Properties

Label 273.2.j.b.100.2
Level $273$
Weight $2$
Character 273.100
Analytic conductor $2.180$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Defining polynomial: \(x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + 1005 x^{6} - 544 x^{5} + 811 x^{4} - 312 x^{3} + 195 x^{2} + 13 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.2
Root \(-1.02737 - 1.77946i\) of defining polynomial
Character \(\chi\) \(=\) 273.100
Dual form 273.2.j.b.172.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.02737 - 1.77946i) q^{2} -1.00000 q^{3} +(-1.11098 + 1.92428i) q^{4} +(-0.274662 + 0.475728i) q^{5} +(1.02737 + 1.77946i) q^{6} +(-0.839752 + 2.50895i) q^{7} +0.456078 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-1.02737 - 1.77946i) q^{2} -1.00000 q^{3} +(-1.11098 + 1.92428i) q^{4} +(-0.274662 + 0.475728i) q^{5} +(1.02737 + 1.77946i) q^{6} +(-0.839752 + 2.50895i) q^{7} +0.456078 q^{8} +1.00000 q^{9} +1.12872 q^{10} +4.69824 q^{11} +(1.11098 - 1.92428i) q^{12} +(-0.663964 + 3.54389i) q^{13} +(5.32730 - 1.08331i) q^{14} +(0.274662 - 0.475728i) q^{15} +(1.75340 + 3.03698i) q^{16} +(0.301806 - 0.522743i) q^{17} +(-1.02737 - 1.77946i) q^{18} +0.561110 q^{19} +(-0.610289 - 1.05705i) q^{20} +(0.839752 - 2.50895i) q^{21} +(-4.82684 - 8.36033i) q^{22} +(-0.188350 - 0.326231i) q^{23} -0.456078 q^{24} +(2.34912 + 4.06880i) q^{25} +(6.98834 - 2.45939i) q^{26} -1.00000 q^{27} +(-3.89496 - 4.40331i) q^{28} +(2.09200 - 3.62344i) q^{29} -1.12872 q^{30} +(-0.577330 - 0.999965i) q^{31} +(4.05887 - 7.03016i) q^{32} -4.69824 q^{33} -1.24027 q^{34} +(-0.962929 - 1.08861i) q^{35} +(-1.11098 + 1.92428i) q^{36} +(4.40116 + 7.62304i) q^{37} +(-0.576468 - 0.998472i) q^{38} +(0.663964 - 3.54389i) q^{39} +(-0.125267 + 0.216969i) q^{40} +(-3.96001 + 6.85894i) q^{41} +(-5.32730 + 1.08331i) q^{42} +(-0.747200 - 1.29419i) q^{43} +(-5.21966 + 9.04072i) q^{44} +(-0.274662 + 0.475728i) q^{45} +(-0.387010 + 0.670321i) q^{46} +(-1.09885 + 1.90326i) q^{47} +(-1.75340 - 3.03698i) q^{48} +(-5.58963 - 4.21379i) q^{49} +(4.82684 - 8.36033i) q^{50} +(-0.301806 + 0.522743i) q^{51} +(-6.08177 - 5.21485i) q^{52} +(4.52338 + 7.83473i) q^{53} +(1.02737 + 1.77946i) q^{54} +(-1.29043 + 2.23509i) q^{55} +(-0.382993 + 1.14428i) q^{56} -0.561110 q^{57} -8.59702 q^{58} +(-4.26827 + 7.39286i) q^{59} +(0.610289 + 1.05705i) q^{60} +7.42424 q^{61} +(-1.18626 + 2.05467i) q^{62} +(-0.839752 + 2.50895i) q^{63} -9.66624 q^{64} +(-1.50356 - 1.28924i) q^{65} +(4.82684 + 8.36033i) q^{66} -9.59873 q^{67} +(0.670602 + 1.16152i) q^{68} +(0.188350 + 0.326231i) q^{69} +(-0.947844 + 2.83190i) q^{70} +(2.88877 + 5.00350i) q^{71} +0.456078 q^{72} +(7.24668 + 12.5516i) q^{73} +(9.04325 - 15.6634i) q^{74} +(-2.34912 - 4.06880i) q^{75} +(-0.623383 + 1.07973i) q^{76} +(-3.94536 + 11.7876i) q^{77} +(-6.98834 + 2.45939i) q^{78} +(7.31102 - 12.6631i) q^{79} -1.92637 q^{80} +1.00000 q^{81} +16.2736 q^{82} -14.8750 q^{83} +(3.89496 + 4.40331i) q^{84} +(0.165789 + 0.287155i) q^{85} +(-1.53530 + 2.65922i) q^{86} +(-2.09200 + 3.62344i) q^{87} +2.14277 q^{88} +(-4.59177 - 7.95317i) q^{89} +1.12872 q^{90} +(-8.33387 - 4.64184i) q^{91} +0.837013 q^{92} +(0.577330 + 0.999965i) q^{93} +4.51569 q^{94} +(-0.154115 + 0.266936i) q^{95} +(-4.05887 + 7.03016i) q^{96} +(3.15034 + 5.45655i) q^{97} +(-1.75564 + 14.2756i) q^{98} +4.69824 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 16q^{3} - 6q^{4} + q^{7} + 12q^{8} + 16q^{9} + O(q^{10}) \) \( 16q - 16q^{3} - 6q^{4} + q^{7} + 12q^{8} + 16q^{9} + 8q^{10} + 4q^{11} + 6q^{12} + 5q^{13} - 7q^{14} - 6q^{16} - 2q^{17} + 22q^{19} - 20q^{20} - q^{21} + 7q^{22} + 4q^{23} - 12q^{24} + 2q^{25} - 6q^{26} - 16q^{27} - 7q^{28} + 15q^{29} - 8q^{30} + 3q^{31} + 3q^{32} - 4q^{33} - 68q^{34} - 12q^{35} - 6q^{36} + 4q^{37} + 2q^{38} - 5q^{39} - 25q^{40} + 19q^{41} + 7q^{42} + 11q^{43} - 16q^{44} + 2q^{46} + 5q^{47} + 6q^{48} + 13q^{49} - 7q^{50} + 2q^{51} + 36q^{52} + 36q^{53} - 15q^{55} + 39q^{56} - 22q^{57} - 40q^{58} - 17q^{59} + 20q^{60} + 44q^{61} - 6q^{62} + q^{63} - 20q^{64} - 21q^{65} - 7q^{66} - 52q^{67} + 5q^{68} - 4q^{69} + 46q^{70} + 9q^{71} + 12q^{72} - 6q^{73} + 15q^{74} - 2q^{75} - 16q^{76} - 36q^{77} + 6q^{78} + 16q^{79} + 56q^{80} + 16q^{81} + 2q^{82} + 36q^{83} + 7q^{84} - 4q^{85} + 16q^{86} - 15q^{87} - 48q^{88} + 20q^{89} + 8q^{90} - 7q^{91} - 94q^{92} - 3q^{93} + 40q^{94} - 3q^{96} + 7q^{97} - 3q^{98} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02737 1.77946i −0.726461 1.25827i −0.958370 0.285530i \(-0.907830\pi\)
0.231909 0.972738i \(-0.425503\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.11098 + 1.92428i −0.555491 + 0.962139i
\(5\) −0.274662 + 0.475728i −0.122833 + 0.212752i −0.920884 0.389838i \(-0.872531\pi\)
0.798051 + 0.602590i \(0.205864\pi\)
\(6\) 1.02737 + 1.77946i 0.419422 + 0.726461i
\(7\) −0.839752 + 2.50895i −0.317397 + 0.948293i
\(8\) 0.456078 0.161248
\(9\) 1.00000 0.333333
\(10\) 1.12872 0.356932
\(11\) 4.69824 1.41657 0.708287 0.705925i \(-0.249468\pi\)
0.708287 + 0.705925i \(0.249468\pi\)
\(12\) 1.11098 1.92428i 0.320713 0.555491i
\(13\) −0.663964 + 3.54389i −0.184150 + 0.982898i
\(14\) 5.32730 1.08331i 1.42378 0.289528i
\(15\) 0.274662 0.475728i 0.0709174 0.122833i
\(16\) 1.75340 + 3.03698i 0.438351 + 0.759245i
\(17\) 0.301806 0.522743i 0.0731987 0.126784i −0.827103 0.562051i \(-0.810013\pi\)
0.900302 + 0.435267i \(0.143346\pi\)
\(18\) −1.02737 1.77946i −0.242154 0.419422i
\(19\) 0.561110 0.128727 0.0643637 0.997927i \(-0.479498\pi\)
0.0643637 + 0.997927i \(0.479498\pi\)
\(20\) −0.610289 1.05705i −0.136465 0.236364i
\(21\) 0.839752 2.50895i 0.183249 0.547497i
\(22\) −4.82684 8.36033i −1.02909 1.78243i
\(23\) −0.188350 0.326231i −0.0392736 0.0680239i 0.845720 0.533626i \(-0.179171\pi\)
−0.884994 + 0.465602i \(0.845838\pi\)
\(24\) −0.456078 −0.0930966
\(25\) 2.34912 + 4.06880i 0.469824 + 0.813760i
\(26\) 6.98834 2.45939i 1.37053 0.482327i
