(492\) 0 0
\(493\) 24.3725 + 42.2144i 1.09768 + 1.90124i
\(494\) −0.334732 0.213291i −0.0150603 0.00959641i
\(495\) 0 0
\(496\) −5.15283 8.92497i −0.231369 0.400743i
\(497\) 8.15799 9.45988i 0.365936 0.424334i
\(498\) 0 0
\(499\) −2.39601 + 4.15001i −0.107260 + 0.185780i −0.914659 0.404225i \(-0.867541\pi\)
0.807399 + 0.590006i \(0.200874\pi\)
\(500\) 2.84709 0.127326
\(501\) 0 0
\(502\) −10.5894 + 18.3413i −0.472627 + 0.818614i
\(503\) 12.2637 21.2413i 0.546810 0.947103i −0.451681 0.892180i \(-0.649175\pi\)
0.998491 0.0549230i \(-0.0174913\pi\)
\(504\) 0 0
\(505\) −2.53615 4.39275i −0.112857 0.195475i
\(506\) −1.76122 + 3.05052i −0.0782957 + 0.135612i
\(507\) 0 0
\(508\) 5.90721 + 10.2316i 0.262090 + 0.453953i
\(509\) 23.3353 1.03432 0.517160 0.855889i \(-0.326989\pi\)
0.517160 + 0.855889i \(0.326989\pi\)
\(510\) 0 0
\(511\) −2.84104 8.14633i −0.125680 0.360372i
\(512\) −18.0912 −0.799525
\(513\) 0 0
\(514\) 0.785695 0.0346555
\(515\) −1.22087 2.11461i −0.0537979 0.0931808i
\(516\) 0 0
\(517\) 6.51497 + 11.2843i 0.286528 + 0.496281i
\(518\) 15.0231 + 2.85868i 0.660079 + 0.125603i
\(519\) 0 0
\(520\) 0.173461 3.96463i 0.00760675 0.173861i
\(521\) 3.14111 + 5.44057i 0.137615 + 0.238356i 0.926593 0.376065i \(-0.122723\pi\)
−0.788979 + 0.614421i \(0.789390\pi\)
\(522\) 0 0
\(523\) −10.2487 −0.448145 −0.224072 0.974573i \(-0.571935\pi\)
−0.224072 + 0.974573i \(0.571935\pi\)
\(524\) −2.49167 + 4.31571i −0.108849 + 0.188532i
\(525\) 0 0
\(526\) −11.5247 + 19.9614i −0.502502 + 0.870358i
\(527\) 17.7787 + 30.7937i 0.774454 + 1.34139i
\(528\) 0 0
\(529\) −17.6652 −0.768051
\(530\) 4.08977 0.177648
\(531\) 0 0
\(532\) 0.0704634 + 0.202045i 0.00305498 + 0.00875977i
\(533\) −36.3631 23.1705i −1.57506 1.00363i
\(534\) 0 0
\(535\) 3.24577 5.62184i 0.140327 0.243053i
\(536\) −9.57125 + 16.5779i −0.413415 + 0.716056i
\(537\) 0 0
\(538\) 11.1547 0.480915
\(539\) 7.64317 6.06932i 0.329214 0.261424i
\(540\) 0 0
\(541\) 8.03065 13.9095i 0.345264 0.598016i −0.640137 0.768261i \(-0.721123\pi\)
0.985402 + 0.170245i \(0.0544559\pi\)
\(542\) −28.0815 −1.20620
\(543\) 0 0
\(544\) 25.4507 1.09119
\(545\) 0.694884 0.0297655
\(546\) 0 0
\(547\) −16.1258 −0.689490 −0.344745 0.938696i \(-0.612035\pi\)
−0.344745 + 0.938696i \(0.612035\pi\)
\(548\) 4.54112 0.193987
\(549\) 0 0
\(550\) 7.42878 0.316764
\(551\) 0.406940 0.704840i 0.0173362 0.0300272i
\(552\) 0 0
\(553\) −12.6272 + 14.6423i −0.536963 + 0.622654i
\(554\) 4.34920 0.184780
\(555\) 0 0
\(556\) 7.21532 12.4973i 0.305998 0.530003i
\(557\) −11.4268 + 19.7919i −0.484170 + 0.838608i −0.999835 0.0181829i \(-0.994212\pi\)
0.515664 + 0.856791i \(0.327545\pi\)
\(558\) 0 0
\(559\) 1.71326 39.1584i 0.0724631 1.65622i
\(560\) 1.08344 1.25634i 0.0457835 0.0530899i
\(561\) 0 0
\(562\) 9.97772 0.420885
\(563\) 24.6555 1.03910 0.519552 0.854439i \(-0.326099\pi\)
