Properties

Label 819.2.s.f.289.4
Level $819$
Weight $2$
Character 819.289
Analytic conductor $6.540$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(289,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,32,0,0,3,12,0,-4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} - 4 x^{17} + 211 x^{16} - 59 x^{15} + 1458 x^{14} - 526 x^{13} + 7324 x^{12} + \cdots + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.4
Root \(0.613260 + 1.06220i\) of defining polynomial
Character \(\chi\) \(=\) 819.289
Dual form 819.2.s.f.802.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.22652 q^{2} -0.495647 q^{4} +(2.10660 - 3.64874i) q^{5} +(0.113533 - 2.64331i) q^{7} +3.06096 q^{8} +(-2.58379 + 4.47526i) q^{10} +(2.76269 - 4.78512i) q^{11} +(3.59845 + 0.226101i) q^{13} +(-0.139251 + 3.24208i) q^{14} -2.76304 q^{16} -0.178289 q^{17} +(2.25950 + 3.91358i) q^{19} +(-1.04413 + 1.80849i) q^{20} +(-3.38850 + 5.86905i) q^{22} -1.08705 q^{23} +(-6.37556 - 11.0428i) q^{25} +(-4.41358 - 0.277317i) q^{26} +(-0.0562723 + 1.31015i) q^{28} +(0.0731926 + 0.126773i) q^{29} +(4.19459 + 7.26525i) q^{31} -2.73300 q^{32} +0.218676 q^{34} +(-9.40561 - 5.98267i) q^{35} +4.31844 q^{37} +(-2.77133 - 4.80008i) q^{38} +(6.44824 - 11.1687i) q^{40} +(-0.782385 - 1.35513i) q^{41} +(-1.66752 + 2.88823i) q^{43} +(-1.36932 + 2.37173i) q^{44} +1.33329 q^{46} +(-0.636455 + 1.10237i) q^{47} +(-6.97422 - 0.600207i) q^{49} +(7.81976 + 13.5442i) q^{50} +(-1.78356 - 0.112066i) q^{52} +(3.93930 + 6.82307i) q^{53} +(-11.6398 - 20.1607i) q^{55} +(0.347521 - 8.09109i) q^{56} +(-0.0897723 - 0.155490i) q^{58} +2.02119 q^{59} +(1.88279 + 3.26108i) q^{61} +(-5.14476 - 8.91098i) q^{62} +8.87816 q^{64} +(8.40550 - 12.6535i) q^{65} +(0.153689 - 0.266197i) q^{67} +0.0883685 q^{68} +(11.5362 + 7.33787i) q^{70} +(1.62940 - 2.82220i) q^{71} +(-3.53172 - 6.11712i) q^{73} -5.29665 q^{74} +(-1.11992 - 1.93975i) q^{76} +(-12.3349 - 7.84593i) q^{77} +(-2.30707 + 3.99596i) q^{79} +(-5.82063 + 10.0816i) q^{80} +(0.959612 + 1.66210i) q^{82} +8.85136 q^{83} +(-0.375585 + 0.650532i) q^{85} +(2.04525 - 3.54248i) q^{86} +(8.45649 - 14.6471i) q^{88} -13.1970 q^{89} +(1.00620 - 9.48618i) q^{91} +0.538791 q^{92} +(0.780625 - 1.35208i) q^{94} +19.0395 q^{95} +(1.17499 - 2.03514i) q^{97} +(8.55403 + 0.736167i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 32 q^{4} + 3 q^{7} + 12 q^{8} - 4 q^{10} + 8 q^{11} - 5 q^{13} + 9 q^{14} + 40 q^{16} + 7 q^{19} - 12 q^{20} - 9 q^{22} - 28 q^{23} - 32 q^{25} - 13 q^{26} - 23 q^{28} + 9 q^{29} - 9 q^{31} + 34 q^{32}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22652 −0.867281 −0.433641 0.901086i \(-0.642771\pi\)
−0.433641 + 0.901086i \(0.642771\pi\)
\(3\) 0 0
\(4\) −0.495647 −0.247823
\(5\) 2.10660 3.64874i 0.942102 1.63177i 0.180649 0.983548i \(-0.442180\pi\)
0.761452 0.648221i \(-0.224487\pi\)
\(6\) 0 0
\(7\) 0.113533 2.64331i 0.0429115 0.999079i
\(8\) 3.06096 1.08221
\(9\) 0 0
\(10\) −2.58379 + 4.47526i −0.817067 + 1.41520i
\(11\) 2.76269 4.78512i 0.832982 1.44277i −0.0626804 0.998034i \(-0.519965\pi\)
0.895663 0.444734i \(-0.146702\pi\)
\(12\) 0 0
\(13\) 3.59845 + 0.226101i 0.998032 + 0.0627091i
\(14\) −0.139251 + 3.24208i −0.0372163 + 0.866482i
\(15\) 0 0
\(16\) −2.76304 −0.690760
\(17\) −0.178289 −0.0432415 −0.0216208 0.999766i \(-0.506883\pi\)
−0.0216208 + 0.999766i \(0.506883\pi\)
\(18\) 0 0
\(19\) 2.25950 + 3.91358i 0.518366 + 0.897836i 0.999772 + 0.0213385i \(0.00679277\pi\)
−0.481406 + 0.876497i \(0.659874\pi\)
\(20\) −1.04413 + 1.80849i −0.233475 + 0.404390i
\(21\) 0 0
\(22\) −3.38850 + 5.86905i −0.722430 + 1.25129i
\(23\) −1.08705 −0.226665 −0.113332 0.993557i \(-0.536153\pi\)
−0.113332 + 0.993557i \(0.536153\pi\)
\(24\) 0 0
\(25\) −6.37556 11.0428i −1.27511 2.20856i
\(26\) −4.41358 0.277317i −0.865574 0.0543864i
\(27\) 0 0
\(28\) −0.0562723 + 1.31015i −0.0106345 + 0.247595i
\(29\) 0.0731926 + 0.126773i 0.0135915 + 0.0235412i 0.872741 0.488183i \(-0.162340\pi\)
−0.859150 + 0.511724i \(0.829007\pi\)
\(30\) 0 0
\(31\) 4.19459 + 7.26525i 0.753371 + 1.30488i 0.946180 + 0.323641i \(0.104907\pi\)
−0.192809 + 0.981236i \(0.561760\pi\)
\(32\) −2.73300 −0.483130
\(33\) 0 0
\(34\) 0.218676 0.0375026
\(35\) −9.40561 5.98267i −1.58984 1.01126i
\(36\) 0 0
\(37\) 4.31844 0.709947 0.354973 0.934876i \(-0.384490\pi\)
0.354973 + 0.934876i \(0.384490\pi\)
\(38\) −2.77133 4.80008i −0.449569 0.778676i
\(39\) 0 0
\(40\) 6.44824 11.1687i 1.01956 1.76592i
\(41\) −0.782385 1.35513i −0.122188 0.211636i 0.798442 0.602071i \(-0.205658\pi\)
−0.920630 + 0.390436i \(0.872324\pi\)
\(42\) 0 0
\(43\) −1.66752 + 2.88823i −0.254295 + 0.440452i −0.964704 0.263338i \(-0.915177\pi\)
0.710409 + 0.703789i \(0.248510\pi\)
\(44\) −1.36932 + 2.37173i −0.206432 + 0.357551i
\(45\) 0 0
\(46\) 1.33329 0.196582
\(47\) −0.636455 + 1.10237i −0.0928365 + 0.160798i −0.908704 0.417442i \(-0.862927\pi\)
0.815867 + 0.578239i \(0.196260\pi\)
\(48\) 0 0
\(49\) −6.97422 0.600207i −0.996317 0.0857439i
\(50\) 7.81976 + 13.5442i 1.10588 + 1.91544i
\(51\) 0 0
\(52\) −1.78356 0.112066i −0.247336 0.0155408i
\(53\) 3.93930 + 6.82307i 0.541105 + 0.937221i 0.998841 + 0.0481326i \(0.0153270\pi\)
−0.457736 + 0.889088i \(0.651340\pi\)
\(54\) 0 0
\(55\) −11.6398 20.1607i −1.56951 2.71847i
\(56\) 0.347521 8.09109i 0.0464394 1.08122i
\(57\) 0 0
\(58\) −0.0897723 0.155490i −0.0117877 0.0204169i
\(59\) 2.02119 0.263136 0.131568 0.991307i \(-0.457999\pi\)
0.131568 + 0.991307i \(0.457999\pi\)
\(60\) 0 0
\(61\) 1.88279 + 3.26108i 0.241066 + 0.417539i 0.961018 0.276485i \(-0.0891696\pi\)
−0.719952 + 0.694024i \(0.755836\pi\)
\(62\) −5.14476 8.91098i −0.653385 1.13170i
\(63\) 0 0
\(64\) 8.87816 1.10977
\(65\) 8.40550 12.6535i 1.04257 1.56948i
\(66\) 0 0
\(67\) 0.153689 0.266197i 0.0187761 0.0325212i −0.856485 0.516172i \(-0.827356\pi\)
0.875261 + 0.483651i \(0.160690\pi\)
\(68\) 0.0883685 0.0107163
\(69\) 0 0
\(70\) 11.5362 + 7.33787i 1.37884 + 0.877043i