\(27\) −1.00000 −0.192450
\(28\) −3.89496 4.40331i −0.736078 0.832148i
\(29\) 2.09200 3.62344i 0.388474 0.672856i −0.603771 0.797158i \(-0.706336\pi\)
0.992244 + 0.124302i \(0.0396691\pi\)
\(30\) −1.12872 −0.206075
\(31\) −0.577330 0.999965i −0.103691 0.179599i 0.809511 0.587104i \(-0.199732\pi\)
−0.913203 + 0.407505i \(0.866399\pi\)
\(32\) 4.05887 7.03016i 0.717513 1.24277i
\(33\) −4.69824 −0.817859
\(34\) −1.24027 −0.212704
\(35\) −0.962929 1.08861i −0.162765 0.184008i
\(36\) −1.11098 + 1.92428i −0.185164 + 0.320713i
\(37\) 4.40116 + 7.62304i 0.723547 + 1.25322i 0.959569 + 0.281472i \(0.0908227\pi\)
−0.236023 + 0.971748i \(0.575844\pi\)
\(38\) −0.576468 0.998472i −0.0935154 0.161973i
\(39\) 0.663964 3.54389i 0.106319 0.567476i
\(40\) −0.125267 + 0.216969i −0.0198065 + 0.0343059i
\(41\) −3.96001 + 6.85894i −0.618450 + 1.07119i 0.371319 + 0.928506i \(0.378906\pi\)
−0.989769 + 0.142681i \(0.954428\pi\)
\(42\) −5.32730 + 1.08331i −0.822021 + 0.167159i
\(43\) −0.747200 1.29419i −0.113947 0.197362i 0.803411 0.595424i \(-0.203016\pi\)
−0.917358 + 0.398062i \(0.869683\pi\)
\(44\) −5.21966 + 9.04072i −0.786894 + 1.36294i
\(45\) −0.274662 + 0.475728i −0.0409442 + 0.0709174i
\(46\) −0.387010 + 0.670321i −0.0570615 + 0.0988334i
\(47\) −1.09885 + 1.90326i −0.160283 + 0.277619i −0.934970 0.354726i \(-0.884574\pi\)
0.774687 + 0.632345i \(0.217907\pi\)
\(48\) −1.75340 3.03698i −0.253082 0.438351i
\(49\) −5.58963 4.21379i −0.798519 0.601970i
\(50\) 4.82684 8.36033i 0.682618 1.18233i
\(51\) −0.301806 + 0.522743i −0.0422613 + 0.0731987i
\(52\) −6.08177 5.21485i −0.843390 0.723169i
\(53\) 4.52338 + 7.83473i 0.621334 + 1.07618i 0.989238 + 0.146318i \(0.0467424\pi\)
−0.367903 + 0.929864i \(0.619924\pi\)
\(54\) 1.02737 + 1.77946i 0.139807 + 0.242154i
\(55\) −1.29043 + 2.23509i −0.174001 + 0.301379i
\(56\) −0.382993 + 1.14428i −0.0511796 + 0.152910i
\(57\) −0.561110 −0.0743208
\(58\) −8.59702 −1.12884
\(59\) −4.26827 + 7.39286i −0.555681 + 0.962468i 0.442169 + 0.896932i \(0.354209\pi\)
−0.997850 + 0.0655364i \(0.979124\pi\)
\(60\) 0.610289 + 1.05705i 0.0787879 + 0.136465i
\(61\) 7.42424 0.950576 0.475288 0.879830i \(-0.342344\pi\)
0.475288 + 0.879830i \(0.342344\pi\)
\(62\) −1.18626 + 2.05467i −0.150656 + 0.260943i
\(63\) −0.839752 + 2.50895i −0.105799 + 0.316098i
\(64\) −9.66624 −1.20828
\(65\) −1.50356 1.28924i −0.186494 0.159910i
\(66\) 4.82684 + 8.36033i 0.594143 + 1.02909i
\(67\) −9.59873 −1.17267 −0.586336 0.810068i \(-0.699430\pi\)
−0.586336 + 0.810068i \(0.699430\pi\)
\(68\) 0.670602 + 1.16152i 0.0813224 + 0.140855i
\(69\) 0.188350 + 0.326231i 0.0226746 + 0.0392736i
\(70\) −0.947844 + 2.83190i −0.113289 + 0.338476i
\(71\) 2.88877 + 5.00350i 0.342834 + 0.593806i 0.984958 0.172795i \(-0.0552799\pi\)
−0.642124 + 0.766601i \(0.721947\pi\)
\(72\) 0.456078 0.0537494
\(73\) 7.24668 + 12.5516i 0.848160 + 1.46906i 0.882849 + 0.469657i \(0.155623\pi\)
−0.0346892 + 0.999398i \(0.511044\pi\)
\(74\) 9.04325 15.6634i 1.05126 1.82083i
\(75\) −2.34912 4.06880i −0.271253 0.469824i
\(76\) −0.623383 + 1.07973i −0.0715069 + 0.123854i
\(77\) −3.94536 + 11.7876i −0.449616 + 1.34333i
\(78\) −6.98834 + 2.45939i −0.791274 + 0.278471i
\(79\) 7.31102 12.6631i 0.822554 1.42471i −0.0812206 0.996696i \(-0.525882\pi\)
0.903774 0.428009i \(-0.140785\pi\)
\(80\) −1.92637 −0.215375
\(81\) 1.00000 0.111111
\(82\) 16.2736 1.79712
\(83\) −14.8750 −1.63274 −0.816371 0.577528i \(-0.804017\pi\)
−0.816371 + 0.577528i \(0.804017\pi\)
\(84\) 3.89496 + 4.40331i 0.424975 + 0.480441i
\(85\) 0.165789 + 0.287155i 0.0179824 + 0.0311464i
\(86\) −1.53530 + 2.65922i −0.165556 + 0.286751i
\(87\) −2.09200 + 3.62344i −0.224285 + 0.388474i
\(88\) 2.14277 0.228420
\(89\) −4.59177 7.95317i −0.486726 0.843035i 0.513157 0.858295i \(-0.328476\pi\)
−0.999884 + 0.0152600i \(0.995142\pi\)
\(90\) 1.12872 0.118977
\(91\) −8.33387 4.64184i −0.873627 0.486597i
\(92\) 0.837013 0.0872646
\(93\) 0.577330 + 0.999965i 0.0598663 + 0.103691i
\(94\) 4.51569 0.465758
\(95\) −0.154115 + 0.266936i −0.0158119 + 0.0273870i
\(96\) −4.05887 + 7.03016i −0.414256 + 0.717513i
\(97\) 3.15034 + 5.45655i 0.319869 + 0.554029i 0.980460 0.196717i \(-0.0630279\pi\)
−0.660592 + 0.750745i \(0.729695\pi\)
\(98\) −1.75564 + 14.2756i −0.177346 + 1.44206i
\(99\) 4.69824 0.472191
\(100\) −10.4393 −1.04393
\(101\) 4.44387 0.442182 0.221091 0.975253i \(-0.429038\pi\)
0.221091 + 0.975253i \(0.429038\pi\)
\(102\) 1.24027 0.122805
\(103\) 8.31431 14.4008i 0.819234 1.41895i −0.0870141 0.996207i \(-0.527733\pi\)
0.906248 0.422747i \(-0.138934\pi\)
\(104\) −0.302820 + 1.61629i −0.0296939 + 0.158490i
\(105\) 0.962929 + 1.08861i 0.0939723 + 0.106237i
\(106\) 9.29438 16.0983i 0.902750 1.56361i
\(107\) −8.93605 15.4777i −0.863881 1.49629i −0.868154 0.496295i \(-0.834694\pi\)
0.00427332 0.999991i \(-0.498640\pi\)
\(108\) 1.11098 1.92428i 0.106904 0.185164i
\(109\) −5.07774 8.79490i −0.486359 0.842399i 0.513518 0.858079i \(-0.328342\pi\)
−0.999877 + 0.0156799i \(0.995009\pi\)
\(110\) 5.30299 0.505621
\(111\) −4.40116 7.62304i −0.417740 0.723547i
\(112\) −9.09205 + 1.84888i −0.859118 + 0.174703i
\(113\) −3.74505 6.48662i −0.352305 0.610210i 0.634348 0.773048i \(-0.281269\pi\)
−0.986653 + 0.162838i \(0.947935\pi\)
\(114\) 0.576468 + 0.998472i 0.0539912 + 0.0935154i
\(115\) 0.206930 0.0192963
\(116\) 4.64834 + 8.05116i 0.431587 + 0.747531i
\(117\) −0.663964 + 3.54389i −0.0613835 + 0.327633i
\(118\) 17.5404 1.61472
\(119\) 1.05809 + 1.19619i 0.0969952 + 0.109655i
\(120\) 0.125267 0.216969i 0.0114353 0.0198065i
\(121\) 11.0735 1.00668
\(122\) −7.62745 13.2111i −0.690557 1.19608i
\(123\) 3.96001 6.85894i 0.357062 0.618450i
\(124\) 2.56561 0.230399
\(125\) −5.32748 −0.476504
\(126\) 5.32730 1.08331i 0.474594 0.0965094i
\(127\) 2.36612 4.09824i 0.209959 0.363660i −0.741742 0.670685i \(-0.766000\pi\)
0.951702 + 0.307025i \(0.0993335\pi\)
\(128\) 1.81308 + 3.14034i 0.160255 + 0.277570i