0.519552 + 0.854439i \(0.326099\pi\)
\(564\) 0 0
\(565\) 0.284669 + 0.493061i 0.0119761 + 0.0207432i
\(566\) −11.4588 + 19.8472i −0.481650 + 0.834242i
\(567\) 0 0
\(568\) −7.23930 + 12.5388i −0.303754 + 0.526118i
\(569\) 32.0516 1.34367 0.671836 0.740700i \(-0.265506\pi\)
0.671836 + 0.740700i \(0.265506\pi\)
\(570\) 0 0
\(571\) 4.67070 + 8.08988i 0.195463 + 0.338551i 0.947052 0.321080i \(-0.104046\pi\)
−0.751590 + 0.659631i \(0.770713\pi\)
\(572\) −0.176579 + 4.03591i −0.00738314 + 0.168750i
\(573\) 0 0
\(574\) −11.3963 32.6775i −0.475672 1.36393i
\(575\) −5.62554 9.74372i −0.234601 0.406341i
\(576\) 0 0
\(577\) −9.66471 16.7398i −0.402347 0.696886i 0.591662 0.806186i \(-0.298472\pi\)
−0.994009 + 0.109301i \(0.965139\pi\)
\(578\) 21.1471 0.879603
\(579\) 0 0
\(580\) 2.33243 0.0968488
\(581\) 21.4113 + 4.07425i 0.888289 + 0.169028i
\(582\) 0 0
\(583\) −14.5249 −0.601560
\(584\) 4.99990 + 8.66008i 0.206897 + 0.358357i
\(585\) 0 0
\(586\) 10.7633 18.6426i 0.444629 0.770120i
\(587\) 3.06856 + 5.31490i 0.126653 + 0.219369i 0.922378 0.386289i \(-0.126243\pi\)
−0.795725 + 0.605658i \(0.792910\pi\)
\(588\) 0 0
\(589\) 0.296846 0.514151i 0.0122313 0.0211852i
\(590\) 1.77331 3.07146i 0.0730059 0.126450i
\(591\) 0 0
\(592\) −9.23201 −0.379433
\(593\) 9.09996 15.7616i 0.373691 0.647251i −0.616439 0.787402i \(-0.711425\pi\)
0.990130 + 0.140151i \(0.0447588\pi\)
\(594\) 0 0
\(595\) −3.73816 + 4.33471i −0.153249 + 0.177706i
\(596\) −8.92229 15.4539i −0.365471 0.633014i
\(597\) 0 0
\(598\) −8.08015 + 4.20532i −0.330422 + 0.171969i
\(599\) 15.2172 + 26.3570i 0.621758 + 1.07692i 0.989158 + 0.146854i \(0.0469146\pi\)
−0.367400 + 0.930063i \(0.619752\pi\)
\(600\) 0 0
\(601\) 14.3890 + 24.9224i 0.586938 + 1.01661i 0.994631 + 0.103487i \(0.0330000\pi\)
−0.407693 + 0.913119i \(0.633667\pi\)
\(602\) 20.5455 23.8243i 0.837374 0.971006i
\(603\) 0 0
\(604\) 5.59008 + 9.68231i 0.227457 + 0.393967i
\(605\) −3.25035 −0.132145
\(606\) 0 0
\(607\) −2.78147 4.81764i −0.112896 0.195542i 0.804041 0.594574i \(-0.202679\pi\)
−0.916937 + 0.399032i \(0.869346\pi\)
\(608\) −0.212471 0.368010i −0.00861682 0.0149248i
\(609\) 0 0
\(610\) 0.638216 0.0258406
\(611\) −1.47283 + 33.6631i −0.0595842 + 1.36186i
\(612\) 0 0
\(613\) 2.68005 4.64198i 0.108246 0.187488i −0.806814 0.590806i \(-0.798810\pi\)
0.915060 + 0.403318i \(0.132143\pi\)
\(614\) −15.4098 −0.621888
\(615\) 0 0
\(616\) −7.38772 + 8.56669i −0.297660 + 0.345162i
\(617\) 21.9459 38.0114i 0.883508 1.53028i 0.0360931 0.999348i \(-0.488509\pi\)
0.847415 0.530932i \(-0.178158\pi\)
\(618\) 0 0
\(619\) −13.8858 24.0510i −0.558119 0.966691i −0.997654 0.0684651i \(-0.978190\pi\)
0.439534 0.898226i \(-0.355144\pi\)
\(620\) 1.70141 0.0683303
\(621\) 0 0
\(622\) −0.540011 0.935326i −0.0216525 0.0375032i
\(623\) −30.8417 5.86872i −1.23565 0.235125i
