Properties

Label 819.2.s.f.289.7
Level $819$
Weight $2$
Character 819.289
Analytic conductor $6.540$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(289,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,32,0,0,3,12,0,-4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} - 4 x^{17} + 211 x^{16} - 59 x^{15} + 1458 x^{14} - 526 x^{13} + 7324 x^{12} + \cdots + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.7
Root \(-0.707433 - 1.22531i\) of defining polynomial
Character \(\chi\) \(=\) 819.289
Dual form 819.2.s.f.802.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41487 q^{2} +0.00184802 q^{4} +(1.42962 - 2.47618i) q^{5} +(2.56093 + 0.664549i) q^{7} -2.82712 q^{8} +(2.02273 - 3.50347i) q^{10} +(1.15352 - 1.99796i) q^{11} +(-3.12586 - 1.79694i) q^{13} +(3.62338 + 0.940248i) q^{14} -4.00369 q^{16} +7.45162 q^{17} +(-0.282836 - 0.489887i) q^{19} +(0.00264197 - 0.00457603i) q^{20} +(1.63208 - 2.82685i) q^{22} +0.797888 q^{23} +(-1.58765 - 2.74989i) q^{25} +(-4.42268 - 2.54243i) q^{26} +(0.00473265 + 0.00122810i) q^{28} +(-3.00672 - 5.20778i) q^{29} +(-3.80370 - 6.58820i) q^{31} -0.0104540 q^{32} +10.5431 q^{34} +(5.30672 - 5.39128i) q^{35} +2.30147 q^{37} +(-0.400176 - 0.693125i) q^{38} +(-4.04172 + 7.00046i) q^{40} +(5.68100 + 9.83978i) q^{41} +(-3.76945 + 6.52888i) q^{43} +(0.00213173 - 0.00369227i) q^{44} +1.12890 q^{46} +(-0.134822 + 0.233518i) q^{47} +(6.11675 + 3.40373i) q^{49} +(-2.24632 - 3.89073i) q^{50} +(-0.00577664 - 0.00332077i) q^{52} +(-2.35993 - 4.08751i) q^{53} +(-3.29821 - 5.71267i) q^{55} +(-7.24006 - 1.87876i) q^{56} +(-4.25410 - 7.36832i) q^{58} +5.82180 q^{59} +(1.46702 + 2.54094i) q^{61} +(-5.38172 - 9.32142i) q^{62} +7.99259 q^{64} +(-8.91836 + 5.17125i) q^{65} +(-1.58734 + 2.74935i) q^{67} +0.0137707 q^{68} +(7.50830 - 7.62794i) q^{70} +(3.01045 - 5.21425i) q^{71} +(5.31799 + 9.21103i) q^{73} +3.25627 q^{74} +(-0.000522686 - 0.000905319i) q^{76} +(4.28184 - 4.35007i) q^{77} +(-2.01404 + 3.48841i) q^{79} +(-5.72378 + 9.91387i) q^{80} +(8.03786 + 13.9220i) q^{82} -16.2573 q^{83} +(10.6530 - 18.4516i) q^{85} +(-5.33327 + 9.23749i) q^{86} +(-3.26115 + 5.64848i) q^{88} +1.41839 q^{89} +(-6.81097 - 6.67913i) q^{91} +0.00147451 q^{92} +(-0.190755 + 0.330397i) q^{94} -1.61740 q^{95} +(-5.23049 + 9.05948i) q^{97} +(8.65439 + 4.81582i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 32 q^{4} + 3 q^{7} + 12 q^{8} - 4 q^{10} + 8 q^{11} - 5 q^{13} + 9 q^{14} + 40 q^{16} + 7 q^{19} - 12 q^{20} - 9 q^{22} - 28 q^{23} - 32 q^{25} - 13 q^{26} - 23 q^{28} + 9 q^{29} - 9 q^{31} + 34 q^{32}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41487 1.00046 0.500231 0.865892i \(-0.333248\pi\)
0.500231 + 0.865892i \(0.333248\pi\)
\(3\) 0 0
\(4\) 0.00184802 0.000924008
\(5\) 1.42962 2.47618i 0.639347 1.10738i −0.346229 0.938150i \(-0.612538\pi\)
0.985576 0.169232i \(-0.0541288\pi\)
\(6\) 0 0
\(7\) 2.56093 + 0.664549i 0.967941 + 0.251176i
\(8\) −2.82712 −0.999537
\(9\) 0 0
\(10\) 2.02273 3.50347i 0.639643 1.10789i
\(11\) 1.15352 1.99796i 0.347801 0.602408i −0.638058 0.769988i \(-0.720262\pi\)
0.985858 + 0.167580i \(0.0535953\pi\)
\(12\) 0 0
\(13\) −3.12586 1.79694i −0.866958 0.498381i
\(14\) 3.62338 + 0.940248i 0.968389 + 0.251292i
\(15\) 0 0
\(16\) −4.00369 −1.00092
\(17\) 7.45162 1.80728 0.903642 0.428289i \(-0.140883\pi\)
0.903642 + 0.428289i \(0.140883\pi\)
\(18\) 0 0
\(19\) −0.282836 0.489887i −0.0648871 0.112388i 0.831757 0.555140i \(-0.187335\pi\)
−0.896644 + 0.442752i \(0.854002\pi\)
\(20\) 0.00264197 0.00457603i 0.000590762 0.00102323i
\(21\) 0 0
\(22\) 1.63208 2.82685i 0.347961 0.602686i
\(23\) 0.797888 0.166371 0.0831855 0.996534i \(-0.473491\pi\)
0.0831855 + 0.996534i \(0.473491\pi\)
\(24\) 0 0
\(25\) −1.58765 2.74989i −0.317530 0.549979i
\(26\) −4.42268 2.54243i −0.867358 0.498611i
\(27\) 0 0
\(28\) 0.00473265 + 0.00122810i 0.000894386 + 0.000232089i
\(29\) −3.00672 5.20778i −0.558333 0.967061i −0.997636 0.0687221i \(-0.978108\pi\)
0.439303 0.898339i \(-0.355225\pi\)
\(30\) 0 0
\(31\) −3.80370 6.58820i −0.683164 1.18328i −0.974010 0.226505i \(-0.927270\pi\)
0.290846 0.956770i \(-0.406063\pi\)
\(32\) −0.0104540 −0.00184802
\(33\) 0 0
\(34\) 10.5431 1.80812
\(35\) 5.30672 5.39128i 0.896999 0.911293i
\(36\) 0 0
\(37\) 2.30147 0.378359 0.189179 0.981943i \(-0.439417\pi\)
0.189179 + 0.981943i \(0.439417\pi\)
\(38\) −0.400176 0.693125i −0.0649171 0.112440i
\(39\) 0 0
\(40\) −4.04172 + 7.00046i −0.639052 + 1.10687i
\(41\) 5.68100 + 9.83978i 0.887223 + 1.53672i 0.843144 + 0.537688i \(0.180702\pi\)
0.0440794 + 0.999028i \(0.485965\pi\)
\(42\) 0 0
\(43\) −3.76945 + 6.52888i −0.574835 + 0.995644i 0.421224 + 0.906957i \(0.361601\pi\)
−0.996059 + 0.0886876i \(0.971733\pi\)
\(44\) 0.00213173 0.00369227i 0.000321371 0.000556630i
\(45\) 0 0
\(46\) 1.12890 0.166448
\(47\) −0.134822 + 0.233518i −0.0196658 + 0.0340621i −0.875691 0.482872i \(-0.839594\pi\)
0.856025 + 0.516934i \(0.172927\pi\)
\(48\) 0 0
\(49\) 6.11675 + 3.40373i 0.873821 + 0.486247i
\(50\) −2.24632 3.89073i −0.317677 0.550233i
\(51\) 0 0
\(52\) −0.00577664 0.00332077i −0.000801076 0.000460508i
\(53\) −2.35993 4.08751i −0.324161 0.561463i 0.657181 0.753733i \(-0.271749\pi\)
−0.981342 + 0.192269i \(0.938415\pi\)
\(54\) 0 0
\(55\) −3.29821 5.71267i −0.444731 0.770296i
\(56\) −7.24006 1.87876i −0.967494 0.251060i
\(57\) 0 0
\(58\) −4.25410 7.36832i −0.558591 0.967508i
\(59\) 5.82180 0.757934 0.378967 0.925410i \(-0.376279\pi\)
0.378967 + 0.925410i \(0.376279\pi\)
\(60\) 0 0
\(61\) 1.46702 + 2.54094i 0.187832 + 0.325335i 0.944527 0.328433i \(-0.106521\pi\)
−0.756695 + 0.653768i \(0.773187\pi\)
\(62\) −5.38172 9.32142i −0.683480 1.18382i
\(63\) 0 0
\(64\) 7.99259 0.999074
\(65\) −8.91836 + 5.17125i −1.10619 + 0.641415i
\(66\) 0 0
\(67\) −1.58734 + 2.74935i −0.193924 + 0.335887i −0.946547 0.322565i \(-0.895455\pi\)
0.752623 + 0.658452i \(0.228788\pi\)
\(68\) 0.0137707 0.00166995
\(69\) 0 0
\(70\) 7.50830 7.62794i 0.897413 0.911714i
\(71\) 3.01045 5.21425i 0.357275 0.618818i −0.630230 0.776409i \(-0.717039\pi\)