\(129\) 0.747200 + 1.29419i 0.0657873 + 0.113947i
\(130\) −0.749428 + 4.00005i −0.0657292 + 0.350828i
\(131\) −1.78705 + 3.09527i −0.156136 + 0.270435i −0.933472 0.358650i \(-0.883237\pi\)
0.777336 + 0.629085i \(0.216570\pi\)
\(132\) 5.21966 9.04072i 0.454313 0.786894i
\(133\) −0.471193 + 1.40779i −0.0408576 + 0.122071i
\(134\) 9.86145 + 17.0805i 0.851900 + 1.47553i
\(135\) 0.274662 0.475728i 0.0236391 0.0409442i
\(136\) 0.137647 0.238412i 0.0118031 0.0204437i
\(137\) 9.62880 16.6776i 0.822644 1.42486i −0.0810628 0.996709i \(-0.525831\pi\)
0.903707 0.428152i \(-0.140835\pi\)
\(138\) 0.387010 0.670321i 0.0329445 0.0570615i
\(139\) −4.83155 8.36849i −0.409807 0.709806i 0.585061 0.810989i \(-0.301070\pi\)
−0.994868 + 0.101183i \(0.967737\pi\)
\(140\) 3.16458 0.643521i 0.267456 0.0543875i
\(141\) 1.09885 1.90326i 0.0925395 0.160283i
\(142\) 5.93568 10.2809i 0.498111 0.862753i
\(143\) −3.11946 + 16.6501i −0.260863 + 1.39235i
\(144\) 1.75340 + 3.03698i 0.146117 + 0.253082i
\(145\) 1.14918 + 1.99044i 0.0954344 + 0.165297i
\(146\) 14.8901 25.7903i 1.23231 2.13442i
\(147\) 5.58963 + 4.21379i 0.461025 + 0.347547i
\(148\) −19.5584 −1.60769
\(149\) 7.12496 0.583699 0.291850 0.956464i \(-0.405729\pi\)
0.291850 + 0.956464i \(0.405729\pi\)
\(150\) −4.82684 + 8.36033i −0.394110 + 0.682618i
\(151\) 9.82744 + 17.0216i 0.799746 + 1.38520i 0.919781 + 0.392431i \(0.128366\pi\)
−0.120036 + 0.992770i \(0.538301\pi\)
\(152\) 0.255910 0.0207570
\(153\) 0.301806 0.522743i 0.0243996 0.0422613i
\(154\) 25.0290 5.08968i 2.01689 0.410138i
\(155\) 0.634282 0.0509468
\(156\) 6.08177 + 5.21485i 0.486932 + 0.417522i
\(157\) 2.60509 + 4.51215i 0.207909 + 0.360109i 0.951056 0.309020i \(-0.100001\pi\)
−0.743147 + 0.669129i \(0.766668\pi\)
\(158\) −30.0445 −2.39021
\(159\) −4.52338 7.83473i −0.358727 0.621334i
\(160\) 2.22963 + 3.86184i 0.176268 + 0.305305i
\(161\) 0.976664 0.198606i 0.0769719 0.0156523i
\(162\) −1.02737 1.77946i −0.0807179 0.139807i
\(163\) −4.17379 −0.326917 −0.163458 0.986550i \(-0.552265\pi\)
−0.163458 + 0.986550i \(0.552265\pi\)
\(164\) −8.79901 15.2403i −0.687087 1.19007i
\(165\) 1.29043 2.23509i 0.100460 0.174001i
\(166\) 15.2821 + 26.4694i 1.18612 + 2.05442i
\(167\) −2.52335 + 4.37058i −0.195263 + 0.338205i −0.946987 0.321273i \(-0.895889\pi\)
0.751724 + 0.659478i \(0.229223\pi\)
\(168\) 0.382993 1.14428i 0.0295485 0.0882829i
\(169\) −12.1183 4.70603i −0.932177 0.362002i
\(170\) 0.340654 0.590030i 0.0261270 0.0452532i
\(171\) 0.561110 0.0429091
\(172\) 3.32050 0.253186
\(173\) 2.73897 0.208240 0.104120 0.994565i \(-0.466797\pi\)
0.104120 + 0.994565i \(0.466797\pi\)
\(174\) 8.59702 0.651738
\(175\) −12.1811 + 2.47704i −0.920803 + 0.187247i
\(176\) 8.23791 + 14.2685i 0.620956 + 1.07553i
\(177\) 4.26827 7.39286i 0.320823 0.555681i
\(178\) −9.43489 + 16.3417i −0.707175 + 1.22486i
\(179\) −12.6956 −0.948917 −0.474459 0.880278i \(-0.657356\pi\)
−0.474459 + 0.880278i \(0.657356\pi\)
\(180\) −0.610289 1.05705i −0.0454882 0.0787879i
\(181\) 7.95691 0.591432 0.295716 0.955276i \(-0.404442\pi\)
0.295716 + 0.955276i \(0.404442\pi\)
\(182\) 0.302011 + 19.5987i 0.0223866 + 1.45275i
\(183\) −7.42424 −0.548816
\(184\) −0.0859023 0.148787i −0.00633280 0.0109687i
\(185\) −4.83533 −0.355500
\(186\) 1.18626 2.05467i 0.0869811 0.150656i
\(187\) 1.41796 2.45597i 0.103691 0.179599i
\(188\) −2.44160 4.22897i −0.178072 0.308429i
\(189\) 0.839752 2.50895i 0.0610830 0.182499i
\(190\) 0.633335 0.0459469
\(191\) 3.07979 0.222846 0.111423 0.993773i \(-0.464459\pi\)
0.111423 + 0.993773i \(0.464459\pi\)
\(192\) 9.66624 0.697601
\(193\) −3.39175 −0.244143 −0.122072 0.992521i \(-0.538954\pi\)
−0.122072 + 0.992521i \(0.538954\pi\)
\(194\) 6.47314 11.2118i 0.464744 0.804961i
\(195\) 1.50356 + 1.28924i 0.107672 + 0.0923242i
\(196\) 14.3185 6.07456i 1.02275 0.433897i
\(197\) 2.06163 3.57085i 0.146885 0.254413i −0.783189 0.621783i \(-0.786409\pi\)
0.930075 + 0.367370i \(0.119742\pi\)
\(198\) −4.82684 8.36033i −0.343028 0.594143i
\(199\) 0.574142 0.994443i 0.0406998 0.0704942i −0.844958 0.534833i \(-0.820375\pi\)
0.885658 + 0.464339i \(0.153708\pi\)
\(200\) 1.07138 + 1.85569i 0.0757583 + 0.131217i
\(201\) 9.59873 0.677042
\(202\) −4.56551 7.90769i −0.321228 0.556383i
\(203\) 7.33427 + 8.29150i 0.514765 + 0.581949i
\(204\) −0.670602 1.16152i −0.0469515 0.0813224i
\(205\) −2.17533 3.76778i −0.151932 0.263153i
\(206\) −34.1675 −2.38056
\(207\) −0.188350 0.326231i −0.0130912 0.0226746i
\(208\) −11.9269 + 4.19742i −0.826983 + 0.291039i
\(209\) 2.63623 0.182352
\(210\) 0.947844 2.83190i 0.0654074 0.195419i
\(211\) −2.28300 + 3.95427i −0.157168 + 0.272223i −0.933846 0.357674i \(-0.883570\pi\)
0.776678 + 0.629898i \(0.216903\pi\)
\(212\) −20.1016 −1.38058
\(213\) −2.88877 5.00350i −0.197935 0.342834i
\(214\) −18.3613 + 31.8027i −1.25515 + 2.17399i
\(215\) 0.820910 0.0559856
\(216\) −0.456078 −0.0310322
\(217\) 2.99367 0.608768i 0.203224 0.0413258i
\(218\) −10.4334 + 18.0713i −0.706642 + 1.22394i
\(219\) −7.24668 12.5516i −0.489685 0.848160i
\(220\) −2.86729 4.96628i −0.193312 0.334827i
\(221\) 1.65216 + 1.41665i 0.111136 + 0.0952941i
\(222\) −9.04325 + 15.6634i −0.606943 + 1.05126i
\(223\) 8.42312 14.5893i 0.564054 0.976970i −0.433083 0.901354i \(-0.642574\pi\)
0.997137 0.0756163i \(-0.0240924\pi\)
\(224\) 14.2299 + 16.0871i 0.950773 + 1.07486i
\(225\) 2.34912 + 4.06880i 0.156608 + 0.271253i
\(226\) −7.69512 + 13.3283i −0.511872 + 0.886588i
\(227\) 14.2365 24.6583i 0.944909 1.63663i 0.188976 0.981982i \(-0.439483\pi\)
0.755933 0.654649i \(-0.227184\pi\)
\(228\) 0.623383 1.07973i 0.0412845 0.0715069i
\(229\) −13.1373 + 22.7545i −0.868137 + 1.50366i −0.00423787 + 0.999991i \(0.501349\pi\)
−0.863899 + 0.503666i \(0.831984\pi\)
\(230\) −0.212594 0.368223i −0.0140180 0.0242799i
\(231\) 3.94536 11.7876i 0.259586 0.775570i
\(232\) 0.954114 1.65257i 0.0626406 0.108497i
