Properties

Label 819.2.n.e.100.7
Level $819$
Weight $2$
Character 819.100
Analytic conductor $6.540$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(100,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.100"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.n (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-6,0,0,1,-12,0,8,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.7
Root \(-1.02737 - 1.77946i\) of defining polynomial
Character \(\chi\) \(=\) 819.100
Dual form 819.2.n.e.172.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.02737 + 1.77946i) q^{2} +(-1.11098 + 1.92428i) q^{4} +(0.274662 - 0.475728i) q^{5} +(-0.839752 + 2.50895i) q^{7} -0.456078 q^{8} +1.12872 q^{10} -4.69824 q^{11} +(-0.663964 + 3.54389i) q^{13} +(-5.32730 + 1.08331i) q^{14} +(1.75340 + 3.03698i) q^{16} +(-0.301806 + 0.522743i) q^{17} +0.561110 q^{19} +(0.610289 + 1.05705i) q^{20} +(-4.82684 - 8.36033i) q^{22} +(0.188350 + 0.326231i) q^{23} +(2.34912 + 4.06880i) q^{25} +(-6.98834 + 2.45939i) q^{26} +(-3.89496 - 4.40331i) q^{28} +(-2.09200 + 3.62344i) q^{29} +(-0.577330 - 0.999965i) q^{31} +(-4.05887 + 7.03016i) q^{32} -1.24027 q^{34} +(0.962929 + 1.08861i) q^{35} +(4.40116 + 7.62304i) q^{37} +(0.576468 + 0.998472i) q^{38} +(-0.125267 + 0.216969i) q^{40} +(3.96001 - 6.85894i) q^{41} +(-0.747200 - 1.29419i) q^{43} +(5.21966 - 9.04072i) q^{44} +(-0.387010 + 0.670321i) q^{46} +(1.09885 - 1.90326i) q^{47} +(-5.58963 - 4.21379i) q^{49} +(-4.82684 + 8.36033i) q^{50} +(-6.08177 - 5.21485i) q^{52} +(-4.52338 - 7.83473i) q^{53} +(-1.29043 + 2.23509i) q^{55} +(0.382993 - 1.14428i) q^{56} -8.59702 q^{58} +(4.26827 - 7.39286i) q^{59} +7.42424 q^{61} +(1.18626 - 2.05467i) q^{62} -9.66624 q^{64} +(1.50356 + 1.28924i) q^{65} -9.59873 q^{67} +(-0.670602 - 1.16152i) q^{68} +(-0.947844 + 2.83190i) q^{70} +(-2.88877 - 5.00350i) q^{71} +(7.24668 + 12.5516i) q^{73} +(-9.04325 + 15.6634i) q^{74} +(-0.623383 + 1.07973i) q^{76} +(3.94536 - 11.7876i) q^{77} +(7.31102 - 12.6631i) q^{79} +1.92637 q^{80} +16.2736 q^{82} +14.8750 q^{83} +(0.165789 + 0.287155i) q^{85} +(1.53530 - 2.65922i) q^{86} +2.14277 q^{88} +(4.59177 + 7.95317i) q^{89} +(-8.33387 - 4.64184i) q^{91} -0.837013 q^{92} +4.51569 q^{94} +(0.154115 - 0.266936i) q^{95} +(3.15034 + 5.45655i) q^{97} +(1.75564 - 14.2756i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} + q^{7} - 12 q^{8} + 8 q^{10} - 4 q^{11} + 5 q^{13} + 7 q^{14} - 6 q^{16} + 2 q^{17} + 22 q^{19} + 20 q^{20} + 7 q^{22} - 4 q^{23} + 2 q^{25} + 6 q^{26} - 7 q^{28} - 15 q^{29} + 3 q^{31}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02737 + 1.77946i 0.726461 + 1.25827i 0.958370 + 0.285530i \(0.0921695\pi\)
−0.231909 + 0.972738i \(0.574497\pi\)
\(3\) 0 0
\(4\) −1.11098 + 1.92428i −0.555491 + 0.962139i
\(5\) 0.274662 0.475728i 0.122833 0.212752i −0.798051 0.602590i \(-0.794136\pi\)
0.920884 + 0.389838i \(0.127469\pi\)
\(6\) 0 0
\(7\) −0.839752 + 2.50895i −0.317397 + 0.948293i
\(8\) −0.456078 −0.161248
\(9\) 0 0
\(10\) 1.12872 0.356932
\(11\) −4.69824 −1.41657 −0.708287 0.705925i \(-0.750532\pi\)
−0.708287 + 0.705925i \(0.750532\pi\)
\(12\) 0 0
\(13\) −0.663964 + 3.54389i −0.184150 + 0.982898i
\(14\) −5.32730 + 1.08331i −1.42378 + 0.289528i
\(15\) 0 0
\(16\) 1.75340 + 3.03698i 0.438351 + 0.759245i
\(17\) −0.301806 + 0.522743i −0.0731987 + 0.126784i −0.900302 0.435267i \(-0.856654\pi\)
0.827103 + 0.562051i \(0.189987\pi\)
\(18\) 0 0
\(19\) 0.561110 0.128727 0.0643637 0.997927i \(-0.479498\pi\)
0.0643637 + 0.997927i \(0.479498\pi\)
\(20\) 0.610289 + 1.05705i 0.136465 + 0.236364i
\(21\) 0 0
\(22\) −4.82684 8.36033i −1.02909 1.78243i
\(23\) 0.188350 + 0.326231i 0.0392736 + 0.0680239i 0.884994 0.465602i \(-0.154162\pi\)
−0.845720 + 0.533626i \(0.820829\pi\)
\(24\) 0 0
\(25\) 2.34912 + 4.06880i 0.469824 + 0.813760i
\(26\) −6.98834 + 2.45939i −1.37053 + 0.482327i
\(27\) 0 0
\(28\) −3.89496 4.40331i −0.736078 0.832148i
\(29\) −2.09200 + 3.62344i −0.388474 + 0.672856i −0.992244 0.124302i \(-0.960331\pi\)
0.603771 + 0.797158i \(0.293664\pi\)
\(30\) 0 0
\(31\) −0.577330 0.999965i −0.103691 0.179599i 0.809511 0.587104i \(-0.199732\pi\)
−0.913203 + 0.407505i \(0.866399\pi\)
\(32\) −4.05887 + 7.03016i −0.717513 + 1.24277i
\(33\) 0 0
\(34\) −1.24027 −0.212704
\(35\) 0.962929 + 1.08861i 0.162765 + 0.184008i
\(36\) 0 0
\(37\) 4.40116 + 7.62304i 0.723547 + 1.25322i 0.959569 + 0.281472i \(0.0908227\pi\)
−0.236023 + 0.971748i \(0.575844\pi\)
\(38\) 0.576468 + 0.998472i 0.0935154 + 0.161973i
\(39\) 0 0
\(40\) −0.125267 + 0.216969i −0.0198065 + 0.0343059i
\(41\) 3.96001 6.85894i 0.618450 1.07119i −0.371319 0.928506i \(-0.621094\pi\)
0.989769 0.142681i \(-0.0455724\pi\)
\(42\) 0 0
\(43\) −0.747200 1.29419i −0.113947 0.197362i 0.803411 0.595424i \(-0.203016\pi\)
−0.917358 + 0.398062i \(0.869683\pi\)
\(44\) 5.21966 9.04072i 0.786894 1.36294i
\(45\) 0 0
\(46\) −0.387010 + 0.670321i −0.0570615 + 0.0988334i
\(47\) 1.09885 1.90326i 0.160283 0.277619i −0.774687 0.632345i \(-0.782093\pi\)
0.934970 + 0.354726i \(0.115426\pi\)
\(48\) 0 0
\(49\) −5.58963 4.21379i −0.798519 0.601970i
\(50\) −4.82684 + 8.36033i −0.682618 + 1.18233i
\(51\) 0 0
\(52\) −6.08177 5.21485i −0.843390 0.723169i
\(53\) −4.52338 7.83473i −0.621334 1.07618i −0.989238 0.146318i \(-0.953258\pi\)
0.367903 0.929864i \(-0.380076\pi\)
\(54\) 0 0
\(55\) −1.29043 + 2.23509i −0.174001 + 0.301379i
\(56\) 0.382993 1.14428i 0.0511796 0.152910i
\(57\) 0 0
\(58\) −8.59702 −1.12884
\(59\) 4.26827 7.39286i 0.555681 0.962468i −0.442169 0.896932i \(-0.645791\pi\)
0.997850 0.0655364i \(-0.0208758\pi\)
\(60\) 0 0
\(61\) 7.42424 0.950576 0.475288 0.879830i \(-0.342344\pi\)
0.475288 + 0.879830i \(0.342344\pi\)
\(62\) 1.18626 2.05467i 0.150656 0.260943i
\(63\) 0 0
\(64\) −9.66624 −1.20828
\(65\) 1.50356 + 1.28924i 0.186494 + 0.159910i
\(66\) 0 0
\(67\) −9.59873 −1.17267 −0.586336 0.810068i \(-0.699430\pi\)
−0.586336 + 0.810068i \(0.699430\pi\)