\(71\) 1.62940 2.82220i 0.193374 0.334933i −0.752992 0.658029i \(-0.771390\pi\)
0.946366 + 0.323096i \(0.104724\pi\)
\(72\) 0 0
\(73\) −3.53172 6.11712i −0.413356 0.715954i 0.581898 0.813262i \(-0.302310\pi\)
−0.995254 + 0.0973075i \(0.968977\pi\)
\(74\) −5.29665 −0.615723
\(75\) 0 0
\(76\) −1.11992 1.93975i −0.128463 0.222505i
\(77\) −12.3349 7.84593i −1.40569 0.894126i
\(78\) 0 0
\(79\) −2.30707 + 3.99596i −0.259566 + 0.449581i −0.966126 0.258072i \(-0.916913\pi\)
0.706560 + 0.707653i \(0.250246\pi\)
\(80\) −5.82063 + 10.0816i −0.650767 + 1.12716i
\(81\) 0 0
\(82\) 0.959612 + 1.66210i 0.105971 + 0.183548i
\(83\) 8.85136 0.971563 0.485782 0.874080i \(-0.338535\pi\)
0.485782 + 0.874080i \(0.338535\pi\)
\(84\) 0 0
\(85\) −0.375585 + 0.650532i −0.0407379 + 0.0705601i
\(86\) 2.04525 3.54248i 0.220545 0.381995i
\(87\) 0 0
\(88\) 8.45649 14.6471i 0.901465 1.56138i
\(89\) −13.1970 −1.39888 −0.699442 0.714690i \(-0.746568\pi\)
−0.699442 + 0.714690i \(0.746568\pi\)
\(90\) 0 0
\(91\) 1.00620 9.48618i 0.105478 0.994422i
\(92\) 0.538791 0.0561729
\(93\) 0 0
\(94\) 0.780625 1.35208i 0.0805154 0.139457i
\(95\) 19.0395 1.95341
\(96\) 0 0
\(97\) 1.17499 2.03514i 0.119302 0.206637i −0.800189 0.599748i \(-0.795268\pi\)
0.919491 + 0.393110i \(0.128601\pi\)
\(98\) 8.55403 + 0.736167i 0.864087 + 0.0743641i
\(99\) 0 0
\(100\) 3.16002 + 5.47332i 0.316002 + 0.547332i
\(101\) 5.06985 8.78124i 0.504469 0.873766i −0.495517 0.868598i \(-0.665022\pi\)
0.999987 0.00516840i \(-0.00164516\pi\)
\(102\) 0 0
\(103\) −5.01549 + 8.68709i −0.494191 + 0.855964i −0.999978 0.00669444i \(-0.997869\pi\)
0.505786 + 0.862659i \(0.331202\pi\)
\(104\) 11.0147 + 0.692086i 1.08008 + 0.0678647i
\(105\) 0 0
\(106\) −4.83163 8.36864i −0.469290 0.812834i
\(107\) −13.8521 −1.33913 −0.669567 0.742751i \(-0.733520\pi\)
−0.669567 + 0.742751i \(0.733520\pi\)
\(108\) 0 0
\(109\) 0.471229 + 0.816192i 0.0451355 + 0.0781770i 0.887711 0.460402i \(-0.152295\pi\)
−0.842575 + 0.538579i \(0.818961\pi\)
\(110\) 14.2764 + 24.7275i 1.36121 + 2.35768i
\(111\) 0 0
\(112\) −0.313697 + 7.30359i −0.0296415 + 0.690124i
\(113\) −2.86292 + 4.95873i −0.269321 + 0.466478i −0.968687 0.248286i \(-0.920133\pi\)
0.699366 + 0.714764i \(0.253466\pi\)
\(114\) 0 0
\(115\) −2.28998 + 3.96636i −0.213541 + 0.369865i
\(116\) −0.0362777 0.0628348i −0.00336830 0.00583406i
\(117\) 0 0
\(118\) −2.47903 −0.228213
\(119\) −0.0202417 + 0.471275i −0.00185556 + 0.0432017i
\(120\) 0 0
\(121\) −9.76491 16.9133i −0.887719 1.53757i
\(122\) −2.30928 3.99979i −0.209072 0.362124i
\(123\) 0 0
\(124\) −2.07904 3.60100i −0.186703 0.323379i
\(125\) −32.6571 −2.92094
\(126\) 0 0
\(127\) 6.56642 + 11.3734i 0.582676 + 1.00922i 0.995161 + 0.0982595i \(0.0313275\pi\)
−0.412485 + 0.910964i \(0.635339\pi\)
\(128\) −5.42325 −0.479353
\(129\) 0 0
\(130\) −10.3095 + 15.5198i −0.904205 + 1.36118i
\(131\) −5.95196 + 10.3091i −0.520025 + 0.900710i 0.479704 + 0.877431i \(0.340744\pi\)
−0.999729 + 0.0232796i \(0.992589\pi\)
\(132\) 0 0
\(133\) 10.6013 5.52826i 0.919253 0.479361i
\(134\) −0.188503 + 0.326496i −0.0162842 + 0.0282050i
\(135\) 0 0
\(136\) −0.545737 −0.0467966
\(137\) −13.5285 −1.15581 −0.577907 0.816102i \(-0.696130\pi\)
−0.577907 + 0.816102i \(0.696130\pi\)
\(138\) 0 0
\(139\) −10.9150 + 18.9053i −0.925796 + 1.60353i −0.135521 + 0.990774i \(0.543271\pi\)
−0.790275 + 0.612752i \(0.790062\pi\)
\(140\) 4.66186 + 2.96529i 0.393999 + 0.250613i
\(141\) 0 0
\(142\) −1.99849 + 3.46149i −0.167710 + 0.290481i
\(143\) 11.0233 16.5944i 0.921818 1.38769i
\(144\) 0 0
\(145\) 0.616751 0.0512184
\(146\) 4.33173 + 7.50277i 0.358496 + 0.620934i
\(147\) 0 0
\(148\) −2.14042 −0.175941
\(149\) 3.83204 + 6.63729i 0.313933 + 0.543748i 0.979210 0.202848i \(-0.0650199\pi\)
−0.665277 + 0.746597i \(0.731687\pi\)
\(150\) 0 0
\(151\) −1.87363 3.24522i −0.152474 0.264092i 0.779663 0.626200i \(-0.215391\pi\)
−0.932136 + 0.362108i \(0.882057\pi\)
\(152\) 6.91626 + 11.9793i 0.560983 + 0.971650i
\(153\) 0 0
\(154\) 15.1290 + 9.62319i 1.21913 + 0.775459i
\(155\) 35.3454 2.83901
\(156\) 0 0
\(157\) 1.63089 + 2.82478i 0.130159 + 0.225442i 0.923738 0.383026i \(-0.125118\pi\)
−0.793579 + 0.608467i \(0.791785\pi\)
\(158\) 2.82967 4.90113i 0.225116 0.389913i
\(159\) 0 0
\(160\) −5.75734 + 9.97201i −0.455158 + 0.788357i
\(161\) −0.123416 + 2.87341i −0.00972653 + 0.226456i
\(162\) 0 0
\(163\) 5.22544 + 9.05073i 0.409288 + 0.708908i 0.994810 0.101749i \(-0.0324438\pi\)
−0.585522 + 0.810656i \(0.699110\pi\)
\(164\) 0.387787 + 0.671666i 0.0302810 + 0.0524483i
\(165\) 0 0
\(166\) −10.8564 −0.842618
\(167\) −5.58474 9.67305i −0.432160 0.748523i 0.564899 0.825160i \(-0.308915\pi\)
−0.997059 + 0.0766369i \(0.975582\pi\)
\(168\) 0 0
\(169\) 12.8978 + 1.62723i 0.992135 + 0.125171i
\(170\) 0.460663 0.797891i 0.0353312 0.0611955i
\(171\) 0 0
\(172\) 0.826502 1.43154i 0.0630202 0.109154i
\(173\) −6.38332 11.0562i −0.485315 0.840590i 0.514543 0.857465i \(-0.327962\pi\)
−0.999858 + 0.0168746i \(0.994628\pi\)
\(174\) 0 0
\(175\) −29.9134 + 15.5989i −2.26124 + 1.17916i
\(176\) −7.63343 + 13.2215i −0.575391 + 0.996607i
\(177\) 0 0
\(178\) 16.1864 1.21323
\(179\) −6.27632 + 10.8709i −0.469114 + 0.812529i −0.999377 0.0353041i \(-0.988760\pi\)
0.530263 + 0.847833i \(0.322093\pi\)
\(180\) 0 0
\(181\) 13.6821 1.01698 0.508491 0.861067i \(-0.330204\pi\)
0.508491 + 0.861067i \(0.330204\pi\)
\(182\) −1.23412 + 11.6350i −0.0914794 + 0.862443i
\(183\) 0 0
\(184\) −3.32741 −0.245300
\(185\) 9.09723 15.7569i 0.668842 1.15847i
\(186\) 0 0
\(187\) −0.492558 + 0.853136i −0.0360194 + 0.0623875i
\(188\) 0.315457 0.546387i 0.0230070 0.0398494i
\(189\) 0 0
\(190\) −23.3524 −1.69416
\(191\) 12.2068 + 21.1428i 0.883252 + 1.52984i 0.847705 + 0.530469i \(0.177984\pi\)
0.0355470 + 0.999368i \(0.488683\pi\)
\(192\) 0 0
\(193\) 6.25469 10.8334i 0.450223 0.779808i −0.548177 0.836362i \(-0.684678\pi\)
0.998400 + 0.0565540i \(0.0180113\pi\)
\(194\) −1.44115 + 2.49614i −0.103468 + 0.179213i
\(195\) 0 0