\(233\) −11.0974 + 19.2212i −0.727014 + 1.25922i 0.231126 + 0.972924i \(0.425759\pi\)
−0.958140 + 0.286301i \(0.907574\pi\)
\(234\) 6.98834 2.45939i 0.456842 0.160776i
\(235\) −0.603622 1.04550i −0.0393760 0.0682012i
\(236\) −9.48394 16.4267i −0.617352 1.06928i
\(237\) −7.31102 + 12.6631i −0.474902 + 0.822554i
\(238\) 1.04152 3.11176i 0.0675115 0.201706i
\(239\) 27.3213 1.76727 0.883633 0.468180i \(-0.155090\pi\)
0.883633 + 0.468180i \(0.155090\pi\)
\(240\) 1.92637 0.124347
\(241\) 11.8915 20.5967i 0.766001 1.32675i −0.173715 0.984796i \(-0.555577\pi\)
0.939716 0.341957i \(-0.111090\pi\)
\(242\) −11.3766 19.7048i −0.731314 1.26667i
\(243\) −1.00000 −0.0641500
\(244\) −8.24820 + 14.2863i −0.528037 + 0.914586i
\(245\) 3.53988 1.50178i 0.226154 0.0959452i
\(246\) −16.2736 −1.03757
\(247\) −0.372557 + 1.98851i −0.0237052 + 0.126526i
\(248\) −0.263308 0.456062i −0.0167201 0.0289600i
\(249\) 14.8750 0.942664
\(250\) 5.47329 + 9.48002i 0.346161 + 0.599569i
\(251\) 4.16795 + 7.21910i 0.263079 + 0.455666i 0.967058 0.254554i \(-0.0819288\pi\)
−0.703980 + 0.710220i \(0.748595\pi\)
\(252\) −3.89496 4.40331i −0.245359 0.277383i
\(253\) −0.884913 1.53271i −0.0556340 0.0963609i
\(254\) −9.72354 −0.610109
\(255\) −0.165789 0.287155i −0.0103821 0.0179824i
\(256\) −5.94083 + 10.2898i −0.371302 + 0.643114i
\(257\) 6.88712 + 11.9288i 0.429607 + 0.744101i 0.996838 0.0794576i \(-0.0253188\pi\)
−0.567231 + 0.823558i \(0.691985\pi\)
\(258\) 1.53530 2.65922i 0.0955838 0.165556i
\(259\) −22.8217 + 4.64082i −1.41807 + 0.288367i
\(260\) 4.15128 1.46095i 0.257452 0.0906044i
\(261\) 2.09200 3.62344i 0.129491 0.224285i
\(262\) 7.34387 0.453706
\(263\) −9.04564 −0.557778 −0.278889 0.960323i \(-0.589966\pi\)
−0.278889 + 0.960323i \(0.589966\pi\)
\(264\) −2.14277 −0.131878
\(265\) −4.96960 −0.305280
\(266\) 2.98920 0.607859i 0.183280 0.0372702i
\(267\) 4.59177 + 7.95317i 0.281012 + 0.486726i
\(268\) 10.6640 18.4706i 0.651408 1.12827i
\(269\) −1.14428 + 1.98196i −0.0697681 + 0.120842i −0.898799 0.438361i \(-0.855559\pi\)
0.829031 + 0.559203i \(0.188893\pi\)
\(270\) −1.12872 −0.0686916
\(271\) −1.99057 3.44778i −0.120919 0.209437i 0.799211 0.601050i \(-0.205251\pi\)
−0.920130 + 0.391612i \(0.871917\pi\)
\(272\) 2.11675 0.128347
\(273\) 8.33387 + 4.64184i 0.504389 + 0.280937i
\(274\) −39.5694 −2.39047
\(275\) 11.0367 + 19.1162i 0.665541 + 1.15275i
\(276\) −0.837013 −0.0503822
\(277\) 4.19999 7.27460i 0.252353 0.437089i −0.711820 0.702362i \(-0.752129\pi\)
0.964173 + 0.265273i \(0.0854622\pi\)
\(278\) −9.92758 + 17.1951i −0.595417 + 1.03129i
\(279\) −0.577330 0.999965i −0.0345638 0.0598663i
\(280\) −0.439171 0.496490i −0.0262455 0.0296709i
\(281\) −12.9559 −0.772884 −0.386442 0.922314i \(-0.626296\pi\)
−0.386442 + 0.922314i \(0.626296\pi\)
\(282\) −4.51569 −0.268905
\(283\) 25.6051 1.52207 0.761033 0.648713i \(-0.224692\pi\)
0.761033 + 0.648713i \(0.224692\pi\)
\(284\) −12.8375 −0.761765
\(285\) 0.154115 0.266936i 0.00912901 0.0158119i
\(286\) 32.8329 11.5548i 1.94145 0.683251i
\(287\) −13.8833 15.6953i −0.819505 0.926463i
\(288\) 4.05887 7.03016i 0.239171 0.414256i
\(289\) 8.31783 + 14.4069i 0.489284 + 0.847465i
\(290\) 2.36127 4.08985i 0.138659 0.240164i
\(291\) −3.15034 5.45655i −0.184676 0.319869i
\(292\) −32.2037 −1.88458
\(293\) −12.3943 21.4675i −0.724081 1.25415i −0.959351 0.282215i \(-0.908931\pi\)
0.235270 0.971930i \(-0.424403\pi\)
\(294\) 1.75564 14.2756i 0.102391 0.832572i
\(295\) −2.34466 4.06107i −0.136511 0.236445i
\(296\) 2.00728 + 3.47670i 0.116671 + 0.202079i
\(297\) −4.69824 −0.272620
\(298\) −7.31997 12.6786i −0.424035 0.734450i
\(299\) 1.28118 0.450885i 0.0740928 0.0260753i
\(300\) 10.4393 0.602715
\(301\) 3.87451 0.787888i 0.223323 0.0454131i
\(302\) 20.1929 34.9751i 1.16197 2.01259i
\(303\) −4.44387 −0.255294
\(304\) 0.983851 + 1.70408i 0.0564277 + 0.0977357i
\(305\) −2.03916 + 3.53192i −0.116762 + 0.202237i
\(306\) −1.24027 −0.0709013
\(307\) −25.2086 −1.43873 −0.719365 0.694632i \(-0.755567\pi\)
−0.719365 + 0.694632i \(0.755567\pi\)
\(308\) −18.2995 20.6878i −1.04271 1.17880i
\(309\) −8.31431 + 14.4008i −0.472985 + 0.819234i
\(310\) −0.651643 1.12868i −0.0370108 0.0641046i
\(311\) −2.06640 3.57911i −0.117175 0.202953i 0.801472 0.598032i \(-0.204050\pi\)
−0.918647 + 0.395079i \(0.870717\pi\)
\(312\) 0.302820 1.61629i 0.0171438 0.0915045i
\(313\) 15.0691 26.1005i 0.851758 1.47529i −0.0278626 0.999612i \(-0.508870\pi\)
0.879620 0.475676i \(-0.157797\pi\)
\(314\) 5.35279 9.27131i 0.302076 0.523210i
\(315\) −0.962929 1.08861i −0.0542549 0.0613360i
\(316\) 16.2448 + 28.1369i 0.913843 + 1.58282i
\(317\) −5.76330 + 9.98233i −0.323699 + 0.560663i −0.981248 0.192748i \(-0.938260\pi\)
0.657549 + 0.753412i \(0.271593\pi\)
\(318\) −9.29438 + 16.0983i −0.521203 + 0.902750i
\(319\) 9.82870 17.0238i 0.550302 0.953150i
\(320\) 2.65495 4.59850i 0.148416 0.257064i
\(321\) 8.93605 + 15.4777i 0.498762 + 0.863881i
\(322\) −1.35681 1.53389i −0.0756119 0.0854804i
\(323\) 0.169346 0.293316i 0.00942268 0.0163206i
\(324\) −1.11098 + 1.92428i −0.0617212 + 0.106904i
\(325\) −15.9791 + 5.62349i −0.886361 + 0.311935i
\(326\) 4.28803 + 7.42709i 0.237492 + 0.411348i
\(327\) 5.07774 + 8.79490i 0.280800 + 0.486359i
\(328\) −1.80608 + 3.12822i −0.0997239 + 0.172727i
\(329\) −3.85241 4.35521i −0.212390 0.240110i
\(330\) −5.30299 −0.291920
\(331\) −1.13539 −0.0624067 −0.0312033 0.999513i \(-0.509934\pi\)
−0.0312033 + 0.999513i \(0.509934\pi\)
\(332\) 16.5258 28.6236i 0.906973 1.57092i
\(333\) 4.40116 + 7.62304i 0.241182 + 0.417740i
\(334\) 10.3697 0.567404
\(335\) 2.63640 4.56639i 0.144042 0.249488i
\(336\) 9.09205 1.84888i 0.496012 0.100865i
\(337\) 23.3181 1.27022 0.635110 0.772421i \(-0.280955\pi\)
0.635110 + 0.772421i \(0.280955\pi\)
\(338\) 4.07581 + 26.3989i 0.221695 + 1.43591i
\(339\) 3.74505 + 6.48662i 0.203403 + 0.352305i
\(340\) −0.736755 −0.0399562
\(341\) −2.71244 4.69808i −0.146887 0.254415i