0.987505 + 0.157591i \(0.0503727\pi\)
\(72\) 0 0
\(73\) 5.31799 + 9.21103i 0.622424 + 1.07807i 0.989033 + 0.147694i \(0.0471852\pi\)
−0.366609 + 0.930375i \(0.619481\pi\)
\(74\) 3.25627 0.378533
\(75\) 0 0
\(76\) −0.000522686 0 0.000905319i −5.99562e−5 0 0.000103847i
\(77\) 4.28184 4.35007i 0.487961 0.495737i
\(78\) 0 0
\(79\) −2.01404 + 3.48841i −0.226597 + 0.392477i −0.956797 0.290756i \(-0.906093\pi\)
0.730201 + 0.683233i \(0.239427\pi\)
\(80\) −5.72378 + 9.91387i −0.639938 + 1.10840i
\(81\) 0 0
\(82\) 8.03786 + 13.9220i 0.887633 + 1.53743i
\(83\) −16.2573 −1.78447 −0.892237 0.451567i \(-0.850865\pi\)
−0.892237 + 0.451567i \(0.850865\pi\)
\(84\) 0 0
\(85\) 10.6530 18.4516i 1.15548 2.00135i
\(86\) −5.33327 + 9.23749i −0.575101 + 0.996104i
\(87\) 0 0
\(88\) −3.26115 + 5.64848i −0.347640 + 0.602130i
\(89\) 1.41839 0.150349 0.0751745 0.997170i \(-0.476049\pi\)
0.0751745 + 0.997170i \(0.476049\pi\)
\(90\) 0 0
\(91\) −6.81097 6.67913i −0.713983 0.700163i
\(92\) 0.00147451 0.000153728
\(93\) 0 0
\(94\) −0.190755 + 0.330397i −0.0196748 + 0.0340778i
\(95\) −1.61740 −0.165942
\(96\) 0 0
\(97\) −5.23049 + 9.05948i −0.531076 + 0.919851i 0.468266 + 0.883588i \(0.344879\pi\)
−0.999342 + 0.0362635i \(0.988454\pi\)
\(98\) 8.65439 + 4.81582i 0.874225 + 0.486472i
\(99\) 0 0
\(100\) −0.00293401 0.00508185i −0.000293401 0.000508185i
\(101\) −4.73742 + 8.20545i −0.471391 + 0.816473i −0.999464 0.0327260i \(-0.989581\pi\)
0.528074 + 0.849199i \(0.322914\pi\)
\(102\) 0 0
\(103\) −10.1433 + 17.5686i −0.999444 + 1.73109i −0.470857 + 0.882210i \(0.656055\pi\)
−0.528588 + 0.848879i \(0.677278\pi\)
\(104\) 8.83718 + 5.08016i 0.866557 + 0.498151i
\(105\) 0 0
\(106\) −3.33898 5.78329i −0.324311 0.561723i
\(107\) 13.3661 1.29215 0.646075 0.763274i \(-0.276409\pi\)
0.646075 + 0.763274i \(0.276409\pi\)
\(108\) 0 0
\(109\) −0.471097 0.815964i −0.0451229 0.0781551i 0.842582 0.538568i \(-0.181035\pi\)
−0.887705 + 0.460413i \(0.847701\pi\)
\(110\) −4.66653 8.08267i −0.444936 0.770652i
\(111\) 0 0
\(112\) −10.2532 2.66065i −0.968835 0.251408i
\(113\) 1.28957 2.23360i 0.121313 0.210120i −0.798973 0.601367i \(-0.794623\pi\)
0.920286 + 0.391247i \(0.127956\pi\)
\(114\) 0 0
\(115\) 1.14068 1.97572i 0.106369 0.184236i
\(116\) −0.00555646 0.00962407i −0.000515904 0.000893572i
\(117\) 0 0
\(118\) 8.23707 0.758284
\(119\) 19.0831 + 4.95197i 1.74934 + 0.453946i
\(120\) 0 0
\(121\) 2.83876 + 4.91689i 0.258070 + 0.446990i
\(122\) 2.07563 + 3.59510i 0.187919 + 0.325485i
\(123\) 0 0
\(124\) −0.00702930 0.0121751i −0.000631249 0.00109336i
\(125\) 5.21726 0.466646
\(126\) 0 0
\(127\) −2.06314 3.57347i −0.183074 0.317094i 0.759852 0.650097i \(-0.225272\pi\)
−0.942926 + 0.333003i \(0.891938\pi\)
\(128\) 11.3294 1.00138
\(129\) 0 0
\(130\) −12.6183 + 7.31664i −1.10670 + 0.641711i
\(131\) −3.77229 + 6.53379i −0.329586 + 0.570860i −0.982430 0.186633i \(-0.940243\pi\)
0.652844 + 0.757493i \(0.273576\pi\)
\(132\) 0 0
\(133\) −0.398771 1.44253i −0.0345778 0.125083i
\(134\) −2.24588 + 3.88997i −0.194014 + 0.336042i
\(135\) 0 0
\(136\) −21.0666 −1.80645
\(137\) −16.6998 −1.42676 −0.713381 0.700776i \(-0.752837\pi\)
−0.713381 + 0.700776i \(0.752837\pi\)
\(138\) 0 0
\(139\) −5.17295 + 8.95981i −0.438764 + 0.759961i −0.997594 0.0693207i \(-0.977917\pi\)
0.558831 + 0.829282i \(0.311250\pi\)
\(140\) 0.00980690 0.00996317i 0.000828834 0.000842042i
\(141\) 0 0
\(142\) 4.25939 7.37747i 0.357440 0.619104i
\(143\) −7.19597 + 4.17254i −0.601757 + 0.348925i
\(144\) 0 0
\(145\) −17.1939 −1.42788
\(146\) 7.52425 + 13.0324i 0.622711 + 1.07857i
\(147\) 0 0
\(148\) 0.00425315 0.000349606
\(149\) −6.12229 10.6041i −0.501558 0.868724i −0.999998 0.00179987i \(-0.999427\pi\)
0.498440 0.866924i \(-0.333906\pi\)
\(150\) 0 0
\(151\) −9.04334 15.6635i −0.735936 1.27468i −0.954311 0.298814i \(-0.903409\pi\)
0.218375 0.975865i \(-0.429924\pi\)
\(152\) 0.799612 + 1.38497i 0.0648571 + 0.112336i
\(153\) 0 0
\(154\) 6.05823 6.15477i 0.488186 0.495966i
\(155\) −21.7514 −1.74712
\(156\) 0 0
\(157\) 10.9151 + 18.9055i 0.871120 + 1.50882i 0.860839 + 0.508877i \(0.169939\pi\)
0.0102810 + 0.999947i \(0.496727\pi\)
\(158\) −2.84959 + 4.93564i −0.226701 + 0.392658i
\(159\) 0 0
\(160\) −0.0149452 + 0.0258859i −0.00118152 + 0.00204646i
\(161\) 2.04334 + 0.530235i 0.161037 + 0.0417884i
\(162\) 0 0
\(163\) 5.68715 + 9.85044i 0.445452 + 0.771546i 0.998084 0.0618799i \(-0.0197096\pi\)
−0.552631 + 0.833426i \(0.686376\pi\)
\(164\) 0.0104986 + 0.0181841i 0.000819802 + 0.00141994i
\(165\) 0 0
\(166\) −23.0020 −1.78530
\(167\) −0.262814 0.455207i −0.0203372 0.0352250i 0.855678 0.517509i \(-0.173141\pi\)
−0.876015 + 0.482284i \(0.839807\pi\)
\(168\) 0 0
\(169\) 6.54202 + 11.2340i 0.503232 + 0.864151i
\(170\) 15.0726 26.1065i 1.15602 2.00228i
\(171\) 0 0
\(172\) −0.00696600 + 0.0120655i −0.000531153 + 0.000919984i
\(173\) −4.57259 7.91995i −0.347647 0.602143i 0.638184 0.769884i \(-0.279686\pi\)
−0.985831 + 0.167741i \(0.946353\pi\)
\(174\) 0 0
\(175\) −2.23843 8.09736i −0.169209 0.612103i
\(176\) −4.61836 + 7.99923i −0.348122 + 0.602964i
\(177\) 0 0
\(178\) 2.00683 0.150418
\(179\) −0.861430 + 1.49204i −0.0643863 + 0.111520i −0.896422 0.443202i \(-0.853842\pi\)
0.832035 + 0.554723i \(0.187176\pi\)
\(180\) 0 0
\(181\) −3.97723 −0.295625 −0.147813 0.989015i \(-0.547223\pi\)
−0.147813 + 0.989015i \(0.547223\pi\)
\(182\) −9.63661 9.45007i −0.714313 0.700486i
\(183\) 0 0
\(184\) −2.25572 −0.166294
\(185\) 3.29023 5.69885i 0.241903 0.418988i
\(186\) 0 0
\(187\) 8.59562 14.8881i 0.628574 1.08872i
\(188\) −0.000249153 0 0.000431545i −1.81713e−5 0 3.14737e-5i
\(189\) 0 0
\(190\) −2.28840 −0.166018
\(191\) 12.5767 + 21.7835i 0.910019 + 1.57620i 0.814034 + 0.580817i \(0.197267\pi\)
0.0959855 + 0.995383i \(0.469400\pi\)
\(192\) 0 0
\(193\) 9.07766 15.7230i 0.653425 1.13176i −0.328862 0.944378i \(-0.606665\pi\)
0.982286 0.187386i \(-0.0600017\pi\)
\(194\) −7.40045 + 12.8180i −0.531322 + 0.920276i
\(195\) 0 0
\(196\) 0.0113039 + 0.00629015i 0.000807418 + 0.000449296i
\(197\) −0.782504 1.35534i −0.0557511 0.0965638i 0.836803 0.547504i \(-0.184422\pi\)