\(196\) 3.45675 + 0.297491i 0.246911 + 0.0212493i
\(197\) 9.75853 + 16.9023i 0.695266 + 1.20424i 0.970091 + 0.242742i \(0.0780469\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(198\) 0 0
\(199\) −4.78770 −0.339391 −0.169695 0.985497i \(-0.554278\pi\)
−0.169695 + 0.985497i \(0.554278\pi\)
\(200\) −19.5153 33.8016i −1.37994 2.39013i
\(201\) 0 0
\(202\) −6.21828 + 10.7704i −0.437517 + 0.757801i
\(203\) 0.343411 0.179078i 0.0241028 0.0125688i
\(204\) 0 0
\(205\) −6.59270 −0.460454
\(206\) 6.15161 10.6549i 0.428603 0.742362i
\(207\) 0 0
\(208\) −9.94268 0.624726i −0.689401 0.0433170i
\(209\) 24.9692 1.72716
\(210\) 0 0
\(211\) −2.28135 3.95141i −0.157054 0.272026i 0.776751 0.629808i \(-0.216866\pi\)
−0.933805 + 0.357782i \(0.883533\pi\)
\(212\) −1.95250 3.38183i −0.134098 0.232265i
\(213\) 0 0
\(214\) 16.9899 1.16141
\(215\) 7.02562 + 12.1687i 0.479143 + 0.829900i
\(216\) 0 0
\(217\) 19.6806 10.2628i 1.33600 0.696683i
\(218\) −0.577972 1.00108i −0.0391452 0.0678015i
\(219\) 0 0
\(220\) 5.76922 + 9.99258i 0.388961 + 0.673700i
\(221\) −0.641566 0.0403114i −0.0431564 0.00271164i
\(222\) 0 0
\(223\) −3.76290 6.51754i −0.251983 0.436447i 0.712089 0.702089i \(-0.247749\pi\)
−0.964072 + 0.265643i \(0.914416\pi\)
\(224\) −0.310286 + 7.22417i −0.0207318 + 0.482685i
\(225\) 0 0
\(226\) 3.51143 6.08198i 0.233577 0.404567i
\(227\) 3.68109 0.244322 0.122161 0.992510i \(-0.461018\pi\)
0.122161 + 0.992510i \(0.461018\pi\)
\(228\) 0 0
\(229\) −2.35083 + 4.07176i −0.155347 + 0.269069i −0.933185 0.359395i \(-0.882983\pi\)
0.777838 + 0.628465i \(0.216316\pi\)
\(230\) 2.80871 4.86482i 0.185201 0.320777i
\(231\) 0 0
\(232\) 0.224040 + 0.388048i 0.0147089 + 0.0254766i
\(233\) −1.20491 + 2.08697i −0.0789365 + 0.136722i −0.902791 0.430079i \(-0.858486\pi\)
0.823855 + 0.566801i \(0.191819\pi\)
\(234\) 0 0
\(235\) 2.68152 + 4.64452i 0.174923 + 0.302975i
\(236\) −1.00180 −0.0652114
\(237\) 0 0
\(238\) 0.0248269 0.578028i 0.00160929 0.0374680i
\(239\) −7.96050 −0.514922 −0.257461 0.966289i \(-0.582886\pi\)
−0.257461 + 0.966289i \(0.582886\pi\)
\(240\) 0 0
\(241\) 29.8755 1.92445 0.962225 0.272254i \(-0.0877691\pi\)
0.962225 + 0.272254i \(0.0877691\pi\)
\(242\) 11.9769 + 20.7445i 0.769902 + 1.33351i
\(243\) 0 0
\(244\) −0.933197 1.61634i −0.0597418 0.103476i
\(245\) −16.8819 + 24.1828i −1.07855 + 1.54498i
\(246\) 0 0
\(247\) 7.24586 + 14.5937i 0.461043 + 0.928575i
\(248\) 12.8395 + 22.2387i 0.815309 + 1.41216i
\(249\) 0 0
\(250\) 40.0546 2.53327
\(251\) −11.1062 + 19.2366i −0.701019 + 1.21420i 0.267090 + 0.963672i \(0.413938\pi\)
−0.968109 + 0.250529i \(0.919396\pi\)
\(252\) 0 0
\(253\) −3.00317 + 5.20165i −0.188808 + 0.327025i
\(254\) −8.05385 13.9497i −0.505344 0.875281i
\(255\) 0 0
\(256\) −11.1046 −0.694037
\(257\) 3.23354 0.201703 0.100851 0.994902i \(-0.467843\pi\)
0.100851 + 0.994902i \(0.467843\pi\)
\(258\) 0 0
\(259\) 0.490285 11.4150i 0.0304649 0.709293i
\(260\) −4.16616 + 6.27168i −0.258374 + 0.388953i
\(261\) 0 0
\(262\) 7.30020 12.6443i 0.451008 0.781169i
\(263\) 3.74123 6.48000i 0.230694 0.399574i −0.727318 0.686300i \(-0.759234\pi\)
0.958013 + 0.286726i \(0.0925670\pi\)
\(264\) 0 0
\(265\) 33.1942 2.03910
\(266\) −13.0028 + 6.78053i −0.797251 + 0.415741i
\(267\) 0 0
\(268\) −0.0761754 + 0.131940i −0.00465316 + 0.00805950i
\(269\) 3.03178 0.184851 0.0924253 0.995720i \(-0.470538\pi\)
0.0924253 + 0.995720i \(0.470538\pi\)
\(270\) 0 0
\(271\) −21.6160 −1.31308 −0.656540 0.754291i \(-0.727981\pi\)
−0.656540 + 0.754291i \(0.727981\pi\)
\(272\) 0.492621 0.0298695
\(273\) 0 0
\(274\) 16.5929 1.00242
\(275\) −70.4548 −4.24858
\(276\) 0 0
\(277\) −9.50681 −0.571209 −0.285604 0.958348i \(-0.592194\pi\)
−0.285604 + 0.958348i \(0.592194\pi\)
\(278\) 13.3874 23.1877i 0.802926 1.39071i
\(279\) 0 0
\(280\) −28.7902 18.3127i −1.72054 1.09439i
\(281\) −31.6740 −1.88951 −0.944757 0.327771i \(-0.893703\pi\)
−0.944757 + 0.327771i \(0.893703\pi\)
\(282\) 0 0
\(283\) 7.25720 12.5698i 0.431396 0.747199i −0.565598 0.824681i \(-0.691355\pi\)
0.996994 + 0.0774816i \(0.0246879\pi\)
\(284\) −0.807605 + 1.39881i −0.0479225 + 0.0830043i
\(285\) 0 0
\(286\) −13.5203 + 20.3534i −0.799475 + 1.20352i
\(287\) −3.67086 + 1.91424i −0.216684 + 0.112994i
\(288\) 0 0
\(289\) −16.9682 −0.998130
\(290\) −0.756458 −0.0444208
\(291\) 0 0
\(292\) 1.75048 + 3.03193i 0.102439 + 0.177430i
\(293\) 10.3725 17.9658i 0.605970 1.04957i −0.385927 0.922529i \(-0.626118\pi\)
0.991897 0.127042i \(-0.0405483\pi\)
\(294\) 0 0
\(295\) 4.25785 7.37481i 0.247901 0.429378i
\(296\) 13.2186 0.768314
\(297\) 0 0
\(298\) −4.70008 8.14078i −0.272268 0.471583i
\(299\) −3.91169 0.245782i −0.226219 0.0142140i
\(300\) 0 0
\(301\) 7.44519 + 4.73570i 0.429134 + 0.272961i
\(302\) 2.29804 + 3.98033i 0.132237 + 0.229042i
\(303\) 0 0
\(304\) −6.24310 10.8134i −0.358067 0.620189i
\(305\) 15.8651 0.908436
\(306\) 0 0
\(307\) 13.9276 0.794892 0.397446 0.917625i \(-0.369897\pi\)
0.397446 + 0.917625i \(0.369897\pi\)
\(308\) 6.11376 + 3.88881i 0.348364 + 0.221585i
\(309\) 0 0
\(310\) −43.3518 −2.46222
\(311\) 2.28996 + 3.96633i 0.129852 + 0.224910i 0.923619 0.383312i \(-0.125216\pi\)
−0.793767 + 0.608222i \(0.791883\pi\)
\(312\) 0 0
\(313\) 6.75197 11.6948i 0.381644 0.661026i −0.609654 0.792668i \(-0.708691\pi\)
0.991297 + 0.131642i \(0.0420248\pi\)
\(314\) −2.00032 3.46465i −0.112884 0.195521i
\(315\) 0 0
\(316\) 1.14349 1.98059i 0.0643264 0.111417i
\(317\) −2.86564 + 4.96343i −0.160950 + 0.278774i −0.935210 0.354094i \(-0.884789\pi\)
0.774259 + 0.632868i \(0.218123\pi\)
\(318\) 0 0
\(319\) 0.808834 0.0452860
\(320\) 18.7028 32.3941i 1.04552 1.81089i
\(321\) 0 0
\(322\) 0.151372 3.52429i 0.00843564 0.196401i
\(323\) −0.402845 0.697749i −0.0224149 0.0388238i
\(324\) 0 0
\(325\) −20.4454 41.1785i −1.13411 2.28417i
\(326\) −6.40911 11.1009i −0.354968 0.614822i
\(327\) 0 0
\(328\) −2.39485 4.14801i −0.132234 0.229035i
\(329\) 2.84166 + 1.80751i 0.156666 + 0.0996511i
\(330\) 0 0