\(342\) −0.576468 0.998472i −0.0311718 0.0539912i
\(343\) 15.2661 10.4856i 0.824291 0.566167i
\(344\) −0.340782 0.590252i −0.0183737 0.0318242i
\(345\) −0.206930 −0.0111407
\(346\) −2.81394 4.87389i −0.151279 0.262022i
\(347\) −1.26911 + 2.19816i −0.0681294 + 0.118004i −0.898078 0.439836i \(-0.855036\pi\)
0.829948 + 0.557840i \(0.188370\pi\)
\(348\) −4.64834 8.05116i −0.249177 0.431587i
\(349\) −5.34353 + 9.25527i −0.286033 + 0.495423i −0.972859 0.231398i \(-0.925670\pi\)
0.686826 + 0.726822i \(0.259003\pi\)
\(350\) 16.9223 + 19.1309i 0.904534 + 1.02259i
\(351\) 0.663964 3.54389i 0.0354398 0.189159i
\(352\) 19.0695 33.0294i 1.01641 1.76047i
\(353\) 22.2407 1.18375 0.591875 0.806030i \(-0.298388\pi\)
0.591875 + 0.806030i \(0.298388\pi\)
\(354\) −17.5404 −0.932261
\(355\) −3.17374 −0.168445
\(356\) 20.4055 1.08149
\(357\) −1.05809 1.19619i −0.0560002 0.0633091i
\(358\) 13.0431 + 22.5914i 0.689351 + 1.19399i
\(359\) 8.38142 14.5170i 0.442354 0.766180i −0.555509 0.831510i \(-0.687477\pi\)
0.997864 + 0.0653300i \(0.0208100\pi\)
\(360\) −0.125267 + 0.216969i −0.00660217 + 0.0114353i
\(361\) −18.6852 −0.983429
\(362\) −8.17470 14.1590i −0.429653 0.744180i
\(363\) −11.0735 −0.581208
\(364\) 18.1910 10.8797i 0.953465 0.570250i
\(365\) −7.96155 −0.416726
\(366\) 7.62745 + 13.2111i 0.398693 + 0.690557i
\(367\) −4.68194 −0.244395 −0.122198 0.992506i \(-0.538994\pi\)
−0.122198 + 0.992506i \(0.538994\pi\)
\(368\) 0.660506 1.14403i 0.0344312 0.0596366i
\(369\) −3.96001 + 6.85894i −0.206150 + 0.357062i
\(370\) 4.96767 + 8.60426i 0.258257 + 0.447314i
\(371\) −23.4554 + 4.76970i −1.21775 + 0.247630i
\(372\) −2.56561 −0.133021
\(373\) −6.76172 −0.350109 −0.175054 0.984559i \(-0.556010\pi\)
−0.175054 + 0.984559i \(0.556010\pi\)
\(374\) −5.82707 −0.301311
\(375\) 5.32748 0.275110
\(376\) −0.501160 + 0.868034i −0.0258453 + 0.0447655i
\(377\) 11.4521 + 9.81963i 0.589811 + 0.505737i
\(378\) −5.32730 + 1.08331i −0.274007 + 0.0557197i
\(379\) 9.62497 16.6709i 0.494402 0.856329i −0.505578 0.862781i \(-0.668721\pi\)
0.999979 + 0.00645256i \(0.00205393\pi\)
\(380\) −0.342439 0.593122i −0.0175667 0.0304265i
\(381\) −2.36612 + 4.09824i −0.121220 + 0.209959i
\(382\) −3.16408 5.48036i −0.161889 0.280399i
\(383\) 13.4851 0.689055 0.344528 0.938776i \(-0.388039\pi\)
0.344528 + 0.938776i \(0.388039\pi\)
\(384\) −1.81308 3.14034i −0.0925233 0.160255i
\(385\) −4.52408 5.11454i −0.230568 0.260661i
\(386\) 3.48458 + 6.03547i 0.177361 + 0.307198i
\(387\) −0.747200 1.29419i −0.0379823 0.0657873i
\(388\) −13.9999 −0.710737
\(389\) 16.4229 + 28.4453i 0.832675 + 1.44224i 0.895909 + 0.444238i \(0.146525\pi\)
−0.0632336 + 0.997999i \(0.520141\pi\)
\(390\) 0.749428 4.00005i 0.0379488 0.202551i
\(391\) −0.227380 −0.0114991
\(392\) −2.54931 1.92182i −0.128760 0.0970665i
\(393\) 1.78705 3.09527i 0.0901449 0.156136i
\(394\) −8.47225 −0.426826
\(395\) 4.01612 + 6.95612i 0.202073 + 0.350000i
\(396\) −5.21966 + 9.04072i −0.262298 + 0.454313i
\(397\) −26.6109 −1.33556 −0.667781 0.744358i \(-0.732756\pi\)
−0.667781 + 0.744358i \(0.732756\pi\)
\(398\) −2.35943 −0.118267
\(399\) 0.471193 1.40779i 0.0235892 0.0704779i
\(400\) −8.23791 + 14.2685i −0.411895 + 0.713424i
\(401\) 11.5558 + 20.0153i 0.577071 + 0.999517i 0.995813 + 0.0914115i \(0.0291379\pi\)
−0.418742 + 0.908105i \(0.637529\pi\)
\(402\) −9.86145 17.0805i −0.491845 0.851900i
\(403\) 3.92709 1.38205i 0.195622 0.0688450i
\(404\) −4.93706 + 8.55124i −0.245628 + 0.425440i
\(405\) −0.274662 + 0.475728i −0.0136481 + 0.0236391i
\(406\) 7.21937 21.5695i 0.358291 1.07047i
\(407\) 20.6777 + 35.8149i 1.02496 + 1.77528i
\(408\) −0.137647 + 0.238412i −0.00681455 + 0.0118031i
\(409\) 3.62073 6.27129i 0.179034 0.310096i −0.762516 0.646969i \(-0.776036\pi\)
0.941550 + 0.336874i \(0.109370\pi\)
\(410\) −4.46974 + 7.74182i −0.220745 + 0.382341i
\(411\) −9.62880 + 16.6776i −0.474954 + 0.822644i
\(412\) 18.4741 + 31.9981i 0.910154 + 1.57643i
\(413\) −14.9640 16.9170i −0.736330 0.832433i
\(414\) −0.387010 + 0.670321i −0.0190205 + 0.0329445i
\(415\) 4.08559 7.07645i 0.200554 0.347369i
\(416\) 22.2192 + 19.0520i 1.08939 + 0.934099i
\(417\) 4.83155 + 8.36849i 0.236602 + 0.409807i
\(418\) −2.70839 4.69106i −0.132471 0.229447i
\(419\) −17.5550 + 30.4062i −0.857618 + 1.48544i 0.0165759 + 0.999863i \(0.494723\pi\)
−0.874194 + 0.485576i \(0.838610\pi\)
\(420\) −3.16458 + 0.643521i −0.154416 + 0.0314006i
\(421\) 25.2731 1.23174 0.615868 0.787849i \(-0.288805\pi\)
0.615868 + 0.787849i \(0.288805\pi\)
\(422\) 9.38195 0.456706
\(423\) −1.09885 + 1.90326i −0.0534277 + 0.0925395i
\(424\) 2.06302 + 3.57325i 0.100189 + 0.173532i
\(425\) 2.83592 0.137562
\(426\) −5.93568 + 10.2809i −0.287584 + 0.498111i
\(427\) −6.23452 + 18.6270i −0.301710 + 0.901425i
\(428\) 39.7112 1.91951
\(429\) 3.11946 16.6501i 0.150609 0.803872i
\(430\) −0.843379 1.46077i −0.0406713 0.0704448i
\(431\) 17.5693 0.846285 0.423142 0.906063i \(-0.360927\pi\)
0.423142 + 0.906063i \(0.360927\pi\)
\(432\) −1.75340 3.03698i −0.0843606 0.146117i
\(433\) −3.02011 5.23098i −0.145137 0.251385i 0.784287 0.620398i \(-0.213029\pi\)
−0.929424 + 0.369013i \(0.879696\pi\)
\(434\) −4.15889 4.70169i −0.199633 0.225688i
\(435\) −1.14918 1.99044i −0.0550991 0.0954344i
\(436\) 22.5651 1.08067
\(437\) −0.105685 0.183052i −0.00505559 0.00875654i
\(438\) −14.8901 + 25.7903i −0.711474 + 1.23231i
\(439\) −12.4282 21.5262i −0.593164 1.02739i −0.993803 0.111155i \(-0.964545\pi\)
0.400639 0.916236i \(-0.368788\pi\)
\(440\) −0.588537 + 1.01938i −0.0280574 + 0.0485968i
\(441\) −5.58963 4.21379i −0.266173 0.200657i
\(442\) 0.823492 4.39537i 0.0391695 0.209066i
\(443\) 15.8094 27.3826i 0.751126 1.30099i −0.196152 0.980574i \(-0.562845\pi\)
0.947278 0.320414i \(-0.103822\pi\)
\(444\) 19.5584 0.928203
\(445\) 5.04473 0.239143
\(446\) −34.6147 −1.63905
\(447\) −7.12496 −0.336999
\(448\) 8.11725 24.2521i 0.383504 1.14580i