−0.892554 + 0.450940i \(0.851089\pi\)
\(198\) 0 0
\(199\) −15.1161 −1.07155 −0.535776 0.844360i \(-0.679981\pi\)
−0.535776 + 0.844360i \(0.679981\pi\)
\(200\) 4.48848 + 7.77427i 0.317383 + 0.549724i
\(201\) 0 0
\(202\) −6.70281 + 11.6096i −0.471608 + 0.816850i
\(203\) −4.23917 15.3349i −0.297531 1.07630i
\(204\) 0 0
\(205\) 32.4868 2.26898
\(206\) −14.3514 + 24.8573i −0.999906 + 1.73189i
\(207\) 0 0
\(208\) 12.5150 + 7.19439i 0.867758 + 0.498841i
\(209\) −1.30503 −0.0902711
\(210\) 0 0
\(211\) −8.28852 14.3561i −0.570606 0.988318i −0.996504 0.0835467i \(-0.973375\pi\)
0.425898 0.904771i \(-0.359958\pi\)
\(212\) −0.00436118 0.00755379i −0.000299527 0.000518797i
\(213\) 0 0
\(214\) 18.9112 1.29275
\(215\) 10.7778 + 18.6677i 0.735039 + 1.27313i
\(216\) 0 0
\(217\) −5.36283 19.3997i −0.364053 1.31694i
\(218\) −0.666539 1.15448i −0.0451437 0.0781912i
\(219\) 0 0
\(220\) −0.00609515 0.0105571i −0.000410935 0.000711760i
\(221\) −23.2927 13.3901i −1.56684 0.900716i
\(222\) 0 0
\(223\) 3.10234 + 5.37341i 0.207748 + 0.359830i 0.951005 0.309176i \(-0.100053\pi\)
−0.743257 + 0.669006i \(0.766720\pi\)
\(224\) −0.0267719 0.00694716i −0.00178877 0.000464177i
\(225\) 0 0
\(226\) 1.82457 3.16025i 0.121369 0.210217i
\(227\) 1.54064 0.102256 0.0511278 0.998692i \(-0.483718\pi\)
0.0511278 + 0.998692i \(0.483718\pi\)
\(228\) 0 0
\(229\) 10.6720 18.4845i 0.705227 1.22149i −0.261383 0.965235i \(-0.584179\pi\)
0.966610 0.256253i \(-0.0824880\pi\)
\(230\) 1.61391 2.79537i 0.106418 0.184321i
\(231\) 0 0
\(232\) 8.50034 + 14.7230i 0.558075 + 0.966614i
\(233\) 4.31457 7.47305i 0.282657 0.489576i −0.689381 0.724399i \(-0.742118\pi\)
0.972038 + 0.234823i \(0.0754509\pi\)
\(234\) 0 0
\(235\) 0.385489 + 0.667686i 0.0251465 + 0.0435550i
\(236\) 0.0107588 0.000700337
\(237\) 0 0
\(238\) 27.0000 + 7.00637i 1.75015 + 0.454156i
\(239\) −20.3222 −1.31454 −0.657268 0.753657i \(-0.728288\pi\)
−0.657268 + 0.753657i \(0.728288\pi\)
\(240\) 0 0
\(241\) 26.1153 1.68224 0.841119 0.540851i \(-0.181898\pi\)
0.841119 + 0.540851i \(0.181898\pi\)
\(242\) 4.01647 + 6.95674i 0.258189 + 0.447196i
\(243\) 0 0
\(244\) 0.00271107 + 0.00469571i 0.000173558 + 0.000300612i
\(245\) 17.1729 10.2801i 1.09714 0.656773i
\(246\) 0 0
\(247\) 0.00381039 + 2.03956i 0.000242449 + 0.129774i
\(248\) 10.7535 + 18.6256i 0.682848 + 1.18273i
\(249\) 0 0
\(250\) 7.38173 0.466862
\(251\) 11.2757 19.5301i 0.711718 1.23273i −0.252494 0.967599i \(-0.581251\pi\)
0.964212 0.265133i \(-0.0854160\pi\)
\(252\) 0 0
\(253\) 0.920383 1.59415i 0.0578640 0.100223i
\(254\) −2.91907 5.05598i −0.183159 0.317240i
\(255\) 0 0
\(256\) 0.0443524 0.00277202
\(257\) 1.07243 0.0668965 0.0334483 0.999440i \(-0.489351\pi\)
0.0334483 + 0.999440i \(0.489351\pi\)
\(258\) 0 0
\(259\) 5.89390 + 1.52944i 0.366229 + 0.0950345i
\(260\) −0.0164813 + 0.00955656i −0.00102212 + 0.000592673i
\(261\) 0 0
\(262\) −5.33728 + 9.24445i −0.329738 + 0.571124i
\(263\) 7.73455 13.3966i 0.476933 0.826072i −0.522718 0.852506i \(-0.675082\pi\)
0.999651 + 0.0264339i \(0.00841516\pi\)
\(264\) 0 0
\(265\) −13.4952 −0.829006
\(266\) −0.564208 2.04098i −0.0345938 0.125141i
\(267\) 0 0
\(268\) −0.00293343 + 0.00508085i −0.000179188 + 0.000310362i
\(269\) −2.23782 −0.136442 −0.0682212 0.997670i \(-0.521732\pi\)
−0.0682212 + 0.997670i \(0.521732\pi\)
\(270\) 0 0
\(271\) 6.14439 0.373245 0.186623 0.982432i \(-0.440246\pi\)
0.186623 + 0.982432i \(0.440246\pi\)
\(272\) −29.8340 −1.80895
\(273\) 0 0
\(274\) −23.6280 −1.42742
\(275\) −7.32558 −0.441749
\(276\) 0 0
\(277\) −3.34827 −0.201178 −0.100589 0.994928i \(-0.532073\pi\)
−0.100589 + 0.994928i \(0.532073\pi\)
\(278\) −7.31903 + 12.6769i −0.438966 + 0.760312i
\(279\) 0 0
\(280\) −15.0027 + 15.2418i −0.896584 + 0.910871i
\(281\) 14.2117 0.847800 0.423900 0.905709i \(-0.360661\pi\)
0.423900 + 0.905709i \(0.360661\pi\)
\(282\) 0 0
\(283\) −7.31417 + 12.6685i −0.434782 + 0.753065i −0.997278 0.0737351i \(-0.976508\pi\)
0.562495 + 0.826800i \(0.309841\pi\)
\(284\) 0.00556336 0.00963602i 0.000330125 0.000571793i
\(285\) 0 0
\(286\) −10.1813 + 5.90359i −0.602035 + 0.349087i
\(287\) 8.00964 + 28.9743i 0.472794 + 1.71030i
\(288\) 0 0
\(289\) 38.5267 2.26627
\(290\) −24.3271 −1.42853
\(291\) 0 0
\(292\) 0.00982773 + 0.0170221i 0.000575125 + 0.000996145i
\(293\) 10.7723 18.6582i 0.629324 1.09002i −0.358363 0.933582i \(-0.616665\pi\)
0.987688 0.156439i \(-0.0500016\pi\)
\(294\) 0 0
\(295\) 8.32299 14.4158i 0.484583 0.839323i
\(296\) −6.50652 −0.378184
\(297\) 0 0
\(298\) −8.66223 15.0034i −0.501790 0.869125i
\(299\) −2.49409 1.43376i −0.144237 0.0829162i
\(300\) 0 0
\(301\) −13.9921 + 14.2150i −0.806489 + 0.819341i
\(302\) −12.7951 22.1618i −0.736276 1.27527i
\(303\) 0 0
\(304\) 1.13239 + 1.96136i 0.0649470 + 0.112492i
\(305\) 8.38912 0.480360
\(306\) 0 0
\(307\) 18.6457 1.06416 0.532082 0.846693i \(-0.321410\pi\)
0.532082 + 0.846693i \(0.321410\pi\)
\(308\) 0.00791291 0.00803901i 0.000450880 0.000458065i
\(309\) 0 0
\(310\) −30.7754 −1.74792
\(311\) 0.578424 + 1.00186i 0.0327994 + 0.0568103i 0.881959 0.471326i \(-0.156224\pi\)
−0.849160 + 0.528136i \(0.822891\pi\)
\(312\) 0 0
\(313\) −6.86004 + 11.8819i −0.387752 + 0.671607i −0.992147 0.125078i \(-0.960082\pi\)
0.604394 + 0.796685i \(0.293415\pi\)
\(314\) 15.4434 + 26.7488i 0.871523 + 1.50952i
\(315\) 0 0
\(316\) −0.00372197 + 0.00644664i −0.000209377 + 0.000362652i
\(317\) 2.13847 3.70393i 0.120108 0.208034i −0.799702 0.600397i \(-0.795009\pi\)
0.919810 + 0.392364i \(0.128342\pi\)
\(318\) 0 0
\(319\) −13.8733 −0.776754
\(320\) 11.4264 19.7911i 0.638756 1.10636i
\(321\) 0 0
\(322\) 2.89105 + 0.750212i 0.161112 + 0.0418077i
\(323\) −2.10759 3.65045i −0.117269 0.203117i
\(324\) 0 0
\(325\) 0.0213889 + 11.4487i 0.00118644 + 0.635060i
\(326\) 8.04657 + 13.9371i 0.445658 + 0.771902i
\(327\) 0 0
\(328\) −16.0609 27.8182i −0.886813 1.53601i
\(329\) −0.500453 + 0.508428i −0.0275909 + 0.0280306i
\(330\) 0 0
\(331\) −5.83057 10.0988i −0.320477 0.555083i 0.660109 0.751170i \(-0.270510\pi\)