\(331\) 12.2592 + 21.2335i 0.673824 + 1.16710i 0.976811 + 0.214103i \(0.0686828\pi\)
−0.302987 + 0.952995i \(0.597984\pi\)
\(332\) −4.38715 −0.240776
\(333\) 0 0
\(334\) 6.84980 + 11.8642i 0.374804 + 0.649180i
\(335\) −0.647524 1.12154i −0.0353780 0.0612765i
\(336\) 0 0
\(337\) 23.7122 1.29168 0.645842 0.763471i \(-0.276506\pi\)
0.645842 + 0.763471i \(0.276506\pi\)
\(338\) −15.8194 1.99583i −0.860460 0.108559i
\(339\) 0 0
\(340\) 0.186157 0.322434i 0.0100958 0.0174864i
\(341\) 46.3534 2.51018
\(342\) 0 0
\(343\) −2.37834 + 18.3669i −0.128418 + 0.991720i
\(344\) −5.10422 + 8.84078i −0.275201 + 0.476663i
\(345\) 0 0
\(346\) 7.82928 + 13.5607i 0.420905 + 0.729028i
\(347\) 2.18748 0.117430 0.0587150 0.998275i \(-0.481300\pi\)
0.0587150 + 0.998275i \(0.481300\pi\)
\(348\) 0 0
\(349\) −14.2613 24.7014i −0.763392 1.32223i −0.941092 0.338149i \(-0.890199\pi\)
0.177700 0.984085i \(-0.443134\pi\)
\(350\) 36.6894 19.1324i 1.96113 1.02267i
\(351\) 0 0
\(352\) −7.55042 + 13.0777i −0.402439 + 0.697045i
\(353\) 5.14324 8.90835i 0.273747 0.474143i −0.696071 0.717973i \(-0.745070\pi\)
0.969818 + 0.243829i \(0.0784036\pi\)
\(354\) 0 0
\(355\) −6.86499 11.8905i −0.364356 0.631083i
\(356\) 6.54107 0.346676
\(357\) 0 0
\(358\) 7.69804 13.3334i 0.406854 0.704691i
\(359\) −0.247010 + 0.427834i −0.0130367 + 0.0225802i −0.872470 0.488667i \(-0.837483\pi\)
0.859433 + 0.511248i \(0.170816\pi\)
\(360\) 0 0
\(361\) −0.710719 + 1.23100i −0.0374063 + 0.0647896i
\(362\) −16.7814 −0.882009
\(363\) 0 0
\(364\) −0.498719 + 4.70179i −0.0261400 + 0.246441i
\(365\) −29.7597 −1.55770
\(366\) 0 0
\(367\) 10.4744 18.1422i 0.546759 0.947014i −0.451735 0.892152i \(-0.649195\pi\)
0.998494 0.0548622i \(-0.0174719\pi\)
\(368\) 3.00356 0.156571
\(369\) 0 0
\(370\) −11.1579 + 19.3261i −0.580074 + 1.00472i
\(371\) 18.4828 9.63817i 0.959577 0.500389i
\(372\) 0 0
\(373\) −14.2085 24.6099i −0.735689 1.27425i −0.954420 0.298466i \(-0.903525\pi\)
0.218731 0.975785i \(-0.429808\pi\)
\(374\) 0.604133 1.04639i 0.0312390 0.0541075i
\(375\) 0 0
\(376\) −1.94817 + 3.37432i −0.100469 + 0.174017i
\(377\) 0.234717 + 0.472737i 0.0120885 + 0.0243472i
\(378\) 0 0
\(379\) 17.5547 + 30.4056i 0.901724 + 1.56183i 0.825255 + 0.564760i \(0.191031\pi\)
0.0764691 + 0.997072i \(0.475635\pi\)
\(380\) −9.43687 −0.484101
\(381\) 0 0
\(382\) −14.9719 25.9320i −0.766028 1.32680i
\(383\) −18.1226 31.3892i −0.926020 1.60391i −0.789913 0.613219i \(-0.789874\pi\)
−0.136107 0.990694i \(-0.543459\pi\)
\(384\) 0 0
\(385\) −54.6126 + 28.4787i −2.78331 + 1.45141i
\(386\) −7.67151 + 13.2874i −0.390470 + 0.676313i
\(387\) 0 0
\(388\) −0.582380 + 1.00871i −0.0295658 + 0.0512095i
\(389\) −18.5269 32.0895i −0.939349 1.62700i −0.766688 0.642020i \(-0.778097\pi\)
−0.172661 0.984981i \(-0.555237\pi\)
\(390\) 0 0
\(391\) 0.193809 0.00980134
\(392\) −21.3478 1.83721i −1.07823 0.0927932i
\(393\) 0 0
\(394\) −11.9690 20.7310i −0.602991 1.04441i
\(395\) 9.72017 + 16.8358i 0.489075 + 0.847102i
\(396\) 0 0
\(397\) 15.4921 + 26.8331i 0.777527 + 1.34672i 0.933363 + 0.358933i \(0.116860\pi\)
−0.155836 + 0.987783i \(0.549807\pi\)
\(398\) 5.87221 0.294347
\(399\) 0 0
\(400\) 17.6159 + 30.5117i 0.880797 + 1.52558i
\(401\) 30.2120 1.50872 0.754359 0.656463i \(-0.227948\pi\)
0.754359 + 0.656463i \(0.227948\pi\)
\(402\) 0 0
\(403\) 13.4514 + 27.0921i 0.670061 + 1.34955i
\(404\) −2.51286 + 4.35239i −0.125019 + 0.216540i
\(405\) 0 0
\(406\) −0.421201 + 0.219643i −0.0209039 + 0.0109007i
\(407\) 11.9305 20.6642i 0.591373 1.02429i
\(408\) 0 0
\(409\) −13.8598 −0.685321 −0.342661 0.939459i \(-0.611328\pi\)
−0.342661 + 0.939459i \(0.611328\pi\)
\(410\) 8.08609 0.399343
\(411\) 0 0
\(412\) 2.48591 4.30573i 0.122472 0.212128i
\(413\) 0.229472 5.34264i 0.0112916 0.262894i
\(414\) 0 0
\(415\) 18.6463 32.2964i 0.915311 1.58537i
\(416\) −9.83457 0.617933i −0.482179 0.0302967i
\(417\) 0 0
\(418\) −30.6253 −1.49793
\(419\) 10.3550 + 17.9355i 0.505877 + 0.876204i 0.999977 + 0.00679920i \(0.00216427\pi\)
−0.494100 + 0.869405i \(0.664502\pi\)
\(420\) 0 0
\(421\) −37.6001 −1.83252 −0.916259 0.400586i \(-0.868806\pi\)
−0.916259 + 0.400586i \(0.868806\pi\)
\(422\) 2.79812 + 4.84648i 0.136210 + 0.235923i
\(423\) 0 0
\(424\) 12.0581 + 20.8852i 0.585591 + 1.01427i
\(425\) 1.13669 + 1.96881i 0.0551378 + 0.0955014i
\(426\) 0 0
\(427\) 8.83383 4.60656i 0.427499 0.222927i
\(428\) 6.86575 0.331869
\(429\) 0 0
\(430\) −8.61707 14.9252i −0.415552 0.719757i
\(431\) −12.4088 + 21.4927i −0.597712 + 1.03527i 0.395446 + 0.918489i \(0.370590\pi\)
−0.993158 + 0.116778i \(0.962743\pi\)
\(432\) 0 0
\(433\) 12.3713 21.4277i 0.594526 1.02975i −0.399087 0.916913i \(-0.630673\pi\)
0.993614 0.112837i \(-0.0359937\pi\)
\(434\) −24.1386 + 12.5875i −1.15869 + 0.604220i
\(435\) 0 0
\(436\) −0.233563 0.404543i −0.0111856 0.0193741i
\(437\) −2.45619 4.25424i −0.117495 0.203508i
\(438\) 0 0
\(439\) −28.0121 −1.33694 −0.668472 0.743737i \(-0.733051\pi\)
−0.668472 + 0.743737i \(0.733051\pi\)
\(440\) −35.6289 61.7112i −1.69854 2.94196i
\(441\) 0 0
\(442\) 0.786894 + 0.0494427i 0.0374287 + 0.00235175i
\(443\) 14.5799 25.2531i 0.692711 1.19981i −0.278235 0.960513i \(-0.589749\pi\)
0.970946 0.239298i \(-0.0769173\pi\)
\(444\) 0 0
\(445\) −27.8009 + 48.1526i −1.31789 + 2.28265i
\(446\) 4.61528 + 7.99390i 0.218540 + 0.378522i
\(447\) 0 0
\(448\) 1.00797 23.4678i 0.0476219 1.10875i
\(449\) 12.6725 21.9494i 0.598052 1.03586i −0.395056 0.918657i \(-0.629275\pi\)
0.993108 0.117200i \(-0.0373918\pi\)
\(450\) 0 0
\(451\) −8.64595 −0.407122
\(452\) 1.41900 2.45778i 0.0667440 0.115604i
\(453\) 0 0
\(454\) −4.51493 −0.211896
\(455\) −32.4930 23.6550i −1.52329 1.10896i
\(456\) 0 0
\(457\) 12.7325 0.595599 0.297799 0.954628i \(-0.403747\pi\)
0.297799 + 0.954628i \(0.403747\pi\)
\(458\) 2.88334 4.99410i 0.134730 0.233359i
\(459\) 0 0
\(460\) 1.13502 1.96591i 0.0529206 0.0916611i
\(461\) 0.654119 1.13297i 0.0304653 0.0527675i −0.850391 0.526152i \(-0.823634\pi\)
0.880856 + 0.473384i \(0.156968\pi\)