\(449\) −2.63384 4.56194i −0.124298 0.215291i 0.797160 0.603768i \(-0.206335\pi\)
−0.921459 + 0.388477i \(0.873001\pi\)
\(450\) 4.82684 8.36033i 0.227539 0.394110i
\(451\) −18.6051 + 32.2250i −0.876080 + 1.51742i
\(452\) 16.6427 0.782809
\(453\) −9.82744 17.0216i −0.461733 0.799746i
\(454\) −58.5046 −2.74576
\(455\) 4.49725 2.68972i 0.210834 0.126096i
\(456\) −0.255910 −0.0119841
\(457\) 9.24474 + 16.0124i 0.432451 + 0.749027i 0.997084 0.0763154i \(-0.0243156\pi\)
−0.564633 + 0.825342i \(0.690982\pi\)
\(458\) 53.9875 2.52267
\(459\) −0.301806 + 0.522743i −0.0140871 + 0.0243996i
\(460\) −0.229895 + 0.398191i −0.0107189 + 0.0185657i
\(461\) 4.79101 + 8.29827i 0.223140 + 0.386489i 0.955760 0.294149i \(-0.0950361\pi\)
−0.732620 + 0.680638i \(0.761703\pi\)
\(462\) −25.0290 + 5.08968i −1.16445 + 0.236793i
\(463\) 2.22178 0.103255 0.0516275 0.998666i \(-0.483559\pi\)
0.0516275 + 0.998666i \(0.483559\pi\)
\(464\) 14.6724 0.681151
\(465\) −0.634282 −0.0294141
\(466\) 45.6045 2.11259
\(467\) 6.76331 11.7144i 0.312969 0.542078i −0.666035 0.745921i \(-0.732010\pi\)
0.979004 + 0.203843i \(0.0653431\pi\)
\(468\) −6.08177 5.21485i −0.281130 0.241056i
\(469\) 8.06055 24.0827i 0.372202 1.11204i
\(470\) −1.24029 + 2.14824i −0.0572102 + 0.0990910i
\(471\) −2.60509 4.51215i −0.120036 0.207909i
\(472\) −1.94667 + 3.37172i −0.0896025 + 0.155196i
\(473\) −3.51053 6.08041i −0.161414 0.279578i
\(474\) 30.0445 1.37999
\(475\) 1.31812 + 2.28304i 0.0604793 + 0.104753i
\(476\) −3.47732 + 0.707119i −0.159383 + 0.0324107i
\(477\) 4.52338 + 7.83473i 0.207111 + 0.358727i
\(478\) −28.0691 48.6171i −1.28385 2.22369i
\(479\) −14.5871 −0.666501 −0.333251 0.942838i \(-0.608146\pi\)
−0.333251 + 0.942838i \(0.608146\pi\)
\(480\) −2.22963 3.86184i −0.101768 0.176268i
\(481\) −29.9374 + 10.5358i −1.36503 + 0.480392i
\(482\) −48.8681 −2.22588
\(483\) −0.976664 + 0.198606i −0.0444398 + 0.00903689i
\(484\) −12.3024 + 21.3085i −0.559202 + 0.968567i
\(485\) −3.46111 −0.157161
\(486\) 1.02737 + 1.77946i 0.0466025 + 0.0807179i
\(487\) 0.750628 1.30013i 0.0340142 0.0589143i −0.848517 0.529168i \(-0.822504\pi\)
0.882531 + 0.470254i \(0.155838\pi\)
\(488\) 3.38604 0.153279
\(489\) 4.17379 0.188745
\(490\) −6.30912 4.75618i −0.285017 0.214862i
\(491\) 14.1980 24.5917i 0.640748 1.10981i −0.344518 0.938780i \(-0.611958\pi\)
0.985266 0.171028i \(-0.0547089\pi\)
\(492\) 8.79901 + 15.2403i 0.396690 + 0.687087i
\(493\) −1.26275 2.18715i −0.0568715 0.0985044i
\(494\) 3.92123 1.37999i 0.176424 0.0620886i
\(495\) −1.29043 + 2.23509i −0.0580004 + 0.100460i
\(496\) 2.02458 3.50668i 0.0909064 0.157455i
\(497\) −14.9794 + 3.04607i −0.671916 + 0.136635i
\(498\) −15.2821 26.4694i −0.684808 1.18612i
\(499\) −10.5569 + 18.2851i −0.472593 + 0.818554i −0.999508 0.0313633i \(-0.990015\pi\)
0.526915 + 0.849918i \(0.323348\pi\)
\(500\) 5.91873 10.2515i 0.264694 0.458463i
\(501\) 2.52335 4.37058i 0.112735 0.195263i
\(502\) 8.56406 14.8334i 0.382233 0.662046i
\(503\) 14.2618 + 24.7022i 0.635903 + 1.10142i 0.986323 + 0.164824i \(0.0527056\pi\)
−0.350420 + 0.936593i \(0.613961\pi\)
\(504\) −0.382993 + 1.14428i −0.0170599 + 0.0509701i
\(505\) −1.22056 + 2.11408i −0.0543143 + 0.0940752i
\(506\) −1.81827 + 3.14933i −0.0808318 + 0.140005i
\(507\) 12.1183 + 4.70603i 0.538193 + 0.209002i
\(508\) 5.25744 + 9.10615i 0.233261 + 0.404020i
\(509\) −17.1295 29.6691i −0.759250 1.31506i −0.943234 0.332130i \(-0.892233\pi\)
0.183984 0.982929i \(-0.441100\pi\)
\(510\) −0.340654 + 0.590030i −0.0150844 + 0.0261270i
\(511\) −37.5768 + 7.64129i −1.66230 + 0.338031i
\(512\) 31.6661 1.39946
\(513\) −0.561110 −0.0247736
\(514\) 14.1513 24.5107i 0.624185 1.08112i
\(515\) 4.56725 + 7.91071i 0.201257 + 0.348587i
\(516\) −3.32050 −0.146177
\(517\) −5.16264 + 8.94196i −0.227053 + 0.393267i
\(518\) 31.7045 + 35.8424i 1.39302 + 1.57482i
\(519\) −2.73897 −0.120228
\(520\) −0.685743 0.587994i −0.0300718 0.0257852i
\(521\) −17.2434 29.8665i −0.755448 1.30847i −0.945151 0.326633i \(-0.894086\pi\)
0.189703 0.981841i \(-0.439247\pi\)
\(522\) −8.59702 −0.376281
\(523\) −15.6948 27.1842i −0.686285 1.18868i −0.973031 0.230674i \(-0.925907\pi\)
0.286746 0.958007i \(-0.407427\pi\)
\(524\) −3.97077 6.87757i −0.173464 0.300448i
\(525\) 12.1811 2.47704i 0.531626 0.108107i
\(526\) 9.29323 + 16.0963i 0.405204 + 0.701834i
\(527\) −0.696966 −0.0303603
\(528\) −8.23791 14.2685i −0.358509 0.620956i
\(529\) 11.4290 19.7957i 0.496915 0.860682i
\(530\) 5.10562 + 8.84320i 0.221774 + 0.384124i
\(531\) −4.26827 + 7.39286i −0.185227 + 0.320823i
\(532\) −2.18550 2.47074i −0.0947534 0.107120i
\(533\) −21.6780 18.5879i −0.938980 0.805133i
\(534\) 9.43489 16.3417i 0.408288 0.707175i
\(535\) 9.81757 0.424451
\(536\) −4.37777 −0.189091
\(537\) 12.6956 0.547858
\(538\) 4.70241 0.202735
\(539\) −26.2615 19.7974i −1.13116 0.852734i
\(540\) 0.610289 + 1.05705i 0.0262626 + 0.0454882i
\(541\) −4.55013 + 7.88106i −0.195626 + 0.338833i −0.947105 0.320923i \(-0.896007\pi\)
0.751480 + 0.659756i \(0.229340\pi\)
\(542\) −4.09012 + 7.08429i −0.175685 + 0.304296i
\(543\) −7.95691 −0.341464
\(544\) −2.44998 4.24349i −0.105042 0.181938i
\(545\) 5.57865 0.238963
\(546\) −0.302011 19.5987i −0.0129249 0.838745i
\(547\) −35.9950 −1.53903 −0.769517 0.638626i \(-0.779503\pi\)
−0.769517 + 0.638626i \(0.779503\pi\)
\(548\) 21.3948 + 37.0570i 0.913943 + 1.58299i
\(549\) 7.42424 0.316859
\(550\) 22.6777 39.2789i 0.966979 1.67486i
\(551\) 1.17384 2.03315i 0.0500072 0.0866150i
\(552\) 0.0859023 + 0.148787i 0.00365624 + 0.00633280i
\(553\) 25.6315 + 28.9768i 1.08996 + 1.23222i
\(554\) −17.2598 −0.733299
\(555\) 4.83533 0.205248
\(556\) 21.4710 0.910575
\(557\) −15.9142 −0.674304 −0.337152 0.941450i \(-0.609464\pi\)
−0.337152 + 0.941450i \(0.609464\pi\)
\(558\) −1.18626 + 2.05467i −0.0502185 + 0.0869811i
\(559\) 5.08257 1.78870i 0.214970 0.0756540i
\(560\) 1.61767 4.83316i 0.0683592 0.204238i
\(561\) −1.41796 + 2.45597i −0.0598662 + 0.103691i