\(68\) −0.670602 1.16152i −0.0813224 0.140855i
\(69\) 0 0
\(70\) −0.947844 + 2.83190i −0.113289 + 0.338476i
\(71\) −2.88877 5.00350i −0.342834 0.593806i 0.642124 0.766601i \(-0.278053\pi\)
−0.984958 + 0.172795i \(0.944720\pi\)
\(72\) 0 0
\(73\) 7.24668 + 12.5516i 0.848160 + 1.46906i 0.882849 + 0.469657i \(0.155623\pi\)
−0.0346892 + 0.999398i \(0.511044\pi\)
\(74\) −9.04325 + 15.6634i −1.05126 + 1.82083i
\(75\) 0 0
\(76\) −0.623383 + 1.07973i −0.0715069 + 0.123854i
\(77\) 3.94536 11.7876i 0.449616 1.34333i
\(78\) 0 0
\(79\) 7.31102 12.6631i 0.822554 1.42471i −0.0812206 0.996696i \(-0.525882\pi\)
0.903774 0.428009i \(-0.140785\pi\)
\(80\) 1.92637 0.215375
\(81\) 0 0
\(82\) 16.2736 1.79712
\(83\) 14.8750 1.63274 0.816371 0.577528i \(-0.195983\pi\)
0.816371 + 0.577528i \(0.195983\pi\)
\(84\) 0 0
\(85\) 0.165789 + 0.287155i 0.0179824 + 0.0311464i
\(86\) 1.53530 2.65922i 0.165556 0.286751i
\(87\) 0 0
\(88\) 2.14277 0.228420
\(89\) 4.59177 + 7.95317i 0.486726 + 0.843035i 0.999884 0.0152600i \(-0.00485760\pi\)
−0.513157 + 0.858295i \(0.671524\pi\)
\(90\) 0 0
\(91\) −8.33387 4.64184i −0.873627 0.486597i
\(92\) −0.837013 −0.0872646
\(93\) 0 0
\(94\) 4.51569 0.465758
\(95\) 0.154115 0.266936i 0.0158119 0.0273870i
\(96\) 0 0
\(97\) 3.15034 + 5.45655i 0.319869 + 0.554029i 0.980460 0.196717i \(-0.0630279\pi\)
−0.660592 + 0.750745i \(0.729695\pi\)
\(98\) 1.75564 14.2756i 0.177346 1.44206i
\(99\) 0 0
\(100\) −10.4393 −1.04393
\(101\) −4.44387 −0.442182 −0.221091 0.975253i \(-0.570962\pi\)
−0.221091 + 0.975253i \(0.570962\pi\)
\(102\) 0 0
\(103\) 8.31431 14.4008i 0.819234 1.41895i −0.0870141 0.996207i \(-0.527733\pi\)
0.906248 0.422747i \(-0.138934\pi\)
\(104\) 0.302820 1.61629i 0.0296939 0.158490i
\(105\) 0 0
\(106\) 9.29438 16.0983i 0.902750 1.56361i
\(107\) 8.93605 + 15.4777i 0.863881 + 1.49629i 0.868154 + 0.496295i \(0.165306\pi\)
−0.00427332 + 0.999991i \(0.501360\pi\)
\(108\) 0 0
\(109\) −5.07774 8.79490i −0.486359 0.842399i 0.513518 0.858079i \(-0.328342\pi\)
−0.999877 + 0.0156799i \(0.995009\pi\)
\(110\) −5.30299 −0.505621
\(111\) 0 0
\(112\) −9.09205 + 1.84888i −0.859118 + 0.174703i
\(113\) 3.74505 + 6.48662i 0.352305 + 0.610210i 0.986653 0.162838i \(-0.0520647\pi\)
−0.634348 + 0.773048i \(0.718731\pi\)
\(114\) 0 0
\(115\) 0.206930 0.0192963
\(116\) −4.64834 8.05116i −0.431587 0.747531i
\(117\) 0 0
\(118\) 17.5404 1.61472
\(119\) −1.05809 1.19619i −0.0969952 0.109655i
\(120\) 0 0
\(121\) 11.0735 1.00668
\(122\) 7.62745 + 13.2111i 0.690557 + 1.19608i
\(123\) 0 0
\(124\) 2.56561 0.230399
\(125\) 5.32748 0.476504
\(126\) 0 0
\(127\) 2.36612 4.09824i 0.209959 0.363660i −0.741742 0.670685i \(-0.766000\pi\)
0.951702 + 0.307025i \(0.0993335\pi\)
\(128\) −1.81308 3.14034i −0.160255 0.277570i
\(129\) 0 0
\(130\) −0.749428 + 4.00005i −0.0657292 + 0.350828i
\(131\) 1.78705 3.09527i 0.156136 0.270435i −0.777336 0.629085i \(-0.783430\pi\)
0.933472 + 0.358650i \(0.116763\pi\)
\(132\) 0 0
\(133\) −0.471193 + 1.40779i −0.0408576 + 0.122071i
\(134\) −9.86145 17.0805i −0.851900 1.47553i
\(135\) 0 0
\(136\) 0.137647 0.238412i 0.0118031 0.0204437i
\(137\) −9.62880 + 16.6776i −0.822644 + 1.42486i 0.0810628 + 0.996709i \(0.474169\pi\)
−0.903707 + 0.428152i \(0.859165\pi\)
\(138\) 0 0
\(139\) −4.83155 8.36849i −0.409807 0.709806i 0.585061 0.810989i \(-0.301070\pi\)
−0.994868 + 0.101183i \(0.967737\pi\)
\(140\) −3.16458 + 0.643521i −0.267456 + 0.0543875i
\(141\) 0 0
\(142\) 5.93568 10.2809i 0.498111 0.862753i
\(143\) 3.11946 16.6501i 0.260863 1.39235i
\(144\) 0 0
\(145\) 1.14918 + 1.99044i 0.0954344 + 0.165297i
\(146\) −14.8901 + 25.7903i −1.23231 + 2.13442i
\(147\) 0 0
\(148\) −19.5584 −1.60769
\(149\) −7.12496 −0.583699 −0.291850 0.956464i \(-0.594271\pi\)
−0.291850 + 0.956464i \(0.594271\pi\)
\(150\) 0 0
\(151\) 9.82744 + 17.0216i 0.799746 + 1.38520i 0.919781 + 0.392431i \(0.128366\pi\)
−0.120036 + 0.992770i \(0.538301\pi\)
\(152\) −0.255910 −0.0207570
\(153\) 0 0
\(154\) 25.0290 5.08968i 2.01689 0.410138i
\(155\) −0.634282 −0.0509468
\(156\) 0 0
\(157\) 2.60509 + 4.51215i 0.207909 + 0.360109i 0.951056 0.309020i \(-0.100001\pi\)
−0.743147 + 0.669129i \(0.766668\pi\)
\(158\) 30.0445 2.39021
\(159\) 0 0
\(160\) 2.22963 + 3.86184i 0.176268 + 0.305305i
\(161\) −0.976664 + 0.198606i −0.0769719 + 0.0156523i
\(162\) 0 0
\(163\) −4.17379 −0.326917 −0.163458 0.986550i \(-0.552265\pi\)
−0.163458 + 0.986550i \(0.552265\pi\)
\(164\) 8.79901 + 15.2403i 0.687087 + 1.19007i
\(165\) 0 0
\(166\) 15.2821 + 26.4694i 1.18612 + 2.05442i
\(167\) 2.52335 4.37058i 0.195263 0.338205i −0.751724 0.659478i \(-0.770777\pi\)
0.946987 + 0.321273i \(0.104111\pi\)
\(168\) 0 0
\(169\) −12.1183 4.70603i −0.932177 0.362002i
\(170\) −0.340654 + 0.590030i −0.0261270 + 0.0452532i
\(171\) 0 0
\(172\) 3.32050 0.253186
\(173\) −2.73897 −0.208240 −0.104120 0.994565i \(-0.533203\pi\)
−0.104120 + 0.994565i \(0.533203\pi\)
\(174\) 0 0
\(175\) −12.1811 + 2.47704i −0.920803 + 0.187247i
\(176\) −8.23791 14.2685i −0.620956 1.07553i
\(177\) 0 0
\(178\) −9.43489 + 16.3417i −0.707175 + 1.22486i
\(179\) 12.6956 0.948917 0.474459 0.880278i \(-0.342644\pi\)
0.474459 + 0.880278i \(0.342644\pi\)
\(180\) 0 0
\(181\) 7.95691 0.591432 0.295716 0.955276i \(-0.404442\pi\)
0.295716 + 0.955276i \(0.404442\pi\)
\(182\) −0.302011 19.5987i −0.0223866 1.45275i
\(183\) 0 0
\(184\) −0.0859023 0.148787i −0.00633280 0.0109687i
\(185\) 4.83533 0.355500
\(186\) 0 0
\(187\) 1.41796 2.45597i 0.103691 0.179599i
\(188\) 2.44160 + 4.22897i 0.178072 + 0.308429i
\(189\) 0 0
\(190\) 0.633335 0.0459469
\(191\) −3.07979 −0.222846 −0.111423 0.993773i \(-0.535541\pi\)
−0.111423 + 0.993773i \(0.535541\pi\)
\(192\) 0 0
\(193\) −3.39175 −0.244143 −0.122072 0.992521i \(-0.538954\pi\)
−0.122072 + 0.992521i \(0.538954\pi\)
\(194\) −6.47314 + 11.2118i −0.464744 + 0.804961i
\(195\) 0 0
\(196\) 14.3185 6.07456i 1.02275 0.433897i
\(197\) −2.06163 + 3.57085i −0.146885 + 0.254413i −0.930075 0.367370i \(-0.880258\pi\)