\(462\) 0 0
\(463\) 17.5365 0.814992 0.407496 0.913207i \(-0.366402\pi\)
0.407496 + 0.913207i \(0.366402\pi\)
\(464\) −0.202234 0.350280i −0.00938849 0.0162613i
\(465\) 0 0
\(466\) 1.47785 2.55971i 0.0684601 0.118576i
\(467\) 21.5106 37.2575i 0.995392 1.72407i 0.414657 0.909978i \(-0.363902\pi\)
0.580735 0.814092i \(-0.302765\pi\)
\(468\) 0 0
\(469\) −0.686194 0.436471i −0.0316855 0.0201543i
\(470\) −3.28894 5.69661i −0.151707 0.262765i
\(471\) 0 0
\(472\) 6.18679 0.284770
\(473\) 9.21370 + 15.9586i 0.423646 + 0.733777i
\(474\) 0 0
\(475\) 28.8112 49.9025i 1.32195 2.28968i
\(476\) 0.0100327 0.233586i 0.000459850 0.0107064i
\(477\) 0 0
\(478\) 9.76372 0.446582
\(479\) 4.72689 8.18722i 0.215977 0.374083i −0.737597 0.675241i \(-0.764040\pi\)
0.953574 + 0.301157i \(0.0973730\pi\)
\(480\) 0 0
\(481\) 15.5397 + 0.976402i 0.708549 + 0.0445201i
\(482\) −36.6429 −1.66904
\(483\) 0 0
\(484\) 4.83994 + 8.38303i 0.219997 + 0.381047i
\(485\) −4.95048 8.57448i −0.224790 0.389347i
\(486\) 0 0
\(487\) 7.86312 0.356312 0.178156 0.984002i \(-0.442987\pi\)
0.178156 + 0.984002i \(0.442987\pi\)
\(488\) 5.76314 + 9.98205i 0.260885 + 0.451866i
\(489\) 0 0
\(490\) 20.7060 29.6607i 0.935403 1.33993i
\(491\) 14.7190 + 25.4941i 0.664261 + 1.15053i 0.979485 + 0.201516i \(0.0645869\pi\)
−0.315224 + 0.949017i \(0.602080\pi\)
\(492\) 0 0
\(493\) −0.0130495 0.0226023i −0.000587718 0.00101796i
\(494\) −8.88720 17.8995i −0.399854 0.805336i
\(495\) 0 0
\(496\) −11.5898 20.0742i −0.520399 0.901357i
\(497\) −7.27497 4.62742i −0.326327 0.207568i
\(498\) 0 0
\(499\) −4.14699 + 7.18281i −0.185645 + 0.321547i −0.943794 0.330535i \(-0.892771\pi\)
0.758149 + 0.652082i \(0.226104\pi\)
\(500\) 16.1864 0.723876
\(501\) 0 0
\(502\) 13.6220 23.5940i 0.607981 1.05305i
\(503\) −1.86348 + 3.22764i −0.0830885 + 0.143913i −0.904575 0.426314i \(-0.859812\pi\)
0.821487 + 0.570228i \(0.193145\pi\)
\(504\) 0 0
\(505\) −21.3603 36.9972i −0.950523 1.64635i
\(506\) 3.68346 6.37993i 0.163750 0.283623i
\(507\) 0 0
\(508\) −3.25462 5.63717i −0.144401 0.250109i
\(509\) 1.27399 0.0564685 0.0282342 0.999601i \(-0.491012\pi\)
0.0282342 + 0.999601i \(0.491012\pi\)
\(510\) 0 0
\(511\) −16.5704 + 8.64095i −0.733033 + 0.382253i
\(512\) 24.4665 1.08128
\(513\) 0 0
\(514\) −3.96601 −0.174933
\(515\) 21.1313 + 36.6005i 0.931157 + 1.61281i
\(516\) 0 0
\(517\) 3.51666 + 6.09103i 0.154662 + 0.267883i
\(518\) −0.601345 + 14.0007i −0.0264216 + 0.615156i
\(519\) 0 0
\(520\) 25.7289 38.7320i 1.12829 1.69851i
\(521\) −3.53913 6.12995i −0.155052 0.268558i 0.778026 0.628232i \(-0.216221\pi\)
−0.933078 + 0.359674i \(0.882888\pi\)
\(522\) 0 0
\(523\) 12.2461 0.535486 0.267743 0.963490i \(-0.413722\pi\)
0.267743 + 0.963490i \(0.413722\pi\)
\(524\) 2.95007 5.10967i 0.128874 0.223217i
\(525\) 0 0
\(526\) −4.58870 + 7.94786i −0.200077 + 0.346543i
\(527\) −0.747851 1.29532i −0.0325769 0.0564249i
\(528\) 0 0
\(529\) −21.8183 −0.948623
\(530\) −40.7134 −1.76848
\(531\) 0 0
\(532\) −5.25452 + 2.74006i −0.227812 + 0.118797i
\(533\) −2.50898 5.05328i −0.108676 0.218882i
\(534\) 0 0
\(535\) −29.1809 + 50.5428i −1.26160 + 2.18516i
\(536\) 0.470436 0.814820i 0.0203198 0.0351949i
\(537\) 0 0
\(538\) −3.71854 −0.160317
\(539\) −22.1397 + 31.7143i −0.953623 + 1.36603i
\(540\) 0 0
\(541\) 12.5429 21.7249i 0.539261 0.934027i −0.459683 0.888083i \(-0.652037\pi\)
0.998944 0.0459441i \(-0.0146296\pi\)
\(542\) 26.5125 1.13881
\(543\) 0 0
\(544\) 0.487264 0.0208913
\(545\) 3.97077 0.170089
\(546\) 0 0
\(547\) −1.32955 −0.0568473 −0.0284236 0.999596i \(-0.509049\pi\)
−0.0284236 + 0.999596i \(0.509049\pi\)
\(548\) 6.70534 0.286438
\(549\) 0 0
\(550\) 86.4143 3.68472
\(551\) −0.330758 + 0.572890i −0.0140908 + 0.0244059i
\(552\) 0 0
\(553\) 10.3007 + 6.55199i 0.438029 + 0.278619i
\(554\) 11.6603 0.495399
\(555\) 0 0
\(556\) 5.40997 9.37035i 0.229434 0.397391i
\(557\) −3.96066 + 6.86007i −0.167819 + 0.290670i −0.937653 0.347574i \(-0.887006\pi\)
0.769834 + 0.638244i \(0.220339\pi\)
\(558\) 0 0
\(559\) −6.65354 + 10.0162i −0.281415 + 0.423638i
\(560\) 25.9881 + 16.5304i 1.09820 + 0.698535i
\(561\) 0 0
\(562\) 38.8489 1.63874
\(563\) −5.75094 −0.242373 −0.121187 0.992630i \(-0.538670\pi\)
−0.121187 + 0.992630i \(0.538670\pi\)
\(564\) 0 0
\(565\) 12.0621 + 20.8921i 0.507456 + 0.878939i
\(566\) −8.90111 + 15.4172i −0.374141 + 0.648032i
\(567\) 0 0
\(568\) 4.98752 8.63864i 0.209272 0.362469i
\(569\) 6.44298 0.270104 0.135052 0.990839i \(-0.456880\pi\)
0.135052 + 0.990839i \(0.456880\pi\)
\(570\) 0 0
\(571\) −16.3076 28.2456i −0.682451 1.18204i −0.974231 0.225555i \(-0.927581\pi\)
0.291779 0.956486i \(-0.405753\pi\)
\(572\) −5.46368 + 8.22495i −0.228448 + 0.343903i
\(573\) 0 0
\(574\) 4.50239 2.34785i 0.187926 0.0979975i
\(575\) 6.93053 + 12.0040i 0.289023 + 0.500603i
\(576\) 0 0
\(577\) −10.1701 17.6152i −0.423388 0.733330i 0.572880 0.819639i \(-0.305826\pi\)
−0.996268 + 0.0863089i \(0.972493\pi\)
\(578\) 20.8119 0.865660
\(579\) 0 0
\(580\) −0.305691 −0.0126931
\(581\) 1.00492 23.3969i 0.0416912 0.970668i
\(582\) 0 0
\(583\) 43.5323 1.80292
\(584\) −10.8105 18.7243i −0.447340 0.774816i
\(585\) 0 0
\(586\) −12.7221 + 22.0354i −0.525547 + 0.910274i
\(587\) 14.8490 + 25.7192i 0.612883 + 1.06154i 0.990752 + 0.135685i \(0.0433235\pi\)
−0.377869 + 0.925859i \(0.623343\pi\)
\(588\) 0 0
\(589\) −18.9554 + 32.8317i −0.781044 + 1.35281i
\(590\) −5.22234 + 9.04535i −0.215000 + 0.372391i
\(591\) 0 0
\(592\) −11.9320 −0.490403
\(593\) −8.00200 + 13.8599i −0.328603 + 0.569157i −0.982235 0.187656i \(-0.939911\pi\)
0.653632 + 0.756813i \(0.273244\pi\)
\(594\) 0 0
\(595\) 1.67692 + 1.06665i 0.0687470 + 0.0437282i
\(596\) −1.89934 3.28975i −0.0777999 0.134753i
\(597\) 0 0
\(598\) 4.79777 + 0.301457i 0.196195 + 0.0123275i
\(599\) 8.13858 + 14.0964i 0.332533 + 0.575965i 0.983008 0.183563i \(-0.0587633\pi\)
−0.650475 + 0.759528i \(0.725430\pi\)
\(600\) 0 0
\(601\) 21.2956 + 36.8850i 0.868664 + 1.50457i 0.863362 + 0.504585i \(0.168354\pi\)