\(624\) 0 0
\(625\) −11.5421 + 19.9916i −0.461686 + 0.799663i
\(626\) 1.47184 2.54931i 0.0588266 0.101891i
\(627\) 0 0
\(628\) 4.91782 + 8.51791i 0.196242 + 0.339902i
\(629\) 31.8530 1.27006
\(630\) 0 0
\(631\) 0.265662 0.460140i 0.0105758 0.0183179i −0.860689 0.509131i \(-0.829967\pi\)
0.871265 + 0.490813i \(0.163300\pi\)
\(632\) 11.2052 19.4080i 0.445719 0.772008i
\(633\) 0 0
\(634\) 3.49606 6.05535i 0.138846 0.240489i
\(635\) 5.27673 0.209401
\(636\) 0 0
\(637\) 25.1030 2.61510i 0.994618 0.103614i
\(638\) 12.3327 0.488257
\(639\) 0 0
\(640\) −0.0769495 + 0.133280i −0.00304169 + 0.00526837i
\(641\) 12.5249 0.494702 0.247351 0.968926i \(-0.420440\pi\)
0.247351 + 0.968926i \(0.420440\pi\)
\(642\) 0 0
\(643\) −3.21981 + 5.57687i −0.126977 + 0.219930i −0.922504 0.385988i \(-0.873861\pi\)
0.795527 + 0.605918i \(0.207194\pi\)
\(644\) 4.82420 + 0.917974i 0.190100 + 0.0361732i
\(645\) 0 0
\(646\) −0.331777 0.574654i −0.0130536 0.0226095i
\(647\) −8.25026 + 14.2899i −0.324351 + 0.561793i −0.981381 0.192072i \(-0.938479\pi\)
0.657030 + 0.753865i \(0.271813\pi\)
\(648\) 0 0
\(649\) −6.29794 + 10.9084i −0.247216 + 0.428190i
\(650\) 16.2012 + 10.3234i 0.635465 + 0.404917i
\(651\) 0 0
\(652\) −6.25051 10.8262i −0.244789 0.423987i
\(653\) −16.4213 −0.642616 −0.321308 0.946975i \(-0.604122\pi\)
−0.321308 + 0.946975i \(0.604122\pi\)
\(654\) 0 0
\(655\) 1.11287 + 1.92754i 0.0434833 + 0.0753153i
\(656\) 10.4461 + 18.0932i 0.407853 + 0.706421i
\(657\) 0 0
\(658\) −17.6623 + 20.4809i −0.688547 + 0.798429i
\(659\) −3.87927 + 6.71910i −0.151115 + 0.261739i −0.931638 0.363389i \(-0.881620\pi\)
0.780523 + 0.625128i \(0.214953\pi\)
\(660\) 0 0
\(661\) −8.63548 + 14.9571i −0.335881 + 0.581763i −0.983654 0.180071i \(-0.942367\pi\)
0.647773 + 0.761834i \(0.275701\pi\)
\(662\) −9.44952 16.3671i −0.367266 0.636124i
\(663\) 0 0
\(664\) −25.2622 −0.980364
\(665\) 0.0938861 + 0.0178651i 0.00364075 + 0.000692781i
\(666\) 0 0
\(667\) −9.33912 16.1758i −0.361612 0.626331i
\(668\) 0.0240268 + 0.0416156i 0.000929624 + 0.00161016i
\(669\) 0 0
\(670\) 1.22531 + 2.12229i 0.0473377 + 0.0819914i
\(671\) −2.26664 −0.0875027
\(672\) 0 0
\(673\) 7.19912 + 12.4692i 0.277506 + 0.480654i 0.970764 0.240035i \(-0.0771589\pi\)
−0.693258 + 0.720689i \(0.743826\pi\)
\(674\) 35.8939 1.38258
\(675\) 0 0
\(676\) −5.99359 + 8.55643i −0.230523 + 0.329093i
\(677\) 0.606851 1.05110i 0.0233232 0.0403970i −0.854128 0.520062i \(-0.825909\pi\)
0.877451 + 0.479666i \(0.159242\pi\)
\(678\) 0 0
\(679\) −11.6471 + 13.5058i −0.446974 + 0.518304i
\(680\) 3.31719 5.74554i 0.127209 0.220332i
\(681\) 0 0
\(682\) 8.99621 0.344483
\(683\) 0.196457 0.00751721 0.00375861 0.999993i \(-0.498804\pi\)
0.00375861 + 0.999993i \(0.498804\pi\)
\(684\) 0 0
\(685\) 1.01411 1.75649i 0.0387472 0.0671121i