−0.980587 + 0.196087i \(0.937177\pi\)
\(332\) −0.0300438 −0.00164887
\(333\) 0 0
\(334\) −0.371847 0.644057i −0.0203465 0.0352412i
\(335\) 4.53860 + 7.86109i 0.247970 + 0.429497i
\(336\) 0 0
\(337\) −16.2903 −0.887387 −0.443693 0.896179i \(-0.646332\pi\)
−0.443693 + 0.896179i \(0.646332\pi\)
\(338\) 9.25609 + 15.8946i 0.503465 + 0.864550i
\(339\) 0 0
\(340\) 0.0196870 0.0340988i 0.00106768 0.00184927i
\(341\) −17.5506 −0.950420
\(342\) 0 0
\(343\) 13.4026 + 12.7816i 0.723674 + 0.690142i
\(344\) 10.6567 18.4579i 0.574570 0.995184i
\(345\) 0 0
\(346\) −6.46960 11.2057i −0.347808 0.602421i
\(347\) −25.7112 −1.38025 −0.690126 0.723689i \(-0.742445\pi\)
−0.690126 + 0.723689i \(0.742445\pi\)
\(348\) 0 0
\(349\) −0.908371 1.57334i −0.0486240 0.0842192i 0.840689 0.541518i \(-0.182150\pi\)
−0.889313 + 0.457299i \(0.848817\pi\)
\(350\) −3.16708 11.4567i −0.169288 0.612386i
\(351\) 0 0
\(352\) −0.0120589 + 0.0208866i −0.000642741 + 0.00111326i
\(353\) −0.0312072 + 0.0540524i −0.00166099 + 0.00287692i −0.866855 0.498561i \(-0.833862\pi\)
0.865194 + 0.501438i \(0.167195\pi\)
\(354\) 0 0
\(355\) −8.60762 14.9088i −0.456845 0.791279i
\(356\) 0.00262121 0.000138924
\(357\) 0 0
\(358\) −1.21881 + 2.11104i −0.0644160 + 0.111572i
\(359\) 6.71414 11.6292i 0.354359 0.613767i −0.632649 0.774438i \(-0.718033\pi\)
0.987008 + 0.160671i \(0.0513659\pi\)
\(360\) 0 0
\(361\) 9.34001 16.1774i 0.491579 0.851440i
\(362\) −5.62725 −0.295762
\(363\) 0 0
\(364\) −0.0125868 0.0123431i −0.000659726 0.000646956i
\(365\) 30.4109 1.59178
\(366\) 0 0
\(367\) −10.6716 + 18.4837i −0.557052 + 0.964843i 0.440688 + 0.897660i \(0.354734\pi\)
−0.997741 + 0.0671828i \(0.978599\pi\)
\(368\) −3.19450 −0.166525
\(369\) 0 0
\(370\) 4.65524 8.06311i 0.242014 0.419181i
\(371\) −3.32726 12.0361i −0.172743 0.624885i
\(372\) 0 0
\(373\) −14.3838 24.9135i −0.744767 1.28997i −0.950304 0.311325i \(-0.899227\pi\)
0.205537 0.978649i \(-0.434106\pi\)
\(374\) 12.1617 21.0646i 0.628865 1.08923i
\(375\) 0 0
\(376\) 0.381157 0.660183i 0.0196567 0.0340463i
\(377\) 0.0405066 + 21.6817i 0.00208620 + 1.11666i
\(378\) 0 0
\(379\) 9.71923 + 16.8342i 0.499244 + 0.864715i 1.00000 0.000873266i \(-0.000277969\pi\)
−0.500756 + 0.865588i \(0.666945\pi\)
\(380\) −0.00298898 −0.000153331
\(381\) 0 0
\(382\) 17.7944 + 30.8208i 0.910440 + 1.57693i
\(383\) 15.1306 + 26.2069i 0.773137 + 1.33911i 0.935836 + 0.352437i \(0.114647\pi\)
−0.162699 + 0.986676i \(0.552020\pi\)
\(384\) 0 0
\(385\) −4.65015 16.8216i −0.236994 0.857307i
\(386\) 12.8437 22.2459i 0.653726 1.13229i
\(387\) 0 0
\(388\) −0.00966604 + 0.0167421i −0.000490719 + 0.000849950i
\(389\) −0.308324 0.534034i −0.0156327 0.0270766i 0.858103 0.513477i \(-0.171643\pi\)
−0.873736 + 0.486401i \(0.838310\pi\)
\(390\) 0 0
\(391\) 5.94556 0.300680
\(392\) −17.2928 9.62275i −0.873417 0.486022i
\(393\) 0 0
\(394\) −1.10714 1.91762i −0.0557769 0.0966084i
\(395\) 5.75863 + 9.97424i 0.289748 + 0.501858i
\(396\) 0 0
\(397\) −14.7888 25.6149i −0.742227 1.28557i −0.951479 0.307713i \(-0.900436\pi\)
0.209252 0.977862i \(-0.432897\pi\)
\(398\) −21.3873 −1.07205
\(399\) 0 0
\(400\) 6.35647 + 11.0097i 0.317823 + 0.550486i
\(401\) 19.8474 0.991130 0.495565 0.868571i \(-0.334961\pi\)
0.495565 + 0.868571i \(0.334961\pi\)
\(402\) 0 0
\(403\) 0.0512436 + 27.4288i 0.00255263 + 1.36633i
\(404\) −0.00875483 + 0.0151638i −0.000435569 + 0.000754427i
\(405\) 0 0
\(406\) −5.99786 21.6968i −0.297669 1.07680i
\(407\) 2.65480 4.59824i 0.131593 0.227926i
\(408\) 0 0
\(409\) 23.5323 1.16360 0.581800 0.813332i \(-0.302349\pi\)
0.581800 + 0.813332i \(0.302349\pi\)
\(410\) 45.9645 2.27002
\(411\) 0 0
\(412\) −0.0187449 + 0.0324671i −0.000923495 + 0.00159954i
\(413\) 14.9092 + 3.86887i 0.733636 + 0.190375i
\(414\) 0 0
\(415\) −23.2419 + 40.2561i −1.14090 + 1.97610i
\(416\) 0.0326776 + 0.0187851i 0.00160215 + 0.000921016i
\(417\) 0 0
\(418\) −1.84645 −0.0903128
\(419\) −17.6833 30.6285i −0.863888 1.49630i −0.868147 0.496307i \(-0.834689\pi\)
0.00425910 0.999991i \(-0.498644\pi\)
\(420\) 0 0
\(421\) −10.1261 −0.493514 −0.246757 0.969077i \(-0.579365\pi\)
−0.246757 + 0.969077i \(0.579365\pi\)
\(422\) −11.7272 20.3120i −0.570869 0.988774i
\(423\) 0 0
\(424\) 6.67179 + 11.5559i 0.324011 + 0.561203i
\(425\) −11.8306 20.4912i −0.573867 0.993967i
\(426\) 0 0
\(427\) 2.06834 + 7.48209i 0.100094 + 0.362084i
\(428\) 0.0247008 0.00119396
\(429\) 0 0
\(430\) 15.2491 + 26.4123i 0.735379 + 1.27371i
\(431\) −3.12150 + 5.40659i −0.150357 + 0.260426i −0.931359 0.364103i \(-0.881376\pi\)
0.781002 + 0.624529i \(0.214709\pi\)
\(432\) 0 0
\(433\) 16.9222 29.3101i 0.813229 1.40855i −0.0973634 0.995249i \(-0.531041\pi\)
0.910593 0.413305i \(-0.135626\pi\)
\(434\) −7.58769 27.4479i −0.364221 1.31754i
\(435\) 0 0
\(436\) −0.000870595 0.00150791i −4.16939e−5 7.22160e-5i
\(437\) −0.225672 0.390875i −0.0107953 0.0186981i
\(438\) 0 0
\(439\) 8.87482 0.423572 0.211786 0.977316i \(-0.432072\pi\)
0.211786 + 0.977316i \(0.432072\pi\)
\(440\) 9.32444 + 16.1504i 0.444525 + 0.769940i
\(441\) 0 0
\(442\) −32.9561 18.9452i −1.56756 0.901132i
\(443\) −5.95160 + 10.3085i −0.282769 + 0.489770i −0.972066 0.234709i \(-0.924586\pi\)
0.689297 + 0.724479i \(0.257920\pi\)
\(444\) 0 0
\(445\) 2.02776 3.51219i 0.0961252 0.166494i
\(446\) 4.38940 + 7.60266i 0.207844 + 0.359996i
\(447\) 0 0
\(448\) 20.4685 + 5.31147i 0.967045 + 0.250943i
\(449\) −2.97292 + 5.14925i −0.140301 + 0.243008i −0.927610 0.373550i \(-0.878140\pi\)
0.787309 + 0.616558i \(0.211474\pi\)
\(450\) 0 0
\(451\) 26.2127 1.23431
\(452\) 0.00238315 0.00412774i 0.000112094 0.000194153i
\(453\) 0 0
\(454\) 2.17980 0.102303
\(455\) −26.2759 + 7.31655i −1.23183 + 0.343005i
\(456\) 0 0
\(457\) 12.1123 0.566588 0.283294 0.959033i \(-0.408573\pi\)
0.283294 + 0.959033i \(0.408573\pi\)
\(458\) 15.0995 26.1531i 0.705552 1.22205i
\(459\) 0 0
\(460\) 0.00210800 0.00365115i 9.82858e−5 0.000170236i
\(461\) 2.55673 4.42839i 0.119079 0.206251i −0.800324 0.599568i \(-0.795339\pi\)
0.919403 + 0.393317i \(0.128673\pi\)
\(462\) 0 0
\(463\) −38.9344 −1.80944 −0.904718 0.426010i \(-0.859919\pi\)