0.783189 + 0.621783i \(0.213591\pi\)
\(198\) 0 0
\(199\) 0.574142 0.994443i 0.0406998 0.0704942i −0.844958 0.534833i \(-0.820375\pi\)
0.885658 + 0.464339i \(0.153708\pi\)
\(200\) −1.07138 1.85569i −0.0757583 0.131217i
\(201\) 0 0
\(202\) −4.56551 7.90769i −0.321228 0.556383i
\(203\) −7.33427 8.29150i −0.514765 0.581949i
\(204\) 0 0
\(205\) −2.17533 3.76778i −0.151932 0.263153i
\(206\) 34.1675 2.38056
\(207\) 0 0
\(208\) −11.9269 + 4.19742i −0.826983 + 0.291039i
\(209\) −2.63623 −0.182352
\(210\) 0 0
\(211\) −2.28300 + 3.95427i −0.157168 + 0.272223i −0.933846 0.357674i \(-0.883570\pi\)
0.776678 + 0.629898i \(0.216903\pi\)
\(212\) 20.1016 1.38058
\(213\) 0 0
\(214\) −18.3613 + 31.8027i −1.25515 + 2.17399i
\(215\) −0.820910 −0.0559856
\(216\) 0 0
\(217\) 2.99367 0.608768i 0.203224 0.0413258i
\(218\) 10.4334 18.0713i 0.706642 1.22394i
\(219\) 0 0
\(220\) −2.86729 4.96628i −0.193312 0.334827i
\(221\) −1.65216 1.41665i −0.111136 0.0952941i
\(222\) 0 0
\(223\) 8.42312 14.5893i 0.564054 0.976970i −0.433083 0.901354i \(-0.642574\pi\)
0.997137 0.0756163i \(-0.0240924\pi\)
\(224\) −14.2299 16.0871i −0.950773 1.07486i
\(225\) 0 0
\(226\) −7.69512 + 13.3283i −0.511872 + 0.886588i
\(227\) −14.2365 + 24.6583i −0.944909 + 1.63663i −0.188976 + 0.981982i \(0.560517\pi\)
−0.755933 + 0.654649i \(0.772816\pi\)
\(228\) 0 0
\(229\) −13.1373 + 22.7545i −0.868137 + 1.50366i −0.00423787 + 0.999991i \(0.501349\pi\)
−0.863899 + 0.503666i \(0.831984\pi\)
\(230\) 0.212594 + 0.368223i 0.0140180 + 0.0242799i
\(231\) 0 0
\(232\) 0.954114 1.65257i 0.0626406 0.108497i
\(233\) 11.0974 19.2212i 0.727014 1.25922i −0.231126 0.972924i \(-0.574241\pi\)
0.958140 0.286301i \(-0.0924257\pi\)
\(234\) 0 0
\(235\) −0.603622 1.04550i −0.0393760 0.0682012i
\(236\) 9.48394 + 16.4267i 0.617352 + 1.06928i
\(237\) 0 0
\(238\) 1.04152 3.11176i 0.0675115 0.201706i
\(239\) −27.3213 −1.76727 −0.883633 0.468180i \(-0.844910\pi\)
−0.883633 + 0.468180i \(0.844910\pi\)
\(240\) 0 0
\(241\) 11.8915 20.5967i 0.766001 1.32675i −0.173715 0.984796i \(-0.555577\pi\)
0.939716 0.341957i \(-0.111090\pi\)
\(242\) 11.3766 + 19.7048i 0.731314 + 1.26667i
\(243\) 0 0
\(244\) −8.24820 + 14.2863i −0.528037 + 0.914586i
\(245\) −3.53988 + 1.50178i −0.226154 + 0.0959452i
\(246\) 0 0
\(247\) −0.372557 + 1.98851i −0.0237052 + 0.126526i
\(248\) 0.263308 + 0.456062i 0.0167201 + 0.0289600i
\(249\) 0 0
\(250\) 5.47329 + 9.48002i 0.346161 + 0.599569i
\(251\) −4.16795 7.21910i −0.263079 0.455666i 0.703980 0.710220i \(-0.251405\pi\)
−0.967058 + 0.254554i \(0.918071\pi\)
\(252\) 0 0
\(253\) −0.884913 1.53271i −0.0556340 0.0963609i
\(254\) 9.72354 0.610109
\(255\) 0 0
\(256\) −5.94083 + 10.2898i −0.371302 + 0.643114i
\(257\) −6.88712 11.9288i −0.429607 0.744101i 0.567231 0.823558i \(-0.308015\pi\)
−0.996838 + 0.0794576i \(0.974681\pi\)
\(258\) 0 0
\(259\) −22.8217 + 4.64082i −1.41807 + 0.288367i
\(260\) −4.15128 + 1.46095i −0.257452 + 0.0906044i
\(261\) 0 0
\(262\) 7.34387 0.453706
\(263\) 9.04564 0.557778 0.278889 0.960323i \(-0.410034\pi\)
0.278889 + 0.960323i \(0.410034\pi\)
\(264\) 0 0
\(265\) −4.96960 −0.305280
\(266\) −2.98920 + 0.607859i −0.183280 + 0.0372702i
\(267\) 0 0
\(268\) 10.6640 18.4706i 0.651408 1.12827i
\(269\) 1.14428 1.98196i 0.0697681 0.120842i −0.829031 0.559203i \(-0.811107\pi\)
0.898799 + 0.438361i \(0.144441\pi\)
\(270\) 0 0
\(271\) −1.99057 3.44778i −0.120919 0.209437i 0.799211 0.601050i \(-0.205251\pi\)
−0.920130 + 0.391612i \(0.871917\pi\)
\(272\) −2.11675 −0.128347
\(273\) 0 0
\(274\) −39.5694 −2.39047
\(275\) −11.0367 19.1162i −0.665541 1.15275i
\(276\) 0 0
\(277\) 4.19999 7.27460i 0.252353 0.437089i −0.711820 0.702362i \(-0.752129\pi\)
0.964173 + 0.265273i \(0.0854622\pi\)
\(278\) 9.92758 17.1951i 0.595417 1.03129i
\(279\) 0 0
\(280\) −0.439171 0.496490i −0.0262455 0.0296709i
\(281\) 12.9559 0.772884 0.386442 0.922314i \(-0.373704\pi\)
0.386442 + 0.922314i \(0.373704\pi\)
\(282\) 0 0
\(283\) 25.6051 1.52207 0.761033 0.648713i \(-0.224692\pi\)
0.761033 + 0.648713i \(0.224692\pi\)
\(284\) 12.8375 0.761765
\(285\) 0 0
\(286\) 32.8329 11.5548i 1.94145 0.683251i
\(287\) 13.8833 + 15.6953i 0.819505 + 0.926463i
\(288\) 0 0
\(289\) 8.31783 + 14.4069i 0.489284 + 0.847465i
\(290\) −2.36127 + 4.08985i −0.138659 + 0.240164i
\(291\) 0 0
\(292\) −32.2037 −1.88458
\(293\) 12.3943 + 21.4675i 0.724081 + 1.25415i 0.959351 + 0.282215i \(0.0910692\pi\)
−0.235270 + 0.971930i \(0.575597\pi\)
\(294\) 0 0
\(295\) −2.34466 4.06107i −0.136511 0.236445i
\(296\) −2.00728 3.47670i −0.116671 0.202079i
\(297\) 0 0
\(298\) −7.31997 12.6786i −0.424035 0.734450i
\(299\) −1.28118 + 0.450885i −0.0740928 + 0.0260753i
\(300\) 0 0
\(301\) 3.87451 0.787888i 0.223323 0.0454131i
\(302\) −20.1929 + 34.9751i −1.16197 + 2.01259i
\(303\) 0 0
\(304\) 0.983851 + 1.70408i 0.0564277 + 0.0977357i
\(305\) 2.03916 3.53192i 0.116762 0.202237i
\(306\) 0 0
\(307\) −25.2086 −1.43873 −0.719365 0.694632i \(-0.755567\pi\)
−0.719365 + 0.694632i \(0.755567\pi\)
\(308\) 18.2995 + 20.6878i 1.04271 + 1.17880i
\(309\) 0 0
\(310\) −0.651643 1.12868i −0.0370108 0.0641046i
\(311\) 2.06640 + 3.57911i 0.117175 + 0.202953i 0.918647 0.395079i \(-0.129283\pi\)
−0.801472 + 0.598032i \(0.795950\pi\)
\(312\) 0 0
\(313\) 15.0691 26.1005i 0.851758 1.47529i −0.0278626 0.999612i \(-0.508870\pi\)
0.879620 0.475676i \(-0.157797\pi\)
\(314\) −5.35279 + 9.27131i −0.302076 + 0.523210i
\(315\) 0 0
\(316\) 16.2448 + 28.1369i 0.913843 + 1.58282i
\(317\) 5.76330 9.98233i 0.323699 0.560663i −0.657549 0.753412i \(-0.728407\pi\)
0.981248 + 0.192748i \(0.0617401\pi\)
\(318\) 0 0
\(319\) 9.82870 17.0238i 0.550302 0.953150i
\(320\) −2.65495 + 4.59850i −0.148416 + 0.257064i
\(321\) 0 0
\(322\) −1.35681 1.53389i −0.0756119 0.0854804i
\(323\) −0.169346 + 0.293316i −0.00942268 + 0.0163206i
\(324\) 0 0
\(325\) −15.9791 + 5.62349i −0.886361 + 0.311935i
\(326\) −4.28803 7.42709i −0.237492 0.411348i
\(327\) 0 0