\(686\) 17.1189 + 10.8310i 0.653601 + 0.413528i
\(687\) 0 0
\(688\) −9.49594 + 16.4474i −0.362029 + 0.627053i
\(689\) −31.6770 20.1845i −1.20680 0.768969i
\(690\) 0 0
\(691\) −37.3938 −1.42253 −0.711264 0.702925i \(-0.751877\pi\)
−0.711264 + 0.702925i \(0.751877\pi\)
\(692\) 5.88431 + 10.1919i 0.223688 + 0.387439i
\(693\) 0 0
\(694\) −26.9026 −1.02121
\(695\) −3.22261 5.58172i −0.122241 0.211727i
\(696\) 0 0
\(697\) −36.0421 62.4267i −1.36519 2.36458i
\(698\) 6.25915 + 10.8412i 0.236912 + 0.410344i
\(699\) 0 0
\(700\) −3.41047 9.77910i −0.128904 0.369615i
\(701\) 1.21787 0.0459985 0.0229992 0.999735i \(-0.492678\pi\)
0.0229992 + 0.999735i \(0.492678\pi\)
\(702\) 0 0
\(703\) −0.265920 0.460587i −0.0100294 0.0173714i
\(704\) 5.65539 9.79542i 0.213145 0.369179i
\(705\) 0 0
\(706\) −0.475838 + 0.824175i −0.0179084 + 0.0310182i
\(707\) −24.4188 + 28.3157i −0.918364 + 1.06492i
\(708\) 0 0
\(709\) −12.0978 20.9541i −0.454344 0.786946i 0.544306 0.838886i \(-0.316793\pi\)
−0.998650 + 0.0519400i \(0.983460\pi\)
\(710\) 0.926771 + 1.60521i 0.0347811 + 0.0602426i
\(711\) 0 0
\(712\) 36.3888 1.36373
\(713\) −6.81250 11.7996i −0.255130 0.441898i
\(714\) 0 0
\(715\) 1.52164 + 0.969588i 0.0569062 + 0.0362605i
\(716\) −10.0017 + 17.3235i −0.373782 + 0.647409i
\(717\) 0 0
\(718\) −3.31445 + 5.74080i −0.123694 + 0.214245i
\(719\) 11.1931 + 19.3871i 0.417433 + 0.723015i 0.995680 0.0928464i \(-0.0295965\pi\)
−0.578248 + 0.815861i \(0.696263\pi\)
\(720\) 0 0
\(721\) −11.7549 + 13.6308i −0.437775 + 0.507637i
\(722\) 10.3856 17.9883i 0.386511 0.669456i
\(723\) 0 0
\(724\) −8.73643 −0.324687
\(725\) −19.6961 + 34.1147i −0.731495 + 1.26699i
\(726\) 0 0
\(727\) −13.7293 −0.509190 −0.254595 0.967048i \(-0.581942\pi\)
−0.254595 + 0.967048i \(0.581942\pi\)
\(728\) −28.0164 + 8.41654i −1.03836 + 0.311938i
\(729\) 0 0
\(730\) 1.28017 0.0473812
\(731\) 32.7637 56.7483i 1.21181 2.09891i
\(732\) 0 0
\(733\) −6.10146 + 10.5680i −0.225362 + 0.390339i −0.956428 0.291968i \(-0.905690\pi\)
0.731066 + 0.682307i \(0.239023\pi\)
\(734\) −11.3350 + 19.6328i −0.418382 + 0.724660i
\(735\) 0 0
\(736\) −9.75225 −0.359473
\(737\) −4.35171 7.53737i −0.160297 0.277643i
\(738\) 0 0
\(739\) 14.8036 25.6406i 0.544559 0.943204i −0.454076 0.890963i \(-0.650030\pi\)
0.998635 0.0522406i \(-0.0166363\pi\)
\(740\) 0.762078 1.31996i 0.0280145 0.0485226i
\(741\) 0 0
\(742\) −9.92765 28.4663i −0.364455 1.04503i
\(743\) −8.70519 15.0778i −0.319363 0.553152i 0.660993 0.750392i \(-0.270135\pi\)
−0.980355 + 0.197240i \(0.936802\pi\)
\(744\) 0 0
\(745\) −7.97000 −0.291998
\(746\) 13.6653 + 23.6690i 0.500322 + 0.866583i
\(747\) 0 0
\(748\) −3.37683 + 5.84884i −0.123469 + 0.213855i
\(749\) −47.0090 8.94512i −1.71767 0.326848i
\(750\) 0 0
\(751\) −29.9309 −1.09219 −0.546097 0.837722i \(-0.683887\pi\)
−0.546097 + 0.837722i \(0.683887\pi\)