−0.904718 + 0.426010i \(0.859919\pi\)
\(464\) 12.0380 + 20.8504i 0.558848 + 0.967954i
\(465\) 0 0
\(466\) 6.10454 10.5734i 0.282787 0.489802i
\(467\) −7.02626 + 12.1698i −0.325136 + 0.563153i −0.981540 0.191257i \(-0.938744\pi\)
0.656404 + 0.754410i \(0.272077\pi\)
\(468\) 0 0
\(469\) −5.89215 + 5.98604i −0.272074 + 0.276410i
\(470\) 0.545415 + 0.944687i 0.0251581 + 0.0435752i
\(471\) 0 0
\(472\) −16.4589 −0.757584
\(473\) 8.69630 + 15.0624i 0.399856 + 0.692571i
\(474\) 0 0
\(475\) −0.898091 + 1.55554i −0.0412073 + 0.0713731i
\(476\) 0.0352659 + 0.00915132i 0.00161641 + 0.000419450i
\(477\) 0 0
\(478\) −28.7533 −1.31514
\(479\) −16.1368 + 27.9497i −0.737308 + 1.27705i 0.216395 + 0.976306i \(0.430570\pi\)
−0.953703 + 0.300749i \(0.902763\pi\)
\(480\) 0 0
\(481\) −7.19406 4.13559i −0.328021 0.188567i
\(482\) 36.9497 1.68301
\(483\) 0 0
\(484\) 0.00524608 + 0.00908648i 0.000238458 + 0.000413022i
\(485\) 14.9553 + 25.9033i 0.679084 + 1.17621i
\(486\) 0 0
\(487\) −12.2816 −0.556533 −0.278266 0.960504i \(-0.589760\pi\)
−0.278266 + 0.960504i \(0.589760\pi\)
\(488\) −4.14743 7.18355i −0.187745 0.325184i
\(489\) 0 0
\(490\) 24.2974 14.5450i 1.09764 0.657077i
\(491\) 10.8531 + 18.7981i 0.489792 + 0.848345i 0.999931 0.0117472i \(-0.00373933\pi\)
−0.510139 + 0.860092i \(0.670406\pi\)
\(492\) 0 0
\(493\) −22.4049 38.8064i −1.00907 1.74775i
\(494\) 0.00539119 + 2.88570i 0.000242561 + 0.129834i
\(495\) 0 0
\(496\) 15.2288 + 26.3771i 0.683795 + 1.18437i
\(497\) 11.1747 11.3528i 0.501253 0.509241i
\(498\) 0 0
\(499\) −4.93997 + 8.55628i −0.221143 + 0.383032i −0.955155 0.296105i \(-0.904312\pi\)
0.734012 + 0.679136i \(0.237646\pi\)
\(500\) 0.00964159 0.000431185
\(501\) 0 0
\(502\) 15.9537 27.6326i 0.712047 1.23330i
\(503\) 17.2279 29.8396i 0.768155 1.33048i −0.170407 0.985374i \(-0.554508\pi\)
0.938562 0.345110i \(-0.112158\pi\)
\(504\) 0 0
\(505\) 13.5455 + 23.4614i 0.602765 + 1.04402i
\(506\) 1.30222 2.25551i 0.0578907 0.100270i
\(507\) 0 0
\(508\) −0.00381272 0.00660383i −0.000169162 0.000292998i
\(509\) −10.8665 −0.481648 −0.240824 0.970569i \(-0.577418\pi\)
−0.240824 + 0.970569i \(0.577418\pi\)
\(510\) 0 0
\(511\) 7.49784 + 27.1229i 0.331685 + 1.19985i
\(512\) −22.5960 −0.998610
\(513\) 0 0
\(514\) 1.51735 0.0669274
\(515\) 29.0021 + 50.2331i 1.27798 + 2.21353i
\(516\) 0 0
\(517\) 0.311040 + 0.538737i 0.0136795 + 0.0236936i
\(518\) 8.33908 + 2.16395i 0.366398 + 0.0950784i
\(519\) 0 0
\(520\) 25.2133 14.6198i 1.10567 0.641119i
\(521\) −19.0141 32.9334i −0.833024 1.44284i −0.895630 0.444801i \(-0.853274\pi\)
0.0626059 0.998038i \(-0.480059\pi\)
\(522\) 0 0
\(523\) 27.2284 1.19061 0.595307 0.803498i \(-0.297030\pi\)
0.595307 + 0.803498i \(0.297030\pi\)
\(524\) −0.00697125 + 0.0120746i −0.000304540 + 0.000527479i
\(525\) 0 0
\(526\) 10.9434 18.9545i 0.477153 0.826453i
\(527\) −28.3437 49.0927i −1.23467 2.13851i
\(528\) 0 0
\(529\) −22.3634 −0.972321
\(530\) −19.0940 −0.829389
\(531\) 0 0
\(532\) −0.000736936 0.00266581i −3.19502e−5 0.000115578i
\(533\) −0.0765348 40.9662i −0.00331509 1.77444i
\(534\) 0 0
\(535\) 19.1085 33.0969i 0.826132 1.43090i
\(536\) 4.48760 7.77275i 0.193835 0.335732i
\(537\) 0 0
\(538\) −3.16622 −0.136505
\(539\) 13.8563 8.29475i 0.596835 0.357280i
\(540\) 0 0
\(541\) −19.4083 + 33.6162i −0.834430 + 1.44528i 0.0600635 + 0.998195i \(0.480870\pi\)
−0.894494 + 0.447081i \(0.852464\pi\)
\(542\) 8.69350 0.373418
\(543\) 0 0
\(544\) −0.0778989 −0.00333989
\(545\) −2.69397 −0.115397
\(546\) 0 0
\(547\) −8.34899 −0.356977 −0.178489 0.983942i \(-0.557121\pi\)
−0.178489 + 0.983942i \(0.557121\pi\)
\(548\) −0.0308616 −0.00131834
\(549\) 0 0
\(550\) −10.3647 −0.441953
\(551\) −1.70082 + 2.94590i −0.0724572 + 0.125500i
\(552\) 0 0
\(553\) −7.47603 + 7.59516i −0.317913 + 0.322979i
\(554\) −4.73736 −0.201271
\(555\) 0 0
\(556\) −0.00955969 + 0.0165579i −0.000405421 + 0.000702210i
\(557\) 10.1701 17.6151i 0.430921 0.746377i −0.566032 0.824383i \(-0.691522\pi\)
0.996953 + 0.0780065i \(0.0248555\pi\)
\(558\) 0 0
\(559\) 23.5148 13.6349i 0.994569 0.576695i
\(560\) −21.2465 + 21.5850i −0.897827 + 0.912134i
\(561\) 0 0
\(562\) 20.1077 0.848191
\(563\) 3.65384 0.153991 0.0769955 0.997031i \(-0.475467\pi\)
0.0769955 + 0.997031i \(0.475467\pi\)
\(564\) 0 0
\(565\) −3.68721 6.38643i −0.155122 0.268679i
\(566\) −10.3486 + 17.9243i −0.434983 + 0.753413i
\(567\) 0 0
\(568\) −8.51090 + 14.7413i −0.357109 + 0.618532i
\(569\) −5.38814 −0.225883 −0.112941 0.993602i \(-0.536027\pi\)
−0.112941 + 0.993602i \(0.536027\pi\)
\(570\) 0 0
\(571\) −3.46902 6.00851i −0.145174 0.251448i 0.784264 0.620427i \(-0.213041\pi\)
−0.929438 + 0.368979i \(0.879707\pi\)
\(572\) −0.0132983 + 0.00771092i −0.000556029 + 0.000322410i
\(573\) 0 0
\(574\) 11.3326 + 40.9948i 0.473013 + 1.71109i
\(575\) −1.26677 2.19411i −0.0528279 0.0915005i
\(576\) 0 0
\(577\) −4.66974 8.08823i −0.194404 0.336718i 0.752301 0.658820i \(-0.228944\pi\)
−0.946705 + 0.322102i \(0.895611\pi\)
\(578\) 54.5101 2.26732
\(579\) 0 0
\(580\) −0.0317746 −0.00131937
\(581\) −41.6339 10.8038i −1.72727 0.448217i
\(582\) 0 0
\(583\) −10.8889 −0.450973
\(584\) −15.0346 26.0407i −0.622136 1.07757i
\(585\) 0 0
\(586\) 15.2414 26.3988i 0.629615 1.09053i
\(587\) 11.8226 + 20.4774i 0.487972 + 0.845192i 0.999904 0.0138340i \(-0.00440363\pi\)
−0.511933 + 0.859026i \(0.671070\pi\)
\(588\) 0 0
\(589\) −2.15165 + 3.72676i −0.0886571 + 0.153559i
\(590\) 11.7759 20.3965i 0.484807 0.839710i
\(591\) 0 0
\(592\) −9.21436 −0.378708
\(593\) −6.02330 + 10.4327i −0.247347 + 0.428418i −0.962789 0.270254i \(-0.912892\pi\)
0.715442 + 0.698673i \(0.246226\pi\)
\(594\) 0 0
\(595\) 39.5436 40.1738i 1.62113 1.64696i
\(596\) −0.0113141 0.0195966i −0.000463444 0.000802708i
\(597\) 0 0
\(598\) −3.52880 2.02857i −0.144303 0.0829545i
\(599\) −3.07545 5.32684i −0.125660 0.217649i 0.796331 0.604861i \(-0.206771\pi\)
−0.921991 + 0.387212i \(0.873438\pi\)
\(600\) 0 0
\(601\) 2.33860 + 4.05057i 0.0953934 + 0.165226i 0.909773 0.415107i \(-0.136256\pi\)
−0.814379 + 0.580333i \(0.802922\pi\)