\(328\) −1.80608 + 3.12822i −0.0997239 + 0.172727i
\(329\) 3.85241 + 4.35521i 0.212390 + 0.240110i
\(330\) 0 0
\(331\) −1.13539 −0.0624067 −0.0312033 0.999513i \(-0.509934\pi\)
−0.0312033 + 0.999513i \(0.509934\pi\)
\(332\) −16.5258 + 28.6236i −0.906973 + 1.57092i
\(333\) 0 0
\(334\) 10.3697 0.567404
\(335\) −2.63640 + 4.56639i −0.144042 + 0.249488i
\(336\) 0 0
\(337\) 23.3181 1.27022 0.635110 0.772421i \(-0.280955\pi\)
0.635110 + 0.772421i \(0.280955\pi\)
\(338\) −4.07581 26.3989i −0.221695 1.43591i
\(339\) 0 0
\(340\) −0.736755 −0.0399562
\(341\) 2.71244 + 4.69808i 0.146887 + 0.254415i
\(342\) 0 0
\(343\) 15.2661 10.4856i 0.824291 0.566167i
\(344\) 0.340782 + 0.590252i 0.0183737 + 0.0318242i
\(345\) 0 0
\(346\) −2.81394 4.87389i −0.151279 0.262022i
\(347\) 1.26911 2.19816i 0.0681294 0.118004i −0.829948 0.557840i \(-0.811630\pi\)
0.898078 + 0.439836i \(0.144964\pi\)
\(348\) 0 0
\(349\) −5.34353 + 9.25527i −0.286033 + 0.495423i −0.972859 0.231398i \(-0.925670\pi\)
0.686826 + 0.726822i \(0.259003\pi\)
\(350\) −16.9223 19.1309i −0.904534 1.02259i
\(351\) 0 0
\(352\) 19.0695 33.0294i 1.01641 1.76047i
\(353\) −22.2407 −1.18375 −0.591875 0.806030i \(-0.701612\pi\)
−0.591875 + 0.806030i \(0.701612\pi\)
\(354\) 0 0
\(355\) −3.17374 −0.168445
\(356\) −20.4055 −1.08149
\(357\) 0 0
\(358\) 13.0431 + 22.5914i 0.689351 + 1.19399i
\(359\) −8.38142 + 14.5170i −0.442354 + 0.766180i −0.997864 0.0653300i \(-0.979190\pi\)
0.555509 + 0.831510i \(0.312523\pi\)
\(360\) 0 0
\(361\) −18.6852 −0.983429
\(362\) 8.17470 + 14.1590i 0.429653 + 0.744180i
\(363\) 0 0
\(364\) 18.1910 10.8797i 0.953465 0.570250i
\(365\) 7.96155 0.416726
\(366\) 0 0
\(367\) −4.68194 −0.244395 −0.122198 0.992506i \(-0.538994\pi\)
−0.122198 + 0.992506i \(0.538994\pi\)
\(368\) −0.660506 + 1.14403i −0.0344312 + 0.0596366i
\(369\) 0 0
\(370\) 4.96767 + 8.60426i 0.258257 + 0.447314i
\(371\) 23.4554 4.76970i 1.21775 0.247630i
\(372\) 0 0
\(373\) −6.76172 −0.350109 −0.175054 0.984559i \(-0.556010\pi\)
−0.175054 + 0.984559i \(0.556010\pi\)
\(374\) 5.82707 0.301311
\(375\) 0 0
\(376\) −0.501160 + 0.868034i −0.0258453 + 0.0447655i
\(377\) −11.4521 9.81963i −0.589811 0.505737i
\(378\) 0 0
\(379\) 9.62497 16.6709i 0.494402 0.856329i −0.505578 0.862781i \(-0.668721\pi\)
0.999979 + 0.00645256i \(0.00205393\pi\)
\(380\) 0.342439 + 0.593122i 0.0175667 + 0.0304265i
\(381\) 0 0
\(382\) −3.16408 5.48036i −0.161889 0.280399i
\(383\) −13.4851 −0.689055 −0.344528 0.938776i \(-0.611961\pi\)
−0.344528 + 0.938776i \(0.611961\pi\)
\(384\) 0 0
\(385\) −4.52408 5.11454i −0.230568 0.260661i
\(386\) −3.48458 6.03547i −0.177361 0.307198i
\(387\) 0 0
\(388\) −13.9999 −0.710737
\(389\) −16.4229 28.4453i −0.832675 1.44224i −0.895909 0.444238i \(-0.853475\pi\)
0.0632336 0.997999i \(-0.479859\pi\)
\(390\) 0 0
\(391\) −0.227380 −0.0114991
\(392\) 2.54931 + 1.92182i 0.128760 + 0.0970665i
\(393\) 0 0
\(394\) −8.47225 −0.426826
\(395\) −4.01612 6.95612i −0.202073 0.350000i
\(396\) 0 0
\(397\) −26.6109 −1.33556 −0.667781 0.744358i \(-0.732756\pi\)
−0.667781 + 0.744358i \(0.732756\pi\)
\(398\) 2.35943 0.118267
\(399\) 0 0
\(400\) −8.23791 + 14.2685i −0.411895 + 0.713424i
\(401\) −11.5558 20.0153i −0.577071 0.999517i −0.995813 0.0914115i \(-0.970862\pi\)
0.418742 0.908105i \(-0.362471\pi\)
\(402\) 0 0
\(403\) 3.92709 1.38205i 0.195622 0.0688450i
\(404\) 4.93706 8.55124i 0.245628 0.425440i
\(405\) 0 0
\(406\) 7.21937 21.5695i 0.358291 1.07047i
\(407\) −20.6777 35.8149i −1.02496 1.77528i
\(408\) 0 0
\(409\) 3.62073 6.27129i 0.179034 0.310096i −0.762516 0.646969i \(-0.776036\pi\)
0.941550 + 0.336874i \(0.109370\pi\)
\(410\) 4.46974 7.74182i 0.220745 0.382341i
\(411\) 0 0
\(412\) 18.4741 + 31.9981i 0.910154 + 1.57643i
\(413\) 14.9640 + 16.9170i 0.736330 + 0.832433i
\(414\) 0 0
\(415\) 4.08559 7.07645i 0.200554 0.347369i
\(416\) −22.2192 19.0520i −1.08939 0.934099i
\(417\) 0 0
\(418\) −2.70839 4.69106i −0.132471 0.229447i
\(419\) 17.5550 30.4062i 0.857618 1.48544i −0.0165759 0.999863i \(-0.505277\pi\)
0.874194 0.485576i \(-0.161390\pi\)
\(420\) 0 0
\(421\) 25.2731 1.23174 0.615868 0.787849i \(-0.288805\pi\)
0.615868 + 0.787849i \(0.288805\pi\)
\(422\) −9.38195 −0.456706
\(423\) 0 0
\(424\) 2.06302 + 3.57325i 0.100189 + 0.173532i
\(425\) −2.83592 −0.137562
\(426\) 0 0
\(427\) −6.23452 + 18.6270i −0.301710 + 0.901425i
\(428\) −39.7112 −1.91951
\(429\) 0 0
\(430\) −0.843379 1.46077i −0.0406713 0.0704448i
\(431\) −17.5693 −0.846285 −0.423142 0.906063i \(-0.639073\pi\)
−0.423142 + 0.906063i \(0.639073\pi\)
\(432\) 0 0
\(433\) −3.02011 5.23098i −0.145137 0.251385i 0.784287 0.620398i \(-0.213029\pi\)
−0.929424 + 0.369013i \(0.879696\pi\)
\(434\) 4.15889 + 4.70169i 0.199633 + 0.225688i
\(435\) 0 0
\(436\) 22.5651 1.08067
\(437\) 0.105685 + 0.183052i 0.00505559 + 0.00875654i
\(438\) 0 0
\(439\) −12.4282 21.5262i −0.593164 1.02739i −0.993803 0.111155i \(-0.964545\pi\)
0.400639 0.916236i \(-0.368788\pi\)
\(440\) 0.588537 1.01938i 0.0280574 0.0485968i
\(441\) 0 0
\(442\) 0.823492 4.39537i 0.0391695 0.209066i
\(443\) −15.8094 + 27.3826i −0.751126 + 1.30099i 0.196152 + 0.980574i \(0.437155\pi\)
−0.947278 + 0.320414i \(0.896178\pi\)
\(444\) 0 0
\(445\) 5.04473 0.239143
\(446\) 34.6147 1.63905
\(447\) 0 0
\(448\) 8.11725 24.2521i 0.383504 1.14580i
\(449\) 2.63384 + 4.56194i 0.124298 + 0.215291i 0.921459 0.388477i \(-0.126999\pi\)
−0.797160 + 0.603768i \(0.793665\pi\)
\(450\) 0 0
\(451\) −18.6051 + 32.2250i −0.876080 + 1.51742i
\(452\) −16.6427 −0.782809
\(453\) 0 0
\(454\) −58.5046 −2.74576
\(455\) −4.49725 + 2.68972i −0.210834 + 0.126096i
\(456\) 0 0
\(457\) 9.24474 + 16.0124i 0.432451 + 0.749027i 0.997084 0.0763154i \(-0.0243156\pi\)
−0.564633 + 0.825342i \(0.690982\pi\)
\(458\) −53.9875 −2.52267
\(459\) 0 0
\(460\) −0.229895 + 0.398191i −0.0107189 + 0.0185657i
\(461\) −4.79101 8.29827i −0.223140 0.386489i 0.732620 0.680638i \(-0.238297\pi\)
−0.955760 + 0.294149i \(0.904964\pi\)
\(462\) 0 0