\(562\) 13.3105 + 23.0545i 0.561470 + 0.972495i
\(563\) 12.6124 21.8453i 0.531548 0.920668i −0.467774 0.883848i \(-0.654944\pi\)
0.999322 0.0368201i \(-0.0117228\pi\)
\(564\) 2.44160 + 4.22897i 0.102810 + 0.178072i
\(565\) 4.11449 0.173098
\(566\) −26.3059 45.5632i −1.10572 1.91517i
\(567\) −0.839752 + 2.50895i −0.0352663 + 0.105366i
\(568\) 1.31751 + 2.28199i 0.0552813 + 0.0957501i
\(569\) −17.0842 29.5908i −0.716208 1.24051i −0.962492 0.271311i \(-0.912543\pi\)
0.246283 0.969198i \(-0.420791\pi\)
\(570\) −0.633335 −0.0265275
\(571\) −7.15867 12.3992i −0.299581 0.518889i 0.676459 0.736480i \(-0.263514\pi\)
−0.976040 + 0.217591i \(0.930180\pi\)
\(572\) −28.5737 24.5006i −1.19472 1.02442i
\(573\) −3.07979 −0.128660
\(574\) −13.6658 + 40.8296i −0.570399 + 1.70420i
\(575\) 0.884913 1.53271i 0.0369034 0.0639186i
\(576\) −9.66624 −0.402760
\(577\) 5.34662 + 9.26061i 0.222583 + 0.385524i 0.955591 0.294695i \(-0.0952180\pi\)
−0.733009 + 0.680219i \(0.761885\pi\)
\(578\) 17.0910 29.6025i 0.710891 1.23130i
\(579\) 3.39175 0.140956
\(580\) −5.10688 −0.212052
\(581\) 12.4913 37.3205i 0.518226 1.54832i
\(582\) −6.47314 + 11.2118i −0.268320 + 0.464744i
\(583\) 21.2519 + 36.8095i 0.880166 + 1.52449i
\(584\) 3.30505 + 5.72452i 0.136764 + 0.236882i
\(585\) −1.50356 1.28924i −0.0621647 0.0533034i
\(586\) −25.4670 + 44.1102i −1.05203 + 1.82217i
\(587\) −21.3592 + 36.9951i −0.881587 + 1.52695i −0.0320103 + 0.999488i \(0.510191\pi\)
−0.849576 + 0.527465i \(0.823142\pi\)
\(588\) −14.3185 + 6.07456i −0.590484 + 0.250511i
\(589\) −0.323945 0.561090i −0.0133479 0.0231193i
\(590\) −4.81767 + 8.34446i −0.198341 + 0.343536i
\(591\) −2.06163 + 3.57085i −0.0848042 + 0.146885i
\(592\) −15.4340 + 26.7325i −0.634334 + 1.09870i
\(593\) 14.0922 24.4084i 0.578697 1.00233i −0.416932 0.908938i \(-0.636895\pi\)
0.995629 0.0933948i \(-0.0297719\pi\)
\(594\) 4.82684 + 8.36033i 0.198048 + 0.343028i
\(595\) −0.859679 + 0.174817i −0.0352434 + 0.00716680i
\(596\) −7.91570 + 13.7104i −0.324240 + 0.561599i
\(597\) −0.574142 + 0.994443i −0.0234981 + 0.0406998i
\(598\) −2.11858 1.81659i −0.0866353 0.0742859i
\(599\) 15.7857 + 27.3417i 0.644987 + 1.11715i 0.984304 + 0.176479i \(0.0564707\pi\)
−0.339317 + 0.940672i \(0.610196\pi\)
\(600\) −1.07138 1.85569i −0.0437391 0.0757583i
\(601\) 16.0445 27.7899i 0.654469 1.13357i −0.327558 0.944831i \(-0.606226\pi\)
0.982027 0.188742i \(-0.0604409\pi\)
\(602\) −5.38258 6.08508i −0.219377 0.248009i
\(603\) −9.59873 −0.390890
\(604\) −43.6724 −1.77701
\(605\) −3.04147 + 5.26797i −0.123653 + 0.214174i
\(606\) 4.56551 + 7.90769i 0.185461 + 0.321228i
\(607\) −18.6665 −0.757649 −0.378825 0.925468i \(-0.623672\pi\)
−0.378825 + 0.925468i \(0.623672\pi\)
\(608\) 2.27747 3.94469i 0.0923636 0.159978i
\(609\) −7.33427 8.29150i −0.297199 0.335988i
\(610\) 8.37988 0.339291
\(611\) −6.01534 5.15788i −0.243354 0.208666i
\(612\) 0.670602 + 1.16152i 0.0271075 + 0.0469515i
\(613\) 17.9314 0.724241 0.362121 0.932131i \(-0.382053\pi\)
0.362121 + 0.932131i \(0.382053\pi\)
\(614\) 25.8986 + 44.8576i 1.04518 + 1.81031i
\(615\) 2.17533 + 3.76778i 0.0877177 + 0.151932i
\(616\) −1.79939 + 5.37609i −0.0724997 + 0.216609i
\(617\) −15.8059 27.3765i −0.636320 1.10214i −0.986234 0.165356i \(-0.947123\pi\)
0.349914 0.936782i \(-0.386211\pi\)
\(618\) 34.1675 1.37442
\(619\) 16.3184 + 28.2644i 0.655894 + 1.13604i 0.981669 + 0.190594i \(0.0610413\pi\)
−0.325775 + 0.945447i \(0.605625\pi\)
\(620\) −0.704676 + 1.22053i −0.0283005 + 0.0490178i
\(621\) 0.188350 + 0.326231i 0.00755821 + 0.0130912i
\(622\) −4.24592 + 7.35415i −0.170246 + 0.294875i
\(623\) 23.8100 4.84180i 0.953929 0.193983i
\(624\) 11.9269 4.19742i 0.477459 0.168031i
\(625\) −10.2824 + 17.8096i −0.411294 + 0.712382i
\(626\) −61.9264 −2.47508
\(627\) −2.63623 −0.105281
\(628\) −11.5768 −0.461966
\(629\) 5.31319 0.211851
\(630\) −0.947844 + 2.83190i −0.0377630 + 0.112825i
\(631\) 12.7985 + 22.1676i 0.509500 + 0.882480i 0.999939 + 0.0110045i \(0.00350290\pi\)
−0.490440 + 0.871475i \(0.663164\pi\)
\(632\) 3.33440 5.77535i 0.132635 0.229731i
\(633\) 2.28300 3.95427i 0.0907411 0.157168i
\(634\) 23.6842 0.940619
\(635\) 1.29977 + 2.25126i 0.0515797 + 0.0893387i
\(636\) 20.1016 0.797080
\(637\) 18.6445 17.0112i 0.738722 0.674010i
\(638\) −40.3909 −1.59909
\(639\) 2.88877 + 5.00350i 0.114278 + 0.197935i
\(640\) −1.99193 −0.0787381
\(641\) −21.6208 + 37.4483i −0.853969 + 1.47912i 0.0236292 + 0.999721i \(0.492478\pi\)
−0.877598 + 0.479397i \(0.840855\pi\)
\(642\) 18.3613 31.8027i 0.724662 1.25515i
\(643\) 2.25709 + 3.90939i 0.0890108 + 0.154171i 0.907093 0.420930i \(-0.138296\pi\)
−0.818082 + 0.575101i \(0.804963\pi\)
\(644\) −0.702883 + 2.10002i −0.0276975 + 0.0827524i
\(645\) −0.820910 −0.0323233
\(646\) −0.695926 −0.0273808
\(647\) −11.4404 −0.449769 −0.224884 0.974385i \(-0.572200\pi\)
−0.224884 + 0.974385i \(0.572200\pi\)
\(648\) 0.456078 0.0179165
\(649\) −20.0534 + 34.7334i −0.787163 + 1.36341i
\(650\) 26.4232 + 22.6567i 1.03640 + 0.888670i
\(651\) −2.99367 + 0.608768i −0.117331 + 0.0238595i
\(652\) 4.63701 8.03153i 0.181599 0.314539i
\(653\) 10.8757 + 18.8373i 0.425600 + 0.737162i 0.996476 0.0838748i \(-0.0267296\pi\)
−0.570876 + 0.821036i \(0.693396\pi\)
\(654\) 10.4334 18.0713i 0.407980 0.706642i
\(655\) −0.981671 1.70030i −0.0383571 0.0664364i
\(656\) −27.7740 −1.08439
\(657\) 7.24668 + 12.5516i 0.282720 + 0.489685i
\(658\) −3.79206 + 11.3296i −0.147830 + 0.441675i
\(659\) 3.28320 + 5.68668i 0.127895 + 0.221521i 0.922861 0.385133i \(-0.125844\pi\)
−0.794966 + 0.606655i \(0.792511\pi\)
\(660\) 2.86729 + 4.96628i 0.111609 + 0.193312i
\(661\) −46.1554 −1.79524 −0.897619 0.440772i \(-0.854705\pi\)
−0.897619 + 0.440772i \(0.854705\pi\)
\(662\) 1.16647 + 2.02038i 0.0453360 + 0.0785243i
\(663\) −1.65216 1.41665i −0.0641644 0.0550181i
\(664\) −6.78416 −0.263276
\(665\) −0.540309 0.610828i −0.0209523 0.0236869i