\(602\) −19.7969 + 20.1124i −0.806861 + 0.819719i
\(603\) 0 0
\(604\) −0.0167122 0.0289464i −0.000680011 0.00117781i
\(605\) 16.2335 0.659984
\(606\) 0 0
\(607\) 7.65004 + 13.2502i 0.310505 + 0.537811i 0.978472 0.206380i \(-0.0661684\pi\)
−0.667967 + 0.744191i \(0.732835\pi\)
\(608\) 0.00295676 + 0.00512126i 0.000119912 + 0.000207694i
\(609\) 0 0
\(610\) 11.8695 0.480582
\(611\) 0.841051 0.487679i 0.0340253 0.0197294i
\(612\) 0 0
\(613\) −5.76413 + 9.98376i −0.232811 + 0.403240i −0.958634 0.284641i \(-0.908126\pi\)
0.725823 + 0.687881i \(0.241459\pi\)
\(614\) 26.3811 1.06466
\(615\) 0 0
\(616\) −12.1053 + 12.2982i −0.487735 + 0.495508i
\(617\) −10.2940 + 17.8298i −0.414423 + 0.717801i −0.995368 0.0961418i \(-0.969350\pi\)
0.580945 + 0.813943i \(0.302683\pi\)
\(618\) 0 0
\(619\) −9.83404 17.0331i −0.395263 0.684616i 0.597871 0.801592i \(-0.296013\pi\)
−0.993135 + 0.116976i \(0.962680\pi\)
\(620\) −0.0401970 −0.00161435
\(621\) 0 0
\(622\) 0.818393 + 1.41750i 0.0328146 + 0.0568365i
\(623\) 3.63240 + 0.942589i 0.145529 + 0.0377640i
\(624\) 0 0
\(625\) 15.3970 26.6684i 0.615879 1.06673i
\(626\) −9.70605 + 16.8114i −0.387932 + 0.671917i
\(627\) 0 0
\(628\) 0.0201713 + 0.0349377i 0.000804922 + 0.00139417i
\(629\) 17.1496 0.683801
\(630\) 0 0
\(631\) 21.7095 37.6019i 0.864241 1.49691i −0.00355775 0.999994i \(-0.501132\pi\)
0.867799 0.496916i \(-0.165534\pi\)
\(632\) 5.69392 9.86215i 0.226492 0.392295i
\(633\) 0 0
\(634\) 3.02565 5.24057i 0.120164 0.208130i
\(635\) −11.7981 −0.468192
\(636\) 0 0
\(637\) −13.0038 21.6310i −0.515230 0.857052i
\(638\) −19.6288 −0.777113
\(639\) 0 0
\(640\) 16.1967 28.0536i 0.640232 1.10891i
\(641\) −26.9811 −1.06569 −0.532844 0.846214i \(-0.678877\pi\)
−0.532844 + 0.846214i \(0.678877\pi\)
\(642\) 0 0
\(643\) −2.55705 + 4.42895i −0.100840 + 0.174661i −0.912031 0.410121i \(-0.865486\pi\)
0.811191 + 0.584782i \(0.198820\pi\)
\(644\) 0.00377612 0.000979884i 0.000148800 3.86128e-5i
\(645\) 0 0
\(646\) −2.98196 5.16490i −0.117324 0.203210i
\(647\) 9.77239 16.9263i 0.384192 0.665440i −0.607465 0.794347i \(-0.707813\pi\)
0.991657 + 0.128906i \(0.0411467\pi\)
\(648\) 0 0
\(649\) 6.71559 11.6317i 0.263610 0.456586i
\(650\) 0.0302625 + 16.1984i 0.00118699 + 0.635353i
\(651\) 0 0
\(652\) 0.0105100 + 0.0182038i 0.000411602 + 0.000712915i
\(653\) −15.3626 −0.601186 −0.300593 0.953753i \(-0.597185\pi\)
−0.300593 + 0.953753i \(0.597185\pi\)
\(654\) 0 0
\(655\) 10.7859 + 18.6817i 0.421440 + 0.729956i
\(656\) −22.7450 39.3955i −0.888042 1.53813i
\(657\) 0 0
\(658\) −0.708075 + 0.719358i −0.0276036 + 0.0280435i
\(659\) 8.71206 15.0897i 0.339374 0.587813i −0.644941 0.764232i \(-0.723118\pi\)
0.984315 + 0.176420i \(0.0564515\pi\)
\(660\) 0 0
\(661\) −8.35831 + 14.4770i −0.325101 + 0.563091i −0.981533 0.191294i \(-0.938732\pi\)
0.656432 + 0.754385i \(0.272065\pi\)
\(662\) −8.24948 14.2885i −0.320625 0.555339i
\(663\) 0 0
\(664\) 45.9614 1.78365
\(665\) −4.14205 1.07484i −0.160622 0.0416805i
\(666\) 0 0
\(667\) −2.39902 4.15523i −0.0928905 0.160891i
\(668\) −0.000485684 0 0.000841230i −1.87917e−5 0 3.25482e-5i
\(669\) 0 0
\(670\) 6.42152 + 11.1224i 0.248085 + 0.429695i
\(671\) 6.76895 0.261312
\(672\) 0 0
\(673\) −15.0178 26.0116i −0.578894 1.00267i −0.995607 0.0936354i \(-0.970151\pi\)
0.416713 0.909038i \(-0.363182\pi\)
\(674\) −23.0485 −0.887797
\(675\) 0 0
\(676\) 0.0120898 + 0.0207606i 0.000464991 + 0.000798483i
\(677\) −1.91898 + 3.32377i −0.0737525 + 0.127743i −0.900543 0.434767i \(-0.856831\pi\)
0.826791 + 0.562510i \(0.190164\pi\)
\(678\) 0 0
\(679\) −19.4154 + 19.7248i −0.745095 + 0.756968i
\(680\) −30.1174 + 52.1648i −1.15495 + 2.00043i
\(681\) 0 0
\(682\) −24.8318 −0.950859
\(683\) −27.9568 −1.06974 −0.534868 0.844935i \(-0.679639\pi\)
−0.534868 + 0.844935i \(0.679639\pi\)
\(684\) 0 0
\(685\) −23.8745 + 41.3518i −0.912197 + 1.57997i
\(686\) 18.9629 + 18.0843i 0.724009 + 0.690460i
\(687\) 0 0
\(688\) 15.0917 26.1396i 0.575366 0.996563i
\(689\) 0.0317931 + 17.0176i 0.00121122 + 0.648321i
\(690\) 0 0
\(691\) −17.9471 −0.682738 −0.341369 0.939929i \(-0.610891\pi\)
−0.341369 + 0.939929i \(0.610891\pi\)
\(692\) −0.00845022 0.0146362i −0.000321229 0.000556385i
\(693\) 0 0
\(694\) −36.3780 −1.38089
\(695\) 14.7907 + 25.6183i 0.561045 + 0.971758i
\(696\) 0 0
\(697\) 42.3327 + 73.3223i 1.60346 + 2.77728i
\(698\) −1.28522 2.22607i −0.0486464 0.0842581i
\(699\) 0 0
\(700\) −0.00413666 0.0149641i −0.000156351 0.000565588i
\(701\) −35.0636 −1.32433 −0.662167 0.749356i \(-0.730363\pi\)
−0.662167 + 0.749356i \(0.730363\pi\)
\(702\) 0 0
\(703\) −0.650938 1.12746i −0.0245506 0.0425229i
\(704\) 9.21965 15.9689i 0.347479 0.601851i
\(705\) 0 0
\(706\) −0.0441540 + 0.0764769i −0.00166176 + 0.00287825i
\(707\) −17.5851 + 17.8654i −0.661357 + 0.671896i
\(708\) 0 0
\(709\) 3.82252 + 6.62079i 0.143558 + 0.248649i 0.928834 0.370496i \(-0.120812\pi\)
−0.785276 + 0.619146i \(0.787479\pi\)
\(710\) −12.1786 21.0940i −0.457056 0.791645i
\(711\) 0 0
\(712\) −4.00995 −0.150279
\(713\) −3.03492 5.25664i −0.113659 0.196863i
\(714\) 0 0
\(715\) 0.0444337 + 23.7837i 0.00166173 + 0.889460i
\(716\) −0.00159194 + 0.00275732i −5.94935e−5 + 0.000103046i
\(717\) 0 0
\(718\) 9.49961 16.4538i 0.354522 0.614051i
\(719\) 13.9765 + 24.2081i 0.521237 + 0.902809i 0.999695 + 0.0246986i \(0.00786261\pi\)
−0.478458 + 0.878111i \(0.658804\pi\)
\(720\) 0 0
\(721\) −37.6514 + 38.2514i −1.40221 + 1.42456i
\(722\) 13.2149 22.8888i 0.491806 0.851834i
\(723\) 0 0
\(724\) −0.00734999 −0.000273160
\(725\) −9.54723 + 16.5363i −0.354575 + 0.614142i
\(726\) 0 0
\(727\) −9.94798 −0.368950 −0.184475 0.982837i \(-0.559058\pi\)
−0.184475 + 0.982837i \(0.559058\pi\)
\(728\) 19.2554 + 18.8827i 0.713653 + 0.699839i
\(729\) 0 0
\(730\) 43.0274 1.59252
\(731\) −28.0885 + 48.6507i −1.03889 + 1.79941i
\(732\) 0 0
\(733\) −15.9308 + 27.5929i −0.588416 + 1.01917i 0.406024 + 0.913863i \(0.366915\pi\)
−0.994440 + 0.105304i \(0.966418\pi\)
\(734\) −15.0989 + 26.1520i −0.557310 + 0.965289i
\(735\) 0 0
\(736\) −0.00834108 −0.000307456