\(752\) 8.16332 14.1393i 0.297686 0.515607i
\(753\) 0 0
\(754\) 26.8961 + 17.1382i 0.979500 + 0.624135i
\(755\) 4.99345 0.181730
\(756\) 0 0
\(757\) 13.7884 + 23.8822i 0.501147 + 0.868012i 0.999999 + 0.00132507i \(0.000421784\pi\)
−0.498852 + 0.866687i \(0.666245\pi\)
\(758\) −10.5808 18.3265i −0.384312 0.665648i
\(759\) 0 0
\(760\) −0.110772 −0.00401813
\(761\) −9.95601 17.2443i −0.360905 0.625106i 0.627205 0.778854i \(-0.284199\pi\)
−0.988110 + 0.153748i \(0.950866\pi\)
\(762\) 0 0
\(763\) −1.68679 4.83665i −0.0610657 0.175098i
\(764\) −2.43042 4.20961i −0.0879296 0.152298i
\(765\) 0 0
\(766\) −6.22109 10.7752i −0.224777 0.389325i
\(767\) −28.8938 + 15.0378i −1.04329 + 0.542984i
\(768\) 0 0
\(769\) −15.2251 26.3707i −0.549032 0.950950i −0.998341 0.0575744i \(-0.981663\pi\)
0.449310 0.893376i \(-0.351670\pi\)
\(770\) 0.476887 + 1.36741i 0.0171858 + 0.0492782i
\(771\) 0 0
\(772\) −1.84199 + 3.19042i −0.0662946 + 0.114826i
\(773\) −42.8249 −1.54030 −0.770152 0.637860i \(-0.779820\pi\)
−0.770152 + 0.637860i \(0.779820\pi\)
\(774\) 0 0
\(775\) −14.3675 + 24.8852i −0.516095 + 0.893903i
\(776\) 10.3355 17.9016i 0.371022 0.642628i
\(777\) 0 0
\(778\) 0.952015 + 1.64894i 0.0341314 + 0.0591173i
\(779\) −0.601782 + 1.04232i −0.0215611 + 0.0373449i
\(780\) 0 0
\(781\) −3.29145 5.70095i −0.117777 0.203996i
\(782\) −15.2283 −0.544564
\(783\) 0 0
\(784\) −11.3745 4.49144i −0.406233 0.160409i
\(785\) 4.39294 0.156791
\(786\) 0 0
\(787\) 9.49279 0.338382 0.169191 0.985583i \(-0.445885\pi\)
0.169191 + 0.985583i \(0.445885\pi\)
\(788\) −3.09485 5.36044i −0.110250 0.190958i
\(789\) 0 0
\(790\) −1.43448 2.48460i −0.0510367 0.0883981i
\(791\) 2.74087 3.17827i 0.0974542 0.113006i
\(792\) 0 0
\(793\) −4.94326 3.14983i −0.175540 0.111854i
\(794\) −3.98649 6.90481i −0.141475 0.245042i
\(795\) 0 0
\(796\) 3.51284 0.124509
\(797\) −17.4248 + 30.1807i −0.617219 + 1.06906i 0.372772 + 0.927923i \(0.378408\pi\)
−0.989991 + 0.141132i \(0.954926\pi\)
\(798\) 0 0
\(799\) −28.1657 + 48.7845i −0.996433 + 1.72587i
\(800\) 10.2837 + 17.8119i 0.363584 + 0.629745i
\(801\) 0 0
\(802\) −31.4530 −1.11064
\(803\) −4.54655 −0.160444
\(804\) 0 0
\(805\) 1.43240 1.66099i 0.0504853 0.0585421i
\(806\) 19.6196 + 12.5016i 0.691072 + 0.440350i
\(807\) 0 0
\(808\) 21.6689 37.5317i 0.762311 1.32036i
\(809\) −0.448965 + 0.777630i −0.0157848 + 0.0273400i −0.873810 0.486268i \(-0.838358\pi\)
0.858025 + 0.513608i \(0.171691\pi\)
\(810\) 0 0
\(811\) −33.9144 −1.19090 −0.595448 0.803394i \(-0.703026\pi\)
−0.595448 + 0.803394i \(0.703026\pi\)
\(812\) −5.66182 16.2346i −0.198691 0.569722i
\(813\) 0 0
\(814\) 4.02949 6.97928i 0.141234 0.244624i
\(815\) −5.58339 −0.195578
\(816\) 0 0
\(817\) −1.09409 −0.0382773
\(818\) −16.9232 −0.591705
\(819\) 0 0
\(820\) −3.44920 −0.120451
\(821\) −18.6071 −0.649392 −0.324696 0.945818i \(-0.605262\pi\)