0.00530223 + 0.999986i \(0.498312\pi\)
\(602\) −9.13168 5.80843i −0.372180 0.236734i
\(603\) 0 0
\(604\) 0.928657 + 1.60848i 0.0377865 + 0.0654481i
\(605\) −82.2832 −3.34529
\(606\) 0 0
\(607\) 9.31348 + 16.1314i 0.378022 + 0.654754i 0.990774 0.135521i \(-0.0432709\pi\)
−0.612752 + 0.790275i \(0.709938\pi\)
\(608\) −6.17522 10.6958i −0.250438 0.433772i
\(609\) 0 0
\(610\) −19.4589 −0.787869
\(611\) −2.53950 + 3.82293i −0.102737 + 0.154659i
\(612\) 0 0
\(613\) −10.1790 + 17.6305i −0.411126 + 0.712091i −0.995013 0.0997438i \(-0.968198\pi\)
0.583887 + 0.811835i \(0.301531\pi\)
\(614\) −17.0825 −0.689395
\(615\) 0 0
\(616\) −37.7567 24.0161i −1.52126 0.967636i
\(617\) −15.7193 + 27.2266i −0.632835 + 1.09610i 0.354134 + 0.935195i \(0.384776\pi\)
−0.986969 + 0.160908i \(0.948558\pi\)
\(618\) 0 0
\(619\) 4.84802 + 8.39703i 0.194859 + 0.337505i 0.946854 0.321663i \(-0.104242\pi\)
−0.751996 + 0.659168i \(0.770909\pi\)
\(620\) −17.5188 −0.703573
\(621\) 0 0
\(622\) −2.80869 4.86479i −0.112618 0.195060i
\(623\) −1.49830 + 34.8839i −0.0600281 + 1.39759i
\(624\) 0 0
\(625\) −36.9177 + 63.9434i −1.47671 + 2.55773i
\(626\) −8.28143 + 14.3439i −0.330993 + 0.573296i
\(627\) 0 0
\(628\) −0.808343 1.40009i −0.0322564 0.0558697i
\(629\) −0.769931 −0.0306992
\(630\) 0 0
\(631\) −9.65738 + 16.7271i −0.384454 + 0.665895i −0.991693 0.128625i \(-0.958944\pi\)
0.607239 + 0.794519i \(0.292277\pi\)
\(632\) −7.06186 + 12.2315i −0.280906 + 0.486543i
\(633\) 0 0
\(634\) 3.51477 6.08776i 0.139589 0.241776i
\(635\) 55.3314 2.19576
\(636\) 0 0
\(637\) −24.9607 3.73670i −0.988979 0.148053i
\(638\) −0.992052 −0.0392757
\(639\) 0 0
\(640\) −11.4246 + 19.7881i −0.451599 + 0.782192i
\(641\) −18.4537 −0.728878 −0.364439 0.931227i \(-0.618739\pi\)
−0.364439 + 0.931227i \(0.618739\pi\)
\(642\) 0 0
\(643\) 10.8340 18.7650i 0.427250 0.740019i −0.569378 0.822076i \(-0.692816\pi\)
0.996628 + 0.0820574i \(0.0261491\pi\)
\(644\) 0.0611706 1.42419i 0.00241046 0.0561211i
\(645\) 0 0
\(646\) 0.494098 + 0.855804i 0.0194400 + 0.0336711i
\(647\) −10.8685 + 18.8249i −0.427287 + 0.740082i −0.996631 0.0820171i \(-0.973864\pi\)
0.569344 + 0.822099i \(0.307197\pi\)
\(648\) 0 0
\(649\) 5.58392 9.67163i 0.219188 0.379645i
\(650\) 25.0767 + 50.5063i 0.983588 + 1.98102i
\(651\) 0 0
\(652\) −2.58997 4.48596i −0.101431 0.175684i
\(653\) 22.5832 0.883750 0.441875 0.897077i \(-0.354314\pi\)
0.441875 + 0.897077i \(0.354314\pi\)
\(654\) 0 0
\(655\) 25.0768 + 43.4344i 0.979834 + 1.69712i
\(656\) 2.16176 + 3.74428i 0.0844027 + 0.146190i
\(657\) 0 0
\(658\) −3.48535 2.21694i −0.135873 0.0864255i
\(659\) −1.42864 + 2.47447i −0.0556517 + 0.0963916i −0.892509 0.451029i \(-0.851057\pi\)
0.836857 + 0.547421i \(0.184390\pi\)
\(660\) 0 0
\(661\) −4.81655 + 8.34251i −0.187342 + 0.324486i −0.944363 0.328904i \(-0.893321\pi\)
0.757021 + 0.653390i \(0.226654\pi\)
\(662\) −15.0361 26.0433i −0.584395 1.01220i
\(663\) 0 0
\(664\) 27.0937 1.05144
\(665\) 2.16162 50.3274i 0.0838239 1.95161i
\(666\) 0 0
\(667\) −0.0795638 0.137809i −0.00308072 0.00533597i
\(668\) 2.76806 + 4.79441i 0.107099 + 0.185501i
\(669\) 0 0
\(670\) 0.794201 + 1.37560i 0.0306827 + 0.0531440i
\(671\) 20.8062 0.803216
\(672\) 0 0
\(673\) 15.4999 + 26.8466i 0.597476 + 1.03486i 0.993192 + 0.116486i \(0.0371631\pi\)
−0.395716 + 0.918373i \(0.629504\pi\)
\(674\) −29.0835 −1.12025
\(675\) 0 0
\(676\) −6.39273 0.806530i −0.245874 0.0310204i
\(677\) 5.44610 9.43293i 0.209311 0.362537i −0.742187 0.670193i \(-0.766211\pi\)
0.951498 + 0.307656i \(0.0995446\pi\)
\(678\) 0 0
\(679\) −5.24612 3.33692i −0.201328 0.128059i
\(680\) −1.14965 + 1.99125i −0.0440871 + 0.0763611i
\(681\) 0 0
\(682\) −56.8535 −2.17703
\(683\) 26.5283 1.01508 0.507538 0.861629i \(-0.330556\pi\)
0.507538 + 0.861629i \(0.330556\pi\)
\(684\) 0 0
\(685\) −28.4991 + 49.3619i −1.08890 + 1.88602i
\(686\) 2.91709 22.5274i 0.111375 0.860100i
\(687\) 0 0
\(688\) 4.60743 7.98031i 0.175657 0.304246i
\(689\) 12.6327 + 25.4432i 0.481267 + 0.969308i
\(690\) 0 0
\(691\) −4.75519 −0.180896 −0.0904480 0.995901i \(-0.528830\pi\)
−0.0904480 + 0.995901i \(0.528830\pi\)
\(692\) 3.16387 + 5.47999i 0.120272 + 0.208318i
\(693\) 0 0
\(694\) −2.68299 −0.101845
\(695\) 45.9871 + 79.6519i 1.74439 + 3.02137i
\(696\) 0 0
\(697\) 0.139491 + 0.241605i 0.00528360 + 0.00915146i
\(698\) 17.4918 + 30.2967i 0.662076 + 1.14675i
\(699\) 0 0
\(700\) 14.8265 7.73153i 0.560388 0.292225i
\(701\) −19.5899 −0.739898 −0.369949 0.929052i \(-0.620625\pi\)
−0.369949 + 0.929052i \(0.620625\pi\)
\(702\) 0 0
\(703\) 9.75753 + 16.9005i 0.368012 + 0.637416i
\(704\) 24.5276 42.4831i 0.924419 1.60114i
\(705\) 0 0
\(706\) −6.30829 + 10.9263i −0.237416 + 0.411216i
\(707\) −22.6360 14.3982i −0.851314 0.541499i
\(708\) 0 0
\(709\) 8.09898 + 14.0278i 0.304164 + 0.526827i 0.977075 0.212896i \(-0.0682897\pi\)
−0.672911 + 0.739723i \(0.734956\pi\)
\(710\) 8.42005 + 14.5840i 0.315999 + 0.547326i
\(711\) 0 0
\(712\) −40.3956 −1.51389
\(713\) −4.55972 7.89767i −0.170763 0.295770i
\(714\) 0 0
\(715\) −37.3269 75.1791i −1.39595 2.81154i
\(716\) 3.11084 5.38813i 0.116257 0.201364i
\(717\) 0 0
\(718\) 0.302963 0.524747i 0.0113065 0.0195834i
\(719\) −13.8464 23.9827i −0.516384 0.894403i −0.999819 0.0190228i \(-0.993944\pi\)
0.483435 0.875380i \(-0.339389\pi\)
\(720\) 0 0
\(721\) 22.3933 + 14.2438i 0.833969 + 0.530467i
\(722\) 0.871712 1.50985i 0.0324418 0.0561908i
\(723\) 0 0
\(724\) −6.78148 −0.252032
\(725\) 0.933288 1.61650i 0.0346614 0.0600354i
\(726\) 0 0
\(727\) 29.2681 1.08549 0.542746 0.839897i \(-0.317384\pi\)
0.542746 + 0.839897i \(0.317384\pi\)
\(728\) 3.07994 29.0368i 0.114150 1.07618i
\(729\) 0 0
\(730\) 36.5009 1.35096
\(731\) 0.297301 0.514941i 0.0109961 0.0190458i
\(732\) 0 0
\(733\) 11.0284 19.1017i 0.407343 0.705538i −0.587248 0.809407i \(-0.699789\pi\)
0.994591 + 0.103869i \(0.0331222\pi\)
\(734\) −12.8471 + 22.2518i −0.474194 + 0.821328i
\(735\) 0 0
\(736\) 2.97090 0.109509
\(737\) −0.849190 1.47084i −0.0312803 0.0541791i