\(737\) 3.66207 + 6.34289i 0.134894 + 0.233643i
\(738\) 0 0
\(739\) 9.07418 15.7169i 0.333799 0.578157i −0.649454 0.760401i \(-0.725003\pi\)
0.983253 + 0.182244i \(0.0583359\pi\)
\(740\) 0.00608040 0.0105316i 0.000223520 0.000387148i
\(741\) 0 0
\(742\) −4.70763 17.0295i −0.172823 0.625174i
\(743\) 12.8238 + 22.2115i 0.470460 + 0.814861i 0.999429 0.0337802i \(-0.0107546\pi\)
−0.528969 + 0.848641i \(0.677421\pi\)
\(744\) 0 0
\(745\) −35.0103 −1.28268
\(746\) −20.3512 35.2493i −0.745111 1.29057i
\(747\) 0 0
\(748\) 0.0158849 0.0275134i 0.000580808 0.00100599i
\(749\) 34.2297 + 8.88242i 1.25072 + 0.324557i
\(750\) 0 0
\(751\) −50.5739 −1.84547 −0.922734 0.385438i \(-0.874050\pi\)
−0.922734 + 0.385438i \(0.874050\pi\)
\(752\) 0.539785 0.934934i 0.0196839 0.0340935i
\(753\) 0 0
\(754\) 0.0573115 + 30.6767i 0.00208716 + 1.11718i
\(755\) −51.7143 −1.88208
\(756\) 0 0
\(757\) 0.651718 + 1.12881i 0.0236871 + 0.0410272i 0.877626 0.479346i \(-0.159126\pi\)
−0.853939 + 0.520373i \(0.825793\pi\)
\(758\) 13.7514 + 23.8182i 0.499474 + 0.865115i
\(759\) 0 0
\(760\) 4.57258 0.165865
\(761\) 7.67600 + 13.2952i 0.278255 + 0.481952i 0.970951 0.239278i \(-0.0769107\pi\)
−0.692696 + 0.721229i \(0.743577\pi\)
\(762\) 0 0
\(763\) −0.664199 2.40269i −0.0240456 0.0869834i
\(764\) 0.0232420 + 0.0402563i 0.000840866 + 0.00145642i
\(765\) 0 0
\(766\) 21.4078 + 37.0793i 0.773494 + 1.33973i
\(767\) −18.1981 10.4614i −0.657097 0.377740i
\(768\) 0 0
\(769\) −9.84042 17.0441i −0.354855 0.614626i 0.632239 0.774774i \(-0.282136\pi\)
−0.987093 + 0.160148i \(0.948803\pi\)
\(770\) −6.57934 23.8003i −0.237103 0.857703i
\(771\) 0 0
\(772\) 0.0167757 0.0290563i 0.000603770 0.00104576i
\(773\) 18.3611 0.660402 0.330201 0.943911i \(-0.392883\pi\)
0.330201 + 0.943911i \(0.392883\pi\)
\(774\) 0 0
\(775\) −12.0779 + 20.9195i −0.433851 + 0.751451i
\(776\) 14.7872 25.6122i 0.530831 0.919426i
\(777\) 0 0
\(778\) −0.436238 0.755586i −0.0156399 0.0270891i
\(779\) 3.21359 5.56610i 0.115139 0.199426i
\(780\) 0 0
\(781\) −6.94525 12.0295i −0.248521 0.430450i
\(782\) 8.41217 0.300819
\(783\) 0 0
\(784\) −24.4896 13.6275i −0.874628 0.486696i
\(785\) 62.4180 2.22779
\(786\) 0 0
\(787\) −3.22399 −0.114923 −0.0574615 0.998348i \(-0.518301\pi\)
−0.0574615 + 0.998348i \(0.518301\pi\)
\(788\) −0.00144608 0.00250469i −5.15145e−5 8.92257e-5i
\(789\) 0 0
\(790\) 8.14769 + 14.1122i 0.289882 + 0.502090i
\(791\) 4.78685 4.86313i 0.170201 0.172913i
\(792\) 0 0
\(793\) −0.0197637 10.5788i −0.000701830 0.375663i
\(794\) −20.9241 36.2417i −0.742570 1.28617i
\(795\) 0 0
\(796\) −0.0279348 −0.000990123
\(797\) 7.59673 13.1579i 0.269090 0.466078i −0.699537 0.714596i \(-0.746610\pi\)
0.968627 + 0.248519i \(0.0799438\pi\)
\(798\) 0 0
\(799\) −1.00464 + 1.74009i −0.0355416 + 0.0615599i
\(800\) 0.0165972 + 0.0287473i 0.000586801 + 0.00101637i
\(801\) 0 0
\(802\) 28.0814 0.991588
\(803\) 24.5377 0.865917
\(804\) 0 0
\(805\) 4.23416 4.30164i 0.149235 0.151613i
\(806\) 0.0725029 + 38.8081i 0.00255381 + 1.36696i
\(807\) 0 0
\(808\) 13.3932 23.1978i 0.471173 0.816095i
\(809\) −14.5054 + 25.1242i −0.509984 + 0.883319i 0.489949 + 0.871751i \(0.337015\pi\)
−0.999933 + 0.0115675i \(0.996318\pi\)
\(810\) 0 0
\(811\) −20.5902 −0.723020 −0.361510 0.932368i \(-0.617739\pi\)
−0.361510 + 0.932368i \(0.617739\pi\)
\(812\) −0.00783405 0.0283391i −0.000274921 0.000994508i
\(813\) 0 0
\(814\) 3.75618 6.50590i 0.131654 0.228032i
\(815\) 32.5220 1.13920
\(816\) 0 0
\(817\) 4.26455 0.149198
\(818\) 33.2951 1.16414
\(819\) 0 0
\(820\) 0.0600361 0.00209655
\(821\) −0.286058 −0.00998349 −0.00499174 0.999988i \(-0.501589\pi\)
−0.00499174 + 0.999988i \(0.501589\pi\)
\(822\) 0 0
\(823\) 22.5814 0.787137 0.393568 0.919295i \(-0.371240\pi\)
0.393568 + 0.919295i \(0.371240\pi\)
\(824\) 28.6762 49.6686i 0.998982 1.73029i
\(825\) 0 0
\(826\) 21.0946 + 5.47394i 0.733975 + 0.190463i
\(827\) −27.6090 −0.960060 −0.480030 0.877252i \(-0.659374\pi\)
−0.480030 + 0.877252i \(0.659374\pi\)
\(828\) 0 0
\(829\) −15.0977 + 26.1500i −0.524366 + 0.908228i 0.475232 + 0.879861i \(0.342364\pi\)
−0.999598 + 0.0283673i \(0.990969\pi\)
\(830\) −32.8842 + 56.9570i −1.14143 + 1.97701i
\(831\) 0 0
\(832\) −24.9837 14.3622i −0.866155 0.497920i
\(833\) 45.5797 + 25.3633i 1.57924 + 0.878786i
\(834\) 0 0
\(835\) −1.50290 −0.0520100
\(836\) −0.00241172 −8.34113e−5
\(837\) 0 0
\(838\) −25.0196 43.3352i −0.864287 1.49699i
\(839\) −25.9928 + 45.0209i −0.897372 + 1.55429i −0.0665306 + 0.997784i \(0.521193\pi\)
−0.830841 + 0.556509i \(0.812140\pi\)
\(840\) 0 0
\(841\) −3.58067 + 6.20190i −0.123471 + 0.213859i
\(842\) −14.3270 −0.493742
\(843\) 0 0
\(844\) −0.0153173 0.0265304i −0.000527244 0.000913214i
\(845\) 37.1700 0.138885i 1.27869 0.00477781i
\(846\) 0 0
\(847\) 4.00237 + 14.4783i 0.137523 + 0.497481i
\(848\) 9.44842 + 16.3651i 0.324460 + 0.561981i
\(849\) 0 0
\(850\) −16.7387 28.9923i −0.574132 0.994427i
\(851\) 1.83631 0.0629479
\(852\) 0 0
\(853\) 11.5389 0.395085 0.197542 0.980294i \(-0.436704\pi\)
0.197542 + 0.980294i \(0.436704\pi\)
\(854\) 2.92643 + 10.5862i 0.100140 + 0.362251i
\(855\) 0 0
\(856\) −37.7875 −1.29155
\(857\) −3.43142 5.94339i −0.117215 0.203022i 0.801448 0.598064i \(-0.204063\pi\)
−0.918663 + 0.395042i \(0.870730\pi\)
\(858\) 0 0
\(859\) −6.60534 + 11.4408i −0.225371 + 0.390355i −0.956431 0.291959i \(-0.905693\pi\)
0.731059 + 0.682314i \(0.239026\pi\)
\(860\) 0.0199175 + 0.0344982i 0.000679182 + 0.00117638i
\(861\) 0 0
\(862\) −4.41650 + 7.64961i −0.150427 + 0.260547i
\(863\) −11.4551 + 19.8408i −0.389937 + 0.675390i −0.992441 0.122726i \(-0.960836\pi\)
0.602504 + 0.798116i \(0.294170\pi\)
\(864\) 0 0
\(865\) −26.1483 −0.889070
\(866\) 23.9427 41.4699i 0.813605 1.40920i
\(867\) 0 0
\(868\) −0.00991060 0.0358509i −0.000336388 0.00121686i
\(869\) 4.64648 + 8.04793i 0.157621 + 0.273007i
\(870\) 0 0
\(871\) 9.90223 5.74175i 0.335524 0.194552i
\(872\) 1.33185 + 2.30683i 0.0451020 + 0.0781190i
\(873\) 0 0
\(874\) −0.319295 0.553036i −0.0108003 0.0187067i
\(875\) 13.3611 + 3.46713i 0.451686 + 0.117210i
\(876\) 0 0