−0.324696 + 0.945818i \(0.605262\pi\)
\(822\) 0 0
\(823\) 15.6340 0.544967 0.272483 0.962160i \(-0.412155\pi\)
0.272483 + 0.962160i \(0.412155\pi\)
\(824\) 10.4311 18.0672i 0.363386 0.629402i
\(825\) 0 0
\(826\) −25.6831 4.88711i −0.893629 0.170044i
\(827\) −15.1619 −0.527232 −0.263616 0.964628i \(-0.584915\pi\)
−0.263616 + 0.964628i \(0.584915\pi\)
\(828\) 0 0
\(829\) 1.81418 3.14226i 0.0630092 0.109135i −0.832800 0.553574i \(-0.813264\pi\)
0.895809 + 0.444439i \(0.146597\pi\)
\(830\) −1.61703 + 2.80077i −0.0561279 + 0.0972163i
\(831\) 0 0
\(832\) 25.9459 13.5036i 0.899512 0.468152i
\(833\) 39.2453 + 15.4967i 1.35977 + 0.536930i
\(834\) 0 0
\(835\) 0.0214624 0.000742736
\(836\) 0.112764 0.00390001
\(837\) 0 0
\(838\) 5.69541 + 9.86474i 0.196745 + 0.340772i
\(839\) 16.6905 28.9088i 0.576221 0.998044i −0.419687 0.907669i \(-0.637860\pi\)
0.995908 0.0903751i \(-0.0288066\pi\)
\(840\) 0 0
\(841\) −18.1981 + 31.5200i −0.627520 + 1.08690i
\(842\) 35.3590 1.21855
\(843\) 0 0
\(844\) −0.287229 0.497496i −0.00988684 0.0171245i
\(845\) 1.97113 + 4.22910i 0.0678088 + 0.145486i
\(846\) 0 0
\(847\) 7.89002 + 22.6236i 0.271104 + 0.777358i
\(848\) 9.09992 + 15.7615i 0.312493 + 0.541253i
\(849\) 0 0
\(850\) 16.0582 + 27.8136i 0.550791 + 0.953998i
\(851\) −12.2055 −0.418400
\(852\) 0 0
\(853\) 46.3694 1.58766 0.793829 0.608141i \(-0.208084\pi\)
0.793829 + 0.608141i \(0.208084\pi\)
\(854\) −1.54923 4.44222i −0.0530135 0.152010i
\(855\) 0 0
\(856\) 55.4638 1.89571
\(857\) 26.4952 + 45.8911i 0.905059 + 1.56761i 0.820837 + 0.571162i \(0.193507\pi\)
0.0842219 + 0.996447i \(0.473160\pi\)
\(858\) 0 0
\(859\) 12.5175 21.6809i 0.427090 0.739742i −0.569523 0.821975i \(-0.692872\pi\)
0.996613 + 0.0822337i \(0.0262054\pi\)
\(860\) −1.56773 2.71538i −0.0534591 0.0925938i
\(861\) 0 0
\(862\) −3.80465 + 6.58984i −0.129587 + 0.224451i
\(863\) 25.2070 43.6597i 0.858055 1.48619i −0.0157265 0.999876i \(-0.505006\pi\)
0.873782 0.486319i \(-0.161661\pi\)
\(864\) 0 0
\(865\) 5.25627 0.178719
\(866\) 2.92230 5.06158i 0.0993039 0.171999i
\(867\) 0 0
\(868\) −4.13006 11.8424i −0.140183 0.401959i
\(869\) 5.09460 + 8.82411i 0.172823 + 0.299337i
\(870\) 0 0
\(871\) 0.983782 22.4854i 0.0333342 0.761889i
\(872\) 2.96855 + 5.14168i 0.100528 + 0.174119i
\(873\) 0 0
\(874\) 0.127131 + 0.220198i 0.00430027 + 0.00744829i
\(875\) −9.20845 1.75223i −0.311303 0.0592363i
\(876\) 0 0
\(877\) −5.74794 9.95573i −0.194094 0.336181i 0.752509 0.658582i \(-0.228843\pi\)
−0.946603 + 0.322401i \(0.895510\pi\)
\(878\) −29.3310 −0.989873
\(879\) 0 0
\(880\) −0.437126 0.757124i −0.0147355 0.0255227i
\(881\) −14.6637 25.3983i −0.494033 0.855691i 0.505943 0.862567i \(-0.331145\pi\)
−0.999976 + 0.00687611i \(0.997811\pi\)
\(882\) 0 0
\(883\) 4.23323 0.142460 0.0712298 0.997460i \(-0.477308\pi\)