\(738\) 0 0
\(739\) 4.86234 8.42182i 0.178864 0.309802i −0.762628 0.646838i \(-0.776091\pi\)
0.941492 + 0.337036i \(0.109424\pi\)
\(740\) −4.50901 + 7.80984i −0.165755 + 0.287095i
\(741\) 0 0
\(742\) −22.6695 + 11.8214i −0.832223 + 0.433978i
\(743\) −18.6574 32.3156i −0.684475 1.18554i −0.973602 0.228254i \(-0.926698\pi\)
0.289127 0.957291i \(-0.406635\pi\)
\(744\) 0 0
\(745\) 32.2904 1.18303
\(746\) 17.4270 + 30.1845i 0.638049 + 1.10513i
\(747\) 0 0
\(748\) 0.244135 0.422854i 0.00892645 0.0154611i
\(749\) −1.57267 + 36.6155i −0.0574642 + 1.33790i
\(750\) 0 0
\(751\) 1.82332 0.0665340 0.0332670 0.999447i \(-0.489409\pi\)
0.0332670 + 0.999447i \(0.489409\pi\)
\(752\) 1.75855 3.04590i 0.0641278 0.111073i
\(753\) 0 0
\(754\) −0.287885 0.579822i −0.0104842 0.0211159i
\(755\) −15.7880 −0.574583
\(756\) 0 0
\(757\) −4.43646 7.68417i −0.161246 0.279286i 0.774070 0.633100i \(-0.218218\pi\)
−0.935316 + 0.353814i \(0.884885\pi\)
\(758\) −21.5312 37.2931i −0.782048 1.35455i
\(759\) 0 0
\(760\) 58.2793 2.11401
\(761\) 12.0487 + 20.8689i 0.436764 + 0.756497i 0.997438 0.0715397i \(-0.0227913\pi\)
−0.560674 + 0.828037i \(0.689458\pi\)
\(762\) 0 0
\(763\) 2.21095 1.15294i 0.0800419 0.0417393i
\(764\) −6.05025 10.4793i −0.218890 0.379129i
\(765\) 0 0
\(766\) 22.2277 + 38.4995i 0.803119 + 1.39104i
\(767\) 7.27316 + 0.456993i 0.262619 + 0.0165011i
\(768\) 0 0
\(769\) −20.3128 35.1829i −0.732499 1.26873i −0.955812 0.293979i \(-0.905020\pi\)
0.223312 0.974747i \(-0.428313\pi\)
\(770\) 66.9835 34.9297i 2.41392 1.25878i
\(771\) 0 0
\(772\) −3.10012 + 5.36956i −0.111576 + 0.193255i
\(773\) 0.0294562 0.00105947 0.000529733 1.00000i \(-0.499831\pi\)
0.000529733 1.00000i \(0.499831\pi\)
\(774\) 0 0
\(775\) 53.4858 92.6400i 1.92126 3.32773i
\(776\) 3.59660 6.22949i 0.129110 0.223626i
\(777\) 0 0
\(778\) 22.7236 + 39.3584i 0.814680 + 1.41107i
\(779\) 3.53561 6.12385i 0.126676 0.219410i
\(780\) 0 0
\(781\) −9.00304 15.5937i −0.322154 0.557987i
\(782\) −0.237711 −0.00850051
\(783\) 0 0
\(784\) 19.2701 + 1.65840i 0.688216 + 0.0592285i
\(785\) 13.7425 0.490492
\(786\) 0 0
\(787\) −45.1774 −1.61040 −0.805199 0.593004i \(-0.797942\pi\)
−0.805199 + 0.593004i \(0.797942\pi\)
\(788\) −4.83678 8.37755i −0.172303 0.298438i
\(789\) 0 0
\(790\) −11.9220 20.6495i −0.424165 0.734676i
\(791\) 12.7824 + 8.13058i 0.454491 + 0.289090i
\(792\) 0 0
\(793\) 6.03779 + 12.1606i 0.214408 + 0.431834i
\(794\) −19.0014 32.9114i −0.674335 1.16798i
\(795\) 0 0
\(796\) 2.37301 0.0841090
\(797\) 6.89239 11.9380i 0.244141 0.422864i −0.717749 0.696302i \(-0.754827\pi\)
0.961890 + 0.273438i \(0.0881607\pi\)
\(798\) 0 0
\(799\) 0.113473 0.196541i 0.00401439 0.00695313i
\(800\) 17.4244 + 30.1799i 0.616045 + 1.06702i
\(801\) 0 0
\(802\) −37.0557 −1.30848
\(803\) −39.0282 −1.37727
\(804\) 0 0
\(805\) 10.2243 + 6.50344i 0.360361 + 0.229216i
\(806\) −16.4984 33.2290i −0.581131 1.17044i
\(807\) 0 0
\(808\) 15.5186 26.8791i 0.545944 0.945602i
\(809\) −9.19880 + 15.9328i −0.323413 + 0.560167i −0.981190 0.193045i \(-0.938164\pi\)
0.657777 + 0.753213i \(0.271497\pi\)
\(810\) 0 0
\(811\) −28.7233 −1.00861 −0.504306 0.863525i \(-0.668252\pi\)
−0.504306 + 0.863525i \(0.668252\pi\)
\(812\) −0.170211 + 0.0887594i −0.00597322 + 0.00311485i
\(813\) 0 0
\(814\) −14.6330 + 25.3451i −0.512887 + 0.888346i
\(815\) 44.0317 1.54236
\(816\) 0 0
\(817\) −15.0711 −0.527271
\(818\) 16.9993 0.594366
\(819\) 0 0
\(820\) 3.26765 0.114111
\(821\) −12.1643 −0.424537 −0.212268 0.977211i \(-0.568085\pi\)
−0.212268 + 0.977211i \(0.568085\pi\)
\(822\) 0 0
\(823\) 13.2985 0.463555 0.231777 0.972769i \(-0.425546\pi\)
0.231777 + 0.972769i \(0.425546\pi\)
\(824\) −15.3522 + 26.5909i −0.534821 + 0.926336i
\(825\) 0 0
\(826\) −0.281452 + 6.55286i −0.00979297 + 0.228003i
\(827\) −39.3333 −1.36775 −0.683876 0.729598i \(-0.739707\pi\)
−0.683876 + 0.729598i \(0.739707\pi\)
\(828\) 0 0
\(829\) −2.68959 + 4.65851i −0.0934134 + 0.161797i −0.908945 0.416915i \(-0.863111\pi\)
0.815532 + 0.578712i \(0.196444\pi\)
\(830\) −22.8701 + 39.6122i −0.793832 + 1.37496i
\(831\) 0 0
\(832\) 31.9477 + 2.00736i 1.10759 + 0.0695927i
\(833\) 1.24343 + 0.107011i 0.0430823 + 0.00370770i
\(834\) 0 0
\(835\) −47.0593 −1.62856
\(836\) −12.3759 −0.428030
\(837\) 0 0
\(838\) −12.7007 21.9982i −0.438737 0.759915i
\(839\) 14.7620 25.5686i 0.509642 0.882726i −0.490295 0.871556i \(-0.663111\pi\)
0.999938 0.0111700i \(-0.00355560\pi\)
\(840\) 0 0
\(841\) 14.4893 25.0962i 0.499631 0.865385i
\(842\) 46.1173 1.58931
\(843\) 0 0
\(844\) 1.13074 + 1.95850i 0.0389217 + 0.0674144i
\(845\) 33.1078 43.6327i 1.13894 1.50101i
\(846\) 0 0
\(847\) −45.8159 + 23.8915i −1.57425 + 0.820922i
\(848\) −10.8845 18.8524i −0.373774 0.647395i
\(849\) 0 0
\(850\) −1.39418 2.41479i −0.0478200 0.0828266i
\(851\) −4.69434 −0.160920
\(852\) 0 0
\(853\) −12.4764 −0.427184 −0.213592 0.976923i \(-0.568516\pi\)
−0.213592 + 0.976923i \(0.568516\pi\)
\(854\) −10.8349 + 5.65004i −0.370762 + 0.193340i
\(855\) 0 0
\(856\) −42.4008 −1.44923
\(857\) 22.7205 + 39.3531i 0.776118 + 1.34428i 0.934164 + 0.356844i \(0.116147\pi\)
−0.158046 + 0.987432i \(0.550519\pi\)
\(858\) 0 0
\(859\) 26.2027 45.3845i 0.894026 1.54850i 0.0590202 0.998257i \(-0.481202\pi\)
0.835006 0.550241i \(-0.185464\pi\)
\(860\) −3.48222 6.03139i −0.118743 0.205669i
\(861\) 0 0
\(862\) 15.2197 26.3613i 0.518384 0.897868i
\(863\) 12.9896 22.4986i 0.442170 0.765862i −0.555680 0.831396i \(-0.687542\pi\)
0.997850 + 0.0655347i \(0.0208753\pi\)
\(864\) 0 0
\(865\) −53.7885 −1.82886
\(866\) −15.1736 + 26.2815i −0.515621 + 0.893083i
\(867\) 0 0
\(868\) −9.75460 + 5.08671i −0.331093 + 0.172654i
\(869\) 12.7474 + 22.0792i 0.432427 + 0.748986i
\(870\) 0 0
\(871\) 0.613230 0.923149i 0.0207785 0.0312797i
\(872\) 1.44241 + 2.49833i 0.0488463 + 0.0846043i
\(873\) 0 0
\(874\) 3.01256 + 5.21792i 0.101902 + 0.176499i
\(875\) −3.70766 + 86.3229i −0.125342 + 2.91825i
\(876\) 0 0