\(463\) 2.22178 0.103255 0.0516275 0.998666i \(-0.483559\pi\)
0.0516275 + 0.998666i \(0.483559\pi\)
\(464\) −14.6724 −0.681151
\(465\) 0 0
\(466\) 45.6045 2.11259
\(467\) −6.76331 + 11.7144i −0.312969 + 0.542078i −0.979004 0.203843i \(-0.934657\pi\)
0.666035 + 0.745921i \(0.267990\pi\)
\(468\) 0 0
\(469\) 8.06055 24.0827i 0.372202 1.11204i
\(470\) 1.24029 2.14824i 0.0572102 0.0990910i
\(471\) 0 0
\(472\) −1.94667 + 3.37172i −0.0896025 + 0.155196i
\(473\) 3.51053 + 6.08041i 0.161414 + 0.279578i
\(474\) 0 0
\(475\) 1.31812 + 2.28304i 0.0604793 + 0.104753i
\(476\) 3.47732 0.707119i 0.159383 0.0324107i
\(477\) 0 0
\(478\) −28.0691 48.6171i −1.28385 2.22369i
\(479\) 14.5871 0.666501 0.333251 0.942838i \(-0.391854\pi\)
0.333251 + 0.942838i \(0.391854\pi\)
\(480\) 0 0
\(481\) −29.9374 + 10.5358i −1.36503 + 0.480392i
\(482\) 48.8681 2.22588
\(483\) 0 0
\(484\) −12.3024 + 21.3085i −0.559202 + 0.968567i
\(485\) 3.46111 0.157161
\(486\) 0 0
\(487\) 0.750628 1.30013i 0.0340142 0.0589143i −0.848517 0.529168i \(-0.822504\pi\)
0.882531 + 0.470254i \(0.155838\pi\)
\(488\) −3.38604 −0.153279
\(489\) 0 0
\(490\) −6.30912 4.75618i −0.285017 0.214862i
\(491\) −14.1980 + 24.5917i −0.640748 + 1.10981i 0.344518 + 0.938780i \(0.388042\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(492\) 0 0
\(493\) −1.26275 2.18715i −0.0568715 0.0985044i
\(494\) −3.92123 + 1.37999i −0.176424 + 0.0620886i
\(495\) 0 0
\(496\) 2.02458 3.50668i 0.0909064 0.157455i
\(497\) 14.9794 3.04607i 0.671916 0.136635i
\(498\) 0 0
\(499\) −10.5569 + 18.2851i −0.472593 + 0.818554i −0.999508 0.0313633i \(-0.990015\pi\)
0.526915 + 0.849918i \(0.323348\pi\)
\(500\) −5.91873 + 10.2515i −0.264694 + 0.458463i
\(501\) 0 0
\(502\) 8.56406 14.8334i 0.382233 0.662046i
\(503\) −14.2618 24.7022i −0.635903 1.10142i −0.986323 0.164824i \(-0.947294\pi\)
0.350420 0.936593i \(-0.386039\pi\)
\(504\) 0 0
\(505\) −1.22056 + 2.11408i −0.0543143 + 0.0940752i
\(506\) 1.81827 3.14933i 0.0808318 0.140005i
\(507\) 0 0
\(508\) 5.25744 + 9.10615i 0.233261 + 0.404020i
\(509\) 17.1295 + 29.6691i 0.759250 + 1.31506i 0.943234 + 0.332130i \(0.107767\pi\)
−0.183984 + 0.982929i \(0.558900\pi\)
\(510\) 0 0
\(511\) −37.5768 + 7.64129i −1.66230 + 0.338031i
\(512\) −31.6661 −1.39946
\(513\) 0 0
\(514\) 14.1513 24.5107i 0.624185 1.08112i
\(515\) −4.56725 7.91071i −0.201257 0.348587i
\(516\) 0 0
\(517\) −5.16264 + 8.94196i −0.227053 + 0.393267i
\(518\) −31.7045 35.8424i −1.39302 1.57482i
\(519\) 0 0
\(520\) −0.685743 0.587994i −0.0300718 0.0257852i
\(521\) 17.2434 + 29.8665i 0.755448 + 1.30847i 0.945151 + 0.326633i \(0.105914\pi\)
−0.189703 + 0.981841i \(0.560753\pi\)
\(522\) 0 0
\(523\) −15.6948 27.1842i −0.686285 1.18868i −0.973031 0.230674i \(-0.925907\pi\)
0.286746 0.958007i \(-0.407427\pi\)
\(524\) 3.97077 + 6.87757i 0.173464 + 0.300448i
\(525\) 0 0
\(526\) 9.29323 + 16.0963i 0.405204 + 0.701834i
\(527\) 0.696966 0.0303603
\(528\) 0 0
\(529\) 11.4290 19.7957i 0.496915 0.860682i
\(530\) −5.10562 8.84320i −0.221774 0.384124i
\(531\) 0 0
\(532\) −2.18550 2.47074i −0.0947534 0.107120i
\(533\) 21.6780 + 18.5879i 0.938980 + 0.805133i
\(534\) 0 0
\(535\) 9.81757 0.424451
\(536\) 4.37777 0.189091
\(537\) 0 0
\(538\) 4.70241 0.202735
\(539\) 26.2615 + 19.7974i 1.13116 + 0.852734i
\(540\) 0 0
\(541\) −4.55013 + 7.88106i −0.195626 + 0.338833i −0.947105 0.320923i \(-0.896007\pi\)
0.751480 + 0.659756i \(0.229340\pi\)
\(542\) 4.09012 7.08429i 0.175685 0.304296i
\(543\) 0 0
\(544\) −2.44998 4.24349i −0.105042 0.181938i
\(545\) −5.57865 −0.238963
\(546\) 0 0
\(547\) −35.9950 −1.53903 −0.769517 0.638626i \(-0.779503\pi\)
−0.769517 + 0.638626i \(0.779503\pi\)
\(548\) −21.3948 37.0570i −0.913943 1.58299i
\(549\) 0 0
\(550\) 22.6777 39.2789i 0.966979 1.67486i
\(551\) −1.17384 + 2.03315i −0.0500072 + 0.0866150i
\(552\) 0 0
\(553\) 25.6315 + 28.9768i 1.08996 + 1.23222i
\(554\) 17.2598 0.733299
\(555\) 0 0
\(556\) 21.4710 0.910575
\(557\) 15.9142 0.674304 0.337152 0.941450i \(-0.390536\pi\)
0.337152 + 0.941450i \(0.390536\pi\)
\(558\) 0 0
\(559\) 5.08257 1.78870i 0.214970 0.0756540i
\(560\) −1.61767 + 4.83316i −0.0683592 + 0.204238i
\(561\) 0 0
\(562\) 13.3105 + 23.0545i 0.561470 + 0.972495i
\(563\) −12.6124 + 21.8453i −0.531548 + 0.920668i 0.467774 + 0.883848i \(0.345056\pi\)
−0.999322 + 0.0368201i \(0.988277\pi\)
\(564\) 0 0
\(565\) 4.11449 0.173098
\(566\) 26.3059 + 45.5632i 1.10572 + 1.91517i
\(567\) 0 0
\(568\) 1.31751 + 2.28199i 0.0552813 + 0.0957501i
\(569\) 17.0842 + 29.5908i 0.716208 + 1.24051i 0.962492 + 0.271311i \(0.0874573\pi\)
−0.246283 + 0.969198i \(0.579209\pi\)
\(570\) 0 0
\(571\) −7.15867 12.3992i −0.299581 0.518889i 0.676459 0.736480i \(-0.263514\pi\)
−0.976040 + 0.217591i \(0.930180\pi\)
\(572\) 28.5737 + 24.5006i 1.19472 + 1.02442i
\(573\) 0 0
\(574\) −13.6658 + 40.8296i −0.570399 + 1.70420i
\(575\) −0.884913 + 1.53271i −0.0369034 + 0.0639186i
\(576\) 0 0
\(577\) 5.34662 + 9.26061i 0.222583 + 0.385524i 0.955591 0.294695i \(-0.0952180\pi\)
−0.733009 + 0.680219i \(0.761885\pi\)
\(578\) −17.0910 + 29.6025i −0.710891 + 1.23130i
\(579\) 0 0
\(580\) −5.10688 −0.212052
\(581\) −12.4913 + 37.3205i −0.518226 + 1.54832i
\(582\) 0 0
\(583\) 21.2519 + 36.8095i 0.880166 + 1.52449i
\(584\) −3.30505 5.72452i −0.136764 0.236882i
\(585\) 0 0
\(586\) −25.4670 + 44.1102i −1.05203 + 1.82217i
\(587\) 21.3592 36.9951i 0.881587 1.52695i 0.0320103 0.999488i \(-0.489809\pi\)
0.849576 0.527465i \(-0.176858\pi\)
\(588\) 0 0
\(589\) −0.323945 0.561090i −0.0133479 0.0231193i
\(590\) 4.81767 8.34446i 0.198341 0.343536i
\(591\) 0 0
\(592\) −15.4340 + 26.7325i −0.634334 + 1.09870i
\(593\) −14.0922 + 24.4084i −0.578697 + 1.00233i 0.416932 + 0.908938i \(0.363105\pi\)
−0.995629 + 0.0933948i \(0.970228\pi\)
\(594\) 0 0
\(595\) −0.859679 + 0.174817i −0.0352434 + 0.00716680i
\(596\) 7.91570 13.7104i 0.324240 0.561599i
\(597\) 0 0
\(598\) −2.11858 1.81659i −0.0866353 0.0742859i