0.0712298 + 0.997460i \(0.477308\pi\)
\(884\) −15.4923 + 8.06298i −0.521062 + 0.271187i
\(885\) 0 0
\(886\) 1.64282 2.84544i 0.0551915 0.0955945i
\(887\) 32.2206 1.08186 0.540930 0.841068i \(-0.318072\pi\)
0.540930 + 0.841068i \(0.318072\pi\)
\(888\) 0 0
\(889\) −12.8089 36.7280i −0.429597 1.23182i
\(890\) 2.32924 4.03435i 0.0780762 0.135232i
\(891\) 0 0
\(892\) 9.79940 + 16.9731i 0.328108 + 0.568300i
\(893\) 0.940548 0.0314742
\(894\) 0 0
\(895\) 4.46711 + 7.73726i 0.149319 + 0.258628i
\(896\) 1.11447 + 0.212067i 0.0372319 + 0.00708467i
\(897\) 0 0
\(898\) −16.3463 + 28.3126i −0.545482 + 0.944803i
\(899\) −23.8519 + 41.3127i −0.795505 + 1.37786i
\(900\) 0 0
\(901\) −31.3973 54.3817i −1.04600 1.81172i
\(902\) −18.2376 −0.607247
\(903\) 0 0
\(904\) −2.43221 + 4.21272i −0.0808942 + 0.140113i
\(905\) −1.95100 + 3.37922i −0.0648533 + 0.112329i
\(906\) 0 0
\(907\) −9.27541 + 16.0655i −0.307985 + 0.533445i −0.977921 0.208973i \(-0.932988\pi\)
0.669937 + 0.742418i \(0.266321\pi\)
\(908\) −13.3079 −0.441638
\(909\) 0 0
\(910\) −0.860196 + 3.64487i −0.0285152 + 0.120826i
\(911\) −28.2762 −0.936834 −0.468417 0.883508i \(-0.655175\pi\)
−0.468417 + 0.883508i \(0.655175\pi\)
\(912\) 0 0
\(913\) 5.74291 9.94701i 0.190063 0.329198i
\(914\) 1.50675 0.0498388
\(915\) 0 0
\(916\) 1.93876 3.35804i 0.0640585 0.110953i
\(917\) 10.7150 12.4250i 0.353841 0.410308i
\(918\) 0 0
\(919\) −5.82981 10.0975i −0.192308 0.333087i 0.753707 0.657211i \(-0.228264\pi\)
−0.946015 + 0.324124i \(0.894930\pi\)
\(920\) −1.27109 + 2.20159i −0.0419066 + 0.0725844i
\(921\) 0 0
\(922\) −0.344411 + 0.596538i −0.0113426 + 0.0196459i
\(923\) 0.744092 17.0070i 0.0244921 0.559793i
\(924\) 0 0
\(925\) 12.8707 + 22.2926i 0.423185 + 0.732978i
\(926\) −2.62458 −0.0862490
\(927\) 0 0
\(928\) 17.0723 + 29.5700i 0.560425 + 0.970684i
\(929\) −15.5093 26.8629i −0.508843 0.881342i −0.999948 0.0102410i \(-0.996740\pi\)
0.491105 0.871101i \(-0.336593\pi\)
\(930\) 0 0
\(931\) −0.103555 0.696849i −0.00339386 0.0228383i
\(932\) −5.38804 + 9.33236i −0.176491 + 0.305692i
\(933\) 0 0
\(934\) 15.5743 26.9755i 0.509607 0.882665i
\(935\) 1.50821 + 2.61229i 0.0493237 + 0.0854311i
\(936\) 0 0
\(937\) −57.9467 −1.89304 −0.946518 0.322650i \(-0.895426\pi\)
−0.946518 + 0.322650i \(0.895426\pi\)
\(938\) 11.7976 13.6803i 0.385205 0.446679i
\(939\) 0 0
\(940\) 1.34772 + 2.33432i 0.0439578 + 0.0761371i
\(941\) 2.42774 + 4.20497i 0.0791421 + 0.137078i 0.902880 0.429893i \(-0.141449\pi\)
−0.823738 + 0.566971i \(0.808115\pi\)
\(942\) 0 0
\(943\) 13.8107 + 23.9208i 0.449738 + 0.778969i
\(944\) 15.7828 0.513685
\(945\) 0 0
\(946\) −8.28937 14.3576i −0.269511 0.466806i
\(947\) −35.9332 −1.16767 −0.583836 0.811872i \(-0.698449\pi\)
−0.583836 + 0.811872i \(0.698449\pi\)
\(948\) 0 0
\(949\) −9.91546 6.31811i −0.321869 0.205095i