\(877\) 3.49065 + 6.04599i 0.117871 + 0.204158i 0.918924 0.394435i \(-0.129060\pi\)
−0.801053 + 0.598594i \(0.795726\pi\)
\(878\) 34.3574 1.15951
\(879\) 0 0
\(880\) 32.1612 + 55.7048i 1.08415 + 1.87781i
\(881\) 10.2063 + 17.6779i 0.343859 + 0.595582i 0.985146 0.171720i \(-0.0549323\pi\)
−0.641286 + 0.767302i \(0.721599\pi\)
\(882\) 0 0
\(883\) 2.69268 0.0906160 0.0453080 0.998973i \(-0.485573\pi\)
0.0453080 + 0.998973i \(0.485573\pi\)
\(884\) 0.317990 + 0.0199802i 0.0106952 + 0.000672007i
\(885\) 0 0
\(886\) −17.8825 + 30.9735i −0.600775 + 1.04057i
\(887\) 25.5964 0.859444 0.429722 0.902961i \(-0.358612\pi\)
0.429722 + 0.902961i \(0.358612\pi\)
\(888\) 0 0
\(889\) 30.8089 16.0659i 1.03330 0.538832i
\(890\) 34.0984 59.0602i 1.14298 1.97970i
\(891\) 0 0
\(892\) 1.86507 + 3.23039i 0.0624471 + 0.108162i
\(893\) −5.75229 −0.192493
\(894\) 0 0
\(895\) 26.4434 + 45.8014i 0.883906 + 1.53097i
\(896\) −0.615719 + 14.3354i −0.0205697 + 0.478911i
\(897\) 0 0
\(898\) −15.5431 + 26.9214i −0.518679 + 0.898379i
\(899\) −0.614026 + 1.06352i −0.0204789 + 0.0354705i
\(900\) 0 0
\(901\) −0.702335 1.21648i −0.0233982 0.0405268i
\(902\) 10.6044 0.353089
\(903\) 0 0
\(904\) −8.76330 + 15.1785i −0.291463 + 0.504829i
\(905\) 28.8227 49.9224i 0.958100 1.65948i
\(906\) 0 0
\(907\) 28.4910 49.3478i 0.946027 1.63857i 0.192345 0.981327i \(-0.438391\pi\)
0.753682 0.657239i \(-0.228276\pi\)
\(908\) −1.82452 −0.0605488
\(909\) 0 0
\(910\) 39.8533 + 29.0133i 1.32112 + 0.961783i
\(911\) −43.0338 −1.42577 −0.712887 0.701279i \(-0.752613\pi\)
−0.712887 + 0.701279i \(0.752613\pi\)
\(912\) 0 0
\(913\) 24.4536 42.3548i 0.809295 1.40174i
\(914\) −15.6166 −0.516552
\(915\) 0 0
\(916\) 1.16518 2.01815i 0.0384987 0.0666817i
\(917\) 26.5744 + 16.9033i 0.877565 + 0.558197i
\(918\) 0 0
\(919\) 3.05206 + 5.28632i 0.100678 + 0.174380i 0.911964 0.410270i \(-0.134565\pi\)
−0.811286 + 0.584649i \(0.801232\pi\)
\(920\) −7.00954 + 12.1409i −0.231098 + 0.400273i
\(921\) 0 0
\(922\) −0.802290 + 1.38961i −0.0264220 + 0.0457643i
\(923\) 6.50141 9.78715i 0.213997 0.322148i
\(924\) 0 0
\(925\) −27.5324 47.6876i −0.905261 1.56796i
\(926\) −21.5089 −0.706827
\(927\) 0 0
\(928\) −0.200035 0.346471i −0.00656648 0.0113735i
\(929\) 0.948999 + 1.64371i 0.0311357 + 0.0539285i 0.881173 0.472793i \(-0.156754\pi\)
−0.850038 + 0.526722i \(0.823421\pi\)
\(930\) 0 0
\(931\) −13.4093 28.6503i −0.439473 0.938976i
\(932\) 0.597211 1.03440i 0.0195623 0.0338829i
\(933\) 0 0
\(934\) −26.3832 + 45.6971i −0.863285 + 1.49525i
\(935\) 2.07525 + 3.59444i 0.0678679 + 0.117551i
\(936\) 0 0
\(937\) 6.34000 0.207119 0.103559 0.994623i \(-0.466977\pi\)
0.103559 + 0.994623i \(0.466977\pi\)
\(938\) 0.841631 + 0.535340i 0.0274802 + 0.0174795i
\(939\) 0 0
\(940\) −1.32908 2.30204i −0.0433500 0.0750843i
\(941\) −8.66104 15.0014i −0.282342 0.489030i 0.689619 0.724172i \(-0.257778\pi\)
−0.971961 + 0.235142i \(0.924445\pi\)
\(942\) 0 0
\(943\) 0.850490 + 1.47309i 0.0276958 + 0.0479705i
\(944\) −5.58463 −0.181764
\(945\) 0 0
\(946\) −11.3008 19.5735i −0.367420 0.636391i
\(947\) −22.0647 −0.717007 −0.358503 0.933528i \(-0.616713\pi\)
−0.358503 + 0.933528i \(0.616713\pi\)
\(948\) 0 0
\(949\) −11.3256 22.8107i −0.367646 0.740466i
\(950\) −35.3375 + 61.2064i −1.14650 + 1.98580i
\(951\) 0 0
\(952\) −0.0619592 + 1.44255i −0.00200811 + 0.0467535i
\(953\) −9.89509 + 17.1388i −0.320533 + 0.555180i −0.980598 0.196028i \(-0.937196\pi\)
0.660065 + 0.751209i \(0.270529\pi\)
\(954\) 0 0
\(955\) 102.859 3.32845
\(956\) 3.94559 0.127610
\(957\) 0 0
\(958\) −5.79763 + 10.0418i −0.187313 + 0.324436i
\(959\) −1.53593 + 35.7600i −0.0495977 + 1.15475i
\(960\) 0 0
\(961\) −19.6892 + 34.1027i −0.635136 + 1.10009i
\(962\) −19.0598 1.19758i −0.614511 0.0386115i
\(963\) 0 0
\(964\) −14.8077 −0.476924
\(965\) −26.3523 45.6436i −0.848311 1.46932i
\(966\) 0 0
\(967\) −40.1430 −1.29091 −0.645457 0.763797i \(-0.723333\pi\)
−0.645457 + 0.763797i \(0.723333\pi\)
\(968\) −29.8900 51.7710i −0.960702 1.66398i
\(969\) 0 0
\(970\) 6.07186 + 10.5168i 0.194956 + 0.337673i
\(971\) −15.4318 26.7286i −0.495229 0.857762i 0.504756 0.863262i \(-0.331583\pi\)
−0.999985 + 0.00550014i \(0.998249\pi\)
\(972\) 0 0
\(973\) 48.7334 + 30.9981i 1.56232 + 0.993753i
\(974\) −9.64428 −0.309023
\(975\) 0 0
\(976\) −5.20222 9.01051i −0.166519 0.288419i
\(977\) 10.6615 18.4662i 0.341090 0.590786i −0.643545 0.765408i \(-0.722537\pi\)
0.984635 + 0.174622i \(0.0558705\pi\)
\(978\) 0 0
\(979\) −36.4593 + 63.1494i −1.16524 + 2.01826i
\(980\) 8.36747 11.9861i 0.267289 0.382882i
\(981\) 0 0
\(982\) −18.0532 31.2691i −0.576101 0.997836i
\(983\) −18.7115 32.4092i −0.596803 1.03369i −0.993290 0.115652i \(-0.963104\pi\)
0.396487 0.918040i \(-0.370229\pi\)
\(984\) 0 0
\(985\) 82.2294 2.62005
\(986\) 0.0160054 + 0.0277222i 0.000509717 + 0.000882855i
\(987\) 0 0
\(988\) −3.59139 7.23332i −0.114257 0.230123i
\(989\) 1.81268 3.13965i 0.0576397 0.0998349i
\(990\) 0 0
\(991\) −1.65951 + 2.87436i −0.0527161 + 0.0913070i −0.891179 0.453651i \(-0.850121\pi\)
0.838463 + 0.544958i \(0.183455\pi\)
\(992\) −11.4638 19.8559i −0.363976 0.630426i
\(993\) 0 0
\(994\) 8.92290 + 5.67563i 0.283017 + 0.180020i
\(995\) −10.0858 + 17.4691i −0.319741 + 0.553807i
\(996\) 0 0
\(997\) 24.1254 0.764058 0.382029 0.924150i \(-0.375226\pi\)
0.382029 + 0.924150i \(0.375226\pi\)
\(998\) 5.08638 8.80986i 0.161006 0.278871i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.s.f.289.4 20
3.2 odd 2 273.2.l.c.16.7 yes 20
7.4 even 3 819.2.n.f.172.7 20
13.9 even 3 819.2.n.f.100.7 20
21.11 odd 6 273.2.j.c.172.4 yes 20
39.35 odd 6 273.2.j.c.100.4 20
91.74 even 3 inner 819.2.s.f.802.4 20
273.74 odd 6 273.2.l.c.256.7 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.c.100.4 20 39.35 odd 6
273.2.j.c.172.4 yes 20 21.11 odd 6
273.2.l.c.16.7 yes 20 3.2 odd 2
273.2.l.c.256.7 yes 20 273.74 odd 6
819.2.n.f.100.7 20 13.9 even 3
819.2.n.f.172.7 20 7.4 even 3
819.2.s.f.289.4 20 1.1 even 1 trivial
819.2.s.f.802.4 20 91.74 even 3 inner