\(599\) −15.7857 27.3417i −0.644987 1.11715i −0.984304 0.176479i \(-0.943529\pi\)
0.339317 0.940672i \(-0.389804\pi\)
\(600\) 0 0
\(601\) 16.0445 27.7899i 0.654469 1.13357i −0.327558 0.944831i \(-0.606226\pi\)
0.982027 0.188742i \(-0.0604409\pi\)
\(602\) 5.38258 + 6.08508i 0.219377 + 0.248009i
\(603\) 0 0
\(604\) −43.6724 −1.77701
\(605\) 3.04147 5.26797i 0.123653 0.214174i
\(606\) 0 0
\(607\) −18.6665 −0.757649 −0.378825 0.925468i \(-0.623672\pi\)
−0.378825 + 0.925468i \(0.623672\pi\)
\(608\) −2.27747 + 3.94469i −0.0923636 + 0.159978i
\(609\) 0 0
\(610\) 8.37988 0.339291
\(611\) 6.01534 + 5.15788i 0.243354 + 0.208666i
\(612\) 0 0
\(613\) 17.9314 0.724241 0.362121 0.932131i \(-0.382053\pi\)
0.362121 + 0.932131i \(0.382053\pi\)
\(614\) −25.8986 44.8576i −1.04518 1.81031i
\(615\) 0 0
\(616\) −1.79939 + 5.37609i −0.0724997 + 0.216609i
\(617\) 15.8059 + 27.3765i 0.636320 + 1.10214i 0.986234 + 0.165356i \(0.0528774\pi\)
−0.349914 + 0.936782i \(0.613789\pi\)
\(618\) 0 0
\(619\) 16.3184 + 28.2644i 0.655894 + 1.13604i 0.981669 + 0.190594i \(0.0610413\pi\)
−0.325775 + 0.945447i \(0.605625\pi\)
\(620\) 0.704676 1.22053i 0.0283005 0.0490178i
\(621\) 0 0
\(622\) −4.24592 + 7.35415i −0.170246 + 0.294875i
\(623\) −23.8100 + 4.84180i −0.953929 + 0.193983i
\(624\) 0 0
\(625\) −10.2824 + 17.8096i −0.411294 + 0.712382i
\(626\) 61.9264 2.47508
\(627\) 0 0
\(628\) −11.5768 −0.461966
\(629\) −5.31319 −0.211851
\(630\) 0 0
\(631\) 12.7985 + 22.1676i 0.509500 + 0.882480i 0.999939 + 0.0110045i \(0.00350290\pi\)
−0.490440 + 0.871475i \(0.663164\pi\)
\(632\) −3.33440 + 5.77535i −0.132635 + 0.229731i
\(633\) 0 0
\(634\) 23.6842 0.940619
\(635\) −1.29977 2.25126i −0.0515797 0.0893387i
\(636\) 0 0
\(637\) 18.6445 17.0112i 0.738722 0.674010i
\(638\) 40.3909 1.59909
\(639\) 0 0
\(640\) −1.99193 −0.0787381
\(641\) 21.6208 37.4483i 0.853969 1.47912i −0.0236292 0.999721i \(-0.507522\pi\)
0.877598 0.479397i \(-0.159145\pi\)
\(642\) 0 0
\(643\) 2.25709 + 3.90939i 0.0890108 + 0.154171i 0.907093 0.420930i \(-0.138296\pi\)
−0.818082 + 0.575101i \(0.804963\pi\)
\(644\) 0.702883 2.10002i 0.0276975 0.0827524i
\(645\) 0 0
\(646\) −0.695926 −0.0273808
\(647\) 11.4404 0.449769 0.224884 0.974385i \(-0.427800\pi\)
0.224884 + 0.974385i \(0.427800\pi\)
\(648\) 0 0
\(649\) −20.0534 + 34.7334i −0.787163 + 1.36341i
\(650\) −26.4232 22.6567i −1.03640 0.888670i
\(651\) 0 0
\(652\) 4.63701 8.03153i 0.181599 0.314539i
\(653\) −10.8757 18.8373i −0.425600 0.737162i 0.570876 0.821036i \(-0.306604\pi\)
−0.996476 + 0.0838748i \(0.973270\pi\)
\(654\) 0 0
\(655\) −0.981671 1.70030i −0.0383571 0.0664364i
\(656\) 27.7740 1.08439
\(657\) 0 0
\(658\) −3.79206 + 11.3296i −0.147830 + 0.441675i
\(659\) −3.28320 5.68668i −0.127895 0.221521i 0.794966 0.606655i \(-0.207489\pi\)
−0.922861 + 0.385133i \(0.874156\pi\)
\(660\) 0 0
\(661\) −46.1554 −1.79524 −0.897619 0.440772i \(-0.854705\pi\)
−0.897619 + 0.440772i \(0.854705\pi\)
\(662\) −1.16647 2.02038i −0.0453360 0.0785243i
\(663\) 0 0
\(664\) −6.78416 −0.263276
\(665\) 0.540309 + 0.610828i 0.0209523 + 0.0236869i
\(666\) 0 0
\(667\) −1.57611 −0.0610271
\(668\) 5.60680 + 9.71127i 0.216934 + 0.375740i
\(669\) 0 0
\(670\) −10.8343 −0.418564
\(671\) −34.8809 −1.34656
\(672\) 0 0
\(673\) −5.50174 + 9.52930i −0.212077 + 0.367327i −0.952364 0.304963i \(-0.901356\pi\)
0.740288 + 0.672290i \(0.234689\pi\)
\(674\) 23.9564 + 41.4937i 0.922766 + 1.59828i
\(675\) 0 0
\(676\) 22.5189 18.0907i 0.866112 0.695795i
\(677\) 11.0575 19.1522i 0.424976 0.736080i −0.571442 0.820642i \(-0.693616\pi\)
0.996418 + 0.0845623i \(0.0269492\pi\)
\(678\) 0 0
\(679\) −16.3357 + 3.32189i −0.626907 + 0.127482i
\(680\) −0.0756129 0.130965i −0.00289962 0.00502229i
\(681\) 0 0
\(682\) −5.57336 + 9.65334i −0.213415 + 0.369645i
\(683\) −4.23809 + 7.34059i −0.162166 + 0.280880i −0.935645 0.352942i \(-0.885181\pi\)
0.773479 + 0.633822i \(0.218515\pi\)
\(684\) 0 0
\(685\) 5.28933 + 9.16139i 0.202095 + 0.350039i
\(686\) 34.3425 + 16.3928i 1.31120 + 0.625880i
\(687\) 0 0
\(688\) 2.62028 4.53847i 0.0998974 0.173027i
\(689\) 30.7688 10.8284i 1.17220 0.412529i
\(690\) 0 0
\(691\) −0.959714 1.66227i −0.0365092 0.0632359i 0.847193 0.531285i \(-0.178291\pi\)
−0.883703 + 0.468049i \(0.844957\pi\)
\(692\) 3.04295 5.27055i 0.115676 0.200356i
\(693\) 0 0
\(694\) 5.21539 0.197973
\(695\) −5.30817 −0.201350
\(696\) 0 0
\(697\) 2.39031 + 4.14014i 0.0905395 + 0.156819i
\(698\) −21.9592 −0.831166
\(699\) 0 0
\(700\) 8.76645 26.1917i 0.331341 0.989954i
\(701\) 18.1080 0.683929 0.341965 0.939713i \(-0.388908\pi\)
0.341965 + 0.939713i \(0.388908\pi\)
\(702\) 0 0
\(703\) 2.46953 + 4.27736i 0.0931403 + 0.161324i
\(704\) 45.4143 1.71162
\(705\) 0 0
\(706\) −22.8494 39.5763i −0.859948 1.48947i
\(707\) 3.73175 11.1494i 0.140347 0.419318i
\(708\) 0 0
\(709\) −28.3768 −1.06571 −0.532857 0.846205i \(-0.678882\pi\)
−0.532857 + 0.846205i \(0.678882\pi\)
\(710\) −3.26061 5.64754i −0.122368 0.211948i
\(711\) 0 0
\(712\) −2.09421 3.62727i −0.0784837 0.135938i
\(713\) 0.217480 0.376686i 0.00814468 0.0141070i
\(714\) 0 0
\(715\) −7.06411 6.05715i −0.264183 0.226525i
\(716\) −14.1046 + 24.4299i −0.527115 + 0.912990i
\(717\) 0 0
\(718\) −34.4433 −1.28541
\(719\) −44.3482 −1.65391 −0.826955 0.562269i \(-0.809929\pi\)
−0.826955 + 0.562269i \(0.809929\pi\)
\(720\) 0 0
\(721\) 29.1489 + 32.9533i 1.08556 + 1.22724i
\(722\) −19.1966 33.2495i −0.714423 1.23742i
\(723\) 0 0
\(724\) −8.83998 + 15.3113i −0.328535 + 0.569040i
\(725\) −19.6574 −0.730058
\(726\) 0 0
\(727\) 24.1298 0.894924 0.447462 0.894303i \(-0.352328\pi\)
0.447462 + 0.894303i \(0.352328\pi\)
\(728\) 3.80090 + 2.11704i 0.140871 + 0.0784628i
\(729\) 0 0
\(730\) 8.17946 + 14.1672i 0.302735 + 0.524353i
\(731\) 0.902038 0.0333631
\(732\) 0 0
\(733\) 16.7734 29.0524i 0.619540 1.07308i −0.370029 0.929020i \(-0.620652\pi\)
0.989570 0.144055i \(-0.0460143\pi\)
\(734\) −4.81009 8.33132i −0.177544 0.307515i
\(735\) 0 0
\(736\) −3.05795 −0.112717