\(877\) 14.2509 + 24.6834i 0.481220 + 0.833498i 0.999768 0.0215511i \(-0.00686045\pi\)
−0.518548 + 0.855049i \(0.673527\pi\)
\(878\) 12.5567 0.423767
\(879\) 0 0
\(880\) 13.2050 + 22.8718i 0.445141 + 0.771007i
\(881\) −15.9035 27.5457i −0.535804 0.928039i −0.999124 0.0418483i \(-0.986675\pi\)
0.463320 0.886191i \(-0.346658\pi\)
\(882\) 0 0
\(883\) 11.0073 0.370427 0.185213 0.982698i \(-0.440702\pi\)
0.185213 + 0.982698i \(0.440702\pi\)
\(884\) −0.0430454 0.0247451i −0.00144777 0.000832269i
\(885\) 0 0
\(886\) −8.42072 + 14.5851i −0.282900 + 0.489997i
\(887\) 22.2051 0.745574 0.372787 0.927917i \(-0.378402\pi\)
0.372787 + 0.927917i \(0.378402\pi\)
\(888\) 0 0
\(889\) −2.90883 10.5225i −0.0975589 0.352912i
\(890\) 2.86901 4.96928i 0.0961696 0.166571i
\(891\) 0 0
\(892\) 0.00573317 + 0.00993015i 0.000191961 + 0.000332486i
\(893\) 0.152530 0.00510422
\(894\) 0 0
\(895\) 2.46304 + 4.26611i 0.0823304 + 0.142600i
\(896\) 29.0137 + 7.52892i 0.969281 + 0.251523i
\(897\) 0 0
\(898\) −4.20628 + 7.28550i −0.140366 + 0.243120i
\(899\) −22.8733 + 39.6177i −0.762866 + 1.32132i
\(900\) 0 0
\(901\) −17.5853 30.4586i −0.585851 1.01472i
\(902\) 37.0875 1.23488
\(903\) 0 0
\(904\) −3.64577 + 6.31467i −0.121257 + 0.210023i
\(905\) −5.68595 + 9.84835i −0.189007 + 0.327370i
\(906\) 0 0
\(907\) −0.795213 + 1.37735i −0.0264046 + 0.0457341i −0.878926 0.476959i \(-0.841739\pi\)
0.852521 + 0.522693i \(0.175072\pi\)
\(908\) 0.00284712 9.44850e−5
\(909\) 0 0
\(910\) −37.1768 + 10.3519i −1.23240 + 0.343164i
\(911\) 2.61896 0.0867699 0.0433849 0.999058i \(-0.486186\pi\)
0.0433849 + 0.999058i \(0.486186\pi\)
\(912\) 0 0
\(913\) −18.7532 + 32.4815i −0.620641 + 1.07498i
\(914\) 17.1372 0.566849
\(915\) 0 0
\(916\) 0.0197221 0.0341596i 0.000651635 0.00112867i
\(917\) −14.0026 + 14.2257i −0.462406 + 0.469775i
\(918\) 0 0
\(919\) −10.0892 17.4750i −0.332811 0.576446i 0.650251 0.759720i \(-0.274664\pi\)
−0.983062 + 0.183274i \(0.941331\pi\)
\(920\) −3.22484 + 5.58558i −0.106320 + 0.184151i
\(921\) 0 0
\(922\) 3.61743 6.26558i 0.119134 0.206346i
\(923\) −18.7799 + 10.8894i −0.618149 + 0.358430i
\(924\) 0 0
\(925\) −3.65392 6.32878i −0.120140 0.208089i
\(926\) −55.0870 −1.81027
\(927\) 0 0
\(928\) 0.0314321 + 0.0544419i 0.00103181 + 0.00178714i
\(929\) −16.4051 28.4145i −0.538234 0.932248i −0.998999 0.0447264i \(-0.985758\pi\)
0.460765 0.887522i \(-0.347575\pi\)
\(930\) 0 0
\(931\) −0.0625967 3.95921i −0.00205152 0.129758i
\(932\) 0.00797339 0.0138103i 0.000261177 0.000452372i
\(933\) 0 0
\(934\) −9.94122 + 17.2187i −0.325287 + 0.563413i
\(935\) −24.5770 42.5687i −0.803755 1.39214i
\(936\) 0 0
\(937\) 48.1088 1.57165 0.785823 0.618452i \(-0.212240\pi\)
0.785823 + 0.618452i \(0.212240\pi\)
\(938\) −8.33661 + 8.46946i −0.272200 + 0.276538i
\(939\) 0 0
\(940\) 0.000712390 0.00123389i 2.32356e−5 4.02452e-5i
\(941\) −5.25163 9.09609i −0.171198 0.296524i 0.767641 0.640880i \(-0.221431\pi\)
−0.938839 + 0.344356i \(0.888097\pi\)
\(942\) 0 0
\(943\) 4.53280 + 7.85104i 0.147608 + 0.255665i
\(944\) −23.3087 −0.758634
\(945\) 0 0
\(946\) 12.3041 + 21.3113i 0.400041 + 0.692891i
\(947\) 0.629609 0.0204595 0.0102298 0.999948i \(-0.496744\pi\)
0.0102298 + 0.999948i \(0.496744\pi\)
\(948\) 0 0
\(949\) −0.0716443 38.3485i −0.00232567 1.24485i
\(950\) −1.27068 + 2.20088i −0.0412263 + 0.0714060i
\(951\) 0 0
\(952\) −53.9502 13.9998i −1.74854 0.453736i
\(953\) −10.6206 + 18.3954i −0.344034 + 0.595885i −0.985178 0.171536i \(-0.945127\pi\)
0.641144 + 0.767421i \(0.278460\pi\)
\(954\) 0 0
\(955\) 71.9199 2.32727
\(956\) −0.0375558 −0.00121464
\(957\) 0 0
\(958\) −22.8314 + 39.5451i −0.737648 + 1.27764i
\(959\) −42.7671 11.0979i −1.38102 0.358368i
\(960\) 0 0
\(961\) −13.4362 + 23.2722i −0.433427 + 0.750717i
\(962\) −10.1786 5.85131i −0.328173 0.188654i
\(963\) 0 0
\(964\) 0.0482616 0.00155440
\(965\) −25.9553 44.9559i −0.835531 1.44718i
\(966\) 0 0
\(967\) 15.0353 0.483502 0.241751 0.970338i \(-0.422278\pi\)
0.241751 + 0.970338i \(0.422278\pi\)
\(968\) −8.02553 13.9006i −0.257950 0.446783i
\(969\) 0 0
\(970\) 21.1597 + 36.6497i 0.679398 + 1.17675i
\(971\) −3.94070 6.82549i −0.126463 0.219040i 0.795841 0.605506i \(-0.207029\pi\)
−0.922304 + 0.386465i \(0.873696\pi\)
\(972\) 0 0
\(973\) −19.2018 + 19.5078i −0.615582 + 0.625391i
\(974\) −17.3768 −0.556790
\(975\) 0 0
\(976\) −5.87348 10.1732i −0.188005 0.325635i
\(977\) 8.97409 15.5436i 0.287107 0.497283i −0.686011 0.727591i \(-0.740640\pi\)
0.973118 + 0.230308i \(0.0739733\pi\)
\(978\) 0 0
\(979\) 1.63615 2.83389i 0.0522914 0.0905714i
\(980\) 0.0317358 0.0189979i 0.00101376 0.000606864i
\(981\) 0 0
\(982\) 15.3556 + 26.5968i 0.490018 + 0.848737i
\(983\) −2.92791 5.07129i −0.0933858 0.161749i 0.815548 0.578689i \(-0.196436\pi\)
−0.908934 + 0.416941i \(0.863102\pi\)
\(984\) 0 0
\(985\) −4.47475 −0.142577
\(986\) −31.7000 54.9059i −1.00953 1.74856i
\(987\) 0 0
\(988\) 7.04166e−6 0.00376914i 2.24025e−7 0.000119912i
\(989\) −3.00760 + 5.20931i −0.0956360 + 0.165646i
\(990\) 0 0
\(991\) −25.6014 + 44.3429i −0.813255 + 1.40860i 0.0973198 + 0.995253i \(0.468973\pi\)
−0.910574 + 0.413345i \(0.864360\pi\)
\(992\) 0.0397637 + 0.0688727i 0.00126250 + 0.00218671i
\(993\) 0 0
\(994\) 15.8107 16.0626i 0.501485 0.509476i
\(995\) −21.6104 + 37.4302i −0.685094 + 1.18662i
\(996\) 0 0
\(997\) 5.05724 0.160164 0.0800822 0.996788i \(-0.474482\pi\)
0.0800822 + 0.996788i \(0.474482\pi\)
\(998\) −6.98940 + 12.1060i −0.221246 + 0.383208i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.f.289.7 20
3.2 odd 2 273.2.l.c.16.4 yes 20
7.4 even 3 819.2.n.f.172.4 20
13.9 even 3 819.2.n.f.100.4 20
21.11 odd 6 273.2.j.c.172.7 yes 20
39.35 odd 6 273.2.j.c.100.7 20
91.74 even 3 inner 819.2.s.f.802.7 20
273.74 odd 6 273.2.l.c.256.4 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.c.100.7 20 39.35 odd 6
273.2.j.c.172.7 yes 20 21.11 odd 6
273.2.l.c.16.4 yes 20 3.2 odd 2
273.2.l.c.256.4 yes 20 273.74 odd 6
819.2.n.f.100.4 20 13.9 even 3
819.2.n.f.172.4 20 7.4 even 3
819.2.s.f.289.7 20 1.1 even 1 trivial
819.2.s.f.802.7 20 91.74 even 3 inner