\(666\) 9.04325 15.6634i 0.350419 0.606943i
\(667\) −1.57611 −0.0610271
\(668\) −5.60680 9.71127i −0.216934 0.375740i
\(669\) −8.42312 + 14.5893i −0.325657 + 0.564054i
\(670\) −10.8343 −0.418564
\(671\) 34.8809 1.34656
\(672\) −14.2299 16.0871i −0.548929 0.620573i
\(673\) −5.50174 + 9.52930i −0.212077 + 0.367327i −0.952364 0.304963i \(-0.901356\pi\)
0.740288 + 0.672290i \(0.234689\pi\)
\(674\) −23.9564 41.4937i −0.922766 1.59828i
\(675\) −2.34912 4.06880i −0.0904177 0.156608i
\(676\) 22.5189 18.0907i 0.866112 0.695795i
\(677\) −11.0575 + 19.1522i −0.424976 + 0.736080i −0.996418 0.0845623i \(-0.973051\pi\)
0.571442 + 0.820642i \(0.306384\pi\)
\(678\) 7.69512 13.3283i 0.295529 0.511872i
\(679\) −16.3357 + 3.32189i −0.626907 + 0.127482i
\(680\) 0.0756129 + 0.130965i 0.00289962 + 0.00502229i
\(681\) −14.2365 + 24.6583i −0.545544 + 0.944909i
\(682\) −5.57336 + 9.65334i −0.213415 + 0.369645i
\(683\) 4.23809 7.34059i 0.162166 0.280880i −0.773479 0.633822i \(-0.781485\pi\)
0.935645 + 0.352942i \(0.114819\pi\)
\(684\) −0.623383 + 1.07973i −0.0238356 + 0.0412845i
\(685\) 5.28933 + 9.16139i 0.202095 + 0.350039i
\(686\) −34.3425 16.3928i −1.31120 0.625880i
\(687\) 13.1373 22.7545i 0.501219 0.868137i
\(688\) 2.62028 4.53847i 0.0998974 0.173027i
\(689\) −30.7688 + 10.8284i −1.17220 + 0.412529i
\(690\) 0.212594 + 0.368223i 0.00809331 + 0.0140180i
\(691\) −0.959714 1.66227i −0.0365092 0.0632359i 0.847193 0.531285i \(-0.178291\pi\)
−0.883703 + 0.468049i \(0.844957\pi\)
\(692\) −3.04295 + 5.27055i −0.115676 + 0.200356i
\(693\) −3.94536 + 11.7876i −0.149872 + 0.447776i
\(694\) 5.21539 0.197973
\(695\) 5.30817 0.201350
\(696\) −0.954114 + 1.65257i −0.0361656 + 0.0626406i
\(697\) 2.39031 + 4.14014i 0.0905395 + 0.156819i
\(698\) 21.9592 0.831166
\(699\) 11.0974 19.2212i 0.419742 0.727014i
\(700\) 8.76645 26.1917i 0.331341 0.989954i
\(701\) −18.1080 −0.683929 −0.341965 0.939713i \(-0.611092\pi\)
−0.341965 + 0.939713i \(0.611092\pi\)
\(702\) −6.98834 + 2.45939i −0.263758 + 0.0928238i
\(703\) 2.46953 + 4.27736i 0.0931403 + 0.161324i
\(704\) −45.4143 −1.71162
\(705\) 0.603622 + 1.04550i 0.0227337 + 0.0393760i
\(706\) −22.8494 39.5763i −0.859948 1.48947i
\(707\) −3.73175 + 11.1494i −0.140347 + 0.419318i
\(708\) 9.48394 + 16.4267i 0.356428 + 0.617352i
\(709\) −28.3768 −1.06571 −0.532857 0.846205i \(-0.678882\pi\)
−0.532857 + 0.846205i \(0.678882\pi\)
\(710\) 3.26061 + 5.64754i 0.122368 + 0.211948i
\(711\) 7.31102 12.6631i 0.274185 0.474902i
\(712\) −2.09421 3.62727i −0.0784837 0.135938i
\(713\) −0.217480 + 0.376686i −0.00814468 + 0.0141070i
\(714\) −1.04152 + 3.11176i −0.0389778 + 0.116455i
\(715\) −7.06411 6.05715i −0.264183 0.226525i
\(716\) 14.1046 24.4299i 0.527115 0.912990i
\(717\) −27.3213 −1.02033
\(718\) −34.4433 −1.28541
\(719\) 44.3482 1.65391 0.826955 0.562269i \(-0.190071\pi\)
0.826955 + 0.562269i \(0.190071\pi\)
\(720\) −1.92637 −0.0717916
\(721\) 29.1489 + 32.9533i 1.08556 + 1.22724i
\(722\) 19.1966 + 33.2495i 0.714423 + 1.23742i
\(723\) −11.8915 + 20.5967i −0.442251 + 0.766001i
\(724\) −8.83998 + 15.3113i −0.328535 + 0.569040i
\(725\) 19.6574 0.730058
\(726\) 11.3766 + 19.7048i 0.422225 + 0.731314i
\(727\) 24.1298 0.894924 0.447462 0.894303i \(-0.352328\pi\)
0.447462 + 0.894303i \(0.352328\pi\)
\(728\) −3.80090 2.11704i −0.140871 0.0784628i
\(729\) 1.00000 0.0370370
\(730\) 8.17946 + 14.1672i 0.302735 + 0.524353i
\(731\) −0.902038 −0.0333631
\(732\) 8.24820 14.2863i 0.304862 0.528037i
\(733\) 16.7734 29.0524i 0.619540 1.07308i −0.370029 0.929020i \(-0.620652\pi\)
0.989570 0.144055i \(-0.0460143\pi\)
\(734\) 4.81009 + 8.33132i 0.177544 + 0.307515i
\(735\) −3.53988 + 1.50178i −0.130570 + 0.0553940i
\(736\) −3.05795 −0.112717
\(737\) −45.0972 −1.66118
\(738\) 16.2736 0.599040
\(739\) −16.8221 −0.618811 −0.309405 0.950930i \(-0.600130\pi\)
−0.309405 + 0.950930i \(0.600130\pi\)
\(740\) 5.37196 9.30451i 0.197477 0.342041i
\(741\) 0.372557 1.98851i 0.0136862 0.0730498i
\(742\) 32.5849 + 36.8377i 1.19623 + 1.35236i
\(743\) −16.5645 + 28.6906i −0.607694 + 1.05256i 0.383926 + 0.923364i \(0.374572\pi\)
−0.991620 + 0.129192i \(0.958761\pi\)
\(744\) 0.263308 + 0.456062i 0.00965333 + 0.0167201i
\(745\) −1.95695 + 3.38954i −0.0716972 + 0.124183i
\(746\) 6.94680 + 12.0322i 0.254340 + 0.440530i
\(747\) −14.8750 −0.544247
\(748\) 3.15065 + 5.45709i 0.115199 + 0.199531i
\(749\) 46.3368 9.42265i 1.69311 0.344296i
\(750\) −5.47329 9.48002i −0.199856 0.346161i
\(751\) 14.8975 + 25.8032i 0.543616 + 0.941571i 0.998693 + 0.0511187i \(0.0162787\pi\)
−0.455076 + 0.890453i \(0.650388\pi\)
\(752\) −7.70687 −0.281041
\(753\) −4.16795 7.21910i −0.151889 0.263079i
\(754\) 5.70811 30.4669i 0.207877 1.10954i
\(755\) −10.7969 −0.392939
\(756\) 3.89496 + 4.40331i 0.141658 + 0.160147i
\(757\) −11.0742 + 19.1810i −0.402498 + 0.697147i −0.994027 0.109137i \(-0.965191\pi\)
0.591529 + 0.806284i \(0.298525\pi\)
\(758\) −39.5537 −1.43665
\(759\) 0.884913 + 1.53271i 0.0321203 + 0.0556340i
\(760\) −0.0702887 + 0.121744i −0.00254964 + 0.00441611i
\(761\) 42.8934 1.55489 0.777443 0.628954i \(-0.216517\pi\)
0.777443 + 0.628954i \(0.216517\pi\)
\(762\) 9.72354 0.352247
\(763\) 26.3300 5.35424i 0.953210 0.193837i
\(764\) −3.42159 + 5.92637i −0.123789 + 0.214408i
\(765\) 0.165789 + 0.287155i 0.00599412 + 0.0103821i
\(766\) −13.8542 23.9961i −0.500572 0.867016i
\(767\) −23.3655 20.0349i −0.843679 0.723417i
\(768\) 5.94083 10.2898i 0.214371 0.371302i
\(769\) 25.5865 44.3171i 0.922671 1.59811i 0.127407 0.991850i \(-0.459334\pi\)
0.795264 0.606263i \(-0.207332\pi\)
\(770\) −4.45320 + 13.3049i −0.160482 + 0.479477i
\(771\) −6.88712 11.9288i −0.248034 0.429607i
\(772\) 3.76817 6.52666i 0.135619 0.234900i
\(773\) 18.1625 31.4583i 0.653259 1.13148i −0.329069 0.944306i \(-0.606735\pi\)
0.982327 0.187171i \(-0.0599319\pi\)
\(774\) −1.53530 + 2.65922i −0.0551853 + 0.0955838i
\(775\) 2.71244 4.69808i 0.0974336 0.168760i