\(737\) 45.0972 1.66118
\(738\) 0 0
\(739\) −16.8221 −0.618811 −0.309405 0.950930i \(-0.600130\pi\)
−0.309405 + 0.950930i \(0.600130\pi\)
\(740\) −5.37196 + 9.30451i −0.197477 + 0.342041i
\(741\) 0 0
\(742\) 32.5849 + 36.8377i 1.19623 + 1.35236i
\(743\) 16.5645 28.6906i 0.607694 1.05256i −0.383926 0.923364i \(-0.625428\pi\)
0.991620 0.129192i \(-0.0412385\pi\)
\(744\) 0 0
\(745\) −1.95695 + 3.38954i −0.0716972 + 0.124183i
\(746\) −6.94680 12.0322i −0.254340 0.440530i
\(747\) 0 0
\(748\) 3.15065 + 5.45709i 0.115199 + 0.199531i
\(749\) −46.3368 + 9.42265i −1.69311 + 0.344296i
\(750\) 0 0
\(751\) 14.8975 + 25.8032i 0.543616 + 0.941571i 0.998693 + 0.0511187i \(0.0162787\pi\)
−0.455076 + 0.890453i \(0.650388\pi\)
\(752\) 7.70687 0.281041
\(753\) 0 0
\(754\) 5.70811 30.4669i 0.207877 1.10954i
\(755\) 10.7969 0.392939
\(756\) 0 0
\(757\) −11.0742 + 19.1810i −0.402498 + 0.697147i −0.994027 0.109137i \(-0.965191\pi\)
0.591529 + 0.806284i \(0.298525\pi\)
\(758\) 39.5537 1.43665
\(759\) 0 0
\(760\) −0.0702887 + 0.121744i −0.00254964 + 0.00441611i
\(761\) −42.8934 −1.55489 −0.777443 0.628954i \(-0.783483\pi\)
−0.777443 + 0.628954i \(0.783483\pi\)
\(762\) 0 0
\(763\) 26.3300 5.35424i 0.953210 0.193837i
\(764\) 3.42159 5.92637i 0.123789 0.214408i
\(765\) 0 0
\(766\) −13.8542 23.9961i −0.500572 0.867016i
\(767\) 23.3655 + 20.0349i 0.843679 + 0.723417i
\(768\) 0 0
\(769\) 25.5865 44.3171i 0.922671 1.59811i 0.127407 0.991850i \(-0.459334\pi\)
0.795264 0.606263i \(-0.207332\pi\)
\(770\) 4.45320 13.3049i 0.160482 0.479477i
\(771\) 0 0
\(772\) 3.76817 6.52666i 0.135619 0.234900i
\(773\) −18.1625 + 31.4583i −0.653259 + 1.13148i 0.329069 + 0.944306i \(0.393265\pi\)
−0.982327 + 0.187171i \(0.940068\pi\)
\(774\) 0 0
\(775\) 2.71244 4.69808i 0.0974336 0.168760i
\(776\) −1.43680 2.48862i −0.0515782 0.0893361i
\(777\) 0 0
\(778\) 33.7449 58.4478i 1.20981 2.09546i
\(779\) 2.22200 3.84862i 0.0796115 0.137891i
\(780\) 0 0
\(781\) 13.5721 + 23.5076i 0.485650 + 0.841170i
\(782\) −0.233604 0.404614i −0.00835366 0.0144690i
\(783\) 0 0
\(784\) 2.99632 24.3641i 0.107012 0.870146i
\(785\) 2.86208 0.102152
\(786\) 0 0
\(787\) 27.1974 47.1072i 0.969482 1.67919i 0.272424 0.962177i \(-0.412175\pi\)
0.697058 0.717015i \(-0.254492\pi\)
\(788\) −4.58087 7.93431i −0.163187 0.282648i
\(789\) 0 0
\(790\) 8.25208 14.2930i 0.293596 0.508523i
\(791\) −19.4195 + 3.94898i −0.690478 + 0.140410i
\(792\) 0 0
\(793\) −4.92943 + 26.3107i −0.175049 + 0.934320i
\(794\) −27.3392 47.3529i −0.970233 1.68049i
\(795\) 0 0
\(796\) 1.27572 + 2.20962i 0.0452168 + 0.0783178i
\(797\) −15.9900 27.6955i −0.566396 0.981026i −0.996918 0.0784465i \(-0.975004\pi\)
0.430522 0.902580i \(-0.358329\pi\)
\(798\) 0 0
\(799\) 0.663276 + 1.14883i 0.0234650 + 0.0406426i
\(800\) −38.1391 −1.34842
\(801\) 0 0
\(802\) 23.7443 41.1263i 0.838440 1.45222i
\(803\) −34.0467 58.9705i −1.20148 2.08103i
\(804\) 0 0
\(805\) −0.173770 + 0.519176i −0.00612458 + 0.0182986i
\(806\) 6.49388 + 5.56821i 0.228737 + 0.196132i
\(807\) 0 0
\(808\) 2.02675 0.0713010
\(809\) 0.0847866 0.00298094 0.00149047 0.999999i \(-0.499526\pi\)
0.00149047 + 0.999999i \(0.499526\pi\)
\(810\) 0 0
\(811\) 2.81654 0.0989019 0.0494510 0.998777i \(-0.484253\pi\)
0.0494510 + 0.998777i \(0.484253\pi\)
\(812\) 24.1034 4.90146i 0.845863 0.172007i
\(813\) 0 0
\(814\) 42.4874 73.5903i 1.48918 2.57934i
\(815\) −1.14638 + 1.98559i −0.0401560 + 0.0695522i
\(816\) 0 0
\(817\) −0.419261 0.726182i −0.0146681 0.0254059i
\(818\) 14.8793 0.520244
\(819\) 0 0
\(820\) 9.66701 0.337586
\(821\) 8.35156 + 14.4653i 0.291471 + 0.504843i 0.974158 0.225868i \(-0.0725219\pi\)
−0.682687 + 0.730711i \(0.739189\pi\)
\(822\) 0 0
\(823\) 13.1869 22.8405i 0.459668 0.796168i −0.539275 0.842130i \(-0.681302\pi\)
0.998943 + 0.0459612i \(0.0146351\pi\)
\(824\) −3.79198 + 6.56790i −0.132100 + 0.228804i
\(825\) 0 0
\(826\) −14.7296 + 44.0079i −0.512507 + 1.53123i
\(827\) 36.8372 1.28095 0.640477 0.767977i \(-0.278737\pi\)
0.640477 + 0.767977i \(0.278737\pi\)
\(828\) 0 0
\(829\) 24.8055 0.861530 0.430765 0.902464i \(-0.358244\pi\)
0.430765 + 0.902464i \(0.358244\pi\)
\(830\) 16.7897 0.582778
\(831\) 0 0
\(832\) 6.41803 34.2561i 0.222505 1.18762i
\(833\) 3.88971 1.65020i 0.134771 0.0571759i
\(834\) 0 0
\(835\) −1.38614 2.40086i −0.0479693 0.0830853i
\(836\) 2.92880 5.07284i 0.101295 0.175448i
\(837\) 0 0
\(838\) 72.1420 2.49211
\(839\) 11.4460 + 19.8250i 0.395159 + 0.684435i 0.993121 0.117089i \(-0.0373562\pi\)
−0.597963 + 0.801524i \(0.704023\pi\)
\(840\) 0 0
\(841\) 5.74711 + 9.95429i 0.198176 + 0.343251i
\(842\) 25.9649 + 44.9725i 0.894808 + 1.54985i
\(843\) 0 0
\(844\) −5.07274 8.78625i −0.174611 0.302435i
\(845\) −5.56723 + 4.47245i −0.191518 + 0.153857i
\(846\) 0 0
\(847\) −9.29899 + 27.7828i −0.319517 + 0.954628i
\(848\) 15.8626 27.4749i 0.544724 0.943490i
\(849\) 0 0
\(850\) −2.91354 5.04639i −0.0999335 0.173090i
\(851\) −1.65792 + 2.87159i −0.0568326 + 0.0984370i
\(852\) 0 0
\(853\) 0.727097 0.0248953 0.0124477 0.999923i \(-0.496038\pi\)
0.0124477 + 0.999923i \(0.496038\pi\)
\(854\) −39.5512 + 8.04279i −1.35341 + 0.275219i
\(855\) 0 0
\(856\) −4.07554 7.05904i −0.139299 0.241273i
\(857\) −6.16106 10.6713i −0.210458 0.364524i 0.741400 0.671063i \(-0.234162\pi\)
−0.951858 + 0.306540i \(0.900829\pi\)
\(858\) 0 0
\(859\) −17.1581 + 29.7187i −0.585427 + 1.01399i 0.409395 + 0.912357i \(0.365740\pi\)
−0.994822 + 0.101632i \(0.967594\pi\)
\(860\) 0.912016 1.57966i 0.0310995 0.0538659i
\(861\) 0 0
\(862\) −18.0502 31.2639i −0.614793 1.06485i
\(863\) −17.8997 + 31.0032i −0.609313 + 1.05536i 0.382041 + 0.924146i \(0.375221\pi\)
−0.991354 + 0.131216i \(0.958112\pi\)
\(864\) 0 0
\(865\) −0.752292 + 1.30301i −0.0255787 + 0.0443036i
\(866\) 6.20554 10.7483i 0.210873 0.365242i
\(867\) 0 0
\(868\) −2.15448 + 6.43699i −0.0731278 + 0.218486i
\(869\) −34.3489 + 59.4941i −1.16521 + 2.01820i
\(870\) 0 0
\(871\) 6.37321 34.0168i 0.215948 1.15262i