\(950\) 0.268118 0.464394i 0.00869890 0.0150669i
\(951\) 0 0
\(952\) −48.0434 9.14195i −1.55710 0.296292i
\(953\) −5.16994 + 8.95460i −0.167471 + 0.290068i −0.937530 0.347905i \(-0.886893\pi\)
0.770059 + 0.637973i \(0.220227\pi\)
\(954\) 0 0
\(955\) −2.17102 −0.0702526
\(956\) −4.42437 −0.143094
\(957\) 0 0
\(958\) −0.849443 + 1.47128i −0.0274443 + 0.0475348i
\(959\) −14.6875 2.79482i −0.474285 0.0902494i
\(960\) 0 0
\(961\) −1.89897 + 3.28910i −0.0612569 + 0.106100i
\(962\) 18.4866 9.62136i 0.596031 0.310205i
\(963\) 0 0
\(964\) 16.4249 0.529009
\(965\) 0.822696 + 1.42495i 0.0264835 + 0.0458708i
\(966\) 0 0
\(967\) 5.03117 0.161791 0.0808957 0.996723i \(-0.474222\pi\)
0.0808957 + 0.996723i \(0.474222\pi\)
\(968\) −13.8855 24.0504i −0.446297 0.773010i
\(969\) 0 0
\(970\) −1.32314 2.29175i −0.0424835 0.0735836i
\(971\) −18.1391 31.4179i −0.582112 1.00825i −0.995229 0.0975697i \(-0.968893\pi\)
0.413116 0.910678i \(-0.364440\pi\)
\(972\) 0 0
\(973\) −31.0282 + 35.9798i −0.994719 + 1.15346i
\(974\) −43.6006 −1.39705
\(975\) 0 0
\(976\) 1.42006 + 2.45962i 0.0454551 + 0.0787305i
\(977\) 9.99415 17.3104i 0.319741 0.553808i −0.660693 0.750657i \(-0.729737\pi\)
0.980434 + 0.196848i \(0.0630707\pi\)
\(978\) 0 0
\(979\) −8.27233 + 14.3281i −0.264385 + 0.457928i
\(980\) 1.58110 1.25553i 0.0505065 0.0401064i
\(981\) 0 0
\(982\) 4.63185 + 8.02259i 0.147808 + 0.256011i
\(983\) 16.1375 + 27.9510i 0.514707 + 0.891499i 0.999854 + 0.0170667i \(0.00543275\pi\)
−0.485147 + 0.874433i \(0.661234\pi\)
\(984\) 0 0
\(985\) −2.76454 −0.0880854
\(986\) 26.6587 + 46.1742i 0.848985 + 1.47049i
\(987\) 0 0
\(988\) 0.245923 + 0.156702i 0.00782386 + 0.00498535i
\(989\) −12.5545 + 21.7450i −0.399209 + 0.691450i
\(990\) 0 0
\(991\) 17.6360 30.5465i 0.560226 0.970340i −0.437250 0.899340i \(-0.644048\pi\)
0.997476 0.0710004i \(-0.0226191\pi\)
\(992\) 12.4535 + 21.5701i 0.395399 + 0.684852i
\(993\) 0 0
\(994\) 8.92321 10.3472i 0.283027 0.328194i
\(995\) 0.784479 1.35876i 0.0248696 0.0430755i
\(996\) 0 0
\(997\) 35.1713 1.11389 0.556943 0.830551i \(-0.311974\pi\)
0.556943 + 0.830551i \(0.311974\pi\)
\(998\) −2.62076 + 4.53929i −0.0829587 + 0.143689i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.g.289.12 yes 36
3.2 odd 2 inner 819.2.s.g.289.7 yes 36
7.4 even 3 819.2.n.g.172.7 yes 36
13.9 even 3 819.2.n.g.100.7 36
21.11 odd 6 819.2.n.g.172.12 yes 36
39.35 odd 6 819.2.n.g.100.12 yes 36
91.74 even 3 inner 819.2.s.g.802.12 yes 36
273.74 odd 6 inner 819.2.s.g.802.7 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
819.2.n.g.100.7 36 13.9 even 3
819.2.n.g.100.12 yes 36 39.35 odd 6
819.2.n.g.172.7 yes 36 7.4 even 3
819.2.n.g.172.12 yes 36 21.11 odd 6
819.2.s.g.289.7 yes 36 3.2 odd 2 inner
819.2.s.g.289.12 yes 36 1.1 even 1 trivial
819.2.s.g.802.7 yes 36 273.74 odd 6 inner
819.2.s.g.802.12 yes 36 91.74 even 3 inner