\(872\) 2.31585 + 4.01117i 0.0784245 + 0.135835i
\(873\) 0 0
\(874\) −0.217155 + 0.376124i −0.00734538 + 0.0127226i
\(875\) −4.47376 + 13.3664i −0.151241 + 0.451865i
\(876\) 0 0
\(877\) 29.8080 1.00654 0.503272 0.864128i \(-0.332129\pi\)
0.503272 + 0.864128i \(0.332129\pi\)
\(878\) 25.5367 44.2308i 0.861821 1.49272i
\(879\) 0 0
\(880\) −9.05056 −0.305094
\(881\) −11.3524 + 19.6629i −0.382470 + 0.662458i −0.991415 0.130755i \(-0.958260\pi\)
0.608944 + 0.793213i \(0.291593\pi\)
\(882\) 0 0
\(883\) 51.4418 1.73115 0.865577 0.500776i \(-0.166952\pi\)
0.865577 + 0.500776i \(0.166952\pi\)
\(884\) 4.56154 1.60533i 0.153421 0.0539932i
\(885\) 0 0
\(886\) −64.9683 −2.18265
\(887\) 7.40385 + 12.8238i 0.248597 + 0.430583i 0.963137 0.269012i \(-0.0866972\pi\)
−0.714540 + 0.699595i \(0.753364\pi\)
\(888\) 0 0
\(889\) 8.29532 + 9.37799i 0.278216 + 0.314528i
\(890\) 5.18281 + 8.97689i 0.173728 + 0.300906i
\(891\) 0 0
\(892\) 18.7159 + 32.4169i 0.626654 + 1.08540i
\(893\) 0.616573 1.06794i 0.0206328 0.0357371i
\(894\) 0 0
\(895\) 3.48701 6.03968i 0.116558 0.201884i
\(896\) 9.40150 1.91181i 0.314082 0.0638690i
\(897\) 0 0
\(898\) −5.41186 + 9.37361i −0.180596 + 0.312801i
\(899\) 4.83108 0.161126
\(900\) 0 0
\(901\) 5.46073 0.181923
\(902\) −76.4574 −2.54575
\(903\) 0 0
\(904\) −1.70804 2.95841i −0.0568085 0.0983952i
\(905\) 2.18546 3.78533i 0.0726471 0.125829i
\(906\) 0 0
\(907\) −2.22350 −0.0738303 −0.0369151 0.999318i \(-0.511753\pi\)
−0.0369151 + 0.999318i \(0.511753\pi\)
\(908\) −31.6330 54.7899i −1.04978 1.81827i
\(909\) 0 0
\(910\) −9.40659 5.23933i −0.311825 0.173682i
\(911\) 29.3786 0.973355 0.486678 0.873582i \(-0.338209\pi\)
0.486678 + 0.873582i \(0.338209\pi\)
\(912\) 0 0
\(913\) −69.8863 −2.31290
\(914\) −18.9956 + 32.9013i −0.628317 + 1.08828i
\(915\) 0 0
\(916\) −29.1906 50.5596i −0.964484 1.67054i
\(917\) 6.26518 + 7.08288i 0.206895 + 0.233897i
\(918\) 0 0
\(919\) −21.6911 −0.715522 −0.357761 0.933813i \(-0.616460\pi\)
−0.357761 + 0.933813i \(0.616460\pi\)
\(920\) −0.0943763 −0.00311149
\(921\) 0 0
\(922\) 9.84429 17.0508i 0.324204 0.561538i
\(923\) 19.6499 6.91534i 0.646784 0.227621i
\(924\) 0 0
\(925\) −20.6777 + 35.8149i −0.679880 + 1.17759i
\(926\) 2.28259 + 3.95357i 0.0750107 + 0.129922i
\(927\) 0 0
\(928\) −16.9823 29.4141i −0.557470 0.965566i
\(929\) 31.1231 1.02111 0.510557 0.859844i \(-0.329439\pi\)
0.510557 + 0.859844i \(0.329439\pi\)
\(930\) 0 0
\(931\) −3.13640 2.36440i −0.102791 0.0774900i
\(932\) 24.6580 + 42.7089i 0.807699 + 1.39898i
\(933\) 0 0
\(934\) −27.7937 −0.909439
\(935\) −0.778918 1.34913i −0.0254733 0.0441211i
\(936\) 0 0
\(937\) 13.1250 0.428777 0.214388 0.976749i \(-0.431224\pi\)
0.214388 + 0.976749i \(0.431224\pi\)
\(938\) 51.1354 10.3984i 1.66963 0.339521i
\(939\) 0 0
\(940\) 2.68245 0.0874920
\(941\) 23.5806 + 40.8428i 0.768705 + 1.33144i 0.938265 + 0.345917i \(0.112432\pi\)
−0.169560 + 0.985520i \(0.554235\pi\)
\(942\) 0 0
\(943\) 2.98347 0.0971551
\(944\) 29.9360 0.974333
\(945\) 0 0
\(946\) −7.21323 + 12.4937i −0.234522 + 0.406204i
\(947\) 2.15742 + 3.73676i 0.0701068 + 0.121429i 0.898948 0.438055i \(-0.144333\pi\)
−0.828841 + 0.559484i \(0.810999\pi\)
\(948\) 0 0
\(949\) −49.2931 + 17.3476i −1.60012 + 0.563127i
\(950\) −2.70839 + 4.69106i −0.0878716 + 0.152198i
\(951\) 0 0
\(952\) 0.482573 + 0.545556i 0.0156403 + 0.0176816i
\(953\) 5.09812 + 8.83020i 0.165144 + 0.286038i 0.936707 0.350116i \(-0.113858\pi\)
−0.771562 + 0.636154i \(0.780524\pi\)
\(954\) 0 0
\(955\) −0.845901 + 1.46514i −0.0273727 + 0.0474109i
\(956\) 30.3534 52.5737i 0.981700 1.70035i
\(957\) 0 0
\(958\) 14.9864 + 25.9571i 0.484187 + 0.838637i
\(959\) −33.7573 38.1632i −1.09008 1.23235i
\(960\) 0 0
\(961\) 14.8334 25.6922i 0.478496 0.828780i
\(962\) −49.5049 42.4482i −1.59610 1.36858i
\(963\) 0 0
\(964\) 26.4226 + 45.7652i 0.851013 + 1.47400i
\(965\) −0.931584 + 1.61355i −0.0299887 + 0.0519420i
\(966\) 0 0
\(967\) 14.3246 0.460649 0.230324 0.973114i \(-0.426021\pi\)
0.230324 + 0.973114i \(0.426021\pi\)
\(968\) −5.05038 −0.162325
\(969\) 0 0
\(970\) 3.55585 + 6.15891i 0.114171 + 0.197751i
\(971\) 17.0859 0.548312 0.274156 0.961685i \(-0.411602\pi\)
0.274156 + 0.961685i \(0.411602\pi\)
\(972\) 0 0
\(973\) 25.0534 5.09464i 0.803175 0.163327i
\(974\) 3.08469 0.0988400
\(975\) 0 0
\(976\) 13.0177 + 22.5473i 0.416686 + 0.721721i
\(977\) 50.0570 1.60147 0.800733 0.599021i \(-0.204443\pi\)
0.800733 + 0.599021i \(0.204443\pi\)
\(978\) 0 0
\(979\) −21.5732 37.3659i −0.689484 1.19422i
\(980\) 1.04290 8.48016i 0.0333142 0.270889i
\(981\) 0 0
\(982\) −58.3465 −1.86191
\(983\) −20.6067 35.6919i −0.657252 1.13839i −0.981324 0.192362i \(-0.938385\pi\)
0.324072 0.946032i \(-0.394948\pi\)
\(984\) 0 0
\(985\) 1.13250 + 1.96155i 0.0360846 + 0.0625003i
\(986\) 2.59463 4.49403i 0.0826299 0.143119i
\(987\) 0 0
\(988\) −3.41254 2.92610i −0.108567 0.0930917i
\(989\) 0.281470 0.487520i 0.00895022 0.0155022i
\(990\) 0 0
\(991\) 10.0248 0.318449 0.159225 0.987242i \(-0.449101\pi\)
0.159225 + 0.987242i \(0.449101\pi\)
\(992\) 9.37322 0.297600
\(993\) 0 0
\(994\) 20.8097 + 23.5257i 0.660044 + 0.746190i
\(995\) −0.315390 0.546271i −0.00999853 0.0173180i
\(996\) 0 0
\(997\) 21.9259 37.9768i 0.694401 1.20274i −0.275982 0.961163i \(-0.589003\pi\)
0.970382 0.241574i \(-0.0776638\pi\)
\(998\) −43.3835 −1.37328
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.n.e.100.7 16
3.2 odd 2 273.2.j.b.100.2 16
7.4 even 3 819.2.s.e.802.2 16
13.3 even 3 819.2.s.e.289.2 16
21.11 odd 6 273.2.l.b.256.7 yes 16
39.29 odd 6 273.2.l.b.16.7 yes 16
91.81 even 3 inner 819.2.n.e.172.7 16
273.263 odd 6 273.2.j.b.172.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.b.100.2 16 3.2 odd 2
273.2.j.b.172.2 yes 16 273.263 odd 6
273.2.l.b.16.7 yes 16 39.29 odd 6
273.2.l.b.256.7 yes 16 21.11 odd 6
819.2.n.e.100.7 16 1.1 even 1 trivial
819.2.n.e.172.7 16 91.81 even 3 inner
819.2.s.e.289.2 16 13.3 even 3
819.2.s.e.802.2 16 7.4